refactor SkBitmapProcState_opts_SSSE3

Change-Id: Ied07a15b891e5b94fad14056ddfdffc52facf242
Reviewed-on: https://skia-review.googlesource.com/c/170764
Auto-Submit: Mike Klein <mtklein@google.com>
Commit-Queue: Herb Derby <herb@google.com>
Reviewed-by: Herb Derby <herb@google.com>
diff --git a/src/opts/SkBitmapProcState_opts_SSSE3.cpp b/src/opts/SkBitmapProcState_opts_SSSE3.cpp
index 0a5908b..e27df99 100644
--- a/src/opts/SkBitmapProcState_opts_SSSE3.cpp
+++ b/src/opts/SkBitmapProcState_opts_SSSE3.cpp
@@ -6,223 +6,73 @@
  */
 
 #include "SkBitmapProcState_opts_SSSE3.h"
-#include "SkColorData.h"
-#include "SkPaint.h"
-#include "SkUTF.h"
+#include <tmmintrin.h>
 
-#include <tmmintrin.h>  // SSSE3
+// This same basic packing scheme is used throughout the file.
+static void decode_packed_coordinates_and_weight(uint32_t packed, int* v0, int* v1, int* w) {
+    // The top 14 bits are the integer coordinate x0 or y0.
+    *v0 = packed >> 18;
 
-namespace {
+    // The bottom 14 bits are the integer coordinate x1 or y1.
+    *v1 = packed & 0x3fff;
 
-// Prepare all necessary constants for a round of processing for two pixel
-// pairs.
-// @param xy is the location where the xy parameters for four pixels should be
-//           read from. It is identical in concept with argument two of
-//           S32_{opaque}_D32_filter_DX methods.
-// @param mask_3FFF vector of 32 bit constants containing 3FFF,
-//                  suitable to mask the bottom 14 bits of a XY value.
-// @param mask_000F vector of 32 bit constants containing 000F,
-//                  suitable to mask the bottom 4 bits of a XY value.
-// @param sixteen_8bit vector of 8 bit components containing the value 16.
-// @param mask_dist_select vector of 8 bit components containing the shuffling
-//                         parameters to reorder x[0-3] parameters.
-// @param all_x_result vector of 8 bit components that will contain the
-//              (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
-// @param sixteen_minus_x vector of 8 bit components, containing
-//              (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
-inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
-                                          const __m128i& mask_3FFF,
-                                          const __m128i& mask_000F,
-                                          const __m128i& sixteen_8bit,
-                                          const __m128i& mask_dist_select,
-                                          __m128i* all_x_result,
-                                          __m128i* sixteen_minus_x,
-                                          int* x0,
-                                          int* x1) {
-    const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
-
-    // 4 delta X
-    // (x03, x02, x01, x00)
-    const __m128i x0_wide = _mm_srli_epi32(xx, 18);
-    // (x13, x12, x11, x10)
-    const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
-
-    _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
-    _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
-
-    __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
-
-    // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
-    all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
-
-    *all_x_result = all_x;
-    // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
-    *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
+    // The middle 4 bits are the interpolating factor between the two, i.e. the weight for v1.
+    *w = (packed >> 14) & 0xf;
 }
 
-// Helper function used when processing one pixel pair.
-// @param pixel0..3 are the four input pixels
-// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
-//                will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
-//                or (4x(x3, 16-x3), 4x(x2, 16-x2))
-// @return a vector of 16 bit components containing:
-// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
-inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
-                                      uint32_t pixel1,
-                                      uint32_t pixel2,
-                                      uint32_t pixel3,
-                                      const __m128i& scale_x) {
-    __m128i a0, a1, a2, a3;
-    // Load 2 pairs of pixels
-    a0 = _mm_cvtsi32_si128(pixel0);
-    a1 = _mm_cvtsi32_si128(pixel1);
-
-    // Interleave pixels.
-    // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
-    a0 = _mm_unpacklo_epi8(a0, a1);
-
-    a2 = _mm_cvtsi32_si128(pixel2);
-    a3 = _mm_cvtsi32_si128(pixel3);
-    // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
-    a2 = _mm_unpacklo_epi8(a2, a3);
-
-    // two pairs of pixel pairs, interleaved.
-    // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
-    //  Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
-    a0 = _mm_unpacklo_epi64(a0, a2);
-
-    // multiply and sum to 16 bit components.
-    // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
-    // At that point, we use up a bit less than 12 bits for each 16 bit
-    // component:
-    // All components are less than 255. So,
-    // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
-    return _mm_maddubs_epi16(a0, scale_x);
-}
-
-// Scale back the results after multiplications to the [0:255] range, and scale by alpha.
-inline __m128i ScaleFourPixels(__m128i* pixels, const __m128i& alpha) {
-    // Divide each 16 bit component by 256.
-    *pixels = _mm_srli_epi16(*pixels, 8);
-
-    // Multiply by alpha.
-    *pixels = _mm_mullo_epi16(*pixels, alpha);
-
-    // Divide each 16 bit component by 256.
-    *pixels = _mm_srli_epi16(*pixels, 8);
-
-    return *pixels;
+// As above, 4x.
+static void decode_packed_coordinates_and_weight(__m128i packed, int v0[4], int v1[4], __m128i* w) {
+    _mm_storeu_si128((__m128i*)v0, _mm_srli_epi32(packed, 18));
+    _mm_storeu_si128((__m128i*)v1, _mm_and_si128 (packed, _mm_set1_epi32(0x3fff)));
+    *w = _mm_and_si128(_mm_srli_epi32(packed, 14), _mm_set1_epi32(0xf));
 }
 
 
-// Same as ProcessPixelPairHelper, except that the values are scaled by y.
-// @param y vector of 16 bit components containing 'y' values. There are two
-//        cases in practice, where y will contain the sub_y constant, or will
-//        contain the 16 - sub_y constant.
-// @return vector of 16 bit components containing:
-// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
-inline __m128i ProcessPixelPair(uint32_t pixel0,
-                                uint32_t pixel1,
-                                uint32_t pixel2,
-                                uint32_t pixel3,
-                                const __m128i& scale_x,
-                                const __m128i& y) {
-    __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
-                                         scale_x);
+// This is the crux of the whole file, interpolating in X for up to two output pixels (A and B).
+static inline __m128i interpolate_in_x(uint32_t A0, uint32_t A1,
+                                       uint32_t B0, uint32_t B1,
+                                       const __m128i& interlaced_x_weights) {
+    // _mm_maddubs_epi16() is a little idiosyncratic, but very helpful as the core of a lerp.
+    //
+    // It takes two arguments interlaced byte-wise:
+    //    - first  arg: [ x,y, ... 7 more pairs of 8-bit values ...]
+    //    - second arg: [ z,w, ... 7 more pairs of 8-bit values ...]
+    // and returns 8 16-bit values: [ x*z + y*w, ... 7 more 16-bit values ... ].
+    //
+    // That's why we go to all this trouble to make interlaced_x_weights,
+    // and here we're interlacing A0 with A1, B0 with B1 to match.
 
-    // first row times 16-y or y depending on whether 'y' represents one or
-    // the other.
-    // Values will be up to 255 * 16 * 16 = 65280.
-    // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
-    //  y * (Ra0 * (16 - x0) + Ra1 * x0))
-    sum = _mm_mullo_epi16(sum, y);
+    __m128i interlaced_A = _mm_unpacklo_epi8(_mm_cvtsi32_si128(A0), _mm_cvtsi32_si128(A1)),
+            interlaced_B = _mm_unpacklo_epi8(_mm_cvtsi32_si128(B0), _mm_cvtsi32_si128(B1));
 
-    return sum;
+    return _mm_maddubs_epi16(_mm_unpacklo_epi64(interlaced_A, interlaced_B),
+                             interlaced_x_weights);
 }
 
-// Process two pixel pairs out of eight input pixels.
-// In other methods, the distinct pixels are passed one by one, but in this
-// case, the rows, and index offsets to the pixels into the row are passed
-// to generate the 8 pixels.
-// @param row0..1 top and bottom row where to find input pixels.
-// @param x0..1 offsets into the row for all eight input pixels.
-// @param all_y vector of 16 bit components containing the constant sub_y
-// @param neg_y vector of 16 bit components containing the constant 16 - sub_y
-// @param alpha vector of 16 bit components containing the alpha value to scale
-//        the results by
-// @return
-// (alpha * ((16-y) * (Aa2  * (16-x1) + Aa3  * x1) +
-//             y    * (Aa2' * (16-x1) + Aa3' * x1)),
-// ...
-//  alpha * ((16-y) * (Ra0  * (16-x0) + Ra1 * x0) +
-//             y    * (Ra0' * (16-x0) + Ra1' * x0))
-// The values are scaled back to 16 bit components, but with only the bottom
-// 8 bits being set.
-inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
-                                    const uint32_t* row1,
-                                    const int* x0,
-                                    const int* x1,
-                                    const __m128i& scale_x,
-                                    const __m128i& all_y,
-                                    const __m128i& neg_y,
-                                    const __m128i& alpha) {
-    __m128i sum0 = ProcessPixelPair(
-        row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
-        scale_x, neg_y);
-    __m128i sum1 = ProcessPixelPair(
-        row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
-        scale_x, all_y);
+// Interpolate {A0..A3} --> output pixel A, and {B0..B3} --> output pixel B.
+// Returns two pixels, with each channel in a 16-bit lane of the __m128i.
+static inline __m128i interpolate_in_x_and_y(uint32_t A0, uint32_t A1,
+                                             uint32_t A2, uint32_t A3,
+                                             uint32_t B0, uint32_t B1,
+                                             uint32_t B2, uint32_t B3,
+                                             const __m128i& interlaced_x_weights,
+                                             int wy) {
+    // The stored Y weight wy is for y1, and y0 gets a weight 16-wy.
+    const __m128i wy1 = _mm_set1_epi16(wy),
+                  wy0 = _mm_sub_epi16(_mm_set1_epi16(16), wy1);
 
-    // 2 samples fully summed.
-    // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
-    //  y * (Aa2' * (16-x1) + Aa3' * x1),
-    // ...
-    //  (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
-    //  y * (Ra0' * (16-x0) + Ra1' * x0))
-    // Each component, again can be at most 256 * 255 = 65280, so no overflow.
-    sum0 = _mm_add_epi16(sum0, sum1);
+    // First interpolate in X,
+    // leaving the values in 16-bit lanes scaled up by those [0,16] interlaced_x_weights.
+    __m128i row0 = interpolate_in_x(A0,A1, B0,B1, interlaced_x_weights),
+            row1 = interpolate_in_x(A2,A3, B2,B3, interlaced_x_weights);
 
-    return ScaleFourPixels(&sum0, alpha);
+    // Interpolate in Y across the two rows,
+    // then scale everything down by the maximum total weight 16x16 = 256.
+    return _mm_srli_epi16(_mm_add_epi16(_mm_mullo_epi16(row0, wy0),
+                                        _mm_mullo_epi16(row1, wy1)), 8);
 }
 
-// Same as ProcessPixelPair, except that performing the math one output pixel
-// at a time. This means that only the bottom four 16 bit components are set.
-inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
-                               const __m128i& scale_x, const __m128i& y) {
-    __m128i a0 = _mm_cvtsi32_si128(pixel0);
-    __m128i a1 = _mm_cvtsi32_si128(pixel1);
 
-    // Interleave
-    // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
-    a0 = _mm_unpacklo_epi8(a0, a1);
-
-    // (a0 * (16-x) + a1 * x)
-    a0 = _mm_maddubs_epi16(a0, scale_x);
-
-    // scale row by y
-    return _mm_mullo_epi16(a0, y);
-}
-
-}  // namespace
-
-// Notes about the various tricks that are used in this implementation:
-// - calculating 4 output pixels at a time.
-//  This allows loading the coefficients x0 and x1 and shuffling them to the
-// optimum location only once per loop, instead of twice per loop.
-// This also allows us to store the four pixels with a single store.
-// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
-// version):
-// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
-// in 32 bit values to 8 bit values repeated four times.
-// _mm_maddubs_epi16 : this allows us to perform multiplications and additions
-// in one swoop of 8bit values storing the results in 16 bit values. This
-// instruction is actually crucial for the speed of the implementation since
-// as one can see in the SSE2 implementation, all inputs have to be used as
-// 16 bits because the results are 16 bits. This basically allows us to process
-// twice as many pixel components per iteration.
-//
-// As a result, this method behaves faster than the traditional SSE2. The actual
-// boost varies greatly on the underlying architecture.
 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
                                    const uint32_t* xy,
                                    int count, uint32_t* colors) {
@@ -230,108 +80,78 @@
     SkASSERT(s.fFilterQuality != kNone_SkFilterQuality);
     SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
 
-    const uint8_t* src_addr =
-            static_cast<const uint8_t*>(s.fPixmap.addr());
-    const size_t rb = s.fPixmap.rowBytes();
-    const uint32_t XY = *xy++;
-    const unsigned y0 = XY >> 14;
-    const uint32_t* row0 =
-            reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
-    const uint32_t* row1 =
-            reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
+    // Return (px * s.fAlphaScale) / 256.   (s.fAlphaScale is in [0,256].)
+    auto scale_by_alpha = [&](const __m128i& px) {
+        return _mm_srli_epi16(_mm_mullo_epi16(px, _mm_set1_epi16(s.fAlphaScale)), 8);
+    };
 
-    // vector constants
-    const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
-                                                  8,  8,  8,  8,
-                                                  4,  4,  4,  4,
-                                                  0,  0,  0,  0);
-    const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
-    const __m128i mask_000F = _mm_set1_epi32(0x000F);
-    const __m128i sixteen_8bit = _mm_set1_epi8(16);
-    // (0, 0, 0, 0, 0, 0, 0, 0)
-    const __m128i zero = _mm_setzero_si128();
+    // We're in _DX_ mode here, so we're only varying in X.
+    // That means the first entry of xy is our constant pair of Y coordinates and weight in Y.
+    // All the other entries in xy will be pairs of X coordinates and the X weight.
+    int y0, y1, wy;
+    decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
 
-    // 8x(alpha)
-    const __m128i alpha = _mm_set1_epi16(s.fAlphaScale);
+    auto row0 = (const uint32_t*)( (const uint8_t*)s.fPixmap.addr() + y0 * s.fPixmap.rowBytes() ),
+         row1 = (const uint32_t*)( (const uint8_t*)s.fPixmap.addr() + y1 * s.fPixmap.rowBytes() );
 
-    // 8x(16)
-    const __m128i sixteen_16bit = _mm_set1_epi16(16);
+    while (count >= 4) {
+        // We can really get going, loading 4 X pairs at a time to produce 4 output pixels.
+        const __m128i xx = _mm_loadu_si128((const __m128i*)xy);
 
-    // 8x (y)
-    const __m128i all_y = _mm_set1_epi16(y0 & 0xF);
+        int x0[4],
+            x1[4];
+        __m128i wx;
+        decode_packed_coordinates_and_weight(xx, x0, x1, &wx);
 
-    // 8x (16-y)
-    const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
+        // Splat out each x weight wx four times (one for each pixel channel) as wx1,
+        // and sixteen minus that as the weight for x0, wx0.
+        __m128i wx1 = _mm_shuffle_epi8(wx, _mm_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12)),
+                wx0 = _mm_sub_epi8(_mm_set1_epi8(16), wx1);
 
-    // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
-    while (count > 3) {
-        count -= 4;
+        // We need to interlace wx0 and wx1 for _mm_maddubs_epi16().
+        __m128i interlaced_x_weights_AB = _mm_unpacklo_epi8(wx0,wx1),
+                interlaced_x_weights_CD = _mm_unpackhi_epi8(wx0,wx1);
 
-        int x0[4];
-        int x1[4];
-        __m128i all_x, sixteen_minus_x;
-        PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
-                sixteen_8bit, mask_dist_select,
-                &all_x, &sixteen_minus_x, x0, x1);
-        xy += 4;
+        // interpolate_in_x_and_y() can produce two output pixels (A and B) at a time
+        // from eight input pixels {A0..A3} and {B0..B3}, arranged in a 2x2 grid for each.
+        __m128i AB = interpolate_in_x_and_y(row0[x0[0]], row0[x1[0]],
+                                            row1[x0[0]], row1[x1[0]],
+                                            row0[x0[1]], row0[x1[1]],
+                                            row1[x0[1]], row1[x1[1]],
+                                            interlaced_x_weights_AB, wy);
 
-        // First pair of pixel pairs
-        // (4x(x1, 16-x1), 4x(x0, 16-x0))
-        __m128i scale_x;
-        scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
+        // Once more with the other half of the x-weights for two more pixels C,D.
+        __m128i CD = interpolate_in_x_and_y(row0[x0[2]], row0[x1[2]],
+                                            row1[x0[2]], row1[x1[2]],
+                                            row0[x0[3]], row0[x1[3]],
+                                            row1[x0[3]], row1[x1[3]],
+                                            interlaced_x_weights_CD, wy);
 
-        __m128i sum0 = ProcessTwoPixelPairs(
-                row0, row1, x0, x1,
-                scale_x, all_y, neg_y, alpha);
-
-        // second pair of pixel pairs
-        // (4x (x3, 16-x3), 4x (16-x2, x2))
-        scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
-
-        __m128i sum1 = ProcessTwoPixelPairs(
-                row0, row1, x0 + 2, x1 + 2,
-                scale_x, all_y, neg_y, alpha);
-
-        // Do the final packing of the two results
-
-        // Pack lower 4 16 bit values of sum into lower 4 bytes.
-        sum0 = _mm_packus_epi16(sum0, sum1);
-
-        // Extract low int and store.
-        _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
-
+        // Scale them all by alpha, pack back together to 8-bit lanes, and write out four pixels!
+        _mm_storeu_si128((__m128i*)colors, _mm_packus_epi16(scale_by_alpha(AB),
+                                                            scale_by_alpha(CD)));
+        xy     += 4;
         colors += 4;
+        count  -= 4;
     }
 
-    // Left over.
-    while (count-- > 0) {
-        const uint32_t xx = *xy++;  // x0:14 | 4 | x1:14
-        const unsigned x0 = xx >> 18;
-        const unsigned x1 = xx & 0x3FFF;
+    while (count --> 0) {
+        // This is exactly the same flow as the count >= 4 loop above, but writing one pixel.
+        int x0, x1, wx;
+        decode_packed_coordinates_and_weight(*xy++, &x0, &x1, &wx);
 
-        // 16x(x)
-        const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
+        // As above, splat out wx four times as wx1, and sixteen minus that as wx0.
+        __m128i wx1 = _mm_set1_epi8(wx),     // This splats it out 16 times, but that's fine.
+                wx0 = _mm_sub_epi8(_mm_set1_epi8(16), wx1);
 
-        // 16x (16-x)
-        __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
+        __m128i interlaced_x_weights_A = _mm_unpacklo_epi8(wx0, wx1);
 
-        // (8x (x, 16-x))
-        scale_x = _mm_unpacklo_epi8(scale_x, all_x);
+        __m128i A = interpolate_in_x_and_y(row0[x0], row0[x1],
+                                           row1[x0], row1[x1],
+                                                  0,        0,
+                                                  0,        0,
+                                           interlaced_x_weights_A, wy);
 
-        // first row.
-        __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
-        // second row.
-        __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
-
-        // Add both rows for full sample
-        sum0 = _mm_add_epi16(sum0, sum1);
-
-        sum0 = ScaleFourPixels(&sum0, alpha);
-
-        // Pack lower 4 16 bit values of sum into lower 4 bytes.
-        sum0 = _mm_packus_epi16(sum0, zero);
-
-        // Extract low int and store.
-        *colors++ = _mm_cvtsi128_si32(sum0);
+        *colors++ = _mm_cvtsi128_si32(_mm_packus_epi16(scale_by_alpha(A), _mm_setzero_si128()));
     }
 }