commit | ac1a1193fb98046daeac16ba34440f92f6ab4a0d | [log] [tgz] |
---|---|---|
author | bors <bors@rust-lang.org> | Thu Jun 28 02:58:09 2018 +0000 |
committer | bors <bors@rust-lang.org> | Thu Jun 28 02:58:09 2018 +0000 |
tree | c46e17e1c0adaf471b3fa6ddad058f66303e867d | |
parent | 42a5ad8cd9bcb72bc39bfee11f08e266a3557215 [diff] | |
parent | 4aabb8766162cebc56e7aaceccf583d1b11f9726 [diff] |
Auto merge of #1022 - sfackler:phys-pages, r=alexcrichton Add _SC_PHYS_PAGES on macOS
A Rust library with native bindings to the types and functions commonly found on various systems, including libc.
First, add the following to your Cargo.toml
:
[dependencies] libc = "0.2"
Next, add this to your crate root:
extern crate libc;
Currently libc by default links to the standard library, but if you would instead like to use libc in a #![no_std]
situation or crate you can request this via:
[dependencies] libc = { version = "0.2", default-features = false }
The primary purpose of this crate is to provide all of the definitions necessary to easily interoperate with C code (or "C-like" code) on each of the platforms that Rust supports. This includes type definitions (e.g. c_int
), constants (e.g. EINVAL
) as well as function headers (e.g. malloc
).
This crate does not strive to have any form of compatibility across platforms, but rather it is simply a straight binding to the system libraries on the platform in question.
This crate exports all underlying platform types, functions, and constants under the crate root, so all items are accessible as libc::foo
. The types and values of all the exported APIs match the platform that libc is compiled for.
More detailed information about the design of this library can be found in its associated RFC.
Want to use an API which currently isn't bound in libc
? It's quite easy to add one!
The internal structure of this crate is designed to minimize the number of #[cfg]
attributes in order to easily be able to add new items which apply to all platforms in the future. As a result, the crate is organized hierarchically based on platform. Each module has a number of #[cfg]
'd children, but only one is ever actually compiled. Each module then reexports all the contents of its children.
This means that for each platform that libc supports, the path from a leaf module to the root will contain all bindings for the platform in question. Consequently, this indicates where an API should be added! Adding an API at a particular level in the hierarchy means that it is supported on all the child platforms of that level. For example, when adding a Unix API it should be added to src/unix/mod.rs
, but when adding a Linux-only API it should be added to src/unix/notbsd/linux/mod.rs
.
If you're not 100% sure at what level of the hierarchy an API should be added at, fear not! This crate has CI support which tests any binding against all platforms supported, so you'll see failures if an API is added at the wrong level or has different signatures across platforms.
With that in mind, the steps for adding a new API are:
We have two automated tests running on Travis:
cd libc-test && cargo test
skip_*()
functions in build.rs
if you really need a workaround.rustc ci/style.rs && ./style src
Now that you've done the amazing job of landing your new API or your new platform in this crate, the next step is to get that sweet, sweet usage from crates.io! The only next step is to bump the version of libc and then publish it. If you'd like to get a release out ASAP you can follow these steps:
Cargo.toml
, you'll just be bumping the patch version number.cargo update
to regenerate the lockfile to encode your version bump in the lock file. You may pull in some other updated dependencies, that's ok.The following platforms are currently tested and have documentation available:
Tested:
i686-pc-windows-msvc
x86_64-pc-windows-msvc
(Windows)i686-pc-windows-gnu
x86_64-pc-windows-gnu
i686-apple-darwin
x86_64-apple-darwin
(OSX)i386-apple-ios
x86_64-apple-ios
i686-unknown-linux-gnu
x86_64-unknown-linux-gnu
(Linux)x86_64-unknown-linux-musl
(Linux MUSL)aarch64-unknown-linux-gnu
(Linux)aarch64-unknown-linux-musl
(Linux MUSL)sparc64-unknown-linux-gnu
(Linux)mips-unknown-linux-gnu
arm-unknown-linux-gnueabihf
arm-linux-androideabi
(Android)x86_64-unknown-freebsd
x86_64-unknown-openbsd
x86_64-rumprun-netbsd
The following may be supported, but are not guaranteed to always work:
i686-unknown-freebsd
x86_64-unknown-bitrig
x86_64-unknown-dragonfly
i686-unknown-haiku
x86_64-unknown-haiku
x86_64-unknown-netbsd
x86_64-sun-solaris