Import 'regex-syntax' package vesion 0.6.17

* Add OWNERS
Bug: 152884384
Test: make

Change-Id: I760a69ffc851039ceaff58980deece308a426aed
diff --git a/src/hir/interval.rs b/src/hir/interval.rs
new file mode 100644
index 0000000..51eed52
--- /dev/null
+++ b/src/hir/interval.rs
@@ -0,0 +1,520 @@
+use std::char;
+use std::cmp;
+use std::fmt::Debug;
+use std::slice;
+use std::u8;
+
+use unicode;
+
+// This module contains an *internal* implementation of interval sets.
+//
+// The primary invariant that interval sets guards is canonical ordering. That
+// is, every interval set contains an ordered sequence of intervals where
+// no two intervals are overlapping or adjacent. While this invariant is
+// occasionally broken within the implementation, it should be impossible for
+// callers to observe it.
+//
+// Since case folding (as implemented below) breaks that invariant, we roll
+// that into this API even though it is a little out of place in an otherwise
+// generic interval set. (Hence the reason why the `unicode` module is imported
+// here.)
+//
+// Some of the implementation complexity here is a result of me wanting to
+// preserve the sequential representation without using additional memory.
+// In many cases, we do use linear extra memory, but it is at most 2x and it
+// is amortized. If we relaxed the memory requirements, this implementation
+// could become much simpler. The extra memory is honestly probably OK, but
+// character classes (especially of the Unicode variety) can become quite
+// large, and it would be nice to keep regex compilation snappy even in debug
+// builds. (In the past, I have been careless with this area of code and it has
+// caused slow regex compilations in debug mode, so this isn't entirely
+// unwarranted.)
+//
+// Tests on this are relegated to the public API of HIR in src/hir.rs.
+
+#[derive(Clone, Debug, Eq, PartialEq)]
+pub struct IntervalSet<I> {
+    ranges: Vec<I>,
+}
+
+impl<I: Interval> IntervalSet<I> {
+    /// Create a new set from a sequence of intervals. Each interval is
+    /// specified as a pair of bounds, where both bounds are inclusive.
+    ///
+    /// The given ranges do not need to be in any specific order, and ranges
+    /// may overlap.
+    pub fn new<T: IntoIterator<Item = I>>(intervals: T) -> IntervalSet<I> {
+        let mut set = IntervalSet { ranges: intervals.into_iter().collect() };
+        set.canonicalize();
+        set
+    }
+
+    /// Add a new interval to this set.
+    pub fn push(&mut self, interval: I) {
+        // TODO: This could be faster. e.g., Push the interval such that
+        // it preserves canonicalization.
+        self.ranges.push(interval);
+        self.canonicalize();
+    }
+
+    /// Return an iterator over all intervals in this set.
+    ///
+    /// The iterator yields intervals in ascending order.
+    pub fn iter(&self) -> IntervalSetIter<I> {
+        IntervalSetIter(self.ranges.iter())
+    }
+
+    /// Return an immutable slice of intervals in this set.
+    ///
+    /// The sequence returned is in canonical ordering.
+    pub fn intervals(&self) -> &[I] {
+        &self.ranges
+    }
+
+    /// Expand this interval set such that it contains all case folded
+    /// characters. For example, if this class consists of the range `a-z`,
+    /// then applying case folding will result in the class containing both the
+    /// ranges `a-z` and `A-Z`.
+    ///
+    /// This returns an error if the necessary case mapping data is not
+    /// available.
+    pub fn case_fold_simple(&mut self) -> Result<(), unicode::CaseFoldError> {
+        let len = self.ranges.len();
+        for i in 0..len {
+            let range = self.ranges[i];
+            if let Err(err) = range.case_fold_simple(&mut self.ranges) {
+                self.canonicalize();
+                return Err(err);
+            }
+        }
+        self.canonicalize();
+        Ok(())
+    }
+
+    /// Union this set with the given set, in place.
+    pub fn union(&mut self, other: &IntervalSet<I>) {
+        // This could almost certainly be done more efficiently.
+        self.ranges.extend(&other.ranges);
+        self.canonicalize();
+    }
+
+    /// Intersect this set with the given set, in place.
+    pub fn intersect(&mut self, other: &IntervalSet<I>) {
+        if self.ranges.is_empty() {
+            return;
+        }
+        if other.ranges.is_empty() {
+            self.ranges.clear();
+            return;
+        }
+
+        // There should be a way to do this in-place with constant memory,
+        // but I couldn't figure out a simple way to do it. So just append
+        // the intersection to the end of this range, and then drain it before
+        // we're done.
+        let drain_end = self.ranges.len();
+
+        let mut ita = (0..drain_end).into_iter();
+        let mut itb = (0..other.ranges.len()).into_iter();
+        let mut a = ita.next().unwrap();
+        let mut b = itb.next().unwrap();
+        loop {
+            if let Some(ab) = self.ranges[a].intersect(&other.ranges[b]) {
+                self.ranges.push(ab);
+            }
+            let (it, aorb) =
+                if self.ranges[a].upper() < other.ranges[b].upper() {
+                    (&mut ita, &mut a)
+                } else {
+                    (&mut itb, &mut b)
+                };
+            match it.next() {
+                Some(v) => *aorb = v,
+                None => break,
+            }
+        }
+        self.ranges.drain(..drain_end);
+    }
+
+    /// Subtract the given set from this set, in place.
+    pub fn difference(&mut self, other: &IntervalSet<I>) {
+        if self.ranges.is_empty() || other.ranges.is_empty() {
+            return;
+        }
+
+        // This algorithm is (to me) surprisingly complex. A search of the
+        // interwebs indicate that this is a potentially interesting problem.
+        // Folks seem to suggest interval or segment trees, but I'd like to
+        // avoid the overhead (both runtime and conceptual) of that.
+        //
+        // The following is basically my Shitty First Draft. Therefore, in
+        // order to grok it, you probably need to read each line carefully.
+        // Simplifications are most welcome!
+        //
+        // Remember, we can assume the canonical format invariant here, which
+        // says that all ranges are sorted, not overlapping and not adjacent in
+        // each class.
+        let drain_end = self.ranges.len();
+        let (mut a, mut b) = (0, 0);
+        'LOOP: while a < drain_end && b < other.ranges.len() {
+            // Basically, the easy cases are when neither range overlaps with
+            // each other. If the `b` range is less than our current `a`
+            // range, then we can skip it and move on.
+            if other.ranges[b].upper() < self.ranges[a].lower() {
+                b += 1;
+                continue;
+            }
+            // ... similarly for the `a` range. If it's less than the smallest
+            // `b` range, then we can add it as-is.
+            if self.ranges[a].upper() < other.ranges[b].lower() {
+                let range = self.ranges[a];
+                self.ranges.push(range);
+                a += 1;
+                continue;
+            }
+            // Otherwise, we have overlapping ranges.
+            assert!(!self.ranges[a].is_intersection_empty(&other.ranges[b]));
+
+            // This part is tricky and was non-obvious to me without looking
+            // at explicit examples (see the tests). The trickiness stems from
+            // two things: 1) subtracting a range from another range could
+            // yield two ranges and 2) after subtracting a range, it's possible
+            // that future ranges can have an impact. The loop below advances
+            // the `b` ranges until they can't possible impact the current
+            // range.
+            //
+            // For example, if our `a` range is `a-t` and our next three `b`
+            // ranges are `a-c`, `g-i`, `r-t` and `x-z`, then we need to apply
+            // subtraction three times before moving on to the next `a` range.
+            let mut range = self.ranges[a];
+            while b < other.ranges.len()
+                && !range.is_intersection_empty(&other.ranges[b])
+            {
+                let old_range = range;
+                range = match range.difference(&other.ranges[b]) {
+                    (None, None) => {
+                        // We lost the entire range, so move on to the next
+                        // without adding this one.
+                        a += 1;
+                        continue 'LOOP;
+                    }
+                    (Some(range1), None) | (None, Some(range1)) => range1,
+                    (Some(range1), Some(range2)) => {
+                        self.ranges.push(range1);
+                        range2
+                    }
+                };
+                // It's possible that the `b` range has more to contribute
+                // here. In particular, if it is greater than the original
+                // range, then it might impact the next `a` range *and* it
+                // has impacted the current `a` range as much as possible,
+                // so we can quit. We don't bump `b` so that the next `a`
+                // range can apply it.
+                if other.ranges[b].upper() > old_range.upper() {
+                    break;
+                }
+                // Otherwise, the next `b` range might apply to the current
+                // `a` range.
+                b += 1;
+            }
+            self.ranges.push(range);
+            a += 1;
+        }
+        while a < drain_end {
+            let range = self.ranges[a];
+            self.ranges.push(range);
+            a += 1;
+        }
+        self.ranges.drain(..drain_end);
+    }
+
+    /// Compute the symmetric difference of the two sets, in place.
+    ///
+    /// This computes the symmetric difference of two interval sets. This
+    /// removes all elements in this set that are also in the given set,
+    /// but also adds all elements from the given set that aren't in this
+    /// set. That is, the set will contain all elements in either set,
+    /// but will not contain any elements that are in both sets.
+    pub fn symmetric_difference(&mut self, other: &IntervalSet<I>) {
+        // TODO(burntsushi): Fix this so that it amortizes allocation.
+        let mut intersection = self.clone();
+        intersection.intersect(other);
+        self.union(other);
+        self.difference(&intersection);
+    }
+
+    /// Negate this interval set.
+    ///
+    /// For all `x` where `x` is any element, if `x` was in this set, then it
+    /// will not be in this set after negation.
+    pub fn negate(&mut self) {
+        if self.ranges.is_empty() {
+            let (min, max) = (I::Bound::min_value(), I::Bound::max_value());
+            self.ranges.push(I::create(min, max));
+            return;
+        }
+
+        // There should be a way to do this in-place with constant memory,
+        // but I couldn't figure out a simple way to do it. So just append
+        // the negation to the end of this range, and then drain it before
+        // we're done.
+        let drain_end = self.ranges.len();
+
+        // We do checked arithmetic below because of the canonical ordering
+        // invariant.
+        if self.ranges[0].lower() > I::Bound::min_value() {
+            let upper = self.ranges[0].lower().decrement();
+            self.ranges.push(I::create(I::Bound::min_value(), upper));
+        }
+        for i in 1..drain_end {
+            let lower = self.ranges[i - 1].upper().increment();
+            let upper = self.ranges[i].lower().decrement();
+            self.ranges.push(I::create(lower, upper));
+        }
+        if self.ranges[drain_end - 1].upper() < I::Bound::max_value() {
+            let lower = self.ranges[drain_end - 1].upper().increment();
+            self.ranges.push(I::create(lower, I::Bound::max_value()));
+        }
+        self.ranges.drain(..drain_end);
+    }
+
+    /// Converts this set into a canonical ordering.
+    fn canonicalize(&mut self) {
+        if self.is_canonical() {
+            return;
+        }
+        self.ranges.sort();
+        assert!(!self.ranges.is_empty());
+
+        // Is there a way to do this in-place with constant memory? I couldn't
+        // figure out a way to do it. So just append the canonicalization to
+        // the end of this range, and then drain it before we're done.
+        let drain_end = self.ranges.len();
+        for oldi in 0..drain_end {
+            // If we've added at least one new range, then check if we can
+            // merge this range in the previously added range.
+            if self.ranges.len() > drain_end {
+                let (last, rest) = self.ranges.split_last_mut().unwrap();
+                if let Some(union) = last.union(&rest[oldi]) {
+                    *last = union;
+                    continue;
+                }
+            }
+            let range = self.ranges[oldi];
+            self.ranges.push(range);
+        }
+        self.ranges.drain(..drain_end);
+    }
+
+    /// Returns true if and only if this class is in a canonical ordering.
+    fn is_canonical(&self) -> bool {
+        for pair in self.ranges.windows(2) {
+            if pair[0] >= pair[1] {
+                return false;
+            }
+            if pair[0].is_contiguous(&pair[1]) {
+                return false;
+            }
+        }
+        true
+    }
+}
+
+/// An iterator over intervals.
+#[derive(Debug)]
+pub struct IntervalSetIter<'a, I: 'a>(slice::Iter<'a, I>);
+
+impl<'a, I> Iterator for IntervalSetIter<'a, I> {
+    type Item = &'a I;
+
+    fn next(&mut self) -> Option<&'a I> {
+        self.0.next()
+    }
+}
+
+pub trait Interval:
+    Clone + Copy + Debug + Default + Eq + PartialEq + PartialOrd + Ord
+{
+    type Bound: Bound;
+
+    fn lower(&self) -> Self::Bound;
+    fn upper(&self) -> Self::Bound;
+    fn set_lower(&mut self, bound: Self::Bound);
+    fn set_upper(&mut self, bound: Self::Bound);
+    fn case_fold_simple(
+        &self,
+        intervals: &mut Vec<Self>,
+    ) -> Result<(), unicode::CaseFoldError>;
+
+    /// Create a new interval.
+    fn create(lower: Self::Bound, upper: Self::Bound) -> Self {
+        let mut int = Self::default();
+        if lower <= upper {
+            int.set_lower(lower);
+            int.set_upper(upper);
+        } else {
+            int.set_lower(upper);
+            int.set_upper(lower);
+        }
+        int
+    }
+
+    /// Union the given overlapping range into this range.
+    ///
+    /// If the two ranges aren't contiguous, then this returns `None`.
+    fn union(&self, other: &Self) -> Option<Self> {
+        if !self.is_contiguous(other) {
+            return None;
+        }
+        let lower = cmp::min(self.lower(), other.lower());
+        let upper = cmp::max(self.upper(), other.upper());
+        Some(Self::create(lower, upper))
+    }
+
+    /// Intersect this range with the given range and return the result.
+    ///
+    /// If the intersection is empty, then this returns `None`.
+    fn intersect(&self, other: &Self) -> Option<Self> {
+        let lower = cmp::max(self.lower(), other.lower());
+        let upper = cmp::min(self.upper(), other.upper());
+        if lower <= upper {
+            Some(Self::create(lower, upper))
+        } else {
+            None
+        }
+    }
+
+    /// Subtract the given range from this range and return the resulting
+    /// ranges.
+    ///
+    /// If subtraction would result in an empty range, then no ranges are
+    /// returned.
+    fn difference(&self, other: &Self) -> (Option<Self>, Option<Self>) {
+        if self.is_subset(other) {
+            return (None, None);
+        }
+        if self.is_intersection_empty(other) {
+            return (Some(self.clone()), None);
+        }
+        let add_lower = other.lower() > self.lower();
+        let add_upper = other.upper() < self.upper();
+        // We know this because !self.is_subset(other) and the ranges have
+        // a non-empty intersection.
+        assert!(add_lower || add_upper);
+        let mut ret = (None, None);
+        if add_lower {
+            let upper = other.lower().decrement();
+            ret.0 = Some(Self::create(self.lower(), upper));
+        }
+        if add_upper {
+            let lower = other.upper().increment();
+            let range = Self::create(lower, self.upper());
+            if ret.0.is_none() {
+                ret.0 = Some(range);
+            } else {
+                ret.1 = Some(range);
+            }
+        }
+        ret
+    }
+
+    /// Compute the symmetric difference the given range from this range. This
+    /// returns the union of the two ranges minus its intersection.
+    fn symmetric_difference(
+        &self,
+        other: &Self,
+    ) -> (Option<Self>, Option<Self>) {
+        let union = match self.union(other) {
+            None => return (Some(self.clone()), Some(other.clone())),
+            Some(union) => union,
+        };
+        let intersection = match self.intersect(other) {
+            None => return (Some(self.clone()), Some(other.clone())),
+            Some(intersection) => intersection,
+        };
+        union.difference(&intersection)
+    }
+
+    /// Returns true if and only if the two ranges are contiguous. Two ranges
+    /// are contiguous if and only if the ranges are either overlapping or
+    /// adjacent.
+    fn is_contiguous(&self, other: &Self) -> bool {
+        let lower1 = self.lower().as_u32();
+        let upper1 = self.upper().as_u32();
+        let lower2 = other.lower().as_u32();
+        let upper2 = other.upper().as_u32();
+        cmp::max(lower1, lower2) <= cmp::min(upper1, upper2).saturating_add(1)
+    }
+
+    /// Returns true if and only if the intersection of this range and the
+    /// other range is empty.
+    fn is_intersection_empty(&self, other: &Self) -> bool {
+        let (lower1, upper1) = (self.lower(), self.upper());
+        let (lower2, upper2) = (other.lower(), other.upper());
+        cmp::max(lower1, lower2) > cmp::min(upper1, upper2)
+    }
+
+    /// Returns true if and only if this range is a subset of the other range.
+    fn is_subset(&self, other: &Self) -> bool {
+        let (lower1, upper1) = (self.lower(), self.upper());
+        let (lower2, upper2) = (other.lower(), other.upper());
+        (lower2 <= lower1 && lower1 <= upper2)
+            && (lower2 <= upper1 && upper1 <= upper2)
+    }
+}
+
+pub trait Bound:
+    Copy + Clone + Debug + Eq + PartialEq + PartialOrd + Ord
+{
+    fn min_value() -> Self;
+    fn max_value() -> Self;
+    fn as_u32(self) -> u32;
+    fn increment(self) -> Self;
+    fn decrement(self) -> Self;
+}
+
+impl Bound for u8 {
+    fn min_value() -> Self {
+        u8::MIN
+    }
+    fn max_value() -> Self {
+        u8::MAX
+    }
+    fn as_u32(self) -> u32 {
+        self as u32
+    }
+    fn increment(self) -> Self {
+        self.checked_add(1).unwrap()
+    }
+    fn decrement(self) -> Self {
+        self.checked_sub(1).unwrap()
+    }
+}
+
+impl Bound for char {
+    fn min_value() -> Self {
+        '\x00'
+    }
+    fn max_value() -> Self {
+        '\u{10FFFF}'
+    }
+    fn as_u32(self) -> u32 {
+        self as u32
+    }
+
+    fn increment(self) -> Self {
+        match self {
+            '\u{D7FF}' => '\u{E000}',
+            c => char::from_u32((c as u32).checked_add(1).unwrap()).unwrap(),
+        }
+    }
+
+    fn decrement(self) -> Self {
+        match self {
+            '\u{E000}' => '\u{D7FF}',
+            c => char::from_u32((c as u32).checked_sub(1).unwrap()).unwrap(),
+        }
+    }
+}
+
+// Tests for interval sets are written in src/hir.rs against the public API.