Reland "Create API for GrVkMemoryAllocator and impliment use of AMD VulkanMemoryAllocator on this API."

This reverts commit 98bddf930e4a8767bca60d84d585c386fabfc6b7.

Reason for revert: <INSERT REASONING HERE>

Original change's description:
> Revert "Create API for GrVkMemoryAllocator and impliment use of AMD VulkanMemoryAllocator on this API."
> 
> This reverts commit 26c0e4c1f54759249c2d61b50fb5430bd73793f2.
> 
> Reason for revert: breaks roll into fuchsia
> 
> Original change's description:
> > Create API for GrVkMemoryAllocator and impliment use of AMD VulkanMemoryAllocator on this API.
> > 
> > Bug: skia:
> > Change-Id: I1e122e1b11ab308c2f83cb98c36c81511f4507d0
> > Reviewed-on: https://skia-review.googlesource.com/129980
> > Commit-Queue: Greg Daniel <egdaniel@google.com>
> > Reviewed-by: Brian Salomon <bsalomon@google.com>
> > Reviewed-by: Jim Van Verth <jvanverth@google.com>
> 
> 
> 
> Change-Id: I6c74978f778987c422e6162e7dd85ea9c6baa0e4
> No-Presubmit: true
> No-Tree-Checks: true
> No-Try: true
> Bug: skia:
> Reviewed-on: https://skia-review.googlesource.com/130182
> Reviewed-by: Greg Daniel <egdaniel@google.com>
> Commit-Queue: Greg Daniel <egdaniel@google.com>

Bug: skia:
Change-Id: I422ffb3562da567f2e85c806286ad1a17c3862cd
Reviewed-on: https://skia-review.googlesource.com/130183
Reviewed-by: Greg Daniel <egdaniel@google.com>
Commit-Queue: Greg Daniel <egdaniel@google.com>
diff --git a/BUILD.gn b/BUILD.gn
index a0eabd4..944d020 100644
--- a/BUILD.gn
+++ b/BUILD.gn
@@ -615,6 +615,7 @@
     # they want. For example this would allow us to remove the fuchsia specific vulkan code in our
     # vulkan files.
     public_deps += [ "third_party/vulkan" ]
+    deps += [ "third_party/vulkanmemoryallocator" ]
     sources += skia_vk_sources
     if (skia_enable_vulkan_debug_layers) {
       public_defines += [ "SK_ENABLE_VK_LAYERS" ]
diff --git a/gn/gn_to_bp.py b/gn/gn_to_bp.py
index 8ad221c..34dd49a 100644
--- a/gn/gn_to_bp.py
+++ b/gn/gn_to_bp.py
@@ -251,6 +251,11 @@
 local_includes.add("third_party/skcms")
 dm_includes   .add("third_party/skcms")
 
+# need to manually include the vulkanmemoryallocator headers. If HWUI ever needs
+# direct access to the allocator we need to add it to export_includes as well.
+srcs.add("third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp")
+local_includes.add("third_party/vulkanmemoryallocator/")
+
 # No need to list headers.
 srcs            = {s for s in srcs           if not s.endswith('.h')}
 dm_srcs         = {s for s in dm_srcs        if not s.endswith('.h')}
diff --git a/gn/gn_to_bp_utils.py b/gn/gn_to_bp_utils.py
index 6545640..78217a7 100644
--- a/gn/gn_to_bp_utils.py
+++ b/gn/gn_to_bp_utils.py
@@ -45,6 +45,13 @@
 def CleanupCFlags(cflags):
   # Only use the generated flags related to warnings.
   cflags = {s for s in cflags if s.startswith('-W')}
+  # Add additional warning suppressions so we can build
+  # third_party/vulkanmemoryallocator
+  cflags = cflags.union([
+    "-Wno-thread-safety-analysis",
+    "-Wno-missing-field-initializers",
+    "-Wno-unused-variable",
+  ])
   # Add the rest of the flags we want.
   cflags = cflags.union([
     "-fvisibility=hidden",
diff --git a/gn/gpu.gni b/gn/gpu.gni
index 14059fd..d0e7f7f 100644
--- a/gn/gpu.gni
+++ b/gn/gpu.gni
@@ -535,8 +535,11 @@
   "$_include/gpu/vk/GrVkBackendContext.h",
   "$_include/gpu/vk/GrVkDefines.h",
   "$_include/gpu/vk/GrVkInterface.h",
+  "$_include/gpu/vk/GrVkMemoryAllocator.h",
   "$_include/gpu/vk/GrVkTypes.h",
   "$_include/private/GrVkTypesPriv.h",
+  "$_src/gpu/vk/GrVkAMDMemoryAllocator.cpp",
+  "$_src/gpu/vk/GrVkAMDMemoryAllocator.h",
   "$_src/gpu/vk/GrVkBackendContext.cpp",
   "$_src/gpu/vk/GrVkBuffer.cpp",
   "$_src/gpu/vk/GrVkBuffer.h",
diff --git a/include/gpu/vk/GrVkDefines.h b/include/gpu/vk/GrVkDefines.h
index d17300a..0fd405d 100644
--- a/include/gpu/vk/GrVkDefines.h
+++ b/include/gpu/vk/GrVkDefines.h
@@ -51,6 +51,82 @@
 #error "Vulkan header version is too low"
 #endif
 
+// The AMD VulkanMemoryAllocator needs the objects from this extension to be declared.
+#ifndef VK_KHR_get_memory_requirements2
+
+#define VK_KHR_get_memory_requirements2 1
+#define VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION 1
+#define VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME "VK_KHR_get_memory_requirements2"
+
+typedef struct VkBufferMemoryRequirementsInfo2KHR {
+    VkStructureType    sType;
+    const void*        pNext;
+    VkBuffer           buffer;
+} VkBufferMemoryRequirementsInfo2KHR;
+
+typedef struct VkImageMemoryRequirementsInfo2KHR {
+    VkStructureType    sType;
+    const void*        pNext;
+    VkImage            image;
+} VkImageMemoryRequirementsInfo2KHR;
+
+typedef struct VkImageSparseMemoryRequirementsInfo2KHR {
+    VkStructureType    sType;
+    const void*        pNext;
+    VkImage            image;
+} VkImageSparseMemoryRequirementsInfo2KHR;
+
+typedef struct VkMemoryRequirements2KHR {
+    VkStructureType         sType;
+    void*                   pNext;
+    VkMemoryRequirements    memoryRequirements;
+} VkMemoryRequirements2KHR;
+
+typedef struct VkSparseImageMemoryRequirements2KHR {
+    VkStructureType                    sType;
+    void*                              pNext;
+    VkSparseImageMemoryRequirements    memoryRequirements;
+} VkSparseImageMemoryRequirements2KHR;
+
+
+typedef void (VKAPI_PTR *PFN_vkGetImageMemoryRequirements2KHR)(VkDevice device, const VkImageMemoryRequirementsInfo2KHR* pInfo, VkMemoryRequirements2KHR* pMemoryRequirements);
+typedef void (VKAPI_PTR *PFN_vkGetBufferMemoryRequirements2KHR)(VkDevice device, const VkBufferMemoryRequirementsInfo2KHR* pInfo, VkMemoryRequirements2KHR* pMemoryRequirements);
+typedef void (VKAPI_PTR *PFN_vkGetImageSparseMemoryRequirements2KHR)(VkDevice device, const VkImageSparseMemoryRequirementsInfo2KHR* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements);
+
+static constexpr VkStructureType VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR = (VkStructureType) 1000146000;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR = (VkStructureType) 1000146001;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2_KHR = (VkStructureType) 1000146002;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR = (VkStructureType) 1000146003;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2_KHR = (VkStructureType) 1000146004;
+
+#endif // VK_KHR_get_memory_requirements2
+
+// Also needed for VulkanMemoryAllocator
+#ifndef VK_KHR_dedicated_allocation
+
+#define VK_KHR_dedicated_allocation 1
+#define VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION 3
+#define VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME "VK_KHR_dedicated_allocation"
+
+typedef struct VkMemoryDedicatedRequirementsKHR {
+    VkStructureType    sType;
+    void*              pNext;
+    VkBool32           prefersDedicatedAllocation;
+    VkBool32           requiresDedicatedAllocation;
+} VkMemoryDedicatedRequirementsKHR;
+
+typedef struct VkMemoryDedicatedAllocateInfoKHR {
+    VkStructureType    sType;
+    const void*        pNext;
+    VkImage            image;
+    VkBuffer           buffer;
+} VkMemoryDedicatedAllocateInfoKHR;
+
+static constexpr VkStructureType VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR = (VkStructureType) 1000127000;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR = (VkStructureType) 1000127001;
+
+#endif // VK_KHR_dedicated_allocation
+
 #endif
 
 #endif
diff --git a/include/gpu/vk/GrVkMemoryAllocator.h b/include/gpu/vk/GrVkMemoryAllocator.h
new file mode 100644
index 0000000..0e73586
--- /dev/null
+++ b/include/gpu/vk/GrVkMemoryAllocator.h
@@ -0,0 +1,89 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef GrVkMemoryAllocator_DEFINED
+#define GrVkMemoryAllocator_DEFINED
+
+#include "SkRefCnt.h"
+#include "GrTypes.h"
+#include "GrVkDefines.h"
+#include "GrVkTypes.h"
+
+class GrVkMemoryAllocator : public SkRefCnt {
+public:
+    enum class AllocationPropertyFlags {
+        kNone                = 0,
+        // Allocation will be placed in its own VkDeviceMemory and not suballocated from some larger
+        // block.
+        kDedicatedAllocation = 0x1,
+        // Says that the backing memory can only be accessed by the device. Additionally the device
+        // may lazily allocate the memory. This cannot be used with buffers that will be host
+        // visible. Setting this flag does not guarantee that we will allocate memory that respects
+        // it, but we will try to prefer memory that can respect it.
+        kLazyAllocation      = 0x2,
+        // The allocation will be mapped immediately and stay mapped until it is destroyed. This
+        // flag is only valid for buffers which are host visible (i.e. must have a usage other than
+        // BufferUsage::kGpuOnly).
+        kPersistentlyMapped  = 0x3,
+    };
+
+    GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AllocationPropertyFlags);
+
+    enum class BufferUsage {
+        // Buffers that will only be accessed from the device (large const buffers). Will always be
+        // in device local memory.
+        kGpuOnly,
+        // Buffers that will be accessed on the host and copied to and from a GPU resource (transfer
+        // buffers). Will always be mappable and coherent memory.
+        kCpuOnly,
+        // Buffers that typically will be updated multiple times by the host and read on the gpu
+        // (e.g. uniform or vertex buffers). Will always be mappable memory, and will prefer to be
+        // in device local memory.
+        kCpuWritesGpuReads,
+        // Buffers which are typically writted to by the GPU and then read on the host. Will always
+        // be mappable memory, and will prefer coherent and cached memory.
+        kGpuWritesCpuReads,
+    };
+
+    virtual bool allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags,
+                                        GrVkBackendMemory*) = 0;
+
+    virtual bool allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
+                                         AllocationPropertyFlags flags, GrVkBackendMemory*) = 0;
+
+    // Fills out the passed in GrVkAlloc struct for the passed in GrVkBackendMemory.
+    virtual void getAllocInfo(const GrVkBackendMemory&, GrVkAlloc*) const = 0;
+
+    // Maps the entire allocation and returns a pointer to the start of the allocation. The
+    // implementation may map more memory than just the allocation, but the returned pointer must
+    // point at the start of the memory for the requested allocation.
+    virtual void* mapMemory(const GrVkBackendMemory&) = 0;
+    virtual void unmapMemory(const GrVkBackendMemory&) = 0;
+
+    // The following two calls are used for managing non-coherent memory. The offset is relative to
+    // the start of the allocation and not the underlying VkDeviceMemory. Additionaly the client
+    // must make sure that the offset + size passed in is less that or equal to the allocation size.
+    // It is the responsibility of the implementation to make sure all alignment requirements are
+    // followed. The client should not have to deal with any sort of alignment issues.
+    virtual void flushMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+                                   VkDeviceSize size) = 0;
+    virtual void invalidateMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+                                        VkDeviceSize size)= 0;
+
+    virtual void freeMemory(const GrVkBackendMemory&) = 0;
+
+    // Returns the total amount of memory that is allocated and in use by an allocation for this
+    // allocator.
+    virtual uint64_t totalUsedMemory() const = 0;
+
+    // Returns the total amount of memory that is allocated by this allocator.
+    virtual uint64_t totalAllocatedMemory() const = 0;
+};
+
+GR_MAKE_BITFIELD_CLASS_OPS(GrVkMemoryAllocator::AllocationPropertyFlags);
+
+#endif
diff --git a/include/gpu/vk/GrVkTypes.h b/include/gpu/vk/GrVkTypes.h
index 0f7ff71..2e31250 100644
--- a/include/gpu/vk/GrVkTypes.h
+++ b/include/gpu/vk/GrVkTypes.h
@@ -26,6 +26,9 @@
 
 
 ///////////////////////////////////////////////////////////////////////////////
+
+typedef intptr_t GrVkBackendMemory;
+
 /**
  * Types for interacting with Vulkan resources created externally to Skia. GrBackendObjects for
  * Vulkan textures are really const GrVkImageInfo*
@@ -36,6 +39,7 @@
             , fOffset(0)
             , fSize(0)
             , fFlags(0)
+            , fBackendMemory(0)
             , fUsesSystemHeap(false) {}
 
     GrVkAlloc(VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, uint32_t flags)
@@ -43,15 +47,18 @@
             , fOffset(offset)
             , fSize(size)
             , fFlags(flags)
+            , fBackendMemory(0)
             , fUsesSystemHeap(false) {}
 
-    VkDeviceMemory fMemory;  // can be VK_NULL_HANDLE iff is an RT and is borrowed
-    VkDeviceSize   fOffset;
-    VkDeviceSize   fSize;    // this can be indeterminate iff Tex uses borrow semantics
-    uint32_t       fFlags;
+    VkDeviceMemory    fMemory;  // can be VK_NULL_HANDLE iff is an RT and is borrowed
+    VkDeviceSize      fOffset;
+    VkDeviceSize      fSize;    // this can be indeterminate iff Tex uses borrow semantics
+    uint32_t          fFlags;
+    GrVkBackendMemory fBackendMemory; // handle to memory allocated via GrVkMemoryAllocator.
 
     enum Flag {
         kNoncoherent_Flag = 0x1,   // memory must be flushed to device after mapping
+        kMappable_Flag    = 0x2,   // memory is able to be mapped.
     };
 
     bool operator==(const GrVkAlloc& that) const {
diff --git a/src/gpu/vk/GrVkAMDMemoryAllocator.cpp b/src/gpu/vk/GrVkAMDMemoryAllocator.cpp
new file mode 100644
index 0000000..0b838ec
--- /dev/null
+++ b/src/gpu/vk/GrVkAMDMemoryAllocator.cpp
@@ -0,0 +1,267 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrVkAMDMemoryAllocator.h"
+
+#include "vk/GrVkInterface.h"
+#include "GrVkUtil.h"
+
+GrVkAMDMemoryAllocator::GrVkAMDMemoryAllocator(VkPhysicalDevice physicalDevice,
+                                               VkDevice device,
+                                               sk_sp<const GrVkInterface> interface)
+        : fAllocator(VK_NULL_HANDLE)
+        , fInterface(std::move(interface))
+        , fDevice(device) {
+#define GR_COPY_FUNCTION(NAME) functions.vk##NAME = fInterface->fFunctions.f##NAME;
+
+    VmaVulkanFunctions functions;
+    GR_COPY_FUNCTION(GetPhysicalDeviceProperties);
+    GR_COPY_FUNCTION(GetPhysicalDeviceMemoryProperties);
+    GR_COPY_FUNCTION(AllocateMemory);
+    GR_COPY_FUNCTION(FreeMemory);
+    GR_COPY_FUNCTION(MapMemory);
+    GR_COPY_FUNCTION(UnmapMemory);
+    GR_COPY_FUNCTION(BindBufferMemory);
+    GR_COPY_FUNCTION(BindImageMemory);
+    GR_COPY_FUNCTION(GetBufferMemoryRequirements);
+    GR_COPY_FUNCTION(GetImageMemoryRequirements);
+    GR_COPY_FUNCTION(CreateBuffer);
+    GR_COPY_FUNCTION(DestroyBuffer);
+    GR_COPY_FUNCTION(CreateImage);
+    GR_COPY_FUNCTION(DestroyImage);
+
+    // Skia current doesn't support VK_KHR_dedicated_allocation
+    functions.vkGetBufferMemoryRequirements2KHR = nullptr;
+    functions.vkGetImageMemoryRequirements2KHR = nullptr;
+
+    VmaAllocatorCreateInfo info;
+    info.flags = 0;
+    info.physicalDevice = physicalDevice;
+    info.device = device;
+    info.preferredLargeHeapBlockSize = 0;
+    info.pAllocationCallbacks = nullptr;
+    info.pDeviceMemoryCallbacks = nullptr;
+    info.frameInUseCount = 0;
+    info.pHeapSizeLimit = nullptr;
+    info.pVulkanFunctions = &functions;
+
+    vmaCreateAllocator(&info, &fAllocator);
+}
+
+GrVkAMDMemoryAllocator::~GrVkAMDMemoryAllocator() {
+    vmaDestroyAllocator(fAllocator);
+    fAllocator = VK_NULL_HANDLE;
+}
+
+bool GrVkAMDMemoryAllocator::allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags,
+                                                    GrVkBackendMemory* backendMemory) {
+    VmaAllocationCreateInfo info;
+    info.flags = 0;
+    info.usage = VMA_MEMORY_USAGE_UNKNOWN;
+    info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+    info.preferredFlags = 0;
+    info.memoryTypeBits = 0;
+    info.pool = VK_NULL_HANDLE;
+    info.pUserData = nullptr;
+
+    if (AllocationPropertyFlags::kDedicatedAllocation & flags) {
+        info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+    }
+
+    if (AllocationPropertyFlags::kLazyAllocation & flags) {
+        info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
+    }
+
+    VmaAllocation allocation;
+    VkResult result = vmaAllocateMemoryForImage(fAllocator, image, &info, &allocation, nullptr);
+    if (VK_SUCCESS != result) {
+        return false;
+    }
+    *backendMemory = (GrVkBackendMemory)allocation;
+    return true;
+}
+
+bool GrVkAMDMemoryAllocator::allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
+                                                     AllocationPropertyFlags flags,
+                                                     GrVkBackendMemory* backendMemory) {
+    VmaAllocationCreateInfo info;
+    info.flags = 0;
+    info.usage = VMA_MEMORY_USAGE_UNKNOWN;
+    info.memoryTypeBits = 0;
+    info.pool = VK_NULL_HANDLE;
+    info.pUserData = nullptr;
+
+    switch (usage) {
+        case BufferUsage::kGpuOnly:
+            info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+            info.preferredFlags = 0;
+            break;
+        case BufferUsage::kCpuOnly:
+            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+            info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+            break;
+        case BufferUsage::kCpuWritesGpuReads:
+            // First attempt to try memory is also device local
+            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+            info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+            break;
+        case BufferUsage::kGpuWritesCpuReads:
+            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+            info.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
+                                  VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+            break;
+    }
+
+    if (AllocationPropertyFlags::kDedicatedAllocation & flags) {
+        info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+    }
+
+    if ((AllocationPropertyFlags::kLazyAllocation & flags) && BufferUsage::kGpuOnly == usage) {
+        info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
+    }
+
+    if ((AllocationPropertyFlags::kPersistentlyMapped & flags) && BufferUsage::kGpuOnly != usage) {
+        info.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
+    }
+
+    VmaAllocation allocation;
+    VkResult result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr);
+    if (VK_SUCCESS != result) {
+        if (usage == BufferUsage::kCpuWritesGpuReads) {
+            // We try again but this time drop the requirement for device local
+            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+            result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr);
+        }
+    }
+    if (VK_SUCCESS != result) {
+        return false;
+    }
+    *backendMemory = (GrVkBackendMemory)allocation;
+    return true;
+}
+
+void GrVkAMDMemoryAllocator::freeMemory(const GrVkBackendMemory& memoryHandle) {
+    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+    vmaFreeMemory(fAllocator, allocation);
+}
+
+void GrVkAMDMemoryAllocator::getAllocInfo(const GrVkBackendMemory& memoryHandle,
+                                          GrVkAlloc* alloc) const {
+    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+    VmaAllocationInfo vmaInfo;
+    vmaGetAllocationInfo(fAllocator, allocation, &vmaInfo);
+
+    VkMemoryPropertyFlags memFlags;
+    vmaGetMemoryTypeProperties(fAllocator, vmaInfo.memoryType, &memFlags);
+
+    uint32_t flags = 0;
+    if (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT & memFlags) {
+        flags |= GrVkAlloc::kMappable_Flag;
+    }
+    if (!SkToBool(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT & memFlags)) {
+        flags |= GrVkAlloc::kNoncoherent_Flag;
+    }
+
+    alloc->fMemory        = vmaInfo.deviceMemory;
+    alloc->fOffset        = vmaInfo.offset;
+    alloc->fSize          = vmaInfo.size;
+    alloc->fFlags         = flags;
+    alloc->fBackendMemory = memoryHandle;
+}
+
+void* GrVkAMDMemoryAllocator::mapMemory(const GrVkBackendMemory& memoryHandle) {
+    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+    void* mapPtr;
+    vmaMapMemory(fAllocator, allocation, &mapPtr);
+    return mapPtr;
+}
+
+void GrVkAMDMemoryAllocator::unmapMemory(const GrVkBackendMemory& memoryHandle) {
+    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+    vmaUnmapMemory(fAllocator, allocation);
+}
+
+void GrVkAMDMemoryAllocator::flushMappedMemory(const GrVkBackendMemory& memoryHandle,
+                                               VkDeviceSize offset, VkDeviceSize size) {
+    GrVkAlloc info;
+    this->getAllocInfo(memoryHandle, &info);
+
+    if (GrVkAlloc::kNoncoherent_Flag & info.fFlags) {
+        // We need to store the nonCoherentAtomSize for non-coherent flush/invalidate alignment.
+        const VkPhysicalDeviceProperties* physDevProps;
+        vmaGetPhysicalDeviceProperties(fAllocator, &physDevProps);
+        VkDeviceSize alignment = physDevProps->limits.nonCoherentAtomSize;
+
+        offset = offset + info.fOffset;
+        VkDeviceSize offsetDiff = offset & (alignment -1);
+        offset = offset - offsetDiff;
+        size = (size + alignment - 1) & ~(alignment - 1);
+#ifdef SK_DEBUG
+        SkASSERT(offset >= info.fOffset);
+        SkASSERT(offset + size <= info.fOffset + info.fSize);
+        SkASSERT(0 == (offset & (alignment-1)));
+        SkASSERT(size > 0);
+        SkASSERT(0 == (size & (alignment-1)));
+#endif
+
+        VkMappedMemoryRange mappedMemoryRange;
+        memset(&mappedMemoryRange, 0, sizeof(VkMappedMemoryRange));
+        mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+        mappedMemoryRange.memory = info.fMemory;
+        mappedMemoryRange.offset = offset;
+        mappedMemoryRange.size = size;
+        GR_VK_CALL(fInterface, FlushMappedMemoryRanges(fDevice, 1, &mappedMemoryRange));
+    }
+}
+
+void GrVkAMDMemoryAllocator::invalidateMappedMemory(const GrVkBackendMemory& memoryHandle,
+                                                    VkDeviceSize offset, VkDeviceSize size) {
+    GrVkAlloc info;
+    this->getAllocInfo(memoryHandle, &info);
+
+    if (GrVkAlloc::kNoncoherent_Flag & info.fFlags) {
+        // We need to store the nonCoherentAtomSize for non-coherent flush/invalidate alignment.
+        const VkPhysicalDeviceProperties* physDevProps;
+        vmaGetPhysicalDeviceProperties(fAllocator, &physDevProps);
+        VkDeviceSize alignment = physDevProps->limits.nonCoherentAtomSize;
+
+        offset = offset + info.fOffset;
+        VkDeviceSize offsetDiff = offset & (alignment -1);
+        offset = offset - offsetDiff;
+        size = (size + alignment - 1) & ~(alignment - 1);
+#ifdef SK_DEBUG
+        SkASSERT(offset >= info.fOffset);
+        SkASSERT(offset + size <= info.fOffset + info.fSize);
+        SkASSERT(0 == (offset & (alignment-1)));
+        SkASSERT(size > 0);
+        SkASSERT(0 == (size & (alignment-1)));
+#endif
+
+        VkMappedMemoryRange mappedMemoryRange;
+        memset(&mappedMemoryRange, 0, sizeof(VkMappedMemoryRange));
+        mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+        mappedMemoryRange.memory = info.fMemory;
+        mappedMemoryRange.offset = offset;
+        mappedMemoryRange.size = size;
+        GR_VK_CALL(fInterface, InvalidateMappedMemoryRanges(fDevice, 1, &mappedMemoryRange));
+    }
+}
+
+uint64_t GrVkAMDMemoryAllocator::totalUsedMemory() const {
+    VmaStats stats;
+    vmaCalculateStats(fAllocator, &stats);
+    return stats.total.usedBytes;
+}
+
+uint64_t GrVkAMDMemoryAllocator::totalAllocatedMemory() const {
+    VmaStats stats;
+    vmaCalculateStats(fAllocator, &stats);
+    return stats.total.usedBytes + stats.total.unusedBytes;
+}
+
diff --git a/src/gpu/vk/GrVkAMDMemoryAllocator.h b/src/gpu/vk/GrVkAMDMemoryAllocator.h
new file mode 100644
index 0000000..297b0ad
--- /dev/null
+++ b/src/gpu/vk/GrVkAMDMemoryAllocator.h
@@ -0,0 +1,56 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef GrVkAMDMemoryAllocator_DEFINED
+#define GrVkAMDMemoryAllocator_DEFINED
+
+#include "vk/GrVkMemoryAllocator.h"
+
+#include "GrVulkanMemoryAllocator.h"
+
+struct GrVkInterface;
+
+class GrVkAMDMemoryAllocator : public GrVkMemoryAllocator {
+public:
+    GrVkAMDMemoryAllocator(VkPhysicalDevice physicalDevice, VkDevice device,
+                           sk_sp<const GrVkInterface> interface);
+
+    ~GrVkAMDMemoryAllocator() override;
+
+    bool allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags, GrVkBackendMemory*) override;
+
+    bool allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
+                                 AllocationPropertyFlags flags, GrVkBackendMemory*) override;
+
+    void freeMemory(const GrVkBackendMemory&) override;
+
+    void getAllocInfo(const GrVkBackendMemory&, GrVkAlloc*) const override;
+
+    void* mapMemory(const GrVkBackendMemory&) override;
+    void unmapMemory(const GrVkBackendMemory&) override;
+
+    void flushMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+                           VkDeviceSize size) override;
+    void invalidateMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+                                VkDeviceSize size) override;
+
+    uint64_t totalUsedMemory() const override;
+    uint64_t totalAllocatedMemory() const override;
+
+private:
+    VmaAllocator fAllocator;
+
+    // If a future version of the AMD allocator has helper functions for flushing and invalidating
+    // memory, then we won't need to save the GrVkInterface here since we won't need to make direct
+    // vulkan calls.
+    sk_sp<const GrVkInterface> fInterface;
+    VkDevice fDevice;
+
+    typedef GrVkMemoryAllocator INHERITED;
+};
+
+#endif
diff --git a/third_party/vulkanmemoryallocator/BUILD.gn b/third_party/vulkanmemoryallocator/BUILD.gn
new file mode 100644
index 0000000..946cdb7
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/BUILD.gn
@@ -0,0 +1,37 @@
+# Copyright 2018 Google Inc.
+#
+# Use of this source code is governed by a BSD-style license that can be
+# found in the LICENSE file.
+
+config("vulkanmemoryallocator_public") {
+  include_dirs = [ "." ]
+}
+
+source_set("vulkanmemoryallocator") {
+  public_configs = [ ":vulkanmemoryallocator_public" ]
+
+  include_dirs = []
+  if (defined(is_skia_standalone) && is_skia_standalone && !is_official_build) {
+    include_dirs += [ "../../tools/gpu/vk" ]
+    include_dirs += [ "../../include/core" ]
+    include_dirs += [ "../../include/config" ]
+  }
+
+  sources = [
+    "GrVulkanMemoryAllocator.cpp",
+    "GrVulkanMemoryAllocator.h",
+  ]
+
+  # TODO: As described in the main skia BUILD.gn file we eventually want to move this to be
+  # //third_party/vulkan once clients have created their own //third_party/vulkan directory.
+  deps = [
+    "../vulkan",
+  ]
+
+  # Warnings are just noise if we're not maintaining the code.
+  if (is_win) {
+    cflags = [ "/w" ]
+  } else {
+    cflags = [ "-w" ]
+  }
+}
diff --git a/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp
new file mode 100644
index 0000000..5888463
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp
@@ -0,0 +1,16 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+// Workaround to make sure we align non-coherent memory to nonCoherentAtomSize.
+#define VMA_DEBUG_ALIGNMENT 256
+
+// We use our own functions pointers
+#define VMA_STATIC_VULKAN_FUNCTIONS 0
+
+#define VMA_IMPLEMENTATION
+#include "GrVulkanMemoryAllocator.h"
+
diff --git a/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
new file mode 100644
index 0000000..d1cbebc
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
@@ -0,0 +1,18 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+// We use this header to include vk_mem_alloc.h to make sure we always include GrVkDefines.h first.
+// We need to do this so that the corect defines are setup before we include vulkan.h inside of
+// vk_mem_alloc.h
+
+#ifndef GrVulkanMemoryAllocator_DEFINED
+#define GrVulkanMemoryAllocator_DEFINED
+
+#include "../../include/gpu/vk/GrVkDefines.h"
+#include "include/vk_mem_alloc.h"
+
+#endif
diff --git a/third_party/vulkanmemoryallocator/include/LICENSE.txt b/third_party/vulkanmemoryallocator/include/LICENSE.txt
new file mode 100644
index 0000000..dbfe253
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/include/LICENSE.txt
@@ -0,0 +1,19 @@
+Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
diff --git a/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h b/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
new file mode 100644
index 0000000..b621fe7
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
@@ -0,0 +1,9363 @@
+//

+// Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved.

+//

+// Permission is hereby granted, free of charge, to any person obtaining a copy

+// of this software and associated documentation files (the "Software"), to deal

+// in the Software without restriction, including without limitation the rights

+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

+// copies of the Software, and to permit persons to whom the Software is

+// furnished to do so, subject to the following conditions:

+//

+// The above copyright notice and this permission notice shall be included in

+// all copies or substantial portions of the Software.

+//

+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE

+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

+// THE SOFTWARE.

+//

+

+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H

+#define AMD_VULKAN_MEMORY_ALLOCATOR_H

+

+#ifdef __cplusplus

+extern "C" {

+#endif

+

+/** \mainpage Vulkan Memory Allocator

+

+<b>Version 2.0.0</b> (2018-03-19)

+

+Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. \n

+License: MIT

+

+Documentation of all members: vk_mem_alloc.h

+

+\section main_table_of_contents Table of contents

+

+- <b>User guide</b>

+  - \subpage quick_start

+    - [Project setup](@ref quick_start_project_setup)

+    - [Initialization](@ref quick_start_initialization)

+    - [Resource allocation](@ref quick_start_resource_allocation)

+  - \subpage choosing_memory_type

+    - [Usage](@ref choosing_memory_type_usage)

+    - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)

+    - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)

+    - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)

+  - \subpage memory_mapping

+    - [Mapping functions](@ref memory_mapping_mapping_functions)

+    - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)

+    - [Cache control](@ref memory_mapping_cache_control)

+    - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)

+  - \subpage custom_memory_pools

+    - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)

+  - \subpage defragmentation

+  - \subpage lost_allocations

+  - \subpage statistics

+    - [Numeric statistics](@ref statistics_numeric_statistics)

+    - [JSON dump](@ref statistics_json_dump)

+  - \subpage allocation_annotation

+    - [Allocation user data](@ref allocation_user_data)

+    - [Allocation names](@ref allocation_names)

+- \subpage usage_patterns

+  - [Simple patterns](@ref usage_patterns_simple)

+  - [Advanced patterns](@ref usage_patterns_advanced)

+- \subpage configuration

+  - [Pointers to Vulkan functions](@ref config_Vulkan_functions)

+  - [Custom host memory allocator](@ref custom_memory_allocator)

+  - [Device memory allocation callbacks](@ref allocation_callbacks)

+  - [Device heap memory limit](@ref heap_memory_limit)

+  - \subpage vk_khr_dedicated_allocation

+- \subpage general_considerations

+  - [Thread safety](@ref general_considerations_thread_safety)

+  - [Allocation algorithm](@ref general_considerations_allocation_algorithm)

+  - [Features not supported](@ref general_considerations_features_not_supported)

+

+\section main_see_also See also

+

+- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)

+- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)

+

+

+

+

+\page quick_start Quick start

+

+\section quick_start_project_setup Project setup

+

+Vulkan Memory Allocator comes in form of a single header file.

+You don't need to build it as a separate library project.

+You can add this file directly to your project and submit it to code repository next to your other source files.

+

+"Single header" doesn't mean that everything is contained in C/C++ declarations,

+like it tends to be in case of inline functions or C++ templates.

+It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.

+If you don't do it properly, you will get linker errors.

+

+To do it properly:

+

+-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.

+   This includes declarations of all members of the library.

+-# In exacly one CPP file define following macro before this include.

+   It enables also internal definitions.

+

+\code

+#define VMA_IMPLEMENTATION

+#include "vk_mem_alloc.h"

+\endcode

+

+It may be a good idea to create dedicated CPP file just for this purpose.

+

+\section quick_start_initialization Initialization

+

+At program startup:

+

+-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.

+-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by

+   calling vmaCreateAllocator().

+

+\code

+VmaAllocatorCreateInfo allocatorInfo = {};

+allocatorInfo.physicalDevice = physicalDevice;

+allocatorInfo.device = device;

+

+VmaAllocator allocator;

+vmaCreateAllocator(&allocatorInfo, &allocator);

+\endcode

+

+\section quick_start_resource_allocation Resource allocation

+

+When you want to create a buffer or image:

+

+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.

+-# Fill VmaAllocationCreateInfo structure.

+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory

+   already allocated and bound to it.

+

+\code

+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+bufferInfo.size = 65536;

+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

+

+VmaAllocationCreateInfo allocInfo = {};

+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+

+VkBuffer buffer;

+VmaAllocation allocation;

+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

+\endcode

+

+Don't forget to destroy your objects when no longer needed:

+

+\code

+vmaDestroyBuffer(allocator, buffer, allocation);

+vmaDestroyAllocator(allocator);

+\endcode

+

+

+\page choosing_memory_type Choosing memory type

+

+Physical devices in Vulkan support various combinations of memory heaps and

+types. Help with choosing correct and optimal memory type for your specific

+resource is one of the key features of this library. You can use it by filling

+appropriate members of VmaAllocationCreateInfo structure, as described below.

+You can also combine multiple methods.

+

+-# If you just want to find memory type index that meets your requirements, you

+   can use function vmaFindMemoryTypeIndex().

+-# If you want to allocate a region of device memory without association with any

+   specific image or buffer, you can use function vmaAllocateMemory(). Usage of

+   this function is not recommended and usually not needed.

+-# If you already have a buffer or an image created, you want to allocate memory

+   for it and then you will bind it yourself, you can use function

+   vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().

+   For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory().

+-# If you want to create a buffer or an image, allocate memory for it and bind

+   them together, all in one call, you can use function vmaCreateBuffer(),

+   vmaCreateImage(). This is the recommended way to use this library.

+

+When using 3. or 4., the library internally queries Vulkan for memory types

+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)

+and uses only one of these types.

+

+If no memory type can be found that meets all the requirements, these functions

+return `VK_ERROR_FEATURE_NOT_PRESENT`.

+

+You can leave VmaAllocationCreateInfo structure completely filled with zeros.

+It means no requirements are specified for memory type.

+It is valid, although not very useful.

+

+\section choosing_memory_type_usage Usage

+

+The easiest way to specify memory requirements is to fill member

+VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.

+It defines high level, common usage types.

+For more details, see description of this enum.

+

+For example, if you want to create a uniform buffer that will be filled using

+transfer only once or infrequently and used for rendering every frame, you can

+do it using following code:

+

+\code

+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+bufferInfo.size = 65536;

+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

+

+VmaAllocationCreateInfo allocInfo = {};

+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+

+VkBuffer buffer;

+VmaAllocation allocation;

+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

+\endcode

+

+\section choosing_memory_type_required_preferred_flags Required and preferred flags

+

+You can specify more detailed requirements by filling members

+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags

+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,

+if you want to create a buffer that will be persistently mapped on host (so it

+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,

+use following code:

+

+\code

+VmaAllocationCreateInfo allocInfo = {};

+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;

+allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;

+

+VkBuffer buffer;

+VmaAllocation allocation;

+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

+\endcode

+

+A memory type is chosen that has all the required flags and as many preferred

+flags set as possible.

+

+If you use VmaAllocationCreateInfo::usage, it is just internally converted to

+a set of required and preferred flags.

+

+\section choosing_memory_type_explicit_memory_types Explicit memory types

+

+If you inspected memory types available on the physical device and you have

+a preference for memory types that you want to use, you can fill member

+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set

+means that a memory type with that index is allowed to be used for the

+allocation. Special value 0, just like `UINT32_MAX`, means there are no

+restrictions to memory type index.

+

+Please note that this member is NOT just a memory type index.

+Still you can use it to choose just one, specific memory type.

+For example, if you already determined that your buffer should be created in

+memory type 2, use following code:

+

+\code

+uint32_t memoryTypeIndex = 2;

+

+VmaAllocationCreateInfo allocInfo = {};

+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;

+

+VkBuffer buffer;

+VmaAllocation allocation;

+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

+\endcode

+

+\section choosing_memory_type_custom_memory_pools Custom memory pools

+

+If you allocate from custom memory pool, all the ways of specifying memory

+requirements described above are not applicable and the aforementioned members

+of VmaAllocationCreateInfo structure are ignored. Memory type is selected

+explicitly when creating the pool and then used to make all the allocations from

+that pool. For further details, see \ref custom_memory_pools.

+

+

+\page memory_mapping Memory mapping

+

+To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,

+to be able to read from it or write to it in CPU code.

+Mapping is possible only of memory allocated from a memory type that has

+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.

+Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.

+You can use them directly with memory allocated by this library,

+but it is not recommended because of following issue:

+Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.

+This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.

+Because of this, Vulkan Memory Allocator provides following facilities:

+

+\section memory_mapping_mapping_functions Mapping functions

+

+The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().

+They are safer and more convenient to use than standard Vulkan functions.

+You can map an allocation multiple times simultaneously - mapping is reference-counted internally.

+You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.

+They way it's implemented is that the library always maps entire memory block, not just region of the allocation.

+For further details, see description of vmaMapMemory() function.

+Example:

+

+\code

+// Having these objects initialized:

+

+struct ConstantBuffer

+{

+    ...

+};

+ConstantBuffer constantBufferData;

+

+VmaAllocator allocator;

+VmaBuffer constantBuffer;

+VmaAllocation constantBufferAllocation;

+

+// You can map and fill your buffer using following code:

+

+void* mappedData;

+vmaMapMemory(allocator, constantBufferAllocation, &mappedData);

+memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));

+vmaUnmapMemory(allocator, constantBufferAllocation);

+\endcode

+

+\section memory_mapping_persistently_mapped_memory Persistently mapped memory

+

+Kepping your memory persistently mapped is generally OK in Vulkan.

+You don't need to unmap it before using its data on the GPU.

+The library provides a special feature designed for that:

+Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in

+VmaAllocationCreateInfo::flags stay mapped all the time,

+so you can just access CPU pointer to it any time

+without a need to call any "map" or "unmap" function.

+Example:

+

+\code

+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+bufCreateInfo.size = sizeof(ConstantBuffer);

+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;

+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;

+

+VkBuffer buf;

+VmaAllocation alloc;

+VmaAllocationInfo allocInfo;

+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

+

+// Buffer is already mapped. You can access its memory.

+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));

+\endcode

+

+There are some exceptions though, when you should consider mapping memory only for a short period of time:

+

+- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),

+  device is discrete AMD GPU,

+  and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory

+  (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),

+  then whenever a memory block allocated from this memory type stays mapped

+  for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this

+  block is migrated by WDDM to system RAM, which degrades performance. It doesn't

+  matter if that particular memory block is actually used by the command buffer

+  being submitted. 

+- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.

+

+\section memory_mapping_cache_control Cache control

+  

+Memory in Vulkan doesn't need to be unmapped before using it on GPU,

+but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,

+you need to manually invalidate cache before reading of mapped pointer

+using function `vkvkInvalidateMappedMemoryRanges()`

+and flush cache after writing to mapped pointer

+using function `vkFlushMappedMemoryRanges()`.

+Example:

+

+\code

+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));

+

+VkMemoryPropertyFlags memFlags;

+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);

+if((memFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)

+{

+    VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };

+    memRange.memory = allocInfo.deviceMemory;

+    memRange.offset = allocInfo.offset;

+    memRange.size   = allocInfo.size;

+    vkFlushMappedMemoryRanges(device, 1, &memRange);

+}

+\endcode

+

+Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be host coherent.

+

+Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)

+currently provide `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag on all memory types that are

+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, so on this platform you may not need to bother.

+

+\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable

+

+It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)

+despite it wasn't explicitly requested.

+For example, application may work on integrated graphics with unified memory (like Intel) or

+allocation from video memory might have failed, so the library chose system memory as fallback.

+

+You can detect this case and map such allocation to access its memory on CPU directly,

+instead of launching a transfer operation.

+In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),

+and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.

+

+\code

+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+bufCreateInfo.size = sizeof(ConstantBuffer);

+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+

+VkBuffer buf;

+VmaAllocation alloc;

+VmaAllocationInfo allocInfo;

+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

+

+VkMemoryPropertyFlags memFlags;

+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);

+if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

+{

+    // Allocation ended up in mappable memory. You can map it and access it directly.

+    void* mappedData;

+    vmaMapMemory(allocator, alloc, &mappedData);

+    memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));

+    vmaUnmapMemory(allocator, alloc);

+}

+else

+{

+    // Allocation ended up in non-mappable memory.

+    // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.

+}

+\endcode

+

+You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations

+that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).

+If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.

+If not, the flag is just ignored.

+Example:

+

+\code

+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+bufCreateInfo.size = sizeof(ConstantBuffer);

+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;

+

+VkBuffer buf;

+VmaAllocation alloc;

+VmaAllocationInfo allocInfo;

+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

+

+if(allocInfo.pUserData != nullptr)

+{

+    // Allocation ended up in mappable memory.

+    // It's persistently mapped. You can access it directly.

+    memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));

+}

+else

+{

+    // Allocation ended up in non-mappable memory.

+    // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.

+}

+\endcode

+

+

+\page custom_memory_pools Custom memory pools

+

+A memory pool contains a number of `VkDeviceMemory` blocks.

+The library automatically creates and manages default pool for each memory type available on the device.

+Default memory pool automatically grows in size.

+Size of allocated blocks is also variable and managed automatically.

+

+You can create custom pool and allocate memory out of it.

+It can be useful if you want to:

+

+- Keep certain kind of allocations separate from others.

+- Enforce particular, fixed size of Vulkan memory blocks.

+- Limit maximum amount of Vulkan memory allocated for that pool.

+- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.

+

+To use custom memory pools:

+

+-# Fill VmaPoolCreateInfo structure.

+-# Call vmaCreatePool() to obtain #VmaPool handle.

+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.

+   You don't need to specify any other parameters of this structure, like usage.

+

+Example:

+

+\code

+// Create a pool that can have at most 2 blocks, 128 MiB each.

+VmaPoolCreateInfo poolCreateInfo = {};

+poolCreateInfo.memoryTypeIndex = ...

+poolCreateInfo.blockSize = 128ull * 1024 * 1024;

+poolCreateInfo.maxBlockCount = 2;

+

+VmaPool pool;

+vmaCreatePool(allocator, &poolCreateInfo, &pool);

+

+// Allocate a buffer out of it.

+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+bufCreateInfo.size = 1024;

+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.pool = pool;

+

+VkBuffer buf;

+VmaAllocation alloc;

+VmaAllocationInfo allocInfo;

+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

+\endcode

+

+You have to free all allocations made from this pool before destroying it.

+

+\code

+vmaDestroyBuffer(allocator, buf, alloc);

+vmaDestroyPool(allocator, pool);

+\endcode

+

+\section custom_memory_pools_MemTypeIndex Choosing memory type index

+

+When creating a pool, you must explicitly specify memory type index.

+To find the one suitable for your buffers or images, you can use helper functions

+vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().

+You need to provide structures with example parameters of buffers or images

+that you are going to create in that pool.

+

+\code

+VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+exampleBufCreateInfo.size = 1024; // Whatever.

+exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.

+

+uint32_t memTypeIndex;

+vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);

+

+VmaPoolCreateInfo poolCreateInfo = {};

+poolCreateInfo.memoryTypeIndex = memTypeIndex;

+// ...

+\endcode

+

+When creating buffers/images allocated in that pool, provide following parameters:

+

+- `VkBufferCreateInfo`: Prefer to pass same parameters as above.

+  Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.

+  Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers

+  or the other way around.

+- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.

+  Other members are ignored anyway.

+

+

+\page defragmentation Defragmentation

+

+Interleaved allocations and deallocations of many objects of varying size can

+cause fragmentation, which can lead to a situation where the library is unable

+to find a continuous range of free memory for a new allocation despite there is

+enough free space, just scattered across many small free ranges between existing

+allocations.

+

+To mitigate this problem, you can use vmaDefragment(). Given set of allocations,

+this function can move them to compact used memory, ensure more continuous free

+space and possibly also free some `VkDeviceMemory`. It can work only on

+allocations made from memory type that is `HOST_VISIBLE`. Allocations are

+modified to point to the new `VkDeviceMemory` and offset. Data in this memory is

+also `memmove`-ed to the new place. However, if you have images or buffers bound

+to these allocations (and you certainly do), you need to destroy, recreate, and

+bind them to the new place in memory.

+

+For further details and example code, see documentation of function

+vmaDefragment().

+

+\page lost_allocations Lost allocations

+

+If your game oversubscribes video memory, if may work OK in previous-generation

+graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically

+paged to system RAM. In Vulkan you can't do it because when you run out of

+memory, an allocation just fails. If you have more data (e.g. textures) that can

+fit into VRAM and you don't need it all at once, you may want to upload them to

+GPU on demand and "push out" ones that are not used for a long time to make room

+for the new ones, effectively using VRAM (or a cartain memory pool) as a form of

+cache. Vulkan Memory Allocator can help you with that by supporting a concept of

+"lost allocations".

+

+To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT

+flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to

+such allocation in every new frame, you need to query it if it's not lost.

+To check it, call vmaTouchAllocation().

+If the allocation is lost, you should not use it or buffer/image bound to it.

+You mustn't forget to destroy this allocation and this buffer/image.

+vmaGetAllocationInfo() can also be used for checking status of the allocation.

+Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.

+

+To create an allocation that can make some other allocations lost to make room

+for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will

+usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and

+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.

+

+Warning! Current implementation uses quite naive, brute force algorithm,

+which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT

+flag quite slow. A new, more optimal algorithm and data structure to speed this

+up is planned for the future.

+

+<b>Q: When interleaving creation of new allocations with usage of existing ones,

+how do you make sure that an allocation won't become lost while it's used in the

+current frame?</b>

+

+It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation

+status/parameters and checks whether it's not lost, but when it's not, it also

+atomically marks it as used in the current frame, which makes it impossible to

+become lost in that frame. It uses lockless algorithm, so it works fast and

+doesn't involve locking any internal mutex.

+

+<b>Q: What if my allocation may still be in use by the GPU when it's rendering a

+previous frame while I already submit new frame on the CPU?</b>

+

+You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not

+become lost for a number of additional frames back from the current one by

+specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default

+memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).

+

+<b>Q: How do you inform the library when new frame starts?</b>

+

+You need to call function vmaSetCurrentFrameIndex().

+

+Example code:

+

+\code

+struct MyBuffer

+{

+    VkBuffer m_Buf = nullptr;

+    VmaAllocation m_Alloc = nullptr;

+

+    // Called when the buffer is really needed in the current frame.

+    void EnsureBuffer();

+};

+

+void MyBuffer::EnsureBuffer()

+{

+    // Buffer has been created.

+    if(m_Buf != VK_NULL_HANDLE)

+    {

+        // Check if its allocation is not lost + mark it as used in current frame.

+        if(vmaTouchAllocation(allocator, m_Alloc))

+        {

+            // It's all OK - safe to use m_Buf.

+            return;

+        }

+    }

+

+    // Buffer not yet exists or lost - destroy and recreate it.

+

+    vmaDestroyBuffer(allocator, m_Buf, m_Alloc);

+

+    VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+    bufCreateInfo.size = 1024;

+    bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

+

+    VmaAllocationCreateInfo allocCreateInfo = {};

+    allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+    allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |

+        VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;

+

+    vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);

+}

+\endcode

+

+When using lost allocations, you may see some Vulkan validation layer warnings

+about overlapping regions of memory bound to different kinds of buffers and

+images. This is still valid as long as you implement proper handling of lost

+allocations (like in the example above) and don't use them.

+

+You can create an allocation that is already in lost state from the beginning using function

+vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.

+

+You can call function vmaMakePoolAllocationsLost() to set all eligible allocations

+in a specified custom pool to lost state.

+Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back

+cannot become lost.

+

+

+\page statistics Statistics

+

+This library contains functions that return information about its internal state,

+especially the amount of memory allocated from Vulkan.

+Please keep in mind that these functions need to traverse all internal data structures

+to gather these information, so they may be quite time-consuming.

+Don't call them too often.

+

+\section statistics_numeric_statistics Numeric statistics

+

+You can query for overall statistics of the allocator using function vmaCalculateStats().

+Information are returned using structure #VmaStats.

+It contains #VmaStatInfo - number of allocated blocks, number of allocations

+(occupied ranges in these blocks), number of unused (free) ranges in these blocks,

+number of bytes used and unused (but still allocated from Vulkan) and other information.

+They are summed across memory heaps, memory types and total for whole allocator.

+

+You can query for statistics of a custom pool using function vmaGetPoolStats().

+Information are returned using structure #VmaPoolStats.

+

+You can query for information about specific allocation using function vmaGetAllocationInfo().

+It fill structure #VmaAllocationInfo.

+

+\section statistics_json_dump JSON dump

+

+You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().

+The result is guaranteed to be correct JSON.

+It uses ANSI encoding.

+Any strings provided by user (see [Allocation names](@ref allocation_names))

+are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,

+this JSON string can be treated as using this encoding.

+It must be freed using function vmaFreeStatsString().

+

+The format of this JSON string is not part of official documentation of the library,

+but it will not change in backward-incompatible way without increasing library major version number

+and appropriate mention in changelog.

+

+The JSON string contains all the data that can be obtained using vmaCalculateStats().

+It can also contain detailed map of allocated memory blocks and their regions -

+free and occupied by allocations.

+This allows e.g. to visualize the memory or assess fragmentation.

+

+

+\page allocation_annotation Allocation names and user data

+

+\section allocation_user_data Allocation user data

+

+You can annotate allocations with your own information, e.g. for debugging purposes.

+To do that, fill VmaAllocationCreateInfo::pUserData field when creating

+an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,

+some handle, index, key, ordinal number or any other value that would associate

+the allocation with your custom metadata.

+

+\code

+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

+// Fill bufferInfo...

+

+MyBufferMetadata* pMetadata = CreateBufferMetadata();

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+allocCreateInfo.pUserData = pMetadata;

+

+VkBuffer buffer;

+VmaAllocation allocation;

+vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);

+\endcode

+

+The pointer may be later retrieved as VmaAllocationInfo::pUserData:

+

+\code

+VmaAllocationInfo allocInfo;

+vmaGetAllocationInfo(allocator, allocation, &allocInfo);

+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;

+\endcode

+

+It can also be changed using function vmaSetAllocationUserData().

+

+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by

+vmaBuildStatsString(), in hexadecimal form.

+

+\section allocation_names Allocation names

+

+There is alternative mode available where `pUserData` pointer is used to point to

+a null-terminated string, giving a name to the allocation. To use this mode,

+set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.

+Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to

+vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.

+The library creates internal copy of the string, so the pointer you pass doesn't need

+to be valid for whole lifetime of the allocation. You can free it after the call.

+

+\code

+VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };

+// Fill imageInfo...

+

+std::string imageName = "Texture: ";

+imageName += fileName;

+

+VmaAllocationCreateInfo allocCreateInfo = {};

+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;

+allocCreateInfo.pUserData = imageName.c_str();

+

+VkImage image;

+VmaAllocation allocation;

+vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);

+\endcode

+

+The value of `pUserData` pointer of the allocation will be different than the one

+you passed when setting allocation's name - pointing to a buffer managed

+internally that holds copy of the string.

+

+\code

+VmaAllocationInfo allocInfo;

+vmaGetAllocationInfo(allocator, allocation, &allocInfo);

+const char* imageName = (const char*)allocInfo.pUserData;

+printf("Image name: %s\n", imageName);

+\endcode

+

+That string is also printed in JSON report created by vmaBuildStatsString().

+

+

+\page usage_patterns Recommended usage patterns

+

+\section usage_patterns_simple Simple patterns

+

+\subsection usage_patterns_simple_render_targets Render targets

+

+<b>When:</b>

+Any resources that you frequently write and read on GPU,

+e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,

+images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").

+

+<b>What to do:</b>

+Create them in video memory that is fastest to access from GPU using

+#VMA_MEMORY_USAGE_GPU_ONLY.

+

+Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension

+and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,

+especially if they are large or if you plan to destroy and recreate them e.g. when

+display resolution changes.

+Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.

+

+\subsection usage_patterns_simple_immutable_resources Immutable resources

+

+<b>When:</b>

+Any resources that you fill on CPU only once (aka "immutable") or infrequently

+and then read frequently on GPU,

+e.g. textures, vertex and index buffers, constant buffers that don't change often.

+

+<b>What to do:</b>

+Create them in video memory that is fastest to access from GPU using

+#VMA_MEMORY_USAGE_GPU_ONLY.

+

+To initialize content of such resource, create a CPU-side (aka "staging") copy of it

+in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,

+and submit a transfer from it to the GPU resource.

+You can keep the staging copy if you need it for another upload transfer in the future.

+If you don't, you can destroy it or reuse this buffer for uploading different resource

+after the transfer finishes.

+

+Prefer to create just buffers in system memory rather than images, even for uploading textures.

+Use `vkCmdCopyBufferToImage()`.

+Dont use images with `VK_IMAGE_TILING_LINEAR`.

+

+\subsection usage_patterns_dynamic_resources Dynamic resources

+

+<b>When:</b>

+Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,

+written on CPU, read on GPU.

+

+<b>What to do:</b>

+Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.

+You can map it and write to it directly on CPU, as well as read from it on GPU.

+

+This is a more complex situation. Different solutions are possible,

+and the best one depends on specific GPU type, but you can use this simple approach for the start.

+Prefer to write to such resource sequentially (e.g. using `memcpy`).

+Don't perform random access or any reads from it, as it may be very slow.

+

+\subsection usage_patterns_readback Readback

+

+<b>When:</b>

+Resources that contain data written by GPU that you want to read back on CPU,

+e.g. results of some computations.

+

+<b>What to do:</b>

+Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.

+You can write to them directly on GPU, as well as map and read them on CPU.

+

+\section usage_patterns_advanced Advanced patterns

+

+\subsection usage_patterns_integrated_graphics Detecting integrated graphics

+

+You can support integrated graphics (like Intel HD Graphics, AMD APU) better

+by detecting it in Vulkan.

+To do it, call `vkGetPhysicalDeviceProperties()`, inspect

+`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.

+When you find it, you can assume that memory is unified and all memory types are equally fast

+to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.

+

+You can then sum up sizes of all available memory heaps and treat them as useful for

+your GPU resources, instead of only `DEVICE_LOCAL` ones.

+You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them

+directly instead of submitting explicit transfer (see below).

+

+\subsection usage_patterns_direct_vs_transfer Direct access versus transfer

+

+For resources that you frequently write on CPU and read on GPU, many solutions are possible:

+

+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,

+   second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.

+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,

+   read it directly on GPU.

+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,

+   read it directly on GPU.

+

+Which solution is the most efficient depends on your resource and especially on the GPU.

+It is best to measure it and then make the decision.

+Some general recommendations:

+

+- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead

+  related to using a second copy.

+- For small resources (e.g. constant buffers) use (2).

+  Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.

+  Even if the resource ends up in system memory, its data may be cached on GPU after first

+  fetch over PCIe bus.

+- For larger resources (e.g. textures), decide between (1) and (2).

+  You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is

+  both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).

+

+Similarly, for resources that you frequently write on GPU and read on CPU, multiple

+solutions are possible:

+

+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,

+   second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.

+-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,

+   map it and read it on CPU.

+

+You should take some measurements to decide which option is faster in case of your specific

+resource.

+

+If you don't want to specialize your code for specific types of GPUs, yon can still make

+an simple optimization for cases when your resource ends up in mappable memory to use it

+directly in this case instead of creating CPU-side staging copy.

+For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).

+

+

+\page configuration Configuration

+

+Please check "CONFIGURATION SECTION" in the code to find macros that you can define

+before each include of this file or change directly in this file to provide

+your own implementation of basic facilities like assert, `min()` and `max()` functions,

+mutex, atomic etc.

+The library uses its own implementation of containers by default, but you can switch to using

+STL containers instead.

+

+\section config_Vulkan_functions Pointers to Vulkan functions

+

+The library uses Vulkan functions straight from the `vulkan.h` header by default.

+If you want to provide your own pointers to these functions, e.g. fetched using

+`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:

+

+-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.

+-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.

+

+\section custom_memory_allocator Custom host memory allocator

+

+If you use custom allocator for CPU memory rather than default operator `new`

+and `delete` from C++, you can make this library using your allocator as well

+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These

+functions will be passed to Vulkan, as well as used by the library itself to

+make any CPU-side allocations.

+

+\section allocation_callbacks Device memory allocation callbacks

+

+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.

+You can setup callbacks to be informed about these calls, e.g. for the purpose

+of gathering some statistics. To do it, fill optional member

+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.

+

+\section heap_memory_limit Device heap memory limit

+

+If you want to test how your program behaves with limited amount of Vulkan device

+memory available without switching your graphics card to one that really has

+smaller VRAM, you can use a feature of this library intended for this purpose.

+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.

+

+

+

+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation

+

+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve

+performance on some GPUs. It augments Vulkan API with possibility to query

+driver whether it prefers particular buffer or image to have its own, dedicated

+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able

+to do some internal optimizations.

+

+The extension is supported by this library. It will be used automatically when

+enabled. To enable it:

+

+1 . When creating Vulkan device, check if following 2 device extensions are

+supported (call `vkEnumerateDeviceExtensionProperties()`).

+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).

+

+- VK_KHR_get_memory_requirements2

+- VK_KHR_dedicated_allocation

+

+If you enabled these extensions:

+

+2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating

+your #VmaAllocator`to inform the library that you enabled required extensions

+and you want the library to use them.

+

+\code

+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;

+

+vmaCreateAllocator(&allocatorInfo, &allocator);

+\endcode

+

+That's all. The extension will be automatically used whenever you create a

+buffer using vmaCreateBuffer() or image using vmaCreateImage().

+

+When using the extension together with Vulkan Validation Layer, you will receive

+warnings like this:

+

+    vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.

+

+It is OK, you should just ignore it. It happens because you use function

+`vkGetBufferMemoryRequirements2KHR()` instead of standard

+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be

+unaware of it.

+

+To learn more about this extension, see:

+

+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)

+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)

+

+

+

+\page general_considerations General considerations

+

+\section general_considerations_thread_safety Thread safety

+

+- The library has no global state, so separate #VmaAllocator objects can be used

+  independently.

+  There should be no need to create multiple such objects though - one per `VkDevice` is enough.

+- By default, all calls to functions that take #VmaAllocator as first parameter

+  are safe to call from multiple threads simultaneously because they are

+  synchronized internally when needed.

+- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

+  flag, calls to functions that take such #VmaAllocator object must be

+  synchronized externally.

+- Access to a #VmaAllocation object must be externally synchronized. For example,

+  you must not call vmaGetAllocationInfo() and vmaMapMemory() from different

+  threads at the same time if you pass the same #VmaAllocation object to these

+  functions.

+

+\section general_considerations_allocation_algorithm Allocation algorithm

+

+The library uses following algorithm for allocation, in order:

+

+-# Try to find free range of memory in existing blocks.

+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.

+-# If failed, try to create such block with size/2, size/4, size/8.

+-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was

+   specified, try to find space in existing blocks, possilby making some other

+   allocations lost.

+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,

+   just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.

+-# If failed, choose other memory type that meets the requirements specified in

+   VmaAllocationCreateInfo and go to point 1.

+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

+

+\section general_considerations_features_not_supported Features not supported

+

+Features deliberately excluded from the scope of this library:

+

+- Data transfer - issuing commands that transfer data between buffers or images, any usage of

+  `VkCommandList` or `VkCommandQueue` and related synchronization is responsibility of the user.

+- Support for any programming languages other than C/C++.

+  Bindings to other languages are welcomed as external projects.

+

+*/

+

+#include <vulkan/vulkan.h>

+

+/** \struct VmaAllocator

+\brief Represents main object of this library initialized.

+

+Fill structure VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.

+Call function vmaDestroyAllocator() to destroy it.

+

+It is recommended to create just one object of this type per `VkDevice` object,

+right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.

+*/

+VK_DEFINE_HANDLE(VmaAllocator)

+

+/// Callback function called after successful vkAllocateMemory.

+typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(

+    VmaAllocator      allocator,

+    uint32_t          memoryType,

+    VkDeviceMemory    memory,

+    VkDeviceSize      size);

+/// Callback function called before vkFreeMemory.

+typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(

+    VmaAllocator      allocator,

+    uint32_t          memoryType,

+    VkDeviceMemory    memory,

+    VkDeviceSize      size);

+

+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.

+

+Provided for informative purpose, e.g. to gather statistics about number of

+allocations or total amount of memory allocated in Vulkan.

+

+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.

+*/

+typedef struct VmaDeviceMemoryCallbacks {

+    /// Optional, can be null.

+    PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;

+    /// Optional, can be null.

+    PFN_vmaFreeDeviceMemoryFunction pfnFree;

+} VmaDeviceMemoryCallbacks;

+

+/// Flags for created #VmaAllocator.

+typedef enum VmaAllocatorCreateFlagBits {

+    /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.

+

+    Using this flag may increase performance because internal mutexes are not used.

+    */

+    VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,

+    /** \brief Enables usage of VK_KHR_dedicated_allocation extension.

+

+    Using this extenion will automatically allocate dedicated blocks of memory for

+    some buffers and images instead of suballocating place for them out of bigger

+    memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT

+    flag) when it is recommended by the driver. It may improve performance on some

+    GPUs.

+

+    You may set this flag only if you found out that following device extensions are

+    supported, you enabled them while creating Vulkan device passed as

+    VmaAllocatorCreateInfo::device, and you want them to be used internally by this

+    library:

+

+    - VK_KHR_get_memory_requirements2

+    - VK_KHR_dedicated_allocation

+

+When this flag is set, you can experience following warnings reported by Vulkan

+validation layer. You can ignore them.

+

+> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.

+    */

+    VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,

+

+    VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

+} VmaAllocatorCreateFlagBits;

+typedef VkFlags VmaAllocatorCreateFlags;

+

+/** \brief Pointers to some Vulkan functions - a subset used by the library.

+

+Used in VmaAllocatorCreateInfo::pVulkanFunctions.

+*/

+typedef struct VmaVulkanFunctions {

+    PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;

+    PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;

+    PFN_vkAllocateMemory vkAllocateMemory;

+    PFN_vkFreeMemory vkFreeMemory;

+    PFN_vkMapMemory vkMapMemory;

+    PFN_vkUnmapMemory vkUnmapMemory;

+    PFN_vkBindBufferMemory vkBindBufferMemory;

+    PFN_vkBindImageMemory vkBindImageMemory;

+    PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;

+    PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;

+    PFN_vkCreateBuffer vkCreateBuffer;

+    PFN_vkDestroyBuffer vkDestroyBuffer;

+    PFN_vkCreateImage vkCreateImage;

+    PFN_vkDestroyImage vkDestroyImage;

+    PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;

+    PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;

+} VmaVulkanFunctions;

+

+/// Description of a Allocator to be created.

+typedef struct VmaAllocatorCreateInfo

+{

+    /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.

+    VmaAllocatorCreateFlags flags;

+    /// Vulkan physical device.

+    /** It must be valid throughout whole lifetime of created allocator. */

+    VkPhysicalDevice physicalDevice;

+    /// Vulkan device.

+    /** It must be valid throughout whole lifetime of created allocator. */

+    VkDevice device;

+    /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.

+    /** Set to 0 to use default, which is currently 256 MiB. */

+    VkDeviceSize preferredLargeHeapBlockSize;

+    /// Custom CPU memory allocation callbacks. Optional.

+    /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */

+    const VkAllocationCallbacks* pAllocationCallbacks;

+    /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.

+    /** Optional, can be null. */

+    const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;

+    /** \brief Maximum number of additional frames that are in use at the same time as current frame.

+

+    This value is used only when you make allocations with

+    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become

+    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.

+

+    For example, if you double-buffer your command buffers, so resources used for

+    rendering in previous frame may still be in use by the GPU at the moment you

+    allocate resources needed for the current frame, set this value to 1.

+

+    If you want to allow any allocations other than used in the current frame to

+    become lost, set this value to 0.

+    */

+    uint32_t frameInUseCount;

+    /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.

+

+    If not NULL, it must be a pointer to an array of

+    `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on

+    maximum number of bytes that can be allocated out of particular Vulkan memory

+    heap.

+

+    Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that

+    heap. This is also the default in case of `pHeapSizeLimit` = NULL.

+

+    If there is a limit defined for a heap:

+

+    - If user tries to allocate more memory from that heap using this allocator,

+      the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

+    - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the

+      value of this limit will be reported instead when using vmaGetMemoryProperties().

+

+    Warning! Using this feature may not be equivalent to installing a GPU with

+    smaller amount of memory, because graphics driver doesn't necessary fail new

+    allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is

+    exceeded. It may return success and just silently migrate some device memory

+    blocks to system RAM.

+    */

+    const VkDeviceSize* pHeapSizeLimit;

+    /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.

+

+    If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,

+    you can pass null as this member, because the library will fetch pointers to

+    Vulkan functions internally in a static way, like:

+

+        vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;

+

+    Fill this member if you want to provide your own pointers to Vulkan functions,

+    e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.

+    */

+    const VmaVulkanFunctions* pVulkanFunctions;

+} VmaAllocatorCreateInfo;

+

+/// Creates Allocator object.

+VkResult vmaCreateAllocator(

+    const VmaAllocatorCreateInfo* pCreateInfo,

+    VmaAllocator* pAllocator);

+

+/// Destroys allocator object.

+void vmaDestroyAllocator(

+    VmaAllocator allocator);

+

+/**

+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.

+You can access it here, without fetching it again on your own.

+*/

+void vmaGetPhysicalDeviceProperties(

+    VmaAllocator allocator,

+    const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);

+

+/**

+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.

+You can access it here, without fetching it again on your own.

+*/

+void vmaGetMemoryProperties(

+    VmaAllocator allocator,

+    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);

+

+/**

+\brief Given Memory Type Index, returns Property Flags of this memory type.

+

+This is just a convenience function. Same information can be obtained using

+vmaGetMemoryProperties().

+*/

+void vmaGetMemoryTypeProperties(

+    VmaAllocator allocator,

+    uint32_t memoryTypeIndex,

+    VkMemoryPropertyFlags* pFlags);

+

+/** \brief Sets index of the current frame.

+

+This function must be used if you make allocations with

+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and

+#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator

+when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot

+become lost in the current frame.

+*/

+void vmaSetCurrentFrameIndex(

+    VmaAllocator allocator,

+    uint32_t frameIndex);

+

+/** \brief Calculated statistics of memory usage in entire allocator.

+*/

+typedef struct VmaStatInfo

+{

+    /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.

+    uint32_t blockCount;

+    /// Number of #VmaAllocation allocation objects allocated.

+    uint32_t allocationCount;

+    /// Number of free ranges of memory between allocations.

+    uint32_t unusedRangeCount;

+    /// Total number of bytes occupied by all allocations.

+    VkDeviceSize usedBytes;

+    /// Total number of bytes occupied by unused ranges.

+    VkDeviceSize unusedBytes;

+    VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;

+    VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;

+} VmaStatInfo;

+

+/// General statistics from current state of Allocator.

+typedef struct VmaStats

+{

+    VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];

+    VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];

+    VmaStatInfo total;

+} VmaStats;

+

+/// Retrieves statistics from current state of the Allocator.

+void vmaCalculateStats(

+    VmaAllocator allocator,

+    VmaStats* pStats);

+

+#define VMA_STATS_STRING_ENABLED 1

+

+#if VMA_STATS_STRING_ENABLED

+

+/// Builds and returns statistics as string in JSON format.

+/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.

+*/

+void vmaBuildStatsString(

+    VmaAllocator allocator,

+    char** ppStatsString,

+    VkBool32 detailedMap);

+

+void vmaFreeStatsString(

+    VmaAllocator allocator,

+    char* pStatsString);

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+/** \struct VmaPool

+\brief Represents custom memory pool

+

+Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.

+Call function vmaDestroyPool() to destroy it.

+

+For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).

+*/

+VK_DEFINE_HANDLE(VmaPool)

+

+typedef enum VmaMemoryUsage

+{

+    /** No intended memory usage specified.

+    Use other members of VmaAllocationCreateInfo to specify your requirements.

+    */

+    VMA_MEMORY_USAGE_UNKNOWN = 0,

+    /** Memory will be used on device only, so fast access from the device is preferred.

+    It usually means device-local GPU (video) memory.

+    No need to be mappable on host.

+    It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.

+

+    Usage:

+    

+    - Resources written and read by device, e.g. images used as attachments.

+    - Resources transferred from host once (immutable) or infrequently and read by

+      device multiple times, e.g. textures to be sampled, vertex buffers, uniform

+      (constant) buffers, and majority of other types of resources used by device.

+

+    Allocation may still end up in `HOST_VISIBLE` memory on some implementations.

+    In such case, you are free to map it.

+    You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.

+    */

+    VMA_MEMORY_USAGE_GPU_ONLY = 1,

+    /** Memory will be mappable on host.

+    It usually means CPU (system) memory.

+    Resources created in this pool may still be accessible to the device, but access to them can be slower.

+    Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.

+    CPU read may be uncached.

+    It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.

+

+    Usage: Staging copy of resources used as transfer source.

+    */

+    VMA_MEMORY_USAGE_CPU_ONLY = 2,

+    /**

+    Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.

+    CPU reads may be uncached and very slow.

+

+    Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.

+    */

+    VMA_MEMORY_USAGE_CPU_TO_GPU = 3,

+    /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.

+    It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.

+

+    Usage:

+

+    - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.

+    - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.

+    */

+    VMA_MEMORY_USAGE_GPU_TO_CPU = 4,

+    VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF

+} VmaMemoryUsage;

+

+/// Flags to be passed as VmaAllocationCreateInfo::flags.

+typedef enum VmaAllocationCreateFlagBits {

+    /** \brief Set this flag if the allocation should have its own memory block.

+    

+    Use it for special, big resources, like fullscreen images used as attachments.

+   

+    This flag must also be used for host visible resources that you want to map

+    simultaneously because otherwise they might end up as regions of the same

+    `VkDeviceMemory`, while mapping same `VkDeviceMemory` multiple times

+    simultaneously is illegal.

+

+    You should not use this flag if VmaAllocationCreateInfo::pool is not null.

+    */

+    VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,

+

+    /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.

+    

+    If new allocation cannot be placed in any of the existing blocks, allocation

+    fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.

+    

+    You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and

+    #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.

+    

+    If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */

+    VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,

+    /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.

+    

+    Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.

+

+    Is it valid to use this flag for allocation made from memory type that is not

+    `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is

+    useful if you need an allocation that is efficient to use on GPU

+    (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that

+    support it (e.g. Intel GPU).

+

+    You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.

+    */

+    VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,

+    /** Allocation created with this flag can become lost as a result of another

+    allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you

+    must check it before use.

+

+    To check if allocation is not lost, call vmaGetAllocationInfo() and check if

+    VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.

+

+    For details about supporting lost allocations, see Lost Allocations

+    chapter of User Guide on Main Page.

+

+    You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.

+    */

+    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,

+    /** While creating allocation using this flag, other allocations that were

+    created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.

+

+    For details about supporting lost allocations, see Lost Allocations

+    chapter of User Guide on Main Page.

+    */

+    VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,

+    /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a

+    null-terminated string. Instead of copying pointer value, a local copy of the

+    string is made and stored in allocation's `pUserData`. The string is automatically

+    freed together with the allocation. It is also used in vmaBuildStatsString().

+    */

+    VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,

+

+    VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

+} VmaAllocationCreateFlagBits;

+typedef VkFlags VmaAllocationCreateFlags;

+

+typedef struct VmaAllocationCreateInfo

+{

+    /// Use #VmaAllocationCreateFlagBits enum.

+    VmaAllocationCreateFlags flags;

+    /** \brief Intended usage of memory.

+    

+    You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n

+    If `pool` is not null, this member is ignored.

+    */

+    VmaMemoryUsage usage;

+    /** \brief Flags that must be set in a Memory Type chosen for an allocation.

+    

+    Leave 0 if you specify memory requirements in other way. \n

+    If `pool` is not null, this member is ignored.*/

+    VkMemoryPropertyFlags requiredFlags;

+    /** \brief Flags that preferably should be set in a memory type chosen for an allocation.

+    

+    Set to 0 if no additional flags are prefered. \n

+    If `pool` is not null, this member is ignored. */

+    VkMemoryPropertyFlags preferredFlags;

+    /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.

+

+    Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if

+    it meets other requirements specified by this structure, with no further

+    restrictions on memory type index. \n

+    If `pool` is not null, this member is ignored.

+    */

+    uint32_t memoryTypeBits;

+    /** \brief Pool that this allocation should be created in.

+

+    Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:

+    `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.

+    */

+    VmaPool pool;

+    /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().

+    

+    If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either

+    null or pointer to a null-terminated string. The string will be then copied to

+    internal buffer, so it doesn't need to be valid after allocation call.

+    */

+    void* pUserData;

+} VmaAllocationCreateInfo;

+

+/**

+\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.

+

+This algorithm tries to find a memory type that:

+

+- Is allowed by memoryTypeBits.

+- Contains all the flags from pAllocationCreateInfo->requiredFlags.

+- Matches intended usage.

+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.

+

+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result

+from this function or any other allocating function probably means that your

+device doesn't support any memory type with requested features for the specific

+type of resource you want to use it for. Please check parameters of your

+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.

+*/

+VkResult vmaFindMemoryTypeIndex(

+    VmaAllocator allocator,

+    uint32_t memoryTypeBits,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    uint32_t* pMemoryTypeIndex);

+

+/**

+\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.

+

+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.

+It internally creates a temporary, dummy buffer that never has memory bound.

+It is just a convenience function, equivalent to calling:

+

+- `vkCreateBuffer`

+- `vkGetBufferMemoryRequirements`

+- `vmaFindMemoryTypeIndex`

+- `vkDestroyBuffer`

+*/

+VkResult vmaFindMemoryTypeIndexForBufferInfo(

+    VmaAllocator allocator,

+    const VkBufferCreateInfo* pBufferCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    uint32_t* pMemoryTypeIndex);

+

+/**

+\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.

+

+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.

+It internally creates a temporary, dummy image that never has memory bound.

+It is just a convenience function, equivalent to calling:

+

+- `vkCreateImage`

+- `vkGetImageMemoryRequirements`

+- `vmaFindMemoryTypeIndex`

+- `vkDestroyImage`

+*/

+VkResult vmaFindMemoryTypeIndexForImageInfo(

+    VmaAllocator allocator,

+    const VkImageCreateInfo* pImageCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    uint32_t* pMemoryTypeIndex);

+

+/// Flags to be passed as VmaPoolCreateInfo::flags.

+typedef enum VmaPoolCreateFlagBits {

+    /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.

+

+    This is na optional optimization flag.

+

+    If you always allocate using vmaCreateBuffer(), vmaCreateImage(),

+    vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator

+    knows exact type of your allocations so it can handle Buffer-Image Granularity

+    in the optimal way.

+

+    If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),

+    exact type of such allocations is not known, so allocator must be conservative

+    in handling Buffer-Image Granularity, which can lead to suboptimal allocation

+    (wasted memory). In that case, if you can make sure you always allocate only

+    buffers and linear images or only optimal images out of this pool, use this flag

+    to make allocator disregard Buffer-Image Granularity and so make allocations

+    more optimal.

+    */

+    VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,

+

+    VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

+} VmaPoolCreateFlagBits;

+typedef VkFlags VmaPoolCreateFlags;

+

+/** \brief Describes parameter of created #VmaPool.

+*/

+typedef struct VmaPoolCreateInfo {

+    /** \brief Vulkan memory type index to allocate this pool from.

+    */

+    uint32_t memoryTypeIndex;

+    /** \brief Use combination of #VmaPoolCreateFlagBits.

+    */

+    VmaPoolCreateFlags flags;

+    /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes.

+

+    Optional. Leave 0 to use default.

+    */

+    VkDeviceSize blockSize;

+    /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.

+

+    Set to 0 to have no preallocated blocks and let the pool be completely empty.

+    */

+    size_t minBlockCount;

+    /** \brief Maximum number of blocks that can be allocated in this pool. Optional.

+

+    Optional. Set to 0 to use `SIZE_MAX`, which means no limit.

+    

+    Set to same value as minBlockCount to have fixed amount of memory allocated

+    throuout whole lifetime of this pool.

+    */

+    size_t maxBlockCount;

+    /** \brief Maximum number of additional frames that are in use at the same time as current frame.

+

+    This value is used only when you make allocations with

+    #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become

+    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.

+

+    For example, if you double-buffer your command buffers, so resources used for

+    rendering in previous frame may still be in use by the GPU at the moment you

+    allocate resources needed for the current frame, set this value to 1.

+

+    If you want to allow any allocations other than used in the current frame to

+    become lost, set this value to 0.

+    */

+    uint32_t frameInUseCount;

+} VmaPoolCreateInfo;

+

+/** \brief Describes parameter of existing #VmaPool.

+*/

+typedef struct VmaPoolStats {

+    /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.

+    */

+    VkDeviceSize size;

+    /** \brief Total number of bytes in the pool not used by any #VmaAllocation.

+    */

+    VkDeviceSize unusedSize;

+    /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.

+    */

+    size_t allocationCount;

+    /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.

+    */

+    size_t unusedRangeCount;

+    /** \brief Size of the largest continuous free memory region.

+

+    Making a new allocation of that size is not guaranteed to succeed because of

+    possible additional margin required to respect alignment and buffer/image

+    granularity.

+    */

+    VkDeviceSize unusedRangeSizeMax;

+} VmaPoolStats;

+

+/** \brief Allocates Vulkan device memory and creates #VmaPool object.

+

+@param allocator Allocator object.

+@param pCreateInfo Parameters of pool to create.

+@param[out] pPool Handle to created pool.

+*/

+VkResult vmaCreatePool(

+	VmaAllocator allocator,

+	const VmaPoolCreateInfo* pCreateInfo,

+	VmaPool* pPool);

+

+/** \brief Destroys #VmaPool object and frees Vulkan device memory.

+*/

+void vmaDestroyPool(

+    VmaAllocator allocator,

+    VmaPool pool);

+

+/** \brief Retrieves statistics of existing #VmaPool object.

+

+@param allocator Allocator object.

+@param pool Pool object.

+@param[out] pPoolStats Statistics of specified pool.

+*/

+void vmaGetPoolStats(

+    VmaAllocator allocator,

+    VmaPool pool,

+    VmaPoolStats* pPoolStats);

+

+/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.

+

+@param allocator Allocator object.

+@param pool Pool.

+@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.

+*/

+void vmaMakePoolAllocationsLost(

+    VmaAllocator allocator,

+    VmaPool pool,

+    size_t* pLostAllocationCount);

+

+/** \struct VmaAllocation

+\brief Represents single memory allocation.

+

+It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type

+plus unique offset.

+

+There are multiple ways to create such object.

+You need to fill structure VmaAllocationCreateInfo.

+For more information see [Choosing memory type](@ref choosing_memory_type).

+

+Although the library provides convenience functions that create Vulkan buffer or image,

+allocate memory for it and bind them together,

+binding of the allocation to a buffer or an image is out of scope of the allocation itself.

+Allocation object can exist without buffer/image bound,

+binding can be done manually by the user, and destruction of it can be done

+independently of destruction of the allocation.

+

+The object also remembers its size and some other information.

+To retrieve this information, use function vmaGetAllocationInfo() and inspect

+returned structure VmaAllocationInfo.

+

+Some kinds allocations can be in lost state.

+For more information, see [Lost allocations](@ref lost_allocations).

+*/

+VK_DEFINE_HANDLE(VmaAllocation)

+

+/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().

+*/

+typedef struct VmaAllocationInfo {

+    /** \brief Memory type index that this allocation was allocated from.

+    

+    It never changes.

+    */

+    uint32_t memoryType;

+    /** \brief Handle to Vulkan memory object.

+

+    Same memory object can be shared by multiple allocations.

+    

+    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.

+

+    If the allocation is lost, it is equal to `VK_NULL_HANDLE`.

+    */

+    VkDeviceMemory deviceMemory;

+    /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.

+

+    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.

+    */

+    VkDeviceSize offset;

+    /** \brief Size of this allocation, in bytes.

+

+    It never changes, unless allocation is lost.

+    */

+    VkDeviceSize size;

+    /** \brief Pointer to the beginning of this allocation as mapped data.

+

+    If the allocation hasn't been mapped using vmaMapMemory() and hasn't been

+    created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null.

+

+    It can change after call to vmaMapMemory(), vmaUnmapMemory().

+    It can also change after call to vmaDefragment() if this allocation is passed to the function.

+    */

+    void* pMappedData;

+    /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().

+

+    It can change after call to vmaSetAllocationUserData() for this allocation.

+    */

+    void* pUserData;

+} VmaAllocationInfo;

+

+/** \brief General purpose memory allocation.

+

+@param[out] pAllocation Handle to allocated memory.

+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().

+

+You should free the memory using vmaFreeMemory().

+

+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),

+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.

+*/

+VkResult vmaAllocateMemory(

+    VmaAllocator allocator,

+    const VkMemoryRequirements* pVkMemoryRequirements,

+    const VmaAllocationCreateInfo* pCreateInfo,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo);

+

+/**

+@param[out] pAllocation Handle to allocated memory.

+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().

+

+You should free the memory using vmaFreeMemory().

+*/

+VkResult vmaAllocateMemoryForBuffer(

+    VmaAllocator allocator,

+    VkBuffer buffer,

+    const VmaAllocationCreateInfo* pCreateInfo,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo);

+

+/// Function similar to vmaAllocateMemoryForBuffer().

+VkResult vmaAllocateMemoryForImage(

+    VmaAllocator allocator,

+    VkImage image,

+    const VmaAllocationCreateInfo* pCreateInfo,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo);

+

+/// Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().

+void vmaFreeMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation);

+

+/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.

+

+Current paramters of given allocation are returned in `pAllocationInfo`.

+

+This function also atomically "touches" allocation - marks it as used in current frame,

+just like vmaTouchAllocation().

+If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.

+

+Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,

+you can avoid calling it too often.

+

+- You can retrieve same VmaAllocationInfo structure while creating your resource, from function

+  vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change

+  (e.g. due to defragmentation or allocation becoming lost).

+- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.

+*/

+void vmaGetAllocationInfo(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    VmaAllocationInfo* pAllocationInfo);

+

+/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.

+

+If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,

+this function returns `VK_TRUE` if it's not in lost state, so it can still be used.

+It then also atomically "touches" the allocation - marks it as used in current frame,

+so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.

+

+If the allocation is in lost state, the function returns `VK_FALSE`.

+Memory of such allocation, as well as buffer or image bound to it, should not be used.

+Lost allocation and the buffer/image still need to be destroyed.

+

+If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,

+this function always returns `VK_TRUE`.

+*/

+VkBool32 vmaTouchAllocation(

+    VmaAllocator allocator,

+    VmaAllocation allocation);

+

+/** \brief Sets pUserData in given allocation to new value.

+

+If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,

+pUserData must be either null, or pointer to a null-terminated string. The function

+makes local copy of the string and sets it as allocation's `pUserData`. String

+passed as pUserData doesn't need to be valid for whole lifetime of the allocation -

+you can free it after this call. String previously pointed by allocation's

+pUserData is freed from memory.

+

+If the flag was not used, the value of pointer `pUserData` is just copied to

+allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.

+as a pointer, ordinal number or some handle to you own data.

+*/

+void vmaSetAllocationUserData(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    void* pUserData);

+

+/** \brief Creates new allocation that is in lost state from the beginning.

+

+It can be useful if you need a dummy, non-null allocation.

+

+You still need to destroy created object using vmaFreeMemory().

+

+Returned allocation is not tied to any specific memory pool or memory type and

+not bound to any image or buffer. It has size = 0. It cannot be turned into

+a real, non-empty allocation.

+*/

+void vmaCreateLostAllocation(

+    VmaAllocator allocator,

+    VmaAllocation* pAllocation);

+

+/** \brief Maps memory represented by given allocation and returns pointer to it.

+

+Maps memory represented by given allocation to make it accessible to CPU code.

+When succeeded, `*ppData` contains pointer to first byte of this memory.

+If the allocation is part of bigger `VkDeviceMemory` block, the pointer is

+correctly offseted to the beginning of region assigned to this particular

+allocation.

+

+Mapping is internally reference-counted and synchronized, so despite raw Vulkan

+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`

+multiple times simultaneously, it is safe to call this function on allocations

+assigned to the same memory block. Actual Vulkan memory will be mapped on first

+mapping and unmapped on last unmapping.

+

+If the function succeeded, you must call vmaUnmapMemory() to unmap the

+allocation when mapping is no longer needed or before freeing the allocation, at

+the latest.

+

+It also safe to call this function multiple times on the same allocation. You

+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().

+

+It is also safe to call this function on allocation created with

+#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.

+You must still call vmaUnmapMemory() same number of times as you called

+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the

+"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.

+

+This function fails when used on allocation made in memory type that is not

+`HOST_VISIBLE`.

+

+This function always fails when called for allocation that was created with

+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be

+mapped.

+*/

+VkResult vmaMapMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    void** ppData);

+

+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().

+

+For details, see description of vmaMapMemory().

+*/

+void vmaUnmapMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation);

+

+/** \brief Optional configuration parameters to be passed to function vmaDefragment(). */

+typedef struct VmaDefragmentationInfo {

+    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.

+    

+    Default is `VK_WHOLE_SIZE`, which means no limit.

+    */

+    VkDeviceSize maxBytesToMove;

+    /** \brief Maximum number of allocations that can be moved to different place.

+

+    Default is `UINT32_MAX`, which means no limit.

+    */

+    uint32_t maxAllocationsToMove;

+} VmaDefragmentationInfo;

+

+/** \brief Statistics returned by function vmaDefragment(). */

+typedef struct VmaDefragmentationStats {

+    /// Total number of bytes that have been copied while moving allocations to different places.

+    VkDeviceSize bytesMoved;

+    /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.

+    VkDeviceSize bytesFreed;

+    /// Number of allocations that have been moved to different places.

+    uint32_t allocationsMoved;

+    /// Number of empty `VkDeviceMemory` objects that have been released to the system.

+    uint32_t deviceMemoryBlocksFreed;

+} VmaDefragmentationStats;

+

+/** \brief Compacts memory by moving allocations.

+

+@param pAllocations Array of allocations that can be moved during this compation.

+@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.

+@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.

+@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.

+@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.

+@return VK_SUCCESS if completed, VK_INCOMPLETE if succeeded but didn't make all possible optimizations because limits specified in pDefragmentationInfo have been reached, negative error code in case of error.

+

+This function works by moving allocations to different places (different

+`VkDeviceMemory` objects and/or different offsets) in order to optimize memory

+usage. Only allocations that are in pAllocations array can be moved. All other

+allocations are considered nonmovable in this call. Basic rules:

+

+- Only allocations made in memory types that have

+  `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag can be compacted. You may pass other

+  allocations but it makes no sense - these will never be moved.

+- You may pass allocations made with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT but

+  it makes no sense - they will never be moved.

+- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT

+  flag can be compacted. If not persistently mapped, memory will be mapped

+  temporarily inside this function if needed.

+- You must not pass same #VmaAllocation object multiple times in pAllocations array.

+

+The function also frees empty `VkDeviceMemory` blocks.

+

+After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or

+VmaAllocationInfo::offset changes. You must query them again using

+vmaGetAllocationInfo() if you need them.

+

+If an allocation has been moved, data in memory is copied to new place

+automatically, but if it was bound to a buffer or an image, you must destroy

+that object yourself, create new one and bind it to the new memory pointed by

+the allocation. You must use `vkDestroyBuffer()`, `vkDestroyImage()`,

+`vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(),

+vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage()! Example:

+

+\code

+VkDevice device = ...;

+VmaAllocator allocator = ...;

+std::vector<VkBuffer> buffers = ...;

+std::vector<VmaAllocation> allocations = ...;

+

+std::vector<VkBool32> allocationsChanged(allocations.size());

+vmaDefragment(allocator, allocations.data(), allocations.size(), allocationsChanged.data(), nullptr, nullptr);

+

+for(size_t i = 0; i < allocations.size(); ++i)

+{

+    if(allocationsChanged[i])

+    {

+        VmaAllocationInfo allocInfo;

+        vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);

+

+        vkDestroyBuffer(device, buffers[i], nullptr);

+

+        VkBufferCreateInfo bufferInfo = ...;

+        vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);

+            

+        // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.

+            

+        vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);

+    }

+}

+\endcode

+

+Note: Please don't expect memory to be fully compacted after this call.

+Algorithms inside are based on some heuristics that try to maximize number of Vulkan

+memory blocks to make totally empty to release them, as well as to maximimze continuous

+empty space inside remaining blocks, while minimizing the number and size of data that

+needs to be moved. Some fragmentation still remains after this call. This is normal.

+

+Warning: This function is not 100% correct according to Vulkan specification. Use it

+at your own risk. That's because Vulkan doesn't guarantee that memory

+requirements (size and alignment) for a new buffer or image are consistent. They

+may be different even for subsequent calls with the same parameters. It really

+does happen on some platforms, especially with images.

+

+Warning: This function may be time-consuming, so you shouldn't call it too often

+(like every frame or after every resource creation/destruction).

+You can call it on special occasions (like when reloading a game level or

+when you just destroyed a lot of objects).

+*/

+VkResult vmaDefragment(

+    VmaAllocator allocator,

+    VmaAllocation* pAllocations,

+    size_t allocationCount,

+    VkBool32* pAllocationsChanged,

+    const VmaDefragmentationInfo *pDefragmentationInfo,

+    VmaDefragmentationStats* pDefragmentationStats);

+

+/** \brief Binds buffer to allocation.

+

+Binds specified buffer to region of memory represented by specified allocation.

+Gets `VkDeviceMemory` handle and offset from the allocation.

+If you want to create a buffer, allocate memory for it and bind them together separately,

+you should use this function for binding instead of standard `vkBindBufferMemory()`,

+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple

+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously

+(which is illegal in Vulkan).

+

+It is recommended to use function vmaCreateBuffer() instead of this one.

+*/

+VkResult vmaBindBufferMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    VkBuffer buffer);

+

+/** \brief Binds image to allocation.

+

+Binds specified image to region of memory represented by specified allocation.

+Gets `VkDeviceMemory` handle and offset from the allocation.

+If you want to create an image, allocate memory for it and bind them together separately,

+you should use this function for binding instead of standard `vkBindImageMemory()`,

+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple

+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously

+(which is illegal in Vulkan).

+

+It is recommended to use function vmaCreateImage() instead of this one.

+*/

+VkResult vmaBindImageMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    VkImage image);

+

+/**

+@param[out] pBuffer Buffer that was created.

+@param[out] pAllocation Allocation that was created.

+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().

+

+This function automatically:

+

+-# Creates buffer.

+-# Allocates appropriate memory for it.

+-# Binds the buffer with the memory.

+

+If any of these operations fail, buffer and allocation are not created,

+returned value is negative error code, *pBuffer and *pAllocation are null.

+

+If the function succeeded, you must destroy both buffer and allocation when you

+no longer need them using either convenience function vmaDestroyBuffer() or

+separately, using `vkDestroyBuffer()` and vmaFreeMemory().

+

+If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,

+VK_KHR_dedicated_allocation extension is used internally to query driver whether

+it requires or prefers the new buffer to have dedicated allocation. If yes,

+and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null

+and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated

+allocation for this buffer, just like when using

+VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.

+*/

+VkResult vmaCreateBuffer(

+    VmaAllocator allocator,

+    const VkBufferCreateInfo* pBufferCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    VkBuffer* pBuffer,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo);

+

+/** \brief Destroys Vulkan buffer and frees allocated memory.

+

+This is just a convenience function equivalent to:

+

+\code

+vkDestroyBuffer(device, buffer, allocationCallbacks);

+vmaFreeMemory(allocator, allocation);

+\endcode

+

+It it safe to pass null as buffer and/or allocation.

+*/

+void vmaDestroyBuffer(

+    VmaAllocator allocator,

+    VkBuffer buffer,

+    VmaAllocation allocation);

+

+/// Function similar to vmaCreateBuffer().

+VkResult vmaCreateImage(

+    VmaAllocator allocator,

+    const VkImageCreateInfo* pImageCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    VkImage* pImage,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo);

+

+/** \brief Destroys Vulkan image and frees allocated memory.

+

+This is just a convenience function equivalent to:

+

+\code

+vkDestroyImage(device, image, allocationCallbacks);

+vmaFreeMemory(allocator, allocation);

+\endcode

+

+It it safe to pass null as image and/or allocation.

+*/

+void vmaDestroyImage(

+    VmaAllocator allocator,

+    VkImage image,

+    VmaAllocation allocation);

+

+#ifdef __cplusplus

+}

+#endif

+

+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H

+

+// For Visual Studio IntelliSense.

+#ifdef __INTELLISENSE__

+#define VMA_IMPLEMENTATION

+#endif

+

+#ifdef VMA_IMPLEMENTATION

+#undef VMA_IMPLEMENTATION

+

+#include <cstdint>

+#include <cstdlib>

+#include <cstring>

+

+/*******************************************************************************

+CONFIGURATION SECTION

+

+Define some of these macros before each #include of this header or change them

+here if you need other then default behavior depending on your environment.

+*/

+

+/*

+Define this macro to 1 to make the library fetch pointers to Vulkan functions

+internally, like:

+

+    vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;

+

+Define to 0 if you are going to provide you own pointers to Vulkan functions via

+VmaAllocatorCreateInfo::pVulkanFunctions.

+*/

+#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)

+#define VMA_STATIC_VULKAN_FUNCTIONS 1

+#endif

+

+// Define this macro to 1 to make the library use STL containers instead of its own implementation.

+//#define VMA_USE_STL_CONTAINERS 1

+

+/* Set this macro to 1 to make the library including and using STL containers:

+std::pair, std::vector, std::list, std::unordered_map.

+

+Set it to 0 or undefined to make the library using its own implementation of

+the containers.

+*/

+#if VMA_USE_STL_CONTAINERS

+   #define VMA_USE_STL_VECTOR 1

+   #define VMA_USE_STL_UNORDERED_MAP 1

+   #define VMA_USE_STL_LIST 1

+#endif

+

+#if VMA_USE_STL_VECTOR

+   #include <vector>

+#endif

+

+#if VMA_USE_STL_UNORDERED_MAP

+   #include <unordered_map>

+#endif

+

+#if VMA_USE_STL_LIST

+   #include <list>

+#endif

+

+/*

+Following headers are used in this CONFIGURATION section only, so feel free to

+remove them if not needed.

+*/

+#include <cassert> // for assert

+#include <algorithm> // for min, max

+#include <mutex> // for std::mutex

+#include <atomic> // for std::atomic

+

+#if !defined(_WIN32) && !defined(__APPLE__)

+    #include <malloc.h> // for aligned_alloc()

+#endif

+

+#ifndef VMA_NULL

+   // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.

+   #define VMA_NULL   nullptr

+#endif

+

+#if defined(__APPLE__) || defined(__ANDROID__)

+#include <cstdlib>

+void *aligned_alloc(size_t alignment, size_t size)

+{

+    // alignment must be >= sizeof(void*)

+    if(alignment < sizeof(void*))

+    {

+        alignment = sizeof(void*);

+    }

+

+    void *pointer;

+    if(posix_memalign(&pointer, alignment, size) == 0)

+        return pointer;

+    return VMA_NULL;

+}

+#endif

+

+// Normal assert to check for programmer's errors, especially in Debug configuration.

+#ifndef VMA_ASSERT

+   #ifdef _DEBUG

+       #define VMA_ASSERT(expr)         assert(expr)

+   #else

+       #define VMA_ASSERT(expr)

+   #endif

+#endif

+

+// Assert that will be called very often, like inside data structures e.g. operator[].

+// Making it non-empty can make program slow.

+#ifndef VMA_HEAVY_ASSERT

+   #ifdef _DEBUG

+       #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)

+   #else

+       #define VMA_HEAVY_ASSERT(expr)

+   #endif

+#endif

+

+#ifndef VMA_ALIGN_OF

+   #define VMA_ALIGN_OF(type)       (__alignof(type))

+#endif

+

+#ifndef VMA_SYSTEM_ALIGNED_MALLOC

+   #if defined(_WIN32)

+       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (_aligned_malloc((size), (alignment)))

+   #else

+       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (aligned_alloc((alignment), (size) ))

+   #endif

+#endif

+

+#ifndef VMA_SYSTEM_FREE

+   #if defined(_WIN32)

+       #define VMA_SYSTEM_FREE(ptr)   _aligned_free(ptr)

+   #else

+       #define VMA_SYSTEM_FREE(ptr)   free(ptr)

+   #endif

+#endif

+

+#ifndef VMA_MIN

+   #define VMA_MIN(v1, v2)    (std::min((v1), (v2)))

+#endif

+

+#ifndef VMA_MAX

+   #define VMA_MAX(v1, v2)    (std::max((v1), (v2)))

+#endif

+

+#ifndef VMA_SWAP

+   #define VMA_SWAP(v1, v2)   std::swap((v1), (v2))

+#endif

+

+#ifndef VMA_SORT

+   #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)

+#endif

+

+#ifndef VMA_DEBUG_LOG

+   #define VMA_DEBUG_LOG(format, ...)

+   /*

+   #define VMA_DEBUG_LOG(format, ...) do { \

+       printf(format, __VA_ARGS__); \

+       printf("\n"); \

+   } while(false)

+   */

+#endif

+

+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.

+#if VMA_STATS_STRING_ENABLED

+   static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)

+   {

+       snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));

+   }

+   static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)

+   {

+       snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));

+   }

+   static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)

+   {

+       snprintf(outStr, strLen, "%p", ptr);

+   }

+#endif

+

+#ifndef VMA_MUTEX

+   class VmaMutex

+   {

+   public:

+       VmaMutex() { }

+       ~VmaMutex() { }

+       void Lock() { m_Mutex.lock(); }

+       void Unlock() { m_Mutex.unlock(); }

+   private:

+       std::mutex m_Mutex;

+   };

+   #define VMA_MUTEX VmaMutex

+#endif

+

+/*

+If providing your own implementation, you need to implement a subset of std::atomic:

+

+- Constructor(uint32_t desired)

+- uint32_t load() const

+- void store(uint32_t desired)

+- bool compare_exchange_weak(uint32_t& expected, uint32_t desired)

+*/

+#ifndef VMA_ATOMIC_UINT32

+   #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>

+#endif

+

+#ifndef VMA_BEST_FIT

+   /**

+   Main parameter for function assessing how good is a free suballocation for a new

+   allocation request.

+

+   - Set to 1 to use Best-Fit algorithm - prefer smaller blocks, as close to the

+     size of requested allocations as possible.

+   - Set to 0 to use Worst-Fit algorithm - prefer larger blocks, as large as

+     possible.

+

+   Experiments in special testing environment showed that Best-Fit algorithm is

+   better.

+   */

+   #define VMA_BEST_FIT (1)

+#endif

+

+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY

+   /**

+   Every allocation will have its own memory block.

+   Define to 1 for debugging purposes only.

+   */

+   #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)

+#endif

+

+#ifndef VMA_DEBUG_ALIGNMENT

+   /**

+   Minimum alignment of all suballocations, in bytes.

+   Set to more than 1 for debugging purposes only. Must be power of two.

+   */

+   #define VMA_DEBUG_ALIGNMENT (1)

+#endif

+

+#ifndef VMA_DEBUG_MARGIN

+   /**

+   Minimum margin between suballocations, in bytes.

+   Set nonzero for debugging purposes only.

+   */

+   #define VMA_DEBUG_MARGIN (0)

+#endif

+

+#ifndef VMA_DEBUG_GLOBAL_MUTEX

+   /**

+   Set this to 1 for debugging purposes only, to enable single mutex protecting all

+   entry calls to the library. Can be useful for debugging multithreading issues.

+   */

+   #define VMA_DEBUG_GLOBAL_MUTEX (0)

+#endif

+

+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY

+   /**

+   Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.

+   Set to more than 1 for debugging purposes only. Must be power of two.

+   */

+   #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)

+#endif

+

+#ifndef VMA_SMALL_HEAP_MAX_SIZE

+   /// Maximum size of a memory heap in Vulkan to consider it "small".

+   #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)

+#endif

+

+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE

+   /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.

+   #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)

+#endif

+

+static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;

+

+/*******************************************************************************

+END OF CONFIGURATION

+*/

+

+static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {

+    VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };

+

+// Returns number of bits set to 1 in (v).

+static inline uint32_t VmaCountBitsSet(uint32_t v)

+{

+	uint32_t c = v - ((v >> 1) & 0x55555555);

+	c = ((c >>  2) & 0x33333333) + (c & 0x33333333);

+	c = ((c >>  4) + c) & 0x0F0F0F0F;

+	c = ((c >>  8) + c) & 0x00FF00FF;

+	c = ((c >> 16) + c) & 0x0000FFFF;

+	return c;

+}

+

+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.

+// Use types like uint32_t, uint64_t as T.

+template <typename T>

+static inline T VmaAlignUp(T val, T align)

+{

+	return (val + align - 1) / align * align;

+}

+

+// Division with mathematical rounding to nearest number.

+template <typename T>

+inline T VmaRoundDiv(T x, T y)

+{

+	return (x + (y / (T)2)) / y;

+}

+

+#ifndef VMA_SORT

+

+template<typename Iterator, typename Compare>

+Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)

+{

+    Iterator centerValue = end; --centerValue;

+    Iterator insertIndex = beg;

+    for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)

+    {

+        if(cmp(*memTypeIndex, *centerValue))

+        {

+            if(insertIndex != memTypeIndex)

+            {

+                VMA_SWAP(*memTypeIndex, *insertIndex);

+            }

+            ++insertIndex;

+        }

+    }

+    if(insertIndex != centerValue)

+    {

+        VMA_SWAP(*insertIndex, *centerValue);

+    }

+    return insertIndex;

+}

+

+template<typename Iterator, typename Compare>

+void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)

+{

+    if(beg < end)

+    {

+        Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);

+        VmaQuickSort<Iterator, Compare>(beg, it, cmp);

+        VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);

+    }

+}

+

+#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)

+

+#endif // #ifndef VMA_SORT

+

+/*

+Returns true if two memory blocks occupy overlapping pages.

+ResourceA must be in less memory offset than ResourceB.

+

+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"

+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".

+*/

+static inline bool VmaBlocksOnSamePage(

+    VkDeviceSize resourceAOffset,

+    VkDeviceSize resourceASize,

+    VkDeviceSize resourceBOffset,

+    VkDeviceSize pageSize)

+{

+    VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);

+    VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;

+    VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);

+    VkDeviceSize resourceBStart = resourceBOffset;

+    VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);

+    return resourceAEndPage == resourceBStartPage;

+}

+

+enum VmaSuballocationType

+{

+    VMA_SUBALLOCATION_TYPE_FREE = 0,

+    VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,

+    VMA_SUBALLOCATION_TYPE_BUFFER = 2,

+    VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,

+    VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,

+    VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,

+    VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF

+};

+

+/*

+Returns true if given suballocation types could conflict and must respect

+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer

+or linear image and another one is optimal image. If type is unknown, behave

+conservatively.

+*/

+static inline bool VmaIsBufferImageGranularityConflict(

+    VmaSuballocationType suballocType1,

+    VmaSuballocationType suballocType2)

+{

+    if(suballocType1 > suballocType2)

+    {

+        VMA_SWAP(suballocType1, suballocType2);

+    }

+    

+    switch(suballocType1)

+    {

+    case VMA_SUBALLOCATION_TYPE_FREE:

+        return false;

+    case VMA_SUBALLOCATION_TYPE_UNKNOWN:

+        return true;

+    case VMA_SUBALLOCATION_TYPE_BUFFER:

+        return

+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||

+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;

+    case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:

+        return

+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||

+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||

+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;

+    case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:

+        return

+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;

+    case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:

+        return false;

+    default:

+        VMA_ASSERT(0);

+        return true;

+    }

+}

+

+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).

+struct VmaMutexLock

+{

+public:

+    VmaMutexLock(VMA_MUTEX& mutex, bool useMutex) :

+        m_pMutex(useMutex ? &mutex : VMA_NULL)

+    {

+        if(m_pMutex)

+        {

+            m_pMutex->Lock();

+        }

+    }

+    

+    ~VmaMutexLock()

+    {

+        if(m_pMutex)

+        {

+            m_pMutex->Unlock();

+        }

+    }

+

+private:

+    VMA_MUTEX* m_pMutex;

+};

+

+#if VMA_DEBUG_GLOBAL_MUTEX

+    static VMA_MUTEX gDebugGlobalMutex;

+    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);

+#else

+    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK

+#endif

+

+// Minimum size of a free suballocation to register it in the free suballocation collection.

+static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;

+

+/*

+Performs binary search and returns iterator to first element that is greater or

+equal to (key), according to comparison (cmp).

+

+Cmp should return true if first argument is less than second argument.

+

+Returned value is the found element, if present in the collection or place where

+new element with value (key) should be inserted.

+*/

+template <typename IterT, typename KeyT, typename CmpT>

+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpT cmp)

+{

+   size_t down = 0, up = (end - beg);

+   while(down < up)

+   {

+      const size_t mid = (down + up) / 2;

+      if(cmp(*(beg+mid), key))

+      {

+         down = mid + 1;

+      }

+      else

+      {

+         up = mid;

+      }

+   }

+   return beg + down;

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// Memory allocation

+

+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)

+{

+    if((pAllocationCallbacks != VMA_NULL) &&

+        (pAllocationCallbacks->pfnAllocation != VMA_NULL))

+    {

+        return (*pAllocationCallbacks->pfnAllocation)(

+            pAllocationCallbacks->pUserData,

+            size,

+            alignment,

+            VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);

+    }

+    else

+    {

+        return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);

+    }

+}

+

+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)

+{

+    if((pAllocationCallbacks != VMA_NULL) &&

+        (pAllocationCallbacks->pfnFree != VMA_NULL))

+    {

+        (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);

+    }

+    else

+    {

+        VMA_SYSTEM_FREE(ptr);

+    }

+}

+

+template<typename T>

+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)

+{

+    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));

+}

+

+template<typename T>

+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)

+{

+    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));

+}

+

+#define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)

+

+#define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)

+

+template<typename T>

+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)

+{

+    ptr->~T();

+    VmaFree(pAllocationCallbacks, ptr);

+}

+

+template<typename T>

+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)

+{

+    if(ptr != VMA_NULL)

+    {

+        for(size_t i = count; i--; )

+        {

+            ptr[i].~T();

+        }

+        VmaFree(pAllocationCallbacks, ptr);

+    }

+}

+

+// STL-compatible allocator.

+template<typename T>

+class VmaStlAllocator

+{

+public:

+    const VkAllocationCallbacks* const m_pCallbacks;

+    typedef T value_type;

+    

+    VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }

+    template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }

+

+    T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }

+    void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }

+

+    template<typename U>

+    bool operator==(const VmaStlAllocator<U>& rhs) const

+    {

+        return m_pCallbacks == rhs.m_pCallbacks;

+    }

+    template<typename U>

+    bool operator!=(const VmaStlAllocator<U>& rhs) const

+    {

+        return m_pCallbacks != rhs.m_pCallbacks;

+    }

+

+    VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;

+};

+

+#if VMA_USE_STL_VECTOR

+

+#define VmaVector std::vector

+

+template<typename T, typename allocatorT>

+static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)

+{

+    vec.insert(vec.begin() + index, item);

+}

+

+template<typename T, typename allocatorT>

+static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)

+{

+    vec.erase(vec.begin() + index);

+}

+

+#else // #if VMA_USE_STL_VECTOR

+

+/* Class with interface compatible with subset of std::vector.

+T must be POD because constructors and destructors are not called and memcpy is

+used for these objects. */

+template<typename T, typename AllocatorT>

+class VmaVector

+{

+public:

+    typedef T value_type;

+

+    VmaVector(const AllocatorT& allocator) :

+        m_Allocator(allocator),

+        m_pArray(VMA_NULL),

+        m_Count(0),

+        m_Capacity(0)

+    {

+    }

+

+    VmaVector(size_t count, const AllocatorT& allocator) :

+        m_Allocator(allocator),

+        m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),

+        m_Count(count),

+        m_Capacity(count)

+    {

+    }

+    

+    VmaVector(const VmaVector<T, AllocatorT>& src) :

+        m_Allocator(src.m_Allocator),

+        m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),

+        m_Count(src.m_Count),

+        m_Capacity(src.m_Count)

+    {

+        if(m_Count != 0)

+        {

+            memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));

+        }

+    }

+    

+    ~VmaVector()

+    {

+        VmaFree(m_Allocator.m_pCallbacks, m_pArray);

+    }

+

+    VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)

+    {

+        if(&rhs != this)

+        {

+            resize(rhs.m_Count);

+            if(m_Count != 0)

+            {

+                memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));

+            }

+        }

+        return *this;

+    }

+    

+    bool empty() const { return m_Count == 0; }

+    size_t size() const { return m_Count; }

+    T* data() { return m_pArray; }

+    const T* data() const { return m_pArray; }

+    

+    T& operator[](size_t index)

+    {

+        VMA_HEAVY_ASSERT(index < m_Count);

+        return m_pArray[index];

+    }

+    const T& operator[](size_t index) const

+    {

+        VMA_HEAVY_ASSERT(index < m_Count);

+        return m_pArray[index];

+    }

+

+    T& front()

+    {

+        VMA_HEAVY_ASSERT(m_Count > 0);

+        return m_pArray[0];

+    }

+    const T& front() const

+    {

+        VMA_HEAVY_ASSERT(m_Count > 0);

+        return m_pArray[0];

+    }

+    T& back()

+    {

+        VMA_HEAVY_ASSERT(m_Count > 0);

+        return m_pArray[m_Count - 1];

+    }

+    const T& back() const

+    {

+        VMA_HEAVY_ASSERT(m_Count > 0);

+        return m_pArray[m_Count - 1];

+    }

+

+    void reserve(size_t newCapacity, bool freeMemory = false)

+    {

+        newCapacity = VMA_MAX(newCapacity, m_Count);

+        

+        if((newCapacity < m_Capacity) && !freeMemory)

+        {

+            newCapacity = m_Capacity;

+        }

+        

+        if(newCapacity != m_Capacity)

+        {

+            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;

+            if(m_Count != 0)

+            {

+                memcpy(newArray, m_pArray, m_Count * sizeof(T));

+            }

+            VmaFree(m_Allocator.m_pCallbacks, m_pArray);

+            m_Capacity = newCapacity;

+            m_pArray = newArray;

+        }

+    }

+

+    void resize(size_t newCount, bool freeMemory = false)

+    {

+        size_t newCapacity = m_Capacity;

+        if(newCount > m_Capacity)

+        {

+            newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));

+        }

+        else if(freeMemory)

+        {

+            newCapacity = newCount;

+        }

+

+        if(newCapacity != m_Capacity)

+        {

+            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;

+            const size_t elementsToCopy = VMA_MIN(m_Count, newCount);

+            if(elementsToCopy != 0)

+            {

+                memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));

+            }

+            VmaFree(m_Allocator.m_pCallbacks, m_pArray);

+            m_Capacity = newCapacity;

+            m_pArray = newArray;

+        }

+

+        m_Count = newCount;

+    }

+

+    void clear(bool freeMemory = false)

+    {

+        resize(0, freeMemory);

+    }

+

+    void insert(size_t index, const T& src)

+    {

+        VMA_HEAVY_ASSERT(index <= m_Count);

+        const size_t oldCount = size();

+        resize(oldCount + 1);

+        if(index < oldCount)

+        {

+            memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));

+        }

+        m_pArray[index] = src;

+    }

+

+    void remove(size_t index)

+    {

+        VMA_HEAVY_ASSERT(index < m_Count);

+        const size_t oldCount = size();

+        if(index < oldCount - 1)

+        {

+            memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));

+        }

+        resize(oldCount - 1);

+    }

+

+    void push_back(const T& src)

+    {

+        const size_t newIndex = size();

+        resize(newIndex + 1);

+        m_pArray[newIndex] = src;

+    }

+

+    void pop_back()

+    {

+        VMA_HEAVY_ASSERT(m_Count > 0);

+        resize(size() - 1);

+    }

+

+    void push_front(const T& src)

+    {

+        insert(0, src);

+    }

+

+    void pop_front()

+    {

+        VMA_HEAVY_ASSERT(m_Count > 0);

+        remove(0);

+    }

+

+    typedef T* iterator;

+

+    iterator begin() { return m_pArray; }

+    iterator end() { return m_pArray + m_Count; }

+

+private:

+    AllocatorT m_Allocator;

+    T* m_pArray;

+    size_t m_Count;

+    size_t m_Capacity;

+};

+

+template<typename T, typename allocatorT>

+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)

+{

+    vec.insert(index, item);

+}

+

+template<typename T, typename allocatorT>

+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)

+{

+    vec.remove(index);

+}

+

+#endif // #if VMA_USE_STL_VECTOR

+

+template<typename CmpLess, typename VectorT>

+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)

+{

+    const size_t indexToInsert = VmaBinaryFindFirstNotLess(

+        vector.data(),

+        vector.data() + vector.size(),

+        value,

+        CmpLess()) - vector.data();

+    VmaVectorInsert(vector, indexToInsert, value);

+    return indexToInsert;

+}

+

+template<typename CmpLess, typename VectorT>

+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)

+{

+    CmpLess comparator;

+    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(

+        vector.begin(),

+        vector.end(),

+        value,

+        comparator);

+    if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))

+    {

+        size_t indexToRemove = it - vector.begin();

+        VmaVectorRemove(vector, indexToRemove);

+        return true;

+    }

+    return false;

+}

+

+template<typename CmpLess, typename VectorT>

+size_t VmaVectorFindSorted(const VectorT& vector, const typename VectorT::value_type& value)

+{

+    CmpLess comparator;

+    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(

+        vector.data(),

+        vector.data() + vector.size(),

+        value,

+        comparator);

+    if(it != vector.size() && !comparator(*it, value) && !comparator(value, *it))

+    {

+        return it - vector.begin();

+    }

+    else

+    {

+        return vector.size();

+    }

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// class VmaPoolAllocator

+

+/*

+Allocator for objects of type T using a list of arrays (pools) to speed up

+allocation. Number of elements that can be allocated is not bounded because

+allocator can create multiple blocks.

+*/

+template<typename T>

+class VmaPoolAllocator

+{

+public:

+    VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock);

+    ~VmaPoolAllocator();

+    void Clear();

+    T* Alloc();

+    void Free(T* ptr);

+

+private:

+    union Item

+    {

+        uint32_t NextFreeIndex;

+        T Value;

+    };

+

+    struct ItemBlock

+    {

+        Item* pItems;

+        uint32_t FirstFreeIndex;

+    };

+    

+    const VkAllocationCallbacks* m_pAllocationCallbacks;

+    size_t m_ItemsPerBlock;

+    VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;

+

+    ItemBlock& CreateNewBlock();

+};

+

+template<typename T>

+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) :

+    m_pAllocationCallbacks(pAllocationCallbacks),

+    m_ItemsPerBlock(itemsPerBlock),

+    m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))

+{

+    VMA_ASSERT(itemsPerBlock > 0);

+}

+

+template<typename T>

+VmaPoolAllocator<T>::~VmaPoolAllocator()

+{

+    Clear();

+}

+

+template<typename T>

+void VmaPoolAllocator<T>::Clear()

+{

+    for(size_t i = m_ItemBlocks.size(); i--; )

+        vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock);

+    m_ItemBlocks.clear();

+}

+

+template<typename T>

+T* VmaPoolAllocator<T>::Alloc()

+{

+    for(size_t i = m_ItemBlocks.size(); i--; )

+    {

+        ItemBlock& block = m_ItemBlocks[i];

+        // This block has some free items: Use first one.

+        if(block.FirstFreeIndex != UINT32_MAX)

+        {

+            Item* const pItem = &block.pItems[block.FirstFreeIndex];

+            block.FirstFreeIndex = pItem->NextFreeIndex;

+            return &pItem->Value;

+        }

+    }

+

+    // No block has free item: Create new one and use it.

+    ItemBlock& newBlock = CreateNewBlock();

+    Item* const pItem = &newBlock.pItems[0];

+    newBlock.FirstFreeIndex = pItem->NextFreeIndex;

+    return &pItem->Value;

+}

+

+template<typename T>

+void VmaPoolAllocator<T>::Free(T* ptr)

+{

+    // Search all memory blocks to find ptr.

+    for(size_t i = 0; i < m_ItemBlocks.size(); ++i)

+    {

+        ItemBlock& block = m_ItemBlocks[i];

+        

+        // Casting to union.

+        Item* pItemPtr;

+        memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));

+        

+        // Check if pItemPtr is in address range of this block.

+        if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock))

+        {

+            const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);

+            pItemPtr->NextFreeIndex = block.FirstFreeIndex;

+            block.FirstFreeIndex = index;

+            return;

+        }

+    }

+    VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");

+}

+

+template<typename T>

+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()

+{

+    ItemBlock newBlock = {

+        vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 };

+

+    m_ItemBlocks.push_back(newBlock);

+

+    // Setup singly-linked list of all free items in this block.

+    for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i)

+        newBlock.pItems[i].NextFreeIndex = i + 1;

+    newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX;

+    return m_ItemBlocks.back();

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// class VmaRawList, VmaList

+

+#if VMA_USE_STL_LIST

+

+#define VmaList std::list

+

+#else // #if VMA_USE_STL_LIST

+

+template<typename T>

+struct VmaListItem

+{

+    VmaListItem* pPrev;

+    VmaListItem* pNext;

+    T Value;

+};

+

+// Doubly linked list.

+template<typename T>

+class VmaRawList

+{

+public:

+    typedef VmaListItem<T> ItemType;

+

+    VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);

+    ~VmaRawList();

+    void Clear();

+

+    size_t GetCount() const { return m_Count; }

+    bool IsEmpty() const { return m_Count == 0; }

+

+    ItemType* Front() { return m_pFront; }

+    const ItemType* Front() const { return m_pFront; }

+    ItemType* Back() { return m_pBack; }

+    const ItemType* Back() const { return m_pBack; }

+

+    ItemType* PushBack();

+    ItemType* PushFront();

+    ItemType* PushBack(const T& value);

+    ItemType* PushFront(const T& value);

+    void PopBack();

+    void PopFront();

+    

+    // Item can be null - it means PushBack.

+    ItemType* InsertBefore(ItemType* pItem);

+    // Item can be null - it means PushFront.

+    ItemType* InsertAfter(ItemType* pItem);

+

+    ItemType* InsertBefore(ItemType* pItem, const T& value);

+    ItemType* InsertAfter(ItemType* pItem, const T& value);

+

+    void Remove(ItemType* pItem);

+

+private:

+    const VkAllocationCallbacks* const m_pAllocationCallbacks;

+    VmaPoolAllocator<ItemType> m_ItemAllocator;

+    ItemType* m_pFront;

+    ItemType* m_pBack;

+    size_t m_Count;

+

+    // Declared not defined, to block copy constructor and assignment operator.

+    VmaRawList(const VmaRawList<T>& src);

+    VmaRawList<T>& operator=(const VmaRawList<T>& rhs);

+};

+

+template<typename T>

+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :

+    m_pAllocationCallbacks(pAllocationCallbacks),

+    m_ItemAllocator(pAllocationCallbacks, 128),

+    m_pFront(VMA_NULL),

+    m_pBack(VMA_NULL),

+    m_Count(0)

+{

+}

+

+template<typename T>

+VmaRawList<T>::~VmaRawList()

+{

+    // Intentionally not calling Clear, because that would be unnecessary

+    // computations to return all items to m_ItemAllocator as free.

+}

+

+template<typename T>

+void VmaRawList<T>::Clear()

+{

+    if(IsEmpty() == false)

+    {

+        ItemType* pItem = m_pBack;

+        while(pItem != VMA_NULL)

+        {

+            ItemType* const pPrevItem = pItem->pPrev;

+            m_ItemAllocator.Free(pItem);

+            pItem = pPrevItem;

+        }

+        m_pFront = VMA_NULL;

+        m_pBack = VMA_NULL;

+        m_Count = 0;

+    }

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::PushBack()

+{

+    ItemType* const pNewItem = m_ItemAllocator.Alloc();

+    pNewItem->pNext = VMA_NULL;

+    if(IsEmpty())

+    {

+        pNewItem->pPrev = VMA_NULL;

+        m_pFront = pNewItem;

+        m_pBack = pNewItem;

+        m_Count = 1;

+    }

+    else

+    {

+        pNewItem->pPrev = m_pBack;

+        m_pBack->pNext = pNewItem;

+        m_pBack = pNewItem;

+        ++m_Count;

+    }

+    return pNewItem;

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::PushFront()

+{

+    ItemType* const pNewItem = m_ItemAllocator.Alloc();

+    pNewItem->pPrev = VMA_NULL;

+    if(IsEmpty())

+    {

+        pNewItem->pNext = VMA_NULL;

+        m_pFront = pNewItem;

+        m_pBack = pNewItem;

+        m_Count = 1;

+    }

+    else

+    {

+        pNewItem->pNext = m_pFront;

+        m_pFront->pPrev = pNewItem;

+        m_pFront = pNewItem;

+        ++m_Count;

+    }

+    return pNewItem;

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)

+{

+    ItemType* const pNewItem = PushBack();

+    pNewItem->Value = value;

+    return pNewItem;

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)

+{

+    ItemType* const pNewItem = PushFront();

+    pNewItem->Value = value;

+    return pNewItem;

+}

+

+template<typename T>

+void VmaRawList<T>::PopBack()

+{

+    VMA_HEAVY_ASSERT(m_Count > 0);

+    ItemType* const pBackItem = m_pBack;

+    ItemType* const pPrevItem = pBackItem->pPrev;

+    if(pPrevItem != VMA_NULL)

+    {

+        pPrevItem->pNext = VMA_NULL;

+    }

+    m_pBack = pPrevItem;

+    m_ItemAllocator.Free(pBackItem);

+    --m_Count;

+}

+

+template<typename T>

+void VmaRawList<T>::PopFront()

+{

+    VMA_HEAVY_ASSERT(m_Count > 0);

+    ItemType* const pFrontItem = m_pFront;

+    ItemType* const pNextItem = pFrontItem->pNext;

+    if(pNextItem != VMA_NULL)

+    {

+        pNextItem->pPrev = VMA_NULL;

+    }

+    m_pFront = pNextItem;

+    m_ItemAllocator.Free(pFrontItem);

+    --m_Count;

+}

+

+template<typename T>

+void VmaRawList<T>::Remove(ItemType* pItem)

+{

+    VMA_HEAVY_ASSERT(pItem != VMA_NULL);

+    VMA_HEAVY_ASSERT(m_Count > 0);

+

+    if(pItem->pPrev != VMA_NULL)

+    {

+        pItem->pPrev->pNext = pItem->pNext;

+    }

+    else

+    {

+        VMA_HEAVY_ASSERT(m_pFront == pItem);

+        m_pFront = pItem->pNext;

+    }

+

+    if(pItem->pNext != VMA_NULL)

+    {

+        pItem->pNext->pPrev = pItem->pPrev;

+    }

+    else

+    {

+        VMA_HEAVY_ASSERT(m_pBack == pItem);

+        m_pBack = pItem->pPrev;

+    }

+

+    m_ItemAllocator.Free(pItem);

+    --m_Count;

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)

+{

+    if(pItem != VMA_NULL)

+    {

+        ItemType* const prevItem = pItem->pPrev;

+        ItemType* const newItem = m_ItemAllocator.Alloc();

+        newItem->pPrev = prevItem;

+        newItem->pNext = pItem;

+        pItem->pPrev = newItem;

+        if(prevItem != VMA_NULL)

+        {

+            prevItem->pNext = newItem;

+        }

+        else

+        {

+            VMA_HEAVY_ASSERT(m_pFront == pItem);

+            m_pFront = newItem;

+        }

+        ++m_Count;

+        return newItem;

+    }

+    else

+        return PushBack();

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)

+{

+    if(pItem != VMA_NULL)

+    {

+        ItemType* const nextItem = pItem->pNext;

+        ItemType* const newItem = m_ItemAllocator.Alloc();

+        newItem->pNext = nextItem;

+        newItem->pPrev = pItem;

+        pItem->pNext = newItem;

+        if(nextItem != VMA_NULL)

+        {

+            nextItem->pPrev = newItem;

+        }

+        else

+        {

+            VMA_HEAVY_ASSERT(m_pBack == pItem);

+            m_pBack = newItem;

+        }

+        ++m_Count;

+        return newItem;

+    }

+    else

+        return PushFront();

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)

+{

+    ItemType* const newItem = InsertBefore(pItem);

+    newItem->Value = value;

+    return newItem;

+}

+

+template<typename T>

+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)

+{

+    ItemType* const newItem = InsertAfter(pItem);

+    newItem->Value = value;

+    return newItem;

+}

+

+template<typename T, typename AllocatorT>

+class VmaList

+{

+public:

+    class iterator

+    {

+    public:

+        iterator() :

+            m_pList(VMA_NULL),

+            m_pItem(VMA_NULL)

+        {

+        }

+

+        T& operator*() const

+        {

+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

+            return m_pItem->Value;

+        }

+        T* operator->() const

+        {

+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

+            return &m_pItem->Value;

+        }

+

+        iterator& operator++()

+        {

+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

+            m_pItem = m_pItem->pNext;

+            return *this;

+        }

+        iterator& operator--()

+        {

+            if(m_pItem != VMA_NULL)

+            {

+                m_pItem = m_pItem->pPrev;

+            }

+            else

+            {

+                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());

+                m_pItem = m_pList->Back();

+            }

+            return *this;

+        }

+

+        iterator operator++(int)

+        {

+            iterator result = *this;

+            ++*this;

+            return result;

+        }

+        iterator operator--(int)

+        {

+            iterator result = *this;

+            --*this;

+            return result;

+        }

+

+        bool operator==(const iterator& rhs) const

+        {

+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

+            return m_pItem == rhs.m_pItem;

+        }

+        bool operator!=(const iterator& rhs) const

+        {

+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

+            return m_pItem != rhs.m_pItem;

+        }

+        

+    private:

+        VmaRawList<T>* m_pList;

+        VmaListItem<T>* m_pItem;

+

+        iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :

+            m_pList(pList),

+            m_pItem(pItem)

+        {

+        }

+

+        friend class VmaList<T, AllocatorT>;

+    };

+

+    class const_iterator

+    {

+    public:

+        const_iterator() :

+            m_pList(VMA_NULL),

+            m_pItem(VMA_NULL)

+        {

+        }

+

+        const_iterator(const iterator& src) :

+            m_pList(src.m_pList),

+            m_pItem(src.m_pItem)

+        {

+        }

+        

+        const T& operator*() const

+        {

+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

+            return m_pItem->Value;

+        }

+        const T* operator->() const

+        {

+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

+            return &m_pItem->Value;

+        }

+

+        const_iterator& operator++()

+        {

+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

+            m_pItem = m_pItem->pNext;

+            return *this;

+        }

+        const_iterator& operator--()

+        {

+            if(m_pItem != VMA_NULL)

+            {

+                m_pItem = m_pItem->pPrev;

+            }

+            else

+            {

+                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());

+                m_pItem = m_pList->Back();

+            }

+            return *this;

+        }

+

+        const_iterator operator++(int)

+        {

+            const_iterator result = *this;

+            ++*this;

+            return result;

+        }

+        const_iterator operator--(int)

+        {

+            const_iterator result = *this;

+            --*this;

+            return result;

+        }

+

+        bool operator==(const const_iterator& rhs) const

+        {

+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

+            return m_pItem == rhs.m_pItem;

+        }

+        bool operator!=(const const_iterator& rhs) const

+        {

+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

+            return m_pItem != rhs.m_pItem;

+        }

+        

+    private:

+        const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :

+            m_pList(pList),

+            m_pItem(pItem)

+        {

+        }

+

+        const VmaRawList<T>* m_pList;

+        const VmaListItem<T>* m_pItem;

+

+        friend class VmaList<T, AllocatorT>;

+    };

+

+    VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }

+

+    bool empty() const { return m_RawList.IsEmpty(); }

+    size_t size() const { return m_RawList.GetCount(); }

+

+    iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }

+    iterator end() { return iterator(&m_RawList, VMA_NULL); }

+

+    const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }

+    const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }

+

+    void clear() { m_RawList.Clear(); }

+    void push_back(const T& value) { m_RawList.PushBack(value); }

+    void erase(iterator it) { m_RawList.Remove(it.m_pItem); }

+    iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }

+

+private:

+    VmaRawList<T> m_RawList;

+};

+

+#endif // #if VMA_USE_STL_LIST

+

+////////////////////////////////////////////////////////////////////////////////

+// class VmaMap

+

+// Unused in this version.

+#if 0

+

+#if VMA_USE_STL_UNORDERED_MAP

+

+#define VmaPair std::pair

+

+#define VMA_MAP_TYPE(KeyT, ValueT) \

+    std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >

+

+#else // #if VMA_USE_STL_UNORDERED_MAP

+

+template<typename T1, typename T2>

+struct VmaPair

+{

+    T1 first;

+    T2 second;

+

+    VmaPair() : first(), second() { }

+    VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }

+};

+

+/* Class compatible with subset of interface of std::unordered_map.

+KeyT, ValueT must be POD because they will be stored in VmaVector.

+*/

+template<typename KeyT, typename ValueT>

+class VmaMap

+{

+public:

+    typedef VmaPair<KeyT, ValueT> PairType;

+    typedef PairType* iterator;

+

+    VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }

+

+    iterator begin() { return m_Vector.begin(); }

+    iterator end() { return m_Vector.end(); }

+

+    void insert(const PairType& pair);

+    iterator find(const KeyT& key);

+    void erase(iterator it);

+    

+private:

+    VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;

+};

+

+#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>

+

+template<typename FirstT, typename SecondT>

+struct VmaPairFirstLess

+{

+    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const

+    {

+        return lhs.first < rhs.first;

+    }

+    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const

+    {

+        return lhs.first < rhsFirst;

+    }

+};

+

+template<typename KeyT, typename ValueT>

+void VmaMap<KeyT, ValueT>::insert(const PairType& pair)

+{

+    const size_t indexToInsert = VmaBinaryFindFirstNotLess(

+        m_Vector.data(),

+        m_Vector.data() + m_Vector.size(),

+        pair,

+        VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();

+    VmaVectorInsert(m_Vector, indexToInsert, pair);

+}

+

+template<typename KeyT, typename ValueT>

+VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)

+{

+    PairType* it = VmaBinaryFindFirstNotLess(

+        m_Vector.data(),

+        m_Vector.data() + m_Vector.size(),

+        key,

+        VmaPairFirstLess<KeyT, ValueT>());

+    if((it != m_Vector.end()) && (it->first == key))

+    {

+        return it;

+    }

+    else

+    {

+        return m_Vector.end();

+    }

+}

+

+template<typename KeyT, typename ValueT>

+void VmaMap<KeyT, ValueT>::erase(iterator it)

+{

+    VmaVectorRemove(m_Vector, it - m_Vector.begin());

+}

+

+#endif // #if VMA_USE_STL_UNORDERED_MAP

+

+#endif // #if 0

+

+////////////////////////////////////////////////////////////////////////////////

+

+class VmaDeviceMemoryBlock;

+

+struct VmaAllocation_T

+{

+private:

+    static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;

+

+    enum FLAGS

+    {

+        FLAG_USER_DATA_STRING = 0x01,

+    };

+

+public:

+    enum ALLOCATION_TYPE

+    {

+        ALLOCATION_TYPE_NONE,

+        ALLOCATION_TYPE_BLOCK,

+        ALLOCATION_TYPE_DEDICATED,

+    };

+

+    VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :

+        m_Alignment(1),

+        m_Size(0),

+        m_pUserData(VMA_NULL),

+        m_LastUseFrameIndex(currentFrameIndex),

+        m_Type((uint8_t)ALLOCATION_TYPE_NONE),

+        m_SuballocationType((uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN),

+        m_MapCount(0),

+        m_Flags(userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0)

+    {

+    }

+

+    ~VmaAllocation_T()

+    {

+        VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");

+

+        // Check if owned string was freed.

+        VMA_ASSERT(m_pUserData == VMA_NULL);

+    }

+

+    void InitBlockAllocation(

+        VmaPool hPool,

+        VmaDeviceMemoryBlock* block,

+        VkDeviceSize offset,

+        VkDeviceSize alignment,

+        VkDeviceSize size,

+        VmaSuballocationType suballocationType,

+        bool mapped,

+        bool canBecomeLost)

+    {

+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);

+        VMA_ASSERT(block != VMA_NULL);

+        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;

+        m_Alignment = alignment;

+        m_Size = size;

+        m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;

+        m_SuballocationType = (uint8_t)suballocationType;

+        m_BlockAllocation.m_hPool = hPool;

+        m_BlockAllocation.m_Block = block;

+        m_BlockAllocation.m_Offset = offset;

+        m_BlockAllocation.m_CanBecomeLost = canBecomeLost;

+    }

+

+    void InitLost()

+    {

+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);

+        VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);

+        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;

+        m_BlockAllocation.m_hPool = VK_NULL_HANDLE;

+        m_BlockAllocation.m_Block = VMA_NULL;

+        m_BlockAllocation.m_Offset = 0;

+        m_BlockAllocation.m_CanBecomeLost = true;

+    }

+

+    void ChangeBlockAllocation(

+        VmaAllocator hAllocator,

+        VmaDeviceMemoryBlock* block,

+        VkDeviceSize offset);

+

+    // pMappedData not null means allocation is created with MAPPED flag.

+    void InitDedicatedAllocation(

+        uint32_t memoryTypeIndex,

+        VkDeviceMemory hMemory,

+        VmaSuballocationType suballocationType,

+        void* pMappedData,

+        VkDeviceSize size)

+    {

+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);

+        VMA_ASSERT(hMemory != VK_NULL_HANDLE);

+        m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;

+        m_Alignment = 0;

+        m_Size = size;

+        m_SuballocationType = (uint8_t)suballocationType;

+        m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;

+        m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex;

+        m_DedicatedAllocation.m_hMemory = hMemory;

+        m_DedicatedAllocation.m_pMappedData = pMappedData;

+    }

+

+    ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }

+    VkDeviceSize GetAlignment() const { return m_Alignment; }

+    VkDeviceSize GetSize() const { return m_Size; }

+    bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }

+    void* GetUserData() const { return m_pUserData; }

+    void SetUserData(VmaAllocator hAllocator, void* pUserData);

+    VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }

+

+    VmaDeviceMemoryBlock* GetBlock() const

+    {

+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);

+        return m_BlockAllocation.m_Block;

+    }

+    VkDeviceSize GetOffset() const;

+    VkDeviceMemory GetMemory() const;

+    uint32_t GetMemoryTypeIndex() const;

+    bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }

+    void* GetMappedData() const;

+    bool CanBecomeLost() const;

+    VmaPool GetPool() const;

+    

+    uint32_t GetLastUseFrameIndex() const

+    {

+        return m_LastUseFrameIndex.load();

+    }

+    bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)

+    {

+        return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);

+    }

+    /*

+    - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,

+      makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.

+    - Else, returns false.

+    

+    If hAllocation is already lost, assert - you should not call it then.

+    If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.

+    */

+    bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);

+

+    void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)

+    {

+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);

+        outInfo.blockCount = 1;

+        outInfo.allocationCount = 1;

+        outInfo.unusedRangeCount = 0;

+        outInfo.usedBytes = m_Size;

+        outInfo.unusedBytes = 0;

+        outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;

+        outInfo.unusedRangeSizeMin = UINT64_MAX;

+        outInfo.unusedRangeSizeMax = 0;

+    }

+

+    void BlockAllocMap();

+    void BlockAllocUnmap();

+    VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);

+    void DedicatedAllocUnmap(VmaAllocator hAllocator);

+

+private:

+    VkDeviceSize m_Alignment;

+    VkDeviceSize m_Size;

+    void* m_pUserData;

+    VMA_ATOMIC_UINT32 m_LastUseFrameIndex;

+    uint8_t m_Type; // ALLOCATION_TYPE

+    uint8_t m_SuballocationType; // VmaSuballocationType

+    // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.

+    // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().

+    uint8_t m_MapCount;

+    uint8_t m_Flags; // enum FLAGS

+

+    // Allocation out of VmaDeviceMemoryBlock.

+    struct BlockAllocation

+    {

+        VmaPool m_hPool; // Null if belongs to general memory.

+        VmaDeviceMemoryBlock* m_Block;

+        VkDeviceSize m_Offset;

+        bool m_CanBecomeLost;

+    };

+

+    // Allocation for an object that has its own private VkDeviceMemory.

+    struct DedicatedAllocation

+    {

+        uint32_t m_MemoryTypeIndex;

+        VkDeviceMemory m_hMemory;

+        void* m_pMappedData; // Not null means memory is mapped.

+    };

+

+    union

+    {

+        // Allocation out of VmaDeviceMemoryBlock.

+        BlockAllocation m_BlockAllocation;

+        // Allocation for an object that has its own private VkDeviceMemory.

+        DedicatedAllocation m_DedicatedAllocation;

+    };

+

+    void FreeUserDataString(VmaAllocator hAllocator);

+};

+

+/*

+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as

+allocated memory block or free.

+*/

+struct VmaSuballocation

+{

+    VkDeviceSize offset;

+    VkDeviceSize size;

+    VmaAllocation hAllocation;

+    VmaSuballocationType type;

+};

+

+typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;

+

+// Cost of one additional allocation lost, as equivalent in bytes.

+static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;

+

+/*

+Parameters of planned allocation inside a VmaDeviceMemoryBlock.

+

+If canMakeOtherLost was false:

+- item points to a FREE suballocation.

+- itemsToMakeLostCount is 0.

+

+If canMakeOtherLost was true:

+- item points to first of sequence of suballocations, which are either FREE,

+  or point to VmaAllocations that can become lost.

+- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for

+  the requested allocation to succeed.

+*/

+struct VmaAllocationRequest

+{

+    VkDeviceSize offset;

+    VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.

+    VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.

+    VmaSuballocationList::iterator item;

+    size_t itemsToMakeLostCount;

+

+    VkDeviceSize CalcCost() const

+    {

+        return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;

+    }

+};

+

+/*

+Data structure used for bookkeeping of allocations and unused ranges of memory

+in a single VkDeviceMemory block.

+*/

+class VmaBlockMetadata

+{

+public:

+    VmaBlockMetadata(VmaAllocator hAllocator);

+    ~VmaBlockMetadata();

+    void Init(VkDeviceSize size);

+

+    // Validates all data structures inside this object. If not valid, returns false.

+    bool Validate() const;

+    VkDeviceSize GetSize() const { return m_Size; }

+    size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }

+    VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }

+    VkDeviceSize GetUnusedRangeSizeMax() const;

+    // Returns true if this block is empty - contains only single free suballocation.

+    bool IsEmpty() const;

+

+    void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;

+    void AddPoolStats(VmaPoolStats& inoutStats) const;

+

+#if VMA_STATS_STRING_ENABLED

+    void PrintDetailedMap(class VmaJsonWriter& json) const;

+#endif

+

+    // Creates trivial request for case when block is empty.

+    void CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest);

+

+    // Tries to find a place for suballocation with given parameters inside this block.

+    // If succeeded, fills pAllocationRequest and returns true.

+    // If failed, returns false.

+    bool CreateAllocationRequest(

+        uint32_t currentFrameIndex,

+        uint32_t frameInUseCount,

+        VkDeviceSize bufferImageGranularity,

+        VkDeviceSize allocSize,

+        VkDeviceSize allocAlignment,

+        VmaSuballocationType allocType,

+        bool canMakeOtherLost,

+        VmaAllocationRequest* pAllocationRequest);

+

+    bool MakeRequestedAllocationsLost(

+        uint32_t currentFrameIndex,

+        uint32_t frameInUseCount,

+        VmaAllocationRequest* pAllocationRequest);

+

+    uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);

+

+    // Makes actual allocation based on request. Request must already be checked and valid.

+    void Alloc(

+        const VmaAllocationRequest& request,

+        VmaSuballocationType type,

+        VkDeviceSize allocSize,

+        VmaAllocation hAllocation);

+

+    // Frees suballocation assigned to given memory region.

+    void Free(const VmaAllocation allocation);

+    void FreeAtOffset(VkDeviceSize offset);

+

+private:

+    VkDeviceSize m_Size;

+    uint32_t m_FreeCount;

+    VkDeviceSize m_SumFreeSize;

+    VmaSuballocationList m_Suballocations;

+    // Suballocations that are free and have size greater than certain threshold.

+    // Sorted by size, ascending.

+    VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;

+

+    bool ValidateFreeSuballocationList() const;

+

+    // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.

+    // If yes, fills pOffset and returns true. If no, returns false.

+    bool CheckAllocation(

+        uint32_t currentFrameIndex,

+        uint32_t frameInUseCount,

+        VkDeviceSize bufferImageGranularity,

+        VkDeviceSize allocSize,

+        VkDeviceSize allocAlignment,

+        VmaSuballocationType allocType,

+        VmaSuballocationList::const_iterator suballocItem,

+        bool canMakeOtherLost,

+        VkDeviceSize* pOffset,

+        size_t* itemsToMakeLostCount,

+        VkDeviceSize* pSumFreeSize,

+        VkDeviceSize* pSumItemSize) const;

+    // Given free suballocation, it merges it with following one, which must also be free.

+    void MergeFreeWithNext(VmaSuballocationList::iterator item);

+    // Releases given suballocation, making it free.

+    // Merges it with adjacent free suballocations if applicable.

+    // Returns iterator to new free suballocation at this place.

+    VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);

+    // Given free suballocation, it inserts it into sorted list of

+    // m_FreeSuballocationsBySize if it's suitable.

+    void RegisterFreeSuballocation(VmaSuballocationList::iterator item);

+    // Given free suballocation, it removes it from sorted list of

+    // m_FreeSuballocationsBySize if it's suitable.

+    void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);

+};

+

+/*

+Represents a single block of device memory (`VkDeviceMemory`) with all the

+data about its regions (aka suballocations, #VmaAllocation), assigned and free.

+

+Thread-safety: This class must be externally synchronized.

+*/

+class VmaDeviceMemoryBlock

+{

+public:

+    VmaBlockMetadata m_Metadata;

+

+    VmaDeviceMemoryBlock(VmaAllocator hAllocator);

+

+    ~VmaDeviceMemoryBlock()

+    {

+        VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");

+        VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);

+    }

+

+    // Always call after construction.

+    void Init(

+        uint32_t newMemoryTypeIndex,

+        VkDeviceMemory newMemory,

+        VkDeviceSize newSize);

+    // Always call before destruction.

+    void Destroy(VmaAllocator allocator);

+    

+    VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }

+    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }

+    void* GetMappedData() const { return m_pMappedData; }

+

+    // Validates all data structures inside this object. If not valid, returns false.

+    bool Validate() const;

+

+    // ppData can be null.

+    VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);

+    void Unmap(VmaAllocator hAllocator, uint32_t count);

+

+    VkResult BindBufferMemory(

+        const VmaAllocator hAllocator,

+        const VmaAllocation hAllocation,

+        VkBuffer hBuffer);

+    VkResult BindImageMemory(

+        const VmaAllocator hAllocator,

+        const VmaAllocation hAllocation,

+        VkImage hImage);

+

+private:

+    uint32_t m_MemoryTypeIndex;

+    VkDeviceMemory m_hMemory;

+

+    // Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.

+    // Also protects m_MapCount, m_pMappedData.

+    VMA_MUTEX m_Mutex;

+    uint32_t m_MapCount;

+    void* m_pMappedData;

+};

+

+struct VmaPointerLess

+{

+    bool operator()(const void* lhs, const void* rhs) const

+    {

+        return lhs < rhs;

+    }

+};

+

+class VmaDefragmentator;

+

+/*

+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific

+Vulkan memory type.

+

+Synchronized internally with a mutex.

+*/

+struct VmaBlockVector

+{

+    VmaBlockVector(

+        VmaAllocator hAllocator,

+        uint32_t memoryTypeIndex,

+        VkDeviceSize preferredBlockSize,

+        size_t minBlockCount,

+        size_t maxBlockCount,

+        VkDeviceSize bufferImageGranularity,

+        uint32_t frameInUseCount,

+        bool isCustomPool);

+    ~VmaBlockVector();

+

+    VkResult CreateMinBlocks();

+

+    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }

+    VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }

+    VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }

+    uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }

+

+    void GetPoolStats(VmaPoolStats* pStats);

+

+    bool IsEmpty() const { return m_Blocks.empty(); }

+

+    VkResult Allocate(

+        VmaPool hCurrentPool,

+        uint32_t currentFrameIndex,

+        const VkMemoryRequirements& vkMemReq,

+        const VmaAllocationCreateInfo& createInfo,

+        VmaSuballocationType suballocType,

+        VmaAllocation* pAllocation);

+

+    void Free(

+        VmaAllocation hAllocation);

+

+    // Adds statistics of this BlockVector to pStats.

+    void AddStats(VmaStats* pStats);

+

+#if VMA_STATS_STRING_ENABLED

+    void PrintDetailedMap(class VmaJsonWriter& json);

+#endif

+

+    void MakePoolAllocationsLost(

+        uint32_t currentFrameIndex,

+        size_t* pLostAllocationCount);

+

+    VmaDefragmentator* EnsureDefragmentator(

+        VmaAllocator hAllocator,

+        uint32_t currentFrameIndex);

+

+    VkResult Defragment(

+        VmaDefragmentationStats* pDefragmentationStats,

+        VkDeviceSize& maxBytesToMove,

+        uint32_t& maxAllocationsToMove);

+

+    void DestroyDefragmentator();

+

+private:

+    friend class VmaDefragmentator;

+

+    const VmaAllocator m_hAllocator;

+    const uint32_t m_MemoryTypeIndex;

+    const VkDeviceSize m_PreferredBlockSize;

+    const size_t m_MinBlockCount;

+    const size_t m_MaxBlockCount;

+    const VkDeviceSize m_BufferImageGranularity;

+    const uint32_t m_FrameInUseCount;

+    const bool m_IsCustomPool;

+    VMA_MUTEX m_Mutex;

+    // Incrementally sorted by sumFreeSize, ascending.

+    VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;

+    /* There can be at most one allocation that is completely empty - a

+    hysteresis to avoid pessimistic case of alternating creation and destruction

+    of a VkDeviceMemory. */

+    bool m_HasEmptyBlock;

+    VmaDefragmentator* m_pDefragmentator;

+

+    size_t CalcMaxBlockSize() const;

+

+    // Finds and removes given block from vector.

+    void Remove(VmaDeviceMemoryBlock* pBlock);

+

+    // Performs single step in sorting m_Blocks. They may not be fully sorted

+    // after this call.

+    void IncrementallySortBlocks();

+

+    VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);

+};

+

+struct VmaPool_T

+{

+public:

+    VmaBlockVector m_BlockVector;

+

+    // Takes ownership.

+    VmaPool_T(

+        VmaAllocator hAllocator,

+        const VmaPoolCreateInfo& createInfo);

+    ~VmaPool_T();

+

+    VmaBlockVector& GetBlockVector() { return m_BlockVector; }

+

+#if VMA_STATS_STRING_ENABLED

+    //void PrintDetailedMap(class VmaStringBuilder& sb);

+#endif

+};

+

+class VmaDefragmentator

+{

+    const VmaAllocator m_hAllocator;

+    VmaBlockVector* const m_pBlockVector;

+    uint32_t m_CurrentFrameIndex;

+    VkDeviceSize m_BytesMoved;

+    uint32_t m_AllocationsMoved;

+

+    struct AllocationInfo

+    {

+        VmaAllocation m_hAllocation;

+        VkBool32* m_pChanged;

+

+        AllocationInfo() :

+            m_hAllocation(VK_NULL_HANDLE),

+            m_pChanged(VMA_NULL)

+        {

+        }

+    };

+

+    struct AllocationInfoSizeGreater

+    {

+        bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const

+        {

+            return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();

+        }

+    };

+

+    // Used between AddAllocation and Defragment.

+    VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;

+

+    struct BlockInfo

+    {

+        VmaDeviceMemoryBlock* m_pBlock;

+        bool m_HasNonMovableAllocations;

+        VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;

+

+        BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :

+            m_pBlock(VMA_NULL),

+            m_HasNonMovableAllocations(true),

+            m_Allocations(pAllocationCallbacks),

+            m_pMappedDataForDefragmentation(VMA_NULL)

+        {

+        }

+

+        void CalcHasNonMovableAllocations()

+        {

+            const size_t blockAllocCount = m_pBlock->m_Metadata.GetAllocationCount();

+            const size_t defragmentAllocCount = m_Allocations.size();

+            m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;

+        }

+

+        void SortAllocationsBySizeDescecnding()

+        {

+            VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());

+        }

+

+        VkResult EnsureMapping(VmaAllocator hAllocator, void** ppMappedData);

+        void Unmap(VmaAllocator hAllocator);

+

+    private:

+        // Not null if mapped for defragmentation only, not originally mapped.

+        void* m_pMappedDataForDefragmentation;

+    };

+

+    struct BlockPointerLess

+    {

+        bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const

+        {

+            return pLhsBlockInfo->m_pBlock < pRhsBlock;

+        }

+        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const

+        {

+            return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;

+        }

+    };

+

+    // 1. Blocks with some non-movable allocations go first.

+    // 2. Blocks with smaller sumFreeSize go first.

+    struct BlockInfoCompareMoveDestination

+    {

+        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const

+        {

+            if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)

+            {

+                return true;

+            }

+            if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)

+            {

+                return false;

+            }

+            if(pLhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize())

+            {

+                return true;

+            }

+            return false;

+        }

+    };

+

+    typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;

+    BlockInfoVector m_Blocks;

+

+    VkResult DefragmentRound(

+        VkDeviceSize maxBytesToMove,

+        uint32_t maxAllocationsToMove);

+

+    static bool MoveMakesSense(

+        size_t dstBlockIndex, VkDeviceSize dstOffset,

+        size_t srcBlockIndex, VkDeviceSize srcOffset);

+

+public:

+    VmaDefragmentator(

+        VmaAllocator hAllocator,

+        VmaBlockVector* pBlockVector,

+        uint32_t currentFrameIndex);

+

+    ~VmaDefragmentator();

+

+    VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }

+    uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }

+

+    void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);

+

+    VkResult Defragment(

+        VkDeviceSize maxBytesToMove,

+        uint32_t maxAllocationsToMove);

+};

+

+// Main allocator object.

+struct VmaAllocator_T

+{

+    bool m_UseMutex;

+    bool m_UseKhrDedicatedAllocation;

+    VkDevice m_hDevice;

+    bool m_AllocationCallbacksSpecified;

+    VkAllocationCallbacks m_AllocationCallbacks;

+    VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;

+    

+    // Number of bytes free out of limit, or VK_WHOLE_SIZE if not limit for that heap.

+    VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];

+    VMA_MUTEX m_HeapSizeLimitMutex;

+

+    VkPhysicalDeviceProperties m_PhysicalDeviceProperties;

+    VkPhysicalDeviceMemoryProperties m_MemProps;

+

+    // Default pools.

+    VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];

+

+    // Each vector is sorted by memory (handle value).

+    typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;

+    AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];

+    VMA_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];

+

+    VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);

+    ~VmaAllocator_T();

+

+    const VkAllocationCallbacks* GetAllocationCallbacks() const

+    {

+        return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;

+    }

+    const VmaVulkanFunctions& GetVulkanFunctions() const

+    {

+        return m_VulkanFunctions;

+    }

+

+    VkDeviceSize GetBufferImageGranularity() const

+    {

+        return VMA_MAX(

+            static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),

+            m_PhysicalDeviceProperties.limits.bufferImageGranularity);

+    }

+

+    uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }

+    uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }

+

+    uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const

+    {

+        VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);

+        return m_MemProps.memoryTypes[memTypeIndex].heapIndex;

+    }

+

+    void GetBufferMemoryRequirements(

+        VkBuffer hBuffer,

+        VkMemoryRequirements& memReq,

+        bool& requiresDedicatedAllocation,

+        bool& prefersDedicatedAllocation) const;

+    void GetImageMemoryRequirements(

+        VkImage hImage,

+        VkMemoryRequirements& memReq,

+        bool& requiresDedicatedAllocation,

+        bool& prefersDedicatedAllocation) const;

+

+    // Main allocation function.

+    VkResult AllocateMemory(

+        const VkMemoryRequirements& vkMemReq,

+        bool requiresDedicatedAllocation,

+        bool prefersDedicatedAllocation,

+        VkBuffer dedicatedBuffer,

+        VkImage dedicatedImage,

+        const VmaAllocationCreateInfo& createInfo,

+        VmaSuballocationType suballocType,

+        VmaAllocation* pAllocation);

+

+    // Main deallocation function.

+    void FreeMemory(const VmaAllocation allocation);

+

+    void CalculateStats(VmaStats* pStats);

+

+#if VMA_STATS_STRING_ENABLED

+    void PrintDetailedMap(class VmaJsonWriter& json);

+#endif

+

+    VkResult Defragment(

+        VmaAllocation* pAllocations,

+        size_t allocationCount,

+        VkBool32* pAllocationsChanged,

+        const VmaDefragmentationInfo* pDefragmentationInfo,

+        VmaDefragmentationStats* pDefragmentationStats);

+

+    void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);

+    bool TouchAllocation(VmaAllocation hAllocation);

+

+    VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);

+    void DestroyPool(VmaPool pool);

+    void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);

+

+    void SetCurrentFrameIndex(uint32_t frameIndex);

+

+    void MakePoolAllocationsLost(

+        VmaPool hPool,

+        size_t* pLostAllocationCount);

+

+    void CreateLostAllocation(VmaAllocation* pAllocation);

+

+    VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);

+    void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);

+

+    VkResult Map(VmaAllocation hAllocation, void** ppData);

+    void Unmap(VmaAllocation hAllocation);

+

+    VkResult BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer);

+    VkResult BindImageMemory(VmaAllocation hAllocation, VkImage hImage);

+

+private:

+    VkDeviceSize m_PreferredLargeHeapBlockSize;

+

+    VkPhysicalDevice m_PhysicalDevice;

+    VMA_ATOMIC_UINT32 m_CurrentFrameIndex;

+    

+    VMA_MUTEX m_PoolsMutex;

+    // Protected by m_PoolsMutex. Sorted by pointer value.

+    VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;

+

+    VmaVulkanFunctions m_VulkanFunctions;

+

+    void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);

+

+    VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);

+

+    VkResult AllocateMemoryOfType(

+        const VkMemoryRequirements& vkMemReq,

+        bool dedicatedAllocation,

+        VkBuffer dedicatedBuffer,

+        VkImage dedicatedImage,

+        const VmaAllocationCreateInfo& createInfo,

+        uint32_t memTypeIndex,

+        VmaSuballocationType suballocType,

+        VmaAllocation* pAllocation);

+

+    // Allocates and registers new VkDeviceMemory specifically for single allocation.

+    VkResult AllocateDedicatedMemory(

+        VkDeviceSize size,

+        VmaSuballocationType suballocType,

+        uint32_t memTypeIndex,

+        bool map,

+        bool isUserDataString,

+        void* pUserData,

+        VkBuffer dedicatedBuffer,

+        VkImage dedicatedImage,

+        VmaAllocation* pAllocation);

+

+    // Tries to free pMemory as Dedicated Memory. Returns true if found and freed.

+    void FreeDedicatedMemory(VmaAllocation allocation);

+};

+

+////////////////////////////////////////////////////////////////////////////////

+// Memory allocation #2 after VmaAllocator_T definition

+

+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)

+{

+    return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);

+}

+

+static void VmaFree(VmaAllocator hAllocator, void* ptr)

+{

+    VmaFree(&hAllocator->m_AllocationCallbacks, ptr);

+}

+

+template<typename T>

+static T* VmaAllocate(VmaAllocator hAllocator)

+{

+    return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));

+}

+

+template<typename T>

+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)

+{

+    return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));

+}

+

+template<typename T>

+static void vma_delete(VmaAllocator hAllocator, T* ptr)

+{

+    if(ptr != VMA_NULL)

+    {

+        ptr->~T();

+        VmaFree(hAllocator, ptr);

+    }

+}

+

+template<typename T>

+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)

+{

+    if(ptr != VMA_NULL)

+    {

+        for(size_t i = count; i--; )

+            ptr[i].~T();

+        VmaFree(hAllocator, ptr);

+    }

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// VmaStringBuilder

+

+#if VMA_STATS_STRING_ENABLED

+

+class VmaStringBuilder

+{

+public:

+    VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }

+    size_t GetLength() const { return m_Data.size(); }

+    const char* GetData() const { return m_Data.data(); }

+

+    void Add(char ch) { m_Data.push_back(ch); }

+    void Add(const char* pStr);

+    void AddNewLine() { Add('\n'); }

+    void AddNumber(uint32_t num);

+    void AddNumber(uint64_t num);

+    void AddPointer(const void* ptr);

+

+private:

+    VmaVector< char, VmaStlAllocator<char> > m_Data;

+};

+

+void VmaStringBuilder::Add(const char* pStr)

+{

+    const size_t strLen = strlen(pStr);

+    if(strLen > 0)

+    {

+        const size_t oldCount = m_Data.size();

+        m_Data.resize(oldCount + strLen);

+        memcpy(m_Data.data() + oldCount, pStr, strLen);

+    }

+}

+

+void VmaStringBuilder::AddNumber(uint32_t num)

+{

+    char buf[11];

+    VmaUint32ToStr(buf, sizeof(buf), num);

+    Add(buf);

+}

+

+void VmaStringBuilder::AddNumber(uint64_t num)

+{

+    char buf[21];

+    VmaUint64ToStr(buf, sizeof(buf), num);

+    Add(buf);

+}

+

+void VmaStringBuilder::AddPointer(const void* ptr)

+{

+    char buf[21];

+    VmaPtrToStr(buf, sizeof(buf), ptr);

+    Add(buf);

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+////////////////////////////////////////////////////////////////////////////////

+// VmaJsonWriter

+

+#if VMA_STATS_STRING_ENABLED

+

+class VmaJsonWriter

+{

+public:

+    VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);

+    ~VmaJsonWriter();

+

+    void BeginObject(bool singleLine = false);

+    void EndObject();

+    

+    void BeginArray(bool singleLine = false);

+    void EndArray();

+    

+    void WriteString(const char* pStr);

+    void BeginString(const char* pStr = VMA_NULL);

+    void ContinueString(const char* pStr);

+    void ContinueString(uint32_t n);

+    void ContinueString(uint64_t n);

+    void ContinueString_Pointer(const void* ptr);

+    void EndString(const char* pStr = VMA_NULL);

+    

+    void WriteNumber(uint32_t n);

+    void WriteNumber(uint64_t n);

+    void WriteBool(bool b);

+    void WriteNull();

+

+private:

+    static const char* const INDENT;

+

+    enum COLLECTION_TYPE

+    {

+        COLLECTION_TYPE_OBJECT,

+        COLLECTION_TYPE_ARRAY,

+    };

+    struct StackItem

+    {

+        COLLECTION_TYPE type;

+        uint32_t valueCount;

+        bool singleLineMode;

+    };

+

+    VmaStringBuilder& m_SB;

+    VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;

+    bool m_InsideString;

+

+    void BeginValue(bool isString);

+    void WriteIndent(bool oneLess = false);

+};

+

+const char* const VmaJsonWriter::INDENT = "  ";

+

+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :

+    m_SB(sb),

+    m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),

+    m_InsideString(false)

+{

+}

+

+VmaJsonWriter::~VmaJsonWriter()

+{

+    VMA_ASSERT(!m_InsideString);

+    VMA_ASSERT(m_Stack.empty());

+}

+

+void VmaJsonWriter::BeginObject(bool singleLine)

+{

+    VMA_ASSERT(!m_InsideString);

+

+    BeginValue(false);

+    m_SB.Add('{');

+

+    StackItem item;

+    item.type = COLLECTION_TYPE_OBJECT;

+    item.valueCount = 0;

+    item.singleLineMode = singleLine;

+    m_Stack.push_back(item);

+}

+

+void VmaJsonWriter::EndObject()

+{

+    VMA_ASSERT(!m_InsideString);

+

+    WriteIndent(true);

+    m_SB.Add('}');

+

+    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);

+    m_Stack.pop_back();

+}

+

+void VmaJsonWriter::BeginArray(bool singleLine)

+{

+    VMA_ASSERT(!m_InsideString);

+

+    BeginValue(false);

+    m_SB.Add('[');

+

+    StackItem item;

+    item.type = COLLECTION_TYPE_ARRAY;

+    item.valueCount = 0;

+    item.singleLineMode = singleLine;

+    m_Stack.push_back(item);

+}

+

+void VmaJsonWriter::EndArray()

+{

+    VMA_ASSERT(!m_InsideString);

+

+    WriteIndent(true);

+    m_SB.Add(']');

+

+    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);

+    m_Stack.pop_back();

+}

+

+void VmaJsonWriter::WriteString(const char* pStr)

+{

+    BeginString(pStr);

+    EndString();

+}

+

+void VmaJsonWriter::BeginString(const char* pStr)

+{

+    VMA_ASSERT(!m_InsideString);

+

+    BeginValue(true);

+    m_SB.Add('"');

+    m_InsideString = true;

+    if(pStr != VMA_NULL && pStr[0] != '\0')

+    {

+        ContinueString(pStr);

+    }

+}

+

+void VmaJsonWriter::ContinueString(const char* pStr)

+{

+    VMA_ASSERT(m_InsideString);

+

+    const size_t strLen = strlen(pStr);

+    for(size_t i = 0; i < strLen; ++i)

+    {

+        char ch = pStr[i];

+        if(ch == '\'')

+        {

+            m_SB.Add("\\\\");

+        }

+        else if(ch == '"')

+        {

+            m_SB.Add("\\\"");

+        }

+        else if(ch >= 32)

+        {

+            m_SB.Add(ch);

+        }

+        else switch(ch)

+        {

+        case '\b':

+            m_SB.Add("\\b");

+            break;

+        case '\f':

+            m_SB.Add("\\f");

+            break;

+        case '\n':

+            m_SB.Add("\\n");

+            break;

+        case '\r':

+            m_SB.Add("\\r");

+            break;

+        case '\t':

+            m_SB.Add("\\t");

+            break;

+        default:

+            VMA_ASSERT(0 && "Character not currently supported.");

+            break;

+        }

+    }

+}

+

+void VmaJsonWriter::ContinueString(uint32_t n)

+{

+    VMA_ASSERT(m_InsideString);

+    m_SB.AddNumber(n);

+}

+

+void VmaJsonWriter::ContinueString(uint64_t n)

+{

+    VMA_ASSERT(m_InsideString);

+    m_SB.AddNumber(n);

+}

+

+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)

+{

+    VMA_ASSERT(m_InsideString);

+    m_SB.AddPointer(ptr);

+}

+

+void VmaJsonWriter::EndString(const char* pStr)

+{

+    VMA_ASSERT(m_InsideString);

+    if(pStr != VMA_NULL && pStr[0] != '\0')

+    {

+        ContinueString(pStr);

+    }

+    m_SB.Add('"');

+    m_InsideString = false;

+}

+

+void VmaJsonWriter::WriteNumber(uint32_t n)

+{

+    VMA_ASSERT(!m_InsideString);

+    BeginValue(false);

+    m_SB.AddNumber(n);

+}

+

+void VmaJsonWriter::WriteNumber(uint64_t n)

+{

+    VMA_ASSERT(!m_InsideString);

+    BeginValue(false);

+    m_SB.AddNumber(n);

+}

+

+void VmaJsonWriter::WriteBool(bool b)

+{

+    VMA_ASSERT(!m_InsideString);

+    BeginValue(false);

+    m_SB.Add(b ? "true" : "false");

+}

+

+void VmaJsonWriter::WriteNull()

+{

+    VMA_ASSERT(!m_InsideString);

+    BeginValue(false);

+    m_SB.Add("null");

+}

+

+void VmaJsonWriter::BeginValue(bool isString)

+{

+    if(!m_Stack.empty())

+    {

+        StackItem& currItem = m_Stack.back();

+        if(currItem.type == COLLECTION_TYPE_OBJECT &&

+            currItem.valueCount % 2 == 0)

+        {

+            VMA_ASSERT(isString);

+        }

+

+        if(currItem.type == COLLECTION_TYPE_OBJECT &&

+            currItem.valueCount % 2 != 0)

+        {

+            m_SB.Add(": ");

+        }

+        else if(currItem.valueCount > 0)

+        {

+            m_SB.Add(", ");

+            WriteIndent();

+        }

+        else

+        {

+            WriteIndent();

+        }

+        ++currItem.valueCount;

+    }

+}

+

+void VmaJsonWriter::WriteIndent(bool oneLess)

+{

+    if(!m_Stack.empty() && !m_Stack.back().singleLineMode)

+    {

+        m_SB.AddNewLine();

+        

+        size_t count = m_Stack.size();

+        if(count > 0 && oneLess)

+        {

+            --count;

+        }

+        for(size_t i = 0; i < count; ++i)

+        {

+            m_SB.Add(INDENT);

+        }

+    }

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+////////////////////////////////////////////////////////////////////////////////

+

+void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)

+{

+    if(IsUserDataString())

+    {

+        VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);

+

+        FreeUserDataString(hAllocator);

+

+        if(pUserData != VMA_NULL)

+        {

+            const char* const newStrSrc = (char*)pUserData;

+            const size_t newStrLen = strlen(newStrSrc);

+            char* const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1);

+            memcpy(newStrDst, newStrSrc, newStrLen + 1);

+            m_pUserData = newStrDst;

+        }

+    }

+    else

+    {

+        m_pUserData = pUserData;

+    }

+}

+

+void VmaAllocation_T::ChangeBlockAllocation(

+    VmaAllocator hAllocator,

+    VmaDeviceMemoryBlock* block,

+    VkDeviceSize offset)

+{

+    VMA_ASSERT(block != VMA_NULL);

+    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);

+

+    // Move mapping reference counter from old block to new block.

+    if(block != m_BlockAllocation.m_Block)

+    {

+        uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;

+        if(IsPersistentMap())

+            ++mapRefCount;

+        m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);

+        block->Map(hAllocator, mapRefCount, VMA_NULL);

+    }

+

+    m_BlockAllocation.m_Block = block;

+    m_BlockAllocation.m_Offset = offset;

+}

+

+VkDeviceSize VmaAllocation_T::GetOffset() const

+{

+    switch(m_Type)

+    {

+    case ALLOCATION_TYPE_BLOCK:

+        return m_BlockAllocation.m_Offset;

+    case ALLOCATION_TYPE_DEDICATED:

+        return 0;

+    default:

+        VMA_ASSERT(0);

+        return 0;

+    }

+}

+

+VkDeviceMemory VmaAllocation_T::GetMemory() const

+{

+    switch(m_Type)

+    {

+    case ALLOCATION_TYPE_BLOCK:

+        return m_BlockAllocation.m_Block->GetDeviceMemory();

+    case ALLOCATION_TYPE_DEDICATED:

+        return m_DedicatedAllocation.m_hMemory;

+    default:

+        VMA_ASSERT(0);

+        return VK_NULL_HANDLE;

+    }

+}

+

+uint32_t VmaAllocation_T::GetMemoryTypeIndex() const

+{

+    switch(m_Type)

+    {

+    case ALLOCATION_TYPE_BLOCK:

+        return m_BlockAllocation.m_Block->GetMemoryTypeIndex();

+    case ALLOCATION_TYPE_DEDICATED:

+        return m_DedicatedAllocation.m_MemoryTypeIndex;

+    default:

+        VMA_ASSERT(0);

+        return UINT32_MAX;

+    }

+}

+

+void* VmaAllocation_T::GetMappedData() const

+{

+    switch(m_Type)

+    {

+    case ALLOCATION_TYPE_BLOCK:

+        if(m_MapCount != 0)

+        {

+            void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();

+            VMA_ASSERT(pBlockData != VMA_NULL);

+            return (char*)pBlockData + m_BlockAllocation.m_Offset;

+        }

+        else

+        {

+            return VMA_NULL;

+        }

+        break;

+    case ALLOCATION_TYPE_DEDICATED:

+        VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));

+        return m_DedicatedAllocation.m_pMappedData;

+    default:

+        VMA_ASSERT(0);

+        return VMA_NULL;

+    }

+}

+

+bool VmaAllocation_T::CanBecomeLost() const

+{

+    switch(m_Type)

+    {

+    case ALLOCATION_TYPE_BLOCK:

+        return m_BlockAllocation.m_CanBecomeLost;

+    case ALLOCATION_TYPE_DEDICATED:

+        return false;

+    default:

+        VMA_ASSERT(0);

+        return false;

+    }

+}

+

+VmaPool VmaAllocation_T::GetPool() const

+{

+    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);

+    return m_BlockAllocation.m_hPool;

+}

+

+bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)

+{

+    VMA_ASSERT(CanBecomeLost());

+

+    /*

+    Warning: This is a carefully designed algorithm.

+    Do not modify unless you really know what you're doing :)

+    */

+    uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();

+    for(;;)

+    {

+        if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)

+        {

+            VMA_ASSERT(0);

+            return false;

+        }

+        else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)

+        {

+            return false;

+        }

+        else // Last use time earlier than current time.

+        {

+            if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))

+            {

+                // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.

+                // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.

+                return true;

+            }

+        }

+    }

+}

+

+void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)

+{

+    VMA_ASSERT(IsUserDataString());

+    if(m_pUserData != VMA_NULL)

+    {

+        char* const oldStr = (char*)m_pUserData;

+        const size_t oldStrLen = strlen(oldStr);

+        vma_delete_array(hAllocator, oldStr, oldStrLen + 1);

+        m_pUserData = VMA_NULL;

+    }

+}

+

+void VmaAllocation_T::BlockAllocMap()

+{

+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);

+

+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)

+    {

+        ++m_MapCount;

+    }

+    else

+    {

+        VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");

+    }

+}

+

+void VmaAllocation_T::BlockAllocUnmap()

+{

+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);

+

+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)

+    {

+        --m_MapCount;

+    }

+    else

+    {

+        VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");

+    }

+}

+

+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)

+{

+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);

+

+    if(m_MapCount != 0)

+    {

+        if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)

+        {

+            VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);

+            *ppData = m_DedicatedAllocation.m_pMappedData;

+            ++m_MapCount;

+            return VK_SUCCESS;

+        }

+        else

+        {

+            VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");

+            return VK_ERROR_MEMORY_MAP_FAILED;

+        }

+    }

+    else

+    {

+        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(

+            hAllocator->m_hDevice,

+            m_DedicatedAllocation.m_hMemory,

+            0, // offset

+            VK_WHOLE_SIZE,

+            0, // flags

+            ppData);

+        if(result == VK_SUCCESS)

+        {

+            m_DedicatedAllocation.m_pMappedData = *ppData;

+            m_MapCount = 1;

+        }

+        return result;

+    }

+}

+

+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)

+{

+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);

+

+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)

+    {

+        --m_MapCount;

+        if(m_MapCount == 0)

+        {

+            m_DedicatedAllocation.m_pMappedData = VMA_NULL;

+            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(

+                hAllocator->m_hDevice,

+                m_DedicatedAllocation.m_hMemory);

+        }

+    }

+    else

+    {

+        VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");

+    }

+}

+

+#if VMA_STATS_STRING_ENABLED

+

+// Correspond to values of enum VmaSuballocationType.

+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {

+    "FREE",

+    "UNKNOWN",

+    "BUFFER",

+    "IMAGE_UNKNOWN",

+    "IMAGE_LINEAR",

+    "IMAGE_OPTIMAL",

+};

+

+static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)

+{

+    json.BeginObject();

+

+    json.WriteString("Blocks");

+    json.WriteNumber(stat.blockCount);

+

+    json.WriteString("Allocations");

+    json.WriteNumber(stat.allocationCount);

+

+    json.WriteString("UnusedRanges");

+    json.WriteNumber(stat.unusedRangeCount);

+

+    json.WriteString("UsedBytes");

+    json.WriteNumber(stat.usedBytes);

+

+    json.WriteString("UnusedBytes");

+    json.WriteNumber(stat.unusedBytes);

+

+    if(stat.allocationCount > 1)

+    {

+        json.WriteString("AllocationSize");

+        json.BeginObject(true);

+        json.WriteString("Min");

+        json.WriteNumber(stat.allocationSizeMin);

+        json.WriteString("Avg");

+        json.WriteNumber(stat.allocationSizeAvg);

+        json.WriteString("Max");

+        json.WriteNumber(stat.allocationSizeMax);

+        json.EndObject();

+    }

+

+    if(stat.unusedRangeCount > 1)

+    {

+        json.WriteString("UnusedRangeSize");

+        json.BeginObject(true);

+        json.WriteString("Min");

+        json.WriteNumber(stat.unusedRangeSizeMin);

+        json.WriteString("Avg");

+        json.WriteNumber(stat.unusedRangeSizeAvg);

+        json.WriteString("Max");

+        json.WriteNumber(stat.unusedRangeSizeMax);

+        json.EndObject();

+    }

+

+    json.EndObject();

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+struct VmaSuballocationItemSizeLess

+{

+    bool operator()(

+        const VmaSuballocationList::iterator lhs,

+        const VmaSuballocationList::iterator rhs) const

+    {

+        return lhs->size < rhs->size;

+    }

+    bool operator()(

+        const VmaSuballocationList::iterator lhs,

+        VkDeviceSize rhsSize) const

+    {

+        return lhs->size < rhsSize;

+    }

+};

+

+////////////////////////////////////////////////////////////////////////////////

+// class VmaBlockMetadata

+

+VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :

+    m_Size(0),

+    m_FreeCount(0),

+    m_SumFreeSize(0),

+    m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),

+    m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))

+{

+}

+

+VmaBlockMetadata::~VmaBlockMetadata()

+{

+}

+

+void VmaBlockMetadata::Init(VkDeviceSize size)

+{

+    m_Size = size;

+    m_FreeCount = 1;

+    m_SumFreeSize = size;

+

+    VmaSuballocation suballoc = {};

+    suballoc.offset = 0;

+    suballoc.size = size;

+    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

+    suballoc.hAllocation = VK_NULL_HANDLE;

+

+    m_Suballocations.push_back(suballoc);

+    VmaSuballocationList::iterator suballocItem = m_Suballocations.end();

+    --suballocItem;

+    m_FreeSuballocationsBySize.push_back(suballocItem);

+}

+

+bool VmaBlockMetadata::Validate() const

+{

+    if(m_Suballocations.empty())

+    {

+        return false;

+    }

+    

+    // Expected offset of new suballocation as calculates from previous ones.

+    VkDeviceSize calculatedOffset = 0;

+    // Expected number of free suballocations as calculated from traversing their list.

+    uint32_t calculatedFreeCount = 0;

+    // Expected sum size of free suballocations as calculated from traversing their list.

+    VkDeviceSize calculatedSumFreeSize = 0;

+    // Expected number of free suballocations that should be registered in

+    // m_FreeSuballocationsBySize calculated from traversing their list.

+    size_t freeSuballocationsToRegister = 0;

+    // True if previous visisted suballocation was free.

+    bool prevFree = false;

+

+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();

+        suballocItem != m_Suballocations.cend();

+        ++suballocItem)

+    {

+        const VmaSuballocation& subAlloc = *suballocItem;

+        

+        // Actual offset of this suballocation doesn't match expected one.

+        if(subAlloc.offset != calculatedOffset)

+        {

+            return false;

+        }

+

+        const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);

+        // Two adjacent free suballocations are invalid. They should be merged.

+        if(prevFree && currFree)

+        {

+            return false;

+        }

+

+        if(currFree != (subAlloc.hAllocation == VK_NULL_HANDLE))

+        {

+            return false;

+        }

+

+        if(currFree)

+        {

+            calculatedSumFreeSize += subAlloc.size;

+            ++calculatedFreeCount;

+            if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

+            {

+                ++freeSuballocationsToRegister;

+            }

+        }

+        else

+        {

+            if(subAlloc.hAllocation->GetOffset() != subAlloc.offset)

+            {

+                return false;

+            }

+            if(subAlloc.hAllocation->GetSize() != subAlloc.size)

+            {

+                return false;

+            }

+        }

+

+        calculatedOffset += subAlloc.size;

+        prevFree = currFree;

+    }

+

+    // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't

+    // match expected one.

+    if(m_FreeSuballocationsBySize.size() != freeSuballocationsToRegister)

+    {

+        return false;

+    }

+

+    VkDeviceSize lastSize = 0;

+    for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)

+    {

+        VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];

+        

+        // Only free suballocations can be registered in m_FreeSuballocationsBySize.

+        if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            return false;

+        }

+        // They must be sorted by size ascending.

+        if(suballocItem->size < lastSize)

+        {

+            return false;

+        }

+

+        lastSize = suballocItem->size;

+    }

+

+    // Check if totals match calculacted values.

+    if(!ValidateFreeSuballocationList() ||

+        (calculatedOffset != m_Size) ||

+        (calculatedSumFreeSize != m_SumFreeSize) ||

+        (calculatedFreeCount != m_FreeCount))

+    {

+        return false;

+    }

+

+    return true;

+}

+

+VkDeviceSize VmaBlockMetadata::GetUnusedRangeSizeMax() const

+{

+    if(!m_FreeSuballocationsBySize.empty())

+    {

+        return m_FreeSuballocationsBySize.back()->size;

+    }

+    else

+    {

+        return 0;

+    }

+}

+

+bool VmaBlockMetadata::IsEmpty() const

+{

+    return (m_Suballocations.size() == 1) && (m_FreeCount == 1);

+}

+

+void VmaBlockMetadata::CalcAllocationStatInfo(VmaStatInfo& outInfo) const

+{

+    outInfo.blockCount = 1;

+

+    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();

+    outInfo.allocationCount = rangeCount - m_FreeCount;

+    outInfo.unusedRangeCount = m_FreeCount;

+    

+    outInfo.unusedBytes = m_SumFreeSize;

+    outInfo.usedBytes = m_Size - outInfo.unusedBytes;

+

+    outInfo.allocationSizeMin = UINT64_MAX;

+    outInfo.allocationSizeMax = 0;

+    outInfo.unusedRangeSizeMin = UINT64_MAX;

+    outInfo.unusedRangeSizeMax = 0;

+

+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();

+        suballocItem != m_Suballocations.cend();

+        ++suballocItem)

+    {

+        const VmaSuballocation& suballoc = *suballocItem;

+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);

+            outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);

+        }

+        else

+        {

+            outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);

+            outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);

+        }

+    }

+}

+

+void VmaBlockMetadata::AddPoolStats(VmaPoolStats& inoutStats) const

+{

+    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();

+

+    inoutStats.size += m_Size;

+    inoutStats.unusedSize += m_SumFreeSize;

+    inoutStats.allocationCount += rangeCount - m_FreeCount;

+    inoutStats.unusedRangeCount += m_FreeCount;

+    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());

+}

+

+#if VMA_STATS_STRING_ENABLED

+

+void VmaBlockMetadata::PrintDetailedMap(class VmaJsonWriter& json) const

+{

+    json.BeginObject();

+

+    json.WriteString("TotalBytes");

+    json.WriteNumber(m_Size);

+

+    json.WriteString("UnusedBytes");

+    json.WriteNumber(m_SumFreeSize);

+

+    json.WriteString("Allocations");

+    json.WriteNumber((uint64_t)m_Suballocations.size() - m_FreeCount);

+

+    json.WriteString("UnusedRanges");

+    json.WriteNumber(m_FreeCount);

+

+    json.WriteString("Suballocations");

+    json.BeginArray();

+    size_t i = 0;

+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();

+        suballocItem != m_Suballocations.cend();

+        ++suballocItem, ++i)

+    {

+        json.BeginObject(true);

+        

+        json.WriteString("Type");

+        json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[suballocItem->type]);

+

+        json.WriteString("Size");

+        json.WriteNumber(suballocItem->size);

+

+        json.WriteString("Offset");

+        json.WriteNumber(suballocItem->offset);

+

+        if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            const void* pUserData = suballocItem->hAllocation->GetUserData();

+            if(pUserData != VMA_NULL)

+            {

+                json.WriteString("UserData");

+                if(suballocItem->hAllocation->IsUserDataString())

+                {

+                    json.WriteString((const char*)pUserData);

+                }

+                else

+                {

+                    json.BeginString();

+                    json.ContinueString_Pointer(pUserData);

+                    json.EndString();

+                }

+            }

+        }

+

+        json.EndObject();

+    }

+    json.EndArray();

+

+    json.EndObject();

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+/*

+How many suitable free suballocations to analyze before choosing best one.

+- Set to 1 to use First-Fit algorithm - first suitable free suballocation will

+  be chosen.

+- Set to UINT32_MAX to use Best-Fit/Worst-Fit algorithm - all suitable free

+  suballocations will be analized and best one will be chosen.

+- Any other value is also acceptable.

+*/

+//static const uint32_t MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK = 8;

+

+void VmaBlockMetadata::CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest)

+{

+    VMA_ASSERT(IsEmpty());

+    pAllocationRequest->offset = 0;

+    pAllocationRequest->sumFreeSize = m_SumFreeSize;

+    pAllocationRequest->sumItemSize = 0;

+    pAllocationRequest->item = m_Suballocations.begin();

+    pAllocationRequest->itemsToMakeLostCount = 0;

+}

+

+bool VmaBlockMetadata::CreateAllocationRequest(

+    uint32_t currentFrameIndex,

+    uint32_t frameInUseCount,

+    VkDeviceSize bufferImageGranularity,

+    VkDeviceSize allocSize,

+    VkDeviceSize allocAlignment,

+    VmaSuballocationType allocType,

+    bool canMakeOtherLost,

+    VmaAllocationRequest* pAllocationRequest)

+{

+    VMA_ASSERT(allocSize > 0);

+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);

+    VMA_ASSERT(pAllocationRequest != VMA_NULL);

+    VMA_HEAVY_ASSERT(Validate());

+

+    // There is not enough total free space in this block to fullfill the request: Early return.

+    if(canMakeOtherLost == false && m_SumFreeSize < allocSize)

+    {

+        return false;

+    }

+

+    // New algorithm, efficiently searching freeSuballocationsBySize.

+    const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();

+    if(freeSuballocCount > 0)

+    {

+        if(VMA_BEST_FIT)

+        {

+            // Find first free suballocation with size not less than allocSize.

+            VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(

+                m_FreeSuballocationsBySize.data(),

+                m_FreeSuballocationsBySize.data() + freeSuballocCount,

+                allocSize,

+                VmaSuballocationItemSizeLess());

+            size_t index = it - m_FreeSuballocationsBySize.data();

+            for(; index < freeSuballocCount; ++index)

+            {

+                if(CheckAllocation(

+                    currentFrameIndex,

+                    frameInUseCount,

+                    bufferImageGranularity,

+                    allocSize,

+                    allocAlignment,

+                    allocType,

+                    m_FreeSuballocationsBySize[index],

+                    false, // canMakeOtherLost

+                    &pAllocationRequest->offset,

+                    &pAllocationRequest->itemsToMakeLostCount,

+                    &pAllocationRequest->sumFreeSize,

+                    &pAllocationRequest->sumItemSize))

+                {

+                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];

+                    return true;

+                }

+            }

+        }

+        else

+        {

+            // Search staring from biggest suballocations.

+            for(size_t index = freeSuballocCount; index--; )

+            {

+                if(CheckAllocation(

+                    currentFrameIndex,

+                    frameInUseCount,

+                    bufferImageGranularity,

+                    allocSize,

+                    allocAlignment,

+                    allocType,

+                    m_FreeSuballocationsBySize[index],

+                    false, // canMakeOtherLost

+                    &pAllocationRequest->offset,

+                    &pAllocationRequest->itemsToMakeLostCount,

+                    &pAllocationRequest->sumFreeSize,

+                    &pAllocationRequest->sumItemSize))

+                {

+                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];

+                    return true;

+                }

+            }

+        }

+    }

+

+    if(canMakeOtherLost)

+    {

+        // Brute-force algorithm. TODO: Come up with something better.

+

+        pAllocationRequest->sumFreeSize = VK_WHOLE_SIZE;

+        pAllocationRequest->sumItemSize = VK_WHOLE_SIZE;

+

+        VmaAllocationRequest tmpAllocRequest = {};

+        for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();

+            suballocIt != m_Suballocations.end();

+            ++suballocIt)

+        {

+            if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||

+                suballocIt->hAllocation->CanBecomeLost())

+            {

+                if(CheckAllocation(

+                    currentFrameIndex,

+                    frameInUseCount,

+                    bufferImageGranularity,

+                    allocSize,

+                    allocAlignment,

+                    allocType,

+                    suballocIt,

+                    canMakeOtherLost,

+                    &tmpAllocRequest.offset,

+                    &tmpAllocRequest.itemsToMakeLostCount,

+                    &tmpAllocRequest.sumFreeSize,

+                    &tmpAllocRequest.sumItemSize))

+                {

+                    tmpAllocRequest.item = suballocIt;

+

+                    if(tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())

+                    {

+                        *pAllocationRequest = tmpAllocRequest;

+                    }

+                }

+            }

+        }

+

+        if(pAllocationRequest->sumItemSize != VK_WHOLE_SIZE)

+        {

+            return true;

+        }

+    }

+

+    return false;

+}

+

+bool VmaBlockMetadata::MakeRequestedAllocationsLost(

+    uint32_t currentFrameIndex,

+    uint32_t frameInUseCount,

+    VmaAllocationRequest* pAllocationRequest)

+{

+    while(pAllocationRequest->itemsToMakeLostCount > 0)

+    {

+        if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            ++pAllocationRequest->item;

+        }

+        VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());

+        VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);

+        VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());

+        if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

+        {

+            pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);

+            --pAllocationRequest->itemsToMakeLostCount;

+        }

+        else

+        {

+            return false;

+        }

+    }

+

+    VMA_HEAVY_ASSERT(Validate());

+    VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());

+    VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);

+    

+    return true;

+}

+

+uint32_t VmaBlockMetadata::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)

+{

+    uint32_t lostAllocationCount = 0;

+    for(VmaSuballocationList::iterator it = m_Suballocations.begin();

+        it != m_Suballocations.end();

+        ++it)

+    {

+        if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&

+            it->hAllocation->CanBecomeLost() &&

+            it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

+        {

+            it = FreeSuballocation(it);

+            ++lostAllocationCount;

+        }

+    }

+    return lostAllocationCount;

+}

+

+void VmaBlockMetadata::Alloc(

+    const VmaAllocationRequest& request,

+    VmaSuballocationType type,

+    VkDeviceSize allocSize,

+    VmaAllocation hAllocation)

+{

+    VMA_ASSERT(request.item != m_Suballocations.end());

+    VmaSuballocation& suballoc = *request.item;

+    // Given suballocation is a free block.

+    VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

+    // Given offset is inside this suballocation.

+    VMA_ASSERT(request.offset >= suballoc.offset);

+    const VkDeviceSize paddingBegin = request.offset - suballoc.offset;

+    VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);

+    const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;

+

+    // Unregister this free suballocation from m_FreeSuballocationsBySize and update

+    // it to become used.

+    UnregisterFreeSuballocation(request.item);

+

+    suballoc.offset = request.offset;

+    suballoc.size = allocSize;

+    suballoc.type = type;

+    suballoc.hAllocation = hAllocation;

+

+    // If there are any free bytes remaining at the end, insert new free suballocation after current one.

+    if(paddingEnd)

+    {

+        VmaSuballocation paddingSuballoc = {};

+        paddingSuballoc.offset = request.offset + allocSize;

+        paddingSuballoc.size = paddingEnd;

+        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

+        VmaSuballocationList::iterator next = request.item;

+        ++next;

+        const VmaSuballocationList::iterator paddingEndItem =

+            m_Suballocations.insert(next, paddingSuballoc);

+        RegisterFreeSuballocation(paddingEndItem);

+    }

+

+    // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.

+    if(paddingBegin)

+    {

+        VmaSuballocation paddingSuballoc = {};

+        paddingSuballoc.offset = request.offset - paddingBegin;

+        paddingSuballoc.size = paddingBegin;

+        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

+        const VmaSuballocationList::iterator paddingBeginItem =

+            m_Suballocations.insert(request.item, paddingSuballoc);

+        RegisterFreeSuballocation(paddingBeginItem);

+    }

+

+    // Update totals.

+    m_FreeCount = m_FreeCount - 1;

+    if(paddingBegin > 0)

+    {

+        ++m_FreeCount;

+    }

+    if(paddingEnd > 0)

+    {

+        ++m_FreeCount;

+    }

+    m_SumFreeSize -= allocSize;

+}

+

+void VmaBlockMetadata::Free(const VmaAllocation allocation)

+{

+    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();

+        suballocItem != m_Suballocations.end();

+        ++suballocItem)

+    {

+        VmaSuballocation& suballoc = *suballocItem;

+        if(suballoc.hAllocation == allocation)

+        {

+            FreeSuballocation(suballocItem);

+            VMA_HEAVY_ASSERT(Validate());

+            return;

+        }

+    }

+    VMA_ASSERT(0 && "Not found!");

+}

+

+void VmaBlockMetadata::FreeAtOffset(VkDeviceSize offset)

+{

+    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();

+        suballocItem != m_Suballocations.end();

+        ++suballocItem)

+    {

+        VmaSuballocation& suballoc = *suballocItem;

+        if(suballoc.offset == offset)

+        {

+            FreeSuballocation(suballocItem);

+            return;

+        }

+    }

+    VMA_ASSERT(0 && "Not found!");

+}

+

+bool VmaBlockMetadata::ValidateFreeSuballocationList() const

+{

+    VkDeviceSize lastSize = 0;

+    for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)

+    {

+        const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];

+

+        if(it->type != VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            VMA_ASSERT(0);

+            return false;

+        }

+        if(it->size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

+        {

+            VMA_ASSERT(0);

+            return false;

+        }

+        if(it->size < lastSize)

+        {

+            VMA_ASSERT(0);

+            return false;

+        }

+

+        lastSize = it->size;

+    }

+    return true;

+}

+

+bool VmaBlockMetadata::CheckAllocation(

+    uint32_t currentFrameIndex,

+    uint32_t frameInUseCount,

+    VkDeviceSize bufferImageGranularity,

+    VkDeviceSize allocSize,

+    VkDeviceSize allocAlignment,

+    VmaSuballocationType allocType,

+    VmaSuballocationList::const_iterator suballocItem,

+    bool canMakeOtherLost,

+    VkDeviceSize* pOffset,

+    size_t* itemsToMakeLostCount,

+    VkDeviceSize* pSumFreeSize,

+    VkDeviceSize* pSumItemSize) const

+{

+    VMA_ASSERT(allocSize > 0);

+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);

+    VMA_ASSERT(suballocItem != m_Suballocations.cend());

+    VMA_ASSERT(pOffset != VMA_NULL);

+    

+    *itemsToMakeLostCount = 0;

+    *pSumFreeSize = 0;

+    *pSumItemSize = 0;

+

+    if(canMakeOtherLost)

+    {

+        if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            *pSumFreeSize = suballocItem->size;

+        }

+        else

+        {

+            if(suballocItem->hAllocation->CanBecomeLost() &&

+                suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

+            {

+                ++*itemsToMakeLostCount;

+                *pSumItemSize = suballocItem->size;

+            }

+            else

+            {

+                return false;

+            }

+        }

+

+        // Remaining size is too small for this request: Early return.

+        if(m_Size - suballocItem->offset < allocSize)

+        {

+            return false;

+        }

+

+        // Start from offset equal to beginning of this suballocation.

+        *pOffset = suballocItem->offset;

+    

+        // Apply VMA_DEBUG_MARGIN at the beginning.

+        if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())

+        {

+            *pOffset += VMA_DEBUG_MARGIN;

+        }

+    

+        // Apply alignment.

+        const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));

+        *pOffset = VmaAlignUp(*pOffset, alignment);

+

+        // Check previous suballocations for BufferImageGranularity conflicts.

+        // Make bigger alignment if necessary.

+        if(bufferImageGranularity > 1)

+        {

+            bool bufferImageGranularityConflict = false;

+            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;

+            while(prevSuballocItem != m_Suballocations.cbegin())

+            {

+                --prevSuballocItem;

+                const VmaSuballocation& prevSuballoc = *prevSuballocItem;

+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))

+                {

+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))

+                    {

+                        bufferImageGranularityConflict = true;

+                        break;

+                    }

+                }

+                else

+                    // Already on previous page.

+                    break;

+            }

+            if(bufferImageGranularityConflict)

+            {

+                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);

+            }

+        }

+    

+        // Now that we have final *pOffset, check if we are past suballocItem.

+        // If yes, return false - this function should be called for another suballocItem as starting point.

+        if(*pOffset >= suballocItem->offset + suballocItem->size)

+        {

+            return false;

+        }

+    

+        // Calculate padding at the beginning based on current offset.

+        const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;

+

+        // Calculate required margin at the end if this is not last suballocation.

+        VmaSuballocationList::const_iterator next = suballocItem;

+        ++next;

+        const VkDeviceSize requiredEndMargin =

+            (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;

+

+        const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;

+        // Another early return check.

+        if(suballocItem->offset + totalSize > m_Size)

+        {

+            return false;

+        }

+

+        // Advance lastSuballocItem until desired size is reached.

+        // Update itemsToMakeLostCount.

+        VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;

+        if(totalSize > suballocItem->size)

+        {

+            VkDeviceSize remainingSize = totalSize - suballocItem->size;

+            while(remainingSize > 0)

+            {

+                ++lastSuballocItem;

+                if(lastSuballocItem == m_Suballocations.cend())

+                {

+                    return false;

+                }

+                if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)

+                {

+                    *pSumFreeSize += lastSuballocItem->size;

+                }

+                else

+                {

+                    VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);

+                    if(lastSuballocItem->hAllocation->CanBecomeLost() &&

+                        lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

+                    {

+                        ++*itemsToMakeLostCount;

+                        *pSumItemSize += lastSuballocItem->size;

+                    }

+                    else

+                    {

+                        return false;

+                    }

+                }

+                remainingSize = (lastSuballocItem->size < remainingSize) ?

+                    remainingSize - lastSuballocItem->size : 0;

+            }

+        }

+

+        // Check next suballocations for BufferImageGranularity conflicts.

+        // If conflict exists, we must mark more allocations lost or fail.

+        if(bufferImageGranularity > 1)

+        {

+            VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;

+            ++nextSuballocItem;

+            while(nextSuballocItem != m_Suballocations.cend())

+            {

+                const VmaSuballocation& nextSuballoc = *nextSuballocItem;

+                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

+                {

+                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))

+                    {

+                        VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);

+                        if(nextSuballoc.hAllocation->CanBecomeLost() &&

+                            nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

+                        {

+                            ++*itemsToMakeLostCount;

+                        }

+                        else

+                        {

+                            return false;

+                        }

+                    }

+                }

+                else

+                {

+                    // Already on next page.

+                    break;

+                }

+                ++nextSuballocItem;

+            }

+        }

+    }

+    else

+    {

+        const VmaSuballocation& suballoc = *suballocItem;

+        VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

+

+        *pSumFreeSize = suballoc.size;

+

+        // Size of this suballocation is too small for this request: Early return.

+        if(suballoc.size < allocSize)

+        {

+            return false;

+        }

+

+        // Start from offset equal to beginning of this suballocation.

+        *pOffset = suballoc.offset;

+    

+        // Apply VMA_DEBUG_MARGIN at the beginning.

+        if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())

+        {

+            *pOffset += VMA_DEBUG_MARGIN;

+        }

+    

+        // Apply alignment.

+        const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));

+        *pOffset = VmaAlignUp(*pOffset, alignment);

+    

+        // Check previous suballocations for BufferImageGranularity conflicts.

+        // Make bigger alignment if necessary.

+        if(bufferImageGranularity > 1)

+        {

+            bool bufferImageGranularityConflict = false;

+            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;

+            while(prevSuballocItem != m_Suballocations.cbegin())

+            {

+                --prevSuballocItem;

+                const VmaSuballocation& prevSuballoc = *prevSuballocItem;

+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))

+                {

+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))

+                    {

+                        bufferImageGranularityConflict = true;

+                        break;

+                    }

+                }

+                else

+                    // Already on previous page.

+                    break;

+            }

+            if(bufferImageGranularityConflict)

+            {

+                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);

+            }

+        }

+    

+        // Calculate padding at the beginning based on current offset.

+        const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;

+

+        // Calculate required margin at the end if this is not last suballocation.

+        VmaSuballocationList::const_iterator next = suballocItem;

+        ++next;

+        const VkDeviceSize requiredEndMargin =

+            (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;

+

+        // Fail if requested size plus margin before and after is bigger than size of this suballocation.

+        if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)

+        {

+            return false;

+        }

+

+        // Check next suballocations for BufferImageGranularity conflicts.

+        // If conflict exists, allocation cannot be made here.

+        if(bufferImageGranularity > 1)

+        {

+            VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;

+            ++nextSuballocItem;

+            while(nextSuballocItem != m_Suballocations.cend())

+            {

+                const VmaSuballocation& nextSuballoc = *nextSuballocItem;

+                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

+                {

+                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))

+                    {

+                        return false;

+                    }

+                }

+                else

+                {

+                    // Already on next page.

+                    break;

+                }

+                ++nextSuballocItem;

+            }

+        }

+    }

+

+    // All tests passed: Success. pOffset is already filled.

+    return true;

+}

+

+void VmaBlockMetadata::MergeFreeWithNext(VmaSuballocationList::iterator item)

+{

+    VMA_ASSERT(item != m_Suballocations.end());

+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);

+    

+    VmaSuballocationList::iterator nextItem = item;

+    ++nextItem;

+    VMA_ASSERT(nextItem != m_Suballocations.end());

+    VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);

+

+    item->size += nextItem->size;

+    --m_FreeCount;

+    m_Suballocations.erase(nextItem);

+}

+

+VmaSuballocationList::iterator VmaBlockMetadata::FreeSuballocation(VmaSuballocationList::iterator suballocItem)

+{

+    // Change this suballocation to be marked as free.

+    VmaSuballocation& suballoc = *suballocItem;

+    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

+    suballoc.hAllocation = VK_NULL_HANDLE;

+    

+    // Update totals.

+    ++m_FreeCount;

+    m_SumFreeSize += suballoc.size;

+

+    // Merge with previous and/or next suballocation if it's also free.

+    bool mergeWithNext = false;

+    bool mergeWithPrev = false;

+    

+    VmaSuballocationList::iterator nextItem = suballocItem;

+    ++nextItem;

+    if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))

+    {

+        mergeWithNext = true;

+    }

+

+    VmaSuballocationList::iterator prevItem = suballocItem;

+    if(suballocItem != m_Suballocations.begin())

+    {

+        --prevItem;

+        if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)

+        {

+            mergeWithPrev = true;

+        }

+    }

+

+    if(mergeWithNext)

+    {

+        UnregisterFreeSuballocation(nextItem);

+        MergeFreeWithNext(suballocItem);

+    }

+

+    if(mergeWithPrev)

+    {

+        UnregisterFreeSuballocation(prevItem);

+        MergeFreeWithNext(prevItem);

+        RegisterFreeSuballocation(prevItem);

+        return prevItem;

+    }

+    else

+    {

+        RegisterFreeSuballocation(suballocItem);

+        return suballocItem;

+    }

+}

+

+void VmaBlockMetadata::RegisterFreeSuballocation(VmaSuballocationList::iterator item)

+{

+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);

+    VMA_ASSERT(item->size > 0);

+

+    // You may want to enable this validation at the beginning or at the end of

+    // this function, depending on what do you want to check.

+    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

+

+    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

+    {

+        if(m_FreeSuballocationsBySize.empty())

+        {

+            m_FreeSuballocationsBySize.push_back(item);

+        }

+        else

+        {

+            VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);

+        }

+    }

+

+    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

+}

+

+

+void VmaBlockMetadata::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)

+{

+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);

+    VMA_ASSERT(item->size > 0);

+

+    // You may want to enable this validation at the beginning or at the end of

+    // this function, depending on what do you want to check.

+    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

+

+    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

+    {

+        VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(

+            m_FreeSuballocationsBySize.data(),

+            m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),

+            item,

+            VmaSuballocationItemSizeLess());

+        for(size_t index = it - m_FreeSuballocationsBySize.data();

+            index < m_FreeSuballocationsBySize.size();

+            ++index)

+        {

+            if(m_FreeSuballocationsBySize[index] == item)

+            {

+                VmaVectorRemove(m_FreeSuballocationsBySize, index);

+                return;

+            }

+            VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");

+        }

+        VMA_ASSERT(0 && "Not found.");

+    }

+

+    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// class VmaDeviceMemoryBlock

+

+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :

+    m_Metadata(hAllocator),

+    m_MemoryTypeIndex(UINT32_MAX),

+    m_hMemory(VK_NULL_HANDLE),

+    m_MapCount(0),

+    m_pMappedData(VMA_NULL)

+{

+}

+

+void VmaDeviceMemoryBlock::Init(

+    uint32_t newMemoryTypeIndex,

+    VkDeviceMemory newMemory,

+    VkDeviceSize newSize)

+{

+    VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);

+

+    m_MemoryTypeIndex = newMemoryTypeIndex;

+    m_hMemory = newMemory;

+

+    m_Metadata.Init(newSize);

+}

+

+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)

+{

+    // This is the most important assert in the entire library.

+    // Hitting it means you have some memory leak - unreleased VmaAllocation objects.

+    VMA_ASSERT(m_Metadata.IsEmpty() && "Some allocations were not freed before destruction of this memory block!");

+    

+    VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);

+    allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_Metadata.GetSize(), m_hMemory);

+    m_hMemory = VK_NULL_HANDLE;

+}

+

+bool VmaDeviceMemoryBlock::Validate() const

+{

+    if((m_hMemory == VK_NULL_HANDLE) ||

+        (m_Metadata.GetSize() == 0))

+    {

+        return false;

+    }

+    

+    return m_Metadata.Validate();

+}

+

+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)

+{

+    if(count == 0)

+    {

+        return VK_SUCCESS;

+    }

+

+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

+    if(m_MapCount != 0)

+    {

+        m_MapCount += count;

+        VMA_ASSERT(m_pMappedData != VMA_NULL);

+        if(ppData != VMA_NULL)

+        {

+            *ppData = m_pMappedData;

+        }

+        return VK_SUCCESS;

+    }

+    else

+    {

+        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(

+            hAllocator->m_hDevice,

+            m_hMemory,

+            0, // offset

+            VK_WHOLE_SIZE,

+            0, // flags

+            &m_pMappedData);

+        if(result == VK_SUCCESS)

+        {

+            if(ppData != VMA_NULL)

+            {

+                *ppData = m_pMappedData;

+            }

+            m_MapCount = count;

+        }

+        return result;

+    }

+}

+

+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)

+{

+    if(count == 0)

+    {

+        return;

+    }

+

+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

+    if(m_MapCount >= count)

+    {

+        m_MapCount -= count;

+        if(m_MapCount == 0)

+        {

+            m_pMappedData = VMA_NULL;

+            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);

+        }

+    }

+    else

+    {

+        VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");

+    }

+}

+

+VkResult VmaDeviceMemoryBlock::BindBufferMemory(

+    const VmaAllocator hAllocator,

+    const VmaAllocation hAllocation,

+    VkBuffer hBuffer)

+{

+    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&

+        hAllocation->GetBlock() == this);

+    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.

+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

+    return hAllocator->GetVulkanFunctions().vkBindBufferMemory(

+        hAllocator->m_hDevice,

+        hBuffer,

+        m_hMemory,

+        hAllocation->GetOffset());

+}

+

+VkResult VmaDeviceMemoryBlock::BindImageMemory(

+    const VmaAllocator hAllocator,

+    const VmaAllocation hAllocation,

+    VkImage hImage)

+{

+    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&

+        hAllocation->GetBlock() == this);

+    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.

+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

+    return hAllocator->GetVulkanFunctions().vkBindImageMemory(

+        hAllocator->m_hDevice,

+        hImage,

+        m_hMemory,

+        hAllocation->GetOffset());

+}

+

+static void InitStatInfo(VmaStatInfo& outInfo)

+{

+    memset(&outInfo, 0, sizeof(outInfo));

+    outInfo.allocationSizeMin = UINT64_MAX;

+    outInfo.unusedRangeSizeMin = UINT64_MAX;

+}

+

+// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.

+static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)

+{

+    inoutInfo.blockCount += srcInfo.blockCount;

+    inoutInfo.allocationCount += srcInfo.allocationCount;

+    inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;

+    inoutInfo.usedBytes += srcInfo.usedBytes;

+    inoutInfo.unusedBytes += srcInfo.unusedBytes;

+    inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);

+    inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);

+    inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);

+    inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);

+}

+

+static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)

+{

+    inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?

+        VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;

+    inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?

+        VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;

+}

+

+VmaPool_T::VmaPool_T(

+    VmaAllocator hAllocator,

+    const VmaPoolCreateInfo& createInfo) :

+    m_BlockVector(

+        hAllocator,

+        createInfo.memoryTypeIndex,

+        createInfo.blockSize,

+        createInfo.minBlockCount,

+        createInfo.maxBlockCount,

+        (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),

+        createInfo.frameInUseCount,

+        true) // isCustomPool

+{

+}

+

+VmaPool_T::~VmaPool_T()

+{

+}

+

+#if VMA_STATS_STRING_ENABLED

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+VmaBlockVector::VmaBlockVector(

+    VmaAllocator hAllocator,

+    uint32_t memoryTypeIndex,

+    VkDeviceSize preferredBlockSize,

+    size_t minBlockCount,

+    size_t maxBlockCount,

+    VkDeviceSize bufferImageGranularity,

+    uint32_t frameInUseCount,

+    bool isCustomPool) :

+    m_hAllocator(hAllocator),

+    m_MemoryTypeIndex(memoryTypeIndex),

+    m_PreferredBlockSize(preferredBlockSize),

+    m_MinBlockCount(minBlockCount),

+    m_MaxBlockCount(maxBlockCount),

+    m_BufferImageGranularity(bufferImageGranularity),

+    m_FrameInUseCount(frameInUseCount),

+    m_IsCustomPool(isCustomPool),

+    m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),

+    m_HasEmptyBlock(false),

+    m_pDefragmentator(VMA_NULL)

+{

+}

+

+VmaBlockVector::~VmaBlockVector()

+{

+    VMA_ASSERT(m_pDefragmentator == VMA_NULL);

+

+    for(size_t i = m_Blocks.size(); i--; )

+    {

+        m_Blocks[i]->Destroy(m_hAllocator);

+        vma_delete(m_hAllocator, m_Blocks[i]);

+    }

+}

+

+VkResult VmaBlockVector::CreateMinBlocks()

+{

+    for(size_t i = 0; i < m_MinBlockCount; ++i)

+    {

+        VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);

+        if(res != VK_SUCCESS)

+        {

+            return res;

+        }

+    }

+    return VK_SUCCESS;

+}

+

+void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)

+{

+    pStats->size = 0;

+    pStats->unusedSize = 0;

+    pStats->allocationCount = 0;

+    pStats->unusedRangeCount = 0;

+    pStats->unusedRangeSizeMax = 0;

+

+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+

+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

+    {

+        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

+        VMA_ASSERT(pBlock);

+        VMA_HEAVY_ASSERT(pBlock->Validate());

+        pBlock->m_Metadata.AddPoolStats(*pStats);

+    }

+}

+

+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;

+

+VkResult VmaBlockVector::Allocate(

+    VmaPool hCurrentPool,

+    uint32_t currentFrameIndex,

+    const VkMemoryRequirements& vkMemReq,

+    const VmaAllocationCreateInfo& createInfo,

+    VmaSuballocationType suballocType,

+    VmaAllocation* pAllocation)

+{

+    const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;

+    const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;

+

+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+

+    // 1. Search existing allocations. Try to allocate without making other allocations lost.

+    // Forward order in m_Blocks - prefer blocks with smallest amount of free space.

+    for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )

+    {

+        VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];

+        VMA_ASSERT(pCurrBlock);

+        VmaAllocationRequest currRequest = {};

+        if(pCurrBlock->m_Metadata.CreateAllocationRequest(

+            currentFrameIndex,

+            m_FrameInUseCount,

+            m_BufferImageGranularity,

+            vkMemReq.size,

+            vkMemReq.alignment,

+            suballocType,

+            false, // canMakeOtherLost

+            &currRequest))

+        {

+            // Allocate from pCurrBlock.

+            VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);

+

+            if(mapped)

+            {

+                VkResult res = pCurrBlock->Map(m_hAllocator, 1, VMA_NULL);

+                if(res != VK_SUCCESS)

+                {

+                    return res;

+                }

+            }

+            

+            // We no longer have an empty Allocation.

+            if(pCurrBlock->m_Metadata.IsEmpty())

+            {

+                m_HasEmptyBlock = false;

+            }

+            

+            *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);

+            pCurrBlock->m_Metadata.Alloc(currRequest, suballocType, vkMemReq.size, *pAllocation);

+            (*pAllocation)->InitBlockAllocation(

+                hCurrentPool,

+                pCurrBlock,

+                currRequest.offset,

+                vkMemReq.alignment,

+                vkMemReq.size,

+                suballocType,

+                mapped,

+                (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);

+            VMA_HEAVY_ASSERT(pCurrBlock->Validate());

+            VMA_DEBUG_LOG("    Returned from existing allocation #%u", (uint32_t)blockIndex);

+            (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);

+            return VK_SUCCESS;

+        }

+    }

+

+    const bool canCreateNewBlock =

+        ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&

+        (m_Blocks.size() < m_MaxBlockCount);

+

+    // 2. Try to create new block.

+    if(canCreateNewBlock)

+    {

+        // Calculate optimal size for new block.

+        VkDeviceSize newBlockSize = m_PreferredBlockSize;

+        uint32_t newBlockSizeShift = 0;

+        const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;

+

+        // Allocating blocks of other sizes is allowed only in default pools.

+        // In custom pools block size is fixed.

+        if(m_IsCustomPool == false)

+        {

+            // Allocate 1/8, 1/4, 1/2 as first blocks.

+            const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();

+            for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)

+            {

+                const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;

+                if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= vkMemReq.size * 2)

+                {

+                    newBlockSize = smallerNewBlockSize;

+                    ++newBlockSizeShift;

+                }

+                else

+                {

+                    break;

+                }

+            }

+        }

+

+        size_t newBlockIndex = 0;

+        VkResult res = CreateBlock(newBlockSize, &newBlockIndex);

+        // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.

+        if(m_IsCustomPool == false)

+        {

+            while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)

+            {

+                const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;

+                if(smallerNewBlockSize >= vkMemReq.size)

+                {

+                    newBlockSize = smallerNewBlockSize;

+                    ++newBlockSizeShift;

+                    res = CreateBlock(newBlockSize, &newBlockIndex);

+                }

+                else

+                {

+                    break;

+                }

+            }

+        }

+

+        if(res == VK_SUCCESS)

+        {

+            VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];

+            VMA_ASSERT(pBlock->m_Metadata.GetSize() >= vkMemReq.size);

+

+            if(mapped)

+            {

+                res = pBlock->Map(m_hAllocator, 1, VMA_NULL);

+                if(res != VK_SUCCESS)

+                {

+                    return res;

+                }

+            }

+

+            // Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.

+            VmaAllocationRequest allocRequest;

+            pBlock->m_Metadata.CreateFirstAllocationRequest(&allocRequest);

+            *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);

+            pBlock->m_Metadata.Alloc(allocRequest, suballocType, vkMemReq.size, *pAllocation);

+            (*pAllocation)->InitBlockAllocation(

+                hCurrentPool,

+                pBlock,

+                allocRequest.offset,

+                vkMemReq.alignment,

+                vkMemReq.size,

+                suballocType,

+                mapped,

+                (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);

+            VMA_HEAVY_ASSERT(pBlock->Validate());

+            VMA_DEBUG_LOG("    Created new allocation Size=%llu", allocInfo.allocationSize);

+            (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);

+            return VK_SUCCESS;

+        }

+    }

+

+    const bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;

+

+    // 3. Try to allocate from existing blocks with making other allocations lost.

+    if(canMakeOtherLost)

+    {

+        uint32_t tryIndex = 0;

+        for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)

+        {

+            VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;

+            VmaAllocationRequest bestRequest = {};

+            VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;

+

+            // 1. Search existing allocations.

+            // Forward order in m_Blocks - prefer blocks with smallest amount of free space.

+            for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )

+            {

+                VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];

+                VMA_ASSERT(pCurrBlock);

+                VmaAllocationRequest currRequest = {};

+                if(pCurrBlock->m_Metadata.CreateAllocationRequest(

+                    currentFrameIndex,

+                    m_FrameInUseCount,

+                    m_BufferImageGranularity,

+                    vkMemReq.size,

+                    vkMemReq.alignment,

+                    suballocType,

+                    canMakeOtherLost,

+                    &currRequest))

+                {

+                    const VkDeviceSize currRequestCost = currRequest.CalcCost();

+                    if(pBestRequestBlock == VMA_NULL ||

+                        currRequestCost < bestRequestCost)

+                    {

+                        pBestRequestBlock = pCurrBlock;

+                        bestRequest = currRequest;

+                        bestRequestCost = currRequestCost;

+

+                        if(bestRequestCost == 0)

+                        {

+                            break;

+                        }

+                    }

+                }

+            }

+

+            if(pBestRequestBlock != VMA_NULL)

+            {

+                if(mapped)

+                {

+                    VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);

+                    if(res != VK_SUCCESS)

+                    {

+                        return res;

+                    }

+                }

+

+                if(pBestRequestBlock->m_Metadata.MakeRequestedAllocationsLost(

+                    currentFrameIndex,

+                    m_FrameInUseCount,

+                    &bestRequest))

+                {

+                    // We no longer have an empty Allocation.

+                    if(pBestRequestBlock->m_Metadata.IsEmpty())

+                    {

+                        m_HasEmptyBlock = false;

+                    }

+                    // Allocate from this pBlock.

+                    *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);

+                    pBestRequestBlock->m_Metadata.Alloc(bestRequest, suballocType, vkMemReq.size, *pAllocation);

+                    (*pAllocation)->InitBlockAllocation(

+                        hCurrentPool,

+                        pBestRequestBlock,

+                        bestRequest.offset,

+                        vkMemReq.alignment,

+                        vkMemReq.size,

+                        suballocType,

+                        mapped,

+                        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);

+                    VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());

+                    VMA_DEBUG_LOG("    Returned from existing allocation #%u", (uint32_t)blockIndex);

+                    (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);

+                    return VK_SUCCESS;

+                }

+                // else: Some allocations must have been touched while we are here. Next try.

+            }

+            else

+            {

+                // Could not find place in any of the blocks - break outer loop.

+                break;

+            }

+        }

+        /* Maximum number of tries exceeded - a very unlike event when many other

+        threads are simultaneously touching allocations making it impossible to make

+        lost at the same time as we try to allocate. */

+        if(tryIndex == VMA_ALLOCATION_TRY_COUNT)

+        {

+            return VK_ERROR_TOO_MANY_OBJECTS;

+        }

+    }

+

+    return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+}

+

+void VmaBlockVector::Free(

+    VmaAllocation hAllocation)

+{

+    VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;

+

+    // Scope for lock.

+    {

+        VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+

+        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();

+

+        if(hAllocation->IsPersistentMap())

+        {

+            pBlock->Unmap(m_hAllocator, 1);

+        }

+

+        pBlock->m_Metadata.Free(hAllocation);

+        VMA_HEAVY_ASSERT(pBlock->Validate());

+

+        VMA_DEBUG_LOG("  Freed from MemoryTypeIndex=%u", memTypeIndex);

+

+        // pBlock became empty after this deallocation.

+        if(pBlock->m_Metadata.IsEmpty())

+        {

+            // Already has empty Allocation. We don't want to have two, so delete this one.

+            if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount)

+            {

+                pBlockToDelete = pBlock;

+                Remove(pBlock);

+            }

+            // We now have first empty Allocation.

+            else

+            {

+                m_HasEmptyBlock = true;

+            }

+        }

+        // pBlock didn't become empty, but we have another empty block - find and free that one.

+        // (This is optional, heuristics.)

+        else if(m_HasEmptyBlock)

+        {

+            VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();

+            if(pLastBlock->m_Metadata.IsEmpty() && m_Blocks.size() > m_MinBlockCount)

+            {

+                pBlockToDelete = pLastBlock;

+                m_Blocks.pop_back();

+                m_HasEmptyBlock = false;

+            }

+        }

+

+        IncrementallySortBlocks();

+    }

+

+    // Destruction of a free Allocation. Deferred until this point, outside of mutex

+    // lock, for performance reason.

+    if(pBlockToDelete != VMA_NULL)

+    {

+        VMA_DEBUG_LOG("    Deleted empty allocation");

+        pBlockToDelete->Destroy(m_hAllocator);

+        vma_delete(m_hAllocator, pBlockToDelete);

+    }

+}

+

+size_t VmaBlockVector::CalcMaxBlockSize() const

+{

+    size_t result = 0;

+    for(size_t i = m_Blocks.size(); i--; )

+    {

+        result = VMA_MAX((uint64_t)result, (uint64_t)m_Blocks[i]->m_Metadata.GetSize());

+        if(result >= m_PreferredBlockSize)

+        {

+            break;

+        }

+    }

+    return result;

+}

+

+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)

+{

+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

+    {

+        if(m_Blocks[blockIndex] == pBlock)

+        {

+            VmaVectorRemove(m_Blocks, blockIndex);

+            return;

+        }

+    }

+    VMA_ASSERT(0);

+}

+

+void VmaBlockVector::IncrementallySortBlocks()

+{

+    // Bubble sort only until first swap.

+    for(size_t i = 1; i < m_Blocks.size(); ++i)

+    {

+        if(m_Blocks[i - 1]->m_Metadata.GetSumFreeSize() > m_Blocks[i]->m_Metadata.GetSumFreeSize())

+        {

+            VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);

+            return;

+        }

+    }

+}

+

+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)

+{

+    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };

+    allocInfo.memoryTypeIndex = m_MemoryTypeIndex;

+    allocInfo.allocationSize = blockSize;

+    VkDeviceMemory mem = VK_NULL_HANDLE;

+    VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);

+    if(res < 0)

+    {

+        return res;

+    }

+

+    // New VkDeviceMemory successfully created.

+

+    // Create new Allocation for it.

+    VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);

+    pBlock->Init(

+        m_MemoryTypeIndex,

+        mem,

+        allocInfo.allocationSize);

+

+    m_Blocks.push_back(pBlock);

+    if(pNewBlockIndex != VMA_NULL)

+    {

+        *pNewBlockIndex = m_Blocks.size() - 1;

+    }

+

+    return VK_SUCCESS;

+}

+

+#if VMA_STATS_STRING_ENABLED

+

+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)

+{

+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+

+    json.BeginObject();

+

+    if(m_IsCustomPool)

+    {

+        json.WriteString("MemoryTypeIndex");

+        json.WriteNumber(m_MemoryTypeIndex);

+

+        json.WriteString("BlockSize");

+        json.WriteNumber(m_PreferredBlockSize);

+

+        json.WriteString("BlockCount");

+        json.BeginObject(true);

+        if(m_MinBlockCount > 0)

+        {

+            json.WriteString("Min");

+            json.WriteNumber((uint64_t)m_MinBlockCount);

+        }

+        if(m_MaxBlockCount < SIZE_MAX)

+        {

+            json.WriteString("Max");

+            json.WriteNumber((uint64_t)m_MaxBlockCount);

+        }

+        json.WriteString("Cur");

+        json.WriteNumber((uint64_t)m_Blocks.size());

+        json.EndObject();

+

+        if(m_FrameInUseCount > 0)

+        {

+            json.WriteString("FrameInUseCount");

+            json.WriteNumber(m_FrameInUseCount);

+        }

+    }

+    else

+    {

+        json.WriteString("PreferredBlockSize");

+        json.WriteNumber(m_PreferredBlockSize);

+    }

+

+    json.WriteString("Blocks");

+    json.BeginArray();

+    for(size_t i = 0; i < m_Blocks.size(); ++i)

+    {

+        m_Blocks[i]->m_Metadata.PrintDetailedMap(json);

+    }

+    json.EndArray();

+

+    json.EndObject();

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+VmaDefragmentator* VmaBlockVector::EnsureDefragmentator(

+    VmaAllocator hAllocator,

+    uint32_t currentFrameIndex)

+{

+    if(m_pDefragmentator == VMA_NULL)

+    {

+        m_pDefragmentator = vma_new(m_hAllocator, VmaDefragmentator)(

+            hAllocator,

+            this,

+            currentFrameIndex);

+    }

+

+    return m_pDefragmentator;

+}

+

+VkResult VmaBlockVector::Defragment(

+    VmaDefragmentationStats* pDefragmentationStats,

+    VkDeviceSize& maxBytesToMove,

+    uint32_t& maxAllocationsToMove)

+{

+    if(m_pDefragmentator == VMA_NULL)

+    {

+        return VK_SUCCESS;

+    }

+

+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+

+    // Defragment.

+    VkResult result = m_pDefragmentator->Defragment(maxBytesToMove, maxAllocationsToMove);

+

+    // Accumulate statistics.

+    if(pDefragmentationStats != VMA_NULL)

+    {

+        const VkDeviceSize bytesMoved = m_pDefragmentator->GetBytesMoved();

+        const uint32_t allocationsMoved = m_pDefragmentator->GetAllocationsMoved();

+        pDefragmentationStats->bytesMoved += bytesMoved;

+        pDefragmentationStats->allocationsMoved += allocationsMoved;

+        VMA_ASSERT(bytesMoved <= maxBytesToMove);

+        VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);

+        maxBytesToMove -= bytesMoved;

+        maxAllocationsToMove -= allocationsMoved;

+    }

+    

+    // Free empty blocks.

+    m_HasEmptyBlock = false;

+    for(size_t blockIndex = m_Blocks.size(); blockIndex--; )

+    {

+        VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];

+        if(pBlock->m_Metadata.IsEmpty())

+        {

+            if(m_Blocks.size() > m_MinBlockCount)

+            {

+                if(pDefragmentationStats != VMA_NULL)

+                {

+                    ++pDefragmentationStats->deviceMemoryBlocksFreed;

+                    pDefragmentationStats->bytesFreed += pBlock->m_Metadata.GetSize();

+                }

+

+                VmaVectorRemove(m_Blocks, blockIndex);

+                pBlock->Destroy(m_hAllocator);

+                vma_delete(m_hAllocator, pBlock);

+            }

+            else

+            {

+                m_HasEmptyBlock = true;

+            }

+        }

+    }

+

+    return result;

+}

+

+void VmaBlockVector::DestroyDefragmentator()

+{

+    if(m_pDefragmentator != VMA_NULL)

+    {

+        vma_delete(m_hAllocator, m_pDefragmentator);

+        m_pDefragmentator = VMA_NULL;

+    }

+}

+

+void VmaBlockVector::MakePoolAllocationsLost(

+    uint32_t currentFrameIndex,

+    size_t* pLostAllocationCount)

+{

+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+    size_t lostAllocationCount = 0;

+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

+    {

+        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

+        VMA_ASSERT(pBlock);

+        lostAllocationCount += pBlock->m_Metadata.MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);

+    }

+    if(pLostAllocationCount != VMA_NULL)

+    {

+        *pLostAllocationCount = lostAllocationCount;

+    }

+}

+

+void VmaBlockVector::AddStats(VmaStats* pStats)

+{

+    const uint32_t memTypeIndex = m_MemoryTypeIndex;

+    const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);

+

+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);

+

+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

+    {

+        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

+        VMA_ASSERT(pBlock);

+        VMA_HEAVY_ASSERT(pBlock->Validate());

+        VmaStatInfo allocationStatInfo;

+        pBlock->m_Metadata.CalcAllocationStatInfo(allocationStatInfo);

+        VmaAddStatInfo(pStats->total, allocationStatInfo);

+        VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);

+        VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);

+    }

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// VmaDefragmentator members definition

+

+VmaDefragmentator::VmaDefragmentator(

+    VmaAllocator hAllocator,

+    VmaBlockVector* pBlockVector,

+    uint32_t currentFrameIndex) :

+    m_hAllocator(hAllocator),

+    m_pBlockVector(pBlockVector),

+    m_CurrentFrameIndex(currentFrameIndex),

+    m_BytesMoved(0),

+    m_AllocationsMoved(0),

+    m_Allocations(VmaStlAllocator<AllocationInfo>(hAllocator->GetAllocationCallbacks())),

+    m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))

+{

+}

+

+VmaDefragmentator::~VmaDefragmentator()

+{

+    for(size_t i = m_Blocks.size(); i--; )

+    {

+        vma_delete(m_hAllocator, m_Blocks[i]);

+    }

+}

+

+void VmaDefragmentator::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)

+{

+    AllocationInfo allocInfo;

+    allocInfo.m_hAllocation = hAlloc;

+    allocInfo.m_pChanged = pChanged;

+    m_Allocations.push_back(allocInfo);

+}

+

+VkResult VmaDefragmentator::BlockInfo::EnsureMapping(VmaAllocator hAllocator, void** ppMappedData)

+{

+    // It has already been mapped for defragmentation.

+    if(m_pMappedDataForDefragmentation)

+    {

+        *ppMappedData = m_pMappedDataForDefragmentation;

+        return VK_SUCCESS;

+    }

+            

+    // It is originally mapped.

+    if(m_pBlock->GetMappedData())

+    {

+        *ppMappedData = m_pBlock->GetMappedData();

+        return VK_SUCCESS;

+    }

+            

+    // Map on first usage.

+    VkResult res = m_pBlock->Map(hAllocator, 1, &m_pMappedDataForDefragmentation);

+    *ppMappedData = m_pMappedDataForDefragmentation;

+    return res;

+}

+

+void VmaDefragmentator::BlockInfo::Unmap(VmaAllocator hAllocator)

+{

+    if(m_pMappedDataForDefragmentation != VMA_NULL)

+    {

+        m_pBlock->Unmap(hAllocator, 1);

+    }

+}

+

+VkResult VmaDefragmentator::DefragmentRound(

+    VkDeviceSize maxBytesToMove,

+    uint32_t maxAllocationsToMove)

+{

+    if(m_Blocks.empty())

+    {

+        return VK_SUCCESS;

+    }

+

+    size_t srcBlockIndex = m_Blocks.size() - 1;

+    size_t srcAllocIndex = SIZE_MAX;

+    for(;;)

+    {

+        // 1. Find next allocation to move.

+        // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".

+        // 1.2. Then start from last to first m_Allocations - they are sorted from largest to smallest.

+        while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())

+        {

+            if(m_Blocks[srcBlockIndex]->m_Allocations.empty())

+            {

+                // Finished: no more allocations to process.

+                if(srcBlockIndex == 0)

+                {

+                    return VK_SUCCESS;

+                }

+                else

+                {

+                    --srcBlockIndex;

+                    srcAllocIndex = SIZE_MAX;

+                }

+            }

+            else

+            {

+                srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;

+            }

+        }

+        

+        BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];

+        AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];

+

+        const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();

+        const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();

+        const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();

+        const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();

+

+        // 2. Try to find new place for this allocation in preceding or current block.

+        for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)

+        {

+            BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];

+            VmaAllocationRequest dstAllocRequest;

+            if(pDstBlockInfo->m_pBlock->m_Metadata.CreateAllocationRequest(

+                m_CurrentFrameIndex,

+                m_pBlockVector->GetFrameInUseCount(),

+                m_pBlockVector->GetBufferImageGranularity(),

+                size,

+                alignment,

+                suballocType,

+                false, // canMakeOtherLost

+                &dstAllocRequest) &&

+            MoveMakesSense(

+                dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))

+            {

+                VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);

+

+                // Reached limit on number of allocations or bytes to move.

+                if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||

+                    (m_BytesMoved + size > maxBytesToMove))

+                {

+                    return VK_INCOMPLETE;

+                }

+

+                void* pDstMappedData = VMA_NULL;

+                VkResult res = pDstBlockInfo->EnsureMapping(m_hAllocator, &pDstMappedData);

+                if(res != VK_SUCCESS)

+                {

+                    return res;

+                }

+

+                void* pSrcMappedData = VMA_NULL;

+                res = pSrcBlockInfo->EnsureMapping(m_hAllocator, &pSrcMappedData);

+                if(res != VK_SUCCESS)

+                {

+                    return res;

+                }

+                

+                // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.

+                memcpy(

+                    reinterpret_cast<char*>(pDstMappedData) + dstAllocRequest.offset,

+                    reinterpret_cast<char*>(pSrcMappedData) + srcOffset,

+                    static_cast<size_t>(size));

+                

+                pDstBlockInfo->m_pBlock->m_Metadata.Alloc(dstAllocRequest, suballocType, size, allocInfo.m_hAllocation);

+                pSrcBlockInfo->m_pBlock->m_Metadata.FreeAtOffset(srcOffset);

+                

+                allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);

+

+                if(allocInfo.m_pChanged != VMA_NULL)

+                {

+                    *allocInfo.m_pChanged = VK_TRUE;

+                }

+

+                ++m_AllocationsMoved;

+                m_BytesMoved += size;

+

+                VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);

+

+                break;

+            }

+        }

+

+        // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.

+

+        if(srcAllocIndex > 0)

+        {

+            --srcAllocIndex;

+        }

+        else

+        {

+            if(srcBlockIndex > 0)

+            {

+                --srcBlockIndex;

+                srcAllocIndex = SIZE_MAX;

+            }

+            else

+            {

+                return VK_SUCCESS;

+            }

+        }

+    }

+}

+

+VkResult VmaDefragmentator::Defragment(

+    VkDeviceSize maxBytesToMove,

+    uint32_t maxAllocationsToMove)

+{

+    if(m_Allocations.empty())

+    {

+        return VK_SUCCESS;

+    }

+

+    // Create block info for each block.

+    const size_t blockCount = m_pBlockVector->m_Blocks.size();

+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

+    {

+        BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());

+        pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];

+        m_Blocks.push_back(pBlockInfo);

+    }

+

+    // Sort them by m_pBlock pointer value.

+    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());

+

+    // Move allocation infos from m_Allocations to appropriate m_Blocks[memTypeIndex].m_Allocations.

+    for(size_t blockIndex = 0, allocCount = m_Allocations.size(); blockIndex < allocCount; ++blockIndex)

+    {

+        AllocationInfo& allocInfo = m_Allocations[blockIndex];

+        // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.

+        if(allocInfo.m_hAllocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)

+        {

+            VmaDeviceMemoryBlock* pBlock = allocInfo.m_hAllocation->GetBlock();

+            BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());

+            if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)

+            {

+                (*it)->m_Allocations.push_back(allocInfo);

+            }

+            else

+            {

+                VMA_ASSERT(0);

+            }

+        }

+    }

+    m_Allocations.clear();

+

+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

+    {

+        BlockInfo* pBlockInfo = m_Blocks[blockIndex];

+        pBlockInfo->CalcHasNonMovableAllocations();

+        pBlockInfo->SortAllocationsBySizeDescecnding();

+    }

+

+    // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.

+    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());

+

+    // Execute defragmentation rounds (the main part).

+    VkResult result = VK_SUCCESS;

+    for(size_t round = 0; (round < 2) && (result == VK_SUCCESS); ++round)

+    {

+        result = DefragmentRound(maxBytesToMove, maxAllocationsToMove);

+    }

+

+    // Unmap blocks that were mapped for defragmentation.

+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

+    {

+        m_Blocks[blockIndex]->Unmap(m_hAllocator);

+    }

+

+    return result;

+}

+

+bool VmaDefragmentator::MoveMakesSense(

+        size_t dstBlockIndex, VkDeviceSize dstOffset,

+        size_t srcBlockIndex, VkDeviceSize srcOffset)

+{

+    if(dstBlockIndex < srcBlockIndex)

+    {

+        return true;

+    }

+    if(dstBlockIndex > srcBlockIndex)

+    {

+        return false;

+    }

+    if(dstOffset < srcOffset)

+    {

+        return true;

+    }

+    return false;

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// VmaAllocator_T

+

+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :

+    m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),

+    m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),

+    m_hDevice(pCreateInfo->device),

+    m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),

+    m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?

+        *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),

+    m_PreferredLargeHeapBlockSize(0),

+    m_PhysicalDevice(pCreateInfo->physicalDevice),

+    m_CurrentFrameIndex(0),

+    m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks()))

+{

+    VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);    

+

+    memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));

+    memset(&m_MemProps, 0, sizeof(m_MemProps));

+    memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));

+        

+    memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));

+    memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));

+

+    for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)

+    {

+        m_HeapSizeLimit[i] = VK_WHOLE_SIZE;

+    }

+

+    if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)

+    {

+        m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;

+        m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;

+    }

+

+    ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);

+

+    (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);

+    (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);

+

+    m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?

+        pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);

+

+    if(pCreateInfo->pHeapSizeLimit != VMA_NULL)

+    {

+        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)

+        {

+            const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];

+            if(limit != VK_WHOLE_SIZE)

+            {

+                m_HeapSizeLimit[heapIndex] = limit;

+                if(limit < m_MemProps.memoryHeaps[heapIndex].size)

+                {

+                    m_MemProps.memoryHeaps[heapIndex].size = limit;

+                }

+            }

+        }

+    }

+

+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

+    {

+        const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);

+

+        m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(

+            this,

+            memTypeIndex,

+            preferredBlockSize,

+            0,

+            SIZE_MAX,

+            GetBufferImageGranularity(),

+            pCreateInfo->frameInUseCount,

+            false); // isCustomPool

+        // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,

+        // becase minBlockCount is 0.

+        m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));

+    }

+}

+

+VmaAllocator_T::~VmaAllocator_T()

+{

+    VMA_ASSERT(m_Pools.empty());

+

+    for(size_t i = GetMemoryTypeCount(); i--; )

+    {

+        vma_delete(this, m_pDedicatedAllocations[i]);

+        vma_delete(this, m_pBlockVectors[i]);

+    }

+}

+

+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)

+{

+#if VMA_STATIC_VULKAN_FUNCTIONS == 1

+    m_VulkanFunctions.vkGetPhysicalDeviceProperties = &vkGetPhysicalDeviceProperties;

+    m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = &vkGetPhysicalDeviceMemoryProperties;

+    m_VulkanFunctions.vkAllocateMemory = &vkAllocateMemory;

+    m_VulkanFunctions.vkFreeMemory = &vkFreeMemory;

+    m_VulkanFunctions.vkMapMemory = &vkMapMemory;

+    m_VulkanFunctions.vkUnmapMemory = &vkUnmapMemory;

+    m_VulkanFunctions.vkBindBufferMemory = &vkBindBufferMemory;

+    m_VulkanFunctions.vkBindImageMemory = &vkBindImageMemory;

+    m_VulkanFunctions.vkGetBufferMemoryRequirements = &vkGetBufferMemoryRequirements;

+    m_VulkanFunctions.vkGetImageMemoryRequirements = &vkGetImageMemoryRequirements;

+    m_VulkanFunctions.vkCreateBuffer = &vkCreateBuffer;

+    m_VulkanFunctions.vkDestroyBuffer = &vkDestroyBuffer;

+    m_VulkanFunctions.vkCreateImage = &vkCreateImage;

+    m_VulkanFunctions.vkDestroyImage = &vkDestroyImage;

+    if(m_UseKhrDedicatedAllocation)

+    {

+        m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =

+            (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");

+        m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =

+            (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");

+    }

+#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1

+

+#define VMA_COPY_IF_NOT_NULL(funcName) \

+    if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;

+

+    if(pVulkanFunctions != VMA_NULL)

+    {

+        VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);

+        VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);

+        VMA_COPY_IF_NOT_NULL(vkAllocateMemory);

+        VMA_COPY_IF_NOT_NULL(vkFreeMemory);

+        VMA_COPY_IF_NOT_NULL(vkMapMemory);

+        VMA_COPY_IF_NOT_NULL(vkUnmapMemory);

+        VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);

+        VMA_COPY_IF_NOT_NULL(vkBindImageMemory);

+        VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);

+        VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);

+        VMA_COPY_IF_NOT_NULL(vkCreateBuffer);

+        VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);

+        VMA_COPY_IF_NOT_NULL(vkCreateImage);

+        VMA_COPY_IF_NOT_NULL(vkDestroyImage);

+        VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);

+        VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);

+    }

+

+#undef VMA_COPY_IF_NOT_NULL

+

+    // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1

+    // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.

+    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);

+    VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);

+    if(m_UseKhrDedicatedAllocation)

+    {

+        VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);

+        VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);

+    }

+}

+

+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)

+{

+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);

+    const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;

+    const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;

+    return isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize;

+}

+

+VkResult VmaAllocator_T::AllocateMemoryOfType(

+    const VkMemoryRequirements& vkMemReq,

+    bool dedicatedAllocation,

+    VkBuffer dedicatedBuffer,

+    VkImage dedicatedImage,

+    const VmaAllocationCreateInfo& createInfo,

+    uint32_t memTypeIndex,

+    VmaSuballocationType suballocType,

+    VmaAllocation* pAllocation)

+{

+    VMA_ASSERT(pAllocation != VMA_NULL);

+    VMA_DEBUG_LOG("  AllocateMemory: MemoryTypeIndex=%u, Size=%llu", memTypeIndex, vkMemReq.size);

+

+    VmaAllocationCreateInfo finalCreateInfo = createInfo;

+

+    // If memory type is not HOST_VISIBLE, disable MAPPED.

+    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&

+        (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

+    {

+        finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;

+    }

+

+    VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];

+    VMA_ASSERT(blockVector);

+

+    const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();

+    bool preferDedicatedMemory =

+        VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||

+        dedicatedAllocation ||

+        // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.

+        vkMemReq.size > preferredBlockSize / 2;

+

+    if(preferDedicatedMemory &&

+        (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&

+        finalCreateInfo.pool == VK_NULL_HANDLE)

+    {

+        finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;

+    }

+

+    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)

+    {

+        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

+        {

+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+        }

+        else

+        {

+            return AllocateDedicatedMemory(

+                vkMemReq.size,

+                suballocType,

+                memTypeIndex,

+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,

+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,

+                finalCreateInfo.pUserData,

+                dedicatedBuffer,

+                dedicatedImage,

+                pAllocation);

+        }

+    }

+    else

+    {

+        VkResult res = blockVector->Allocate(

+            VK_NULL_HANDLE, // hCurrentPool

+            m_CurrentFrameIndex.load(),

+            vkMemReq,

+            finalCreateInfo,

+            suballocType,

+            pAllocation);

+        if(res == VK_SUCCESS)

+        {

+            return res;

+        }

+

+        // 5. Try dedicated memory.

+        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

+        {

+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+        }

+        else

+        {

+            res = AllocateDedicatedMemory(

+                vkMemReq.size,

+                suballocType,

+                memTypeIndex,

+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,

+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,

+                finalCreateInfo.pUserData,

+                dedicatedBuffer,

+                dedicatedImage,

+                pAllocation);

+            if(res == VK_SUCCESS)

+            {

+                // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.

+                VMA_DEBUG_LOG("    Allocated as DedicatedMemory");

+                return VK_SUCCESS;

+            }

+            else

+            {

+                // Everything failed: Return error code.

+                VMA_DEBUG_LOG("    vkAllocateMemory FAILED");

+                return res;

+            }

+        }

+    }

+}

+

+VkResult VmaAllocator_T::AllocateDedicatedMemory(

+    VkDeviceSize size,

+    VmaSuballocationType suballocType,

+    uint32_t memTypeIndex,

+    bool map,

+    bool isUserDataString,

+    void* pUserData,

+    VkBuffer dedicatedBuffer,

+    VkImage dedicatedImage,

+    VmaAllocation* pAllocation)

+{

+    VMA_ASSERT(pAllocation);

+

+    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };

+    allocInfo.memoryTypeIndex = memTypeIndex;

+    allocInfo.allocationSize = size;

+

+    VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };

+    if(m_UseKhrDedicatedAllocation)

+    {

+        if(dedicatedBuffer != VK_NULL_HANDLE)

+        {

+            VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);

+            dedicatedAllocInfo.buffer = dedicatedBuffer;

+            allocInfo.pNext = &dedicatedAllocInfo;

+        }

+        else if(dedicatedImage != VK_NULL_HANDLE)

+        {

+            dedicatedAllocInfo.image = dedicatedImage;

+            allocInfo.pNext = &dedicatedAllocInfo;

+        }

+    }

+

+    // Allocate VkDeviceMemory.

+    VkDeviceMemory hMemory = VK_NULL_HANDLE;

+    VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);

+    if(res < 0)

+    {

+        VMA_DEBUG_LOG("    vkAllocateMemory FAILED");

+        return res;

+    }

+

+    void* pMappedData = VMA_NULL;

+    if(map)

+    {

+        res = (*m_VulkanFunctions.vkMapMemory)(

+            m_hDevice,

+            hMemory,

+            0,

+            VK_WHOLE_SIZE,

+            0,

+            &pMappedData);

+        if(res < 0)

+        {

+            VMA_DEBUG_LOG("    vkMapMemory FAILED");

+            FreeVulkanMemory(memTypeIndex, size, hMemory);

+            return res;

+        }

+    }

+

+    *pAllocation = vma_new(this, VmaAllocation_T)(m_CurrentFrameIndex.load(), isUserDataString);

+    (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);

+    (*pAllocation)->SetUserData(this, pUserData);

+

+    // Register it in m_pDedicatedAllocations.

+    {

+        VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

+        AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];

+        VMA_ASSERT(pDedicatedAllocations);

+        VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, *pAllocation);

+    }

+

+    VMA_DEBUG_LOG("    Allocated DedicatedMemory MemoryTypeIndex=#%u", memTypeIndex);

+

+    return VK_SUCCESS;

+}

+

+void VmaAllocator_T::GetBufferMemoryRequirements(

+    VkBuffer hBuffer,

+    VkMemoryRequirements& memReq,

+    bool& requiresDedicatedAllocation,

+    bool& prefersDedicatedAllocation) const

+{

+    if(m_UseKhrDedicatedAllocation)

+    {

+        VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };

+        memReqInfo.buffer = hBuffer;

+

+        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };

+

+        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };

+        memReq2.pNext = &memDedicatedReq;

+

+        (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);

+

+        memReq = memReq2.memoryRequirements;

+        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);

+        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);

+    }

+    else

+    {

+        (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);

+        requiresDedicatedAllocation = false;

+        prefersDedicatedAllocation  = false;

+    }

+}

+

+void VmaAllocator_T::GetImageMemoryRequirements(

+    VkImage hImage,

+    VkMemoryRequirements& memReq,

+    bool& requiresDedicatedAllocation,

+    bool& prefersDedicatedAllocation) const

+{

+    if(m_UseKhrDedicatedAllocation)

+    {

+        VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };

+        memReqInfo.image = hImage;

+

+        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };

+

+        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };

+        memReq2.pNext = &memDedicatedReq;

+

+        (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);

+

+        memReq = memReq2.memoryRequirements;

+        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);

+        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);

+    }

+    else

+    {

+        (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);

+        requiresDedicatedAllocation = false;

+        prefersDedicatedAllocation  = false;

+    }

+}

+

+VkResult VmaAllocator_T::AllocateMemory(

+    const VkMemoryRequirements& vkMemReq,

+    bool requiresDedicatedAllocation,

+    bool prefersDedicatedAllocation,

+    VkBuffer dedicatedBuffer,

+    VkImage dedicatedImage,

+    const VmaAllocationCreateInfo& createInfo,

+    VmaSuballocationType suballocType,

+    VmaAllocation* pAllocation)

+{

+    if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&

+        (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

+    {

+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");

+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+    }

+    if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&

+        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)

+    {

+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");

+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+    }

+    if(requiresDedicatedAllocation)

+    {

+        if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

+        {

+            VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");

+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+        }

+        if(createInfo.pool != VK_NULL_HANDLE)

+        {

+            VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");

+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+        }

+    }

+    if((createInfo.pool != VK_NULL_HANDLE) &&

+        ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))

+    {

+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");

+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+    }

+

+    if(createInfo.pool != VK_NULL_HANDLE)

+    {

+        return createInfo.pool->m_BlockVector.Allocate(

+            createInfo.pool,

+            m_CurrentFrameIndex.load(),

+            vkMemReq,

+            createInfo,

+            suballocType,

+            pAllocation);

+    }

+    else

+    {

+        // Bit mask of memory Vulkan types acceptable for this allocation.

+        uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;

+        uint32_t memTypeIndex = UINT32_MAX;

+        VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);

+        if(res == VK_SUCCESS)

+        {

+            res = AllocateMemoryOfType(

+                vkMemReq,

+                requiresDedicatedAllocation || prefersDedicatedAllocation,

+                dedicatedBuffer,

+                dedicatedImage,

+                createInfo,

+                memTypeIndex,

+                suballocType,

+                pAllocation);

+            // Succeeded on first try.

+            if(res == VK_SUCCESS)

+            {

+                return res;

+            }

+            // Allocation from this memory type failed. Try other compatible memory types.

+            else

+            {

+                for(;;)

+                {

+                    // Remove old memTypeIndex from list of possibilities.

+                    memoryTypeBits &= ~(1u << memTypeIndex);

+                    // Find alternative memTypeIndex.

+                    res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);

+                    if(res == VK_SUCCESS)

+                    {

+                        res = AllocateMemoryOfType(

+                            vkMemReq,

+                            requiresDedicatedAllocation || prefersDedicatedAllocation,

+                            dedicatedBuffer,

+                            dedicatedImage,

+                            createInfo,

+                            memTypeIndex,

+                            suballocType,

+                            pAllocation);

+                        // Allocation from this alternative memory type succeeded.

+                        if(res == VK_SUCCESS)

+                        {

+                            return res;

+                        }

+                        // else: Allocation from this memory type failed. Try next one - next loop iteration.

+                    }

+                    // No other matching memory type index could be found.

+                    else

+                    {

+                        // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.

+                        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

+                    }

+                }

+            }

+        }

+        // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.

+        else

+            return res;

+    }

+}

+

+void VmaAllocator_T::FreeMemory(const VmaAllocation allocation)

+{

+    VMA_ASSERT(allocation);

+

+    if(allocation->CanBecomeLost() == false ||

+        allocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)

+    {

+        switch(allocation->GetType())

+        {

+        case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

+            {

+                VmaBlockVector* pBlockVector = VMA_NULL;

+                VmaPool hPool = allocation->GetPool();

+                if(hPool != VK_NULL_HANDLE)

+                {

+                    pBlockVector = &hPool->m_BlockVector;

+                }

+                else

+                {

+                    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();

+                    pBlockVector = m_pBlockVectors[memTypeIndex];

+                }

+                pBlockVector->Free(allocation);

+            }

+            break;

+        case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

+            FreeDedicatedMemory(allocation);

+            break;

+        default:

+            VMA_ASSERT(0);

+        }

+    }

+

+    allocation->SetUserData(this, VMA_NULL);

+    vma_delete(this, allocation);

+}

+

+void VmaAllocator_T::CalculateStats(VmaStats* pStats)

+{

+    // Initialize.

+    InitStatInfo(pStats->total);

+    for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)

+        InitStatInfo(pStats->memoryType[i]);

+    for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)

+        InitStatInfo(pStats->memoryHeap[i]);

+    

+    // Process default pools.

+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

+    {

+        VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];

+        VMA_ASSERT(pBlockVector);

+        pBlockVector->AddStats(pStats);

+    }

+

+    // Process custom pools.

+    {

+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);

+        for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)

+        {

+            m_Pools[poolIndex]->GetBlockVector().AddStats(pStats);

+        }

+    }

+

+    // Process dedicated allocations.

+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

+    {

+        const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);

+        VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

+        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];

+        VMA_ASSERT(pDedicatedAllocVector);

+        for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)

+        {

+            VmaStatInfo allocationStatInfo;

+            (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);

+            VmaAddStatInfo(pStats->total, allocationStatInfo);

+            VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);

+            VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);

+        }

+    }

+

+    // Postprocess.

+    VmaPostprocessCalcStatInfo(pStats->total);

+    for(size_t i = 0; i < GetMemoryTypeCount(); ++i)

+        VmaPostprocessCalcStatInfo(pStats->memoryType[i]);

+    for(size_t i = 0; i < GetMemoryHeapCount(); ++i)

+        VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);

+}

+

+static const uint32_t VMA_VENDOR_ID_AMD = 4098;

+

+VkResult VmaAllocator_T::Defragment(

+    VmaAllocation* pAllocations,

+    size_t allocationCount,

+    VkBool32* pAllocationsChanged,

+    const VmaDefragmentationInfo* pDefragmentationInfo,

+    VmaDefragmentationStats* pDefragmentationStats)

+{

+    if(pAllocationsChanged != VMA_NULL)

+    {

+        memset(pAllocationsChanged, 0, sizeof(*pAllocationsChanged));

+    }

+    if(pDefragmentationStats != VMA_NULL)

+    {

+        memset(pDefragmentationStats, 0, sizeof(*pDefragmentationStats));

+    }

+

+    const uint32_t currentFrameIndex = m_CurrentFrameIndex.load();

+

+    VmaMutexLock poolsLock(m_PoolsMutex, m_UseMutex);

+

+    const size_t poolCount = m_Pools.size();

+

+    // Dispatch pAllocations among defragmentators. Create them in BlockVectors when necessary.

+    for(size_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)

+    {

+        VmaAllocation hAlloc = pAllocations[allocIndex];

+        VMA_ASSERT(hAlloc);

+        const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();

+        // DedicatedAlloc cannot be defragmented.

+        if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&

+            // Only HOST_VISIBLE memory types can be defragmented.

+            ((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) &&

+            // Lost allocation cannot be defragmented.

+            (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))

+        {

+            VmaBlockVector* pAllocBlockVector = VMA_NULL;

+

+            const VmaPool hAllocPool = hAlloc->GetPool();

+            // This allocation belongs to custom pool.

+            if(hAllocPool != VK_NULL_HANDLE)

+            {

+                pAllocBlockVector = &hAllocPool->GetBlockVector();

+            }

+            // This allocation belongs to general pool.

+            else

+            {

+                pAllocBlockVector = m_pBlockVectors[memTypeIndex];

+            }

+

+            VmaDefragmentator* const pDefragmentator = pAllocBlockVector->EnsureDefragmentator(this, currentFrameIndex);

+

+            VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?

+                &pAllocationsChanged[allocIndex] : VMA_NULL;

+            pDefragmentator->AddAllocation(hAlloc, pChanged);

+        }

+    }

+

+    VkResult result = VK_SUCCESS;

+

+    // ======== Main processing.

+

+    VkDeviceSize maxBytesToMove = SIZE_MAX;

+    uint32_t maxAllocationsToMove = UINT32_MAX;

+    if(pDefragmentationInfo != VMA_NULL)

+    {

+        maxBytesToMove = pDefragmentationInfo->maxBytesToMove;

+        maxAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;

+    }

+

+    // Process standard memory.

+    for(uint32_t memTypeIndex = 0;

+        (memTypeIndex < GetMemoryTypeCount()) && (result == VK_SUCCESS);

+        ++memTypeIndex)

+    {

+        // Only HOST_VISIBLE memory types can be defragmented.

+        if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)

+        {

+            result = m_pBlockVectors[memTypeIndex]->Defragment(

+                pDefragmentationStats,

+                maxBytesToMove,

+                maxAllocationsToMove);

+        }

+    }

+

+    // Process custom pools.

+    for(size_t poolIndex = 0; (poolIndex < poolCount) && (result == VK_SUCCESS); ++poolIndex)

+    {

+        result = m_Pools[poolIndex]->GetBlockVector().Defragment(

+            pDefragmentationStats,

+            maxBytesToMove,

+            maxAllocationsToMove);

+    }

+

+    // ========  Destroy defragmentators.

+

+    // Process custom pools.

+    for(size_t poolIndex = poolCount; poolIndex--; )

+    {

+        m_Pools[poolIndex]->GetBlockVector().DestroyDefragmentator();

+    }

+

+    // Process standard memory.

+    for(uint32_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )

+    {

+        if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)

+        {

+            m_pBlockVectors[memTypeIndex]->DestroyDefragmentator();

+        }

+    }

+

+    return result;

+}

+

+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)

+{

+    if(hAllocation->CanBecomeLost())

+    {

+        /*

+        Warning: This is a carefully designed algorithm.

+        Do not modify unless you really know what you're doing :)

+        */

+        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();

+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();

+        for(;;)

+        {

+            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)

+            {

+                pAllocationInfo->memoryType = UINT32_MAX;

+                pAllocationInfo->deviceMemory = VK_NULL_HANDLE;

+                pAllocationInfo->offset = 0;

+                pAllocationInfo->size = hAllocation->GetSize();

+                pAllocationInfo->pMappedData = VMA_NULL;

+                pAllocationInfo->pUserData = hAllocation->GetUserData();

+                return;

+            }

+            else if(localLastUseFrameIndex == localCurrFrameIndex)

+            {

+                pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();

+                pAllocationInfo->deviceMemory = hAllocation->GetMemory();

+                pAllocationInfo->offset = hAllocation->GetOffset();

+                pAllocationInfo->size = hAllocation->GetSize();

+                pAllocationInfo->pMappedData = VMA_NULL;

+                pAllocationInfo->pUserData = hAllocation->GetUserData();

+                return;

+            }

+            else // Last use time earlier than current time.

+            {

+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))

+                {

+                    localLastUseFrameIndex = localCurrFrameIndex;

+                }

+            }

+        }

+    }

+    else

+    {

+        pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();

+        pAllocationInfo->deviceMemory = hAllocation->GetMemory();

+        pAllocationInfo->offset = hAllocation->GetOffset();

+        pAllocationInfo->size = hAllocation->GetSize();

+        pAllocationInfo->pMappedData = hAllocation->GetMappedData();

+        pAllocationInfo->pUserData = hAllocation->GetUserData();

+    }

+}

+

+bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)

+{

+    // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.

+    if(hAllocation->CanBecomeLost())

+    {

+        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();

+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();

+        for(;;)

+        {

+            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)

+            {

+                return false;

+            }

+            else if(localLastUseFrameIndex == localCurrFrameIndex)

+            {

+                return true;

+            }

+            else // Last use time earlier than current time.

+            {

+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))

+                {

+                    localLastUseFrameIndex = localCurrFrameIndex;

+                }

+            }

+        }

+    }

+    else

+    {

+        return true;

+    }

+}

+

+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)

+{

+    VMA_DEBUG_LOG("  CreatePool: MemoryTypeIndex=%u", pCreateInfo->memoryTypeIndex);

+

+    VmaPoolCreateInfo newCreateInfo = *pCreateInfo;

+

+    if(newCreateInfo.maxBlockCount == 0)

+    {

+        newCreateInfo.maxBlockCount = SIZE_MAX;

+    }

+    if(newCreateInfo.blockSize == 0)

+    {

+        newCreateInfo.blockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);

+    }

+

+    *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);

+

+    VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();

+    if(res != VK_SUCCESS)

+    {

+        vma_delete(this, *pPool);

+        *pPool = VMA_NULL;

+        return res;

+    }

+

+    // Add to m_Pools.

+    {

+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);

+        VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);

+    }

+

+    return VK_SUCCESS;

+}

+

+void VmaAllocator_T::DestroyPool(VmaPool pool)

+{

+    // Remove from m_Pools.

+    {

+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);

+        bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);

+        VMA_ASSERT(success && "Pool not found in Allocator.");

+    }

+

+    vma_delete(this, pool);

+}

+

+void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)

+{

+    pool->m_BlockVector.GetPoolStats(pPoolStats);

+}

+

+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)

+{

+    m_CurrentFrameIndex.store(frameIndex);

+}

+

+void VmaAllocator_T::MakePoolAllocationsLost(

+    VmaPool hPool,

+    size_t* pLostAllocationCount)

+{

+    hPool->m_BlockVector.MakePoolAllocationsLost(

+        m_CurrentFrameIndex.load(),

+        pLostAllocationCount);

+}

+

+void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)

+{

+    *pAllocation = vma_new(this, VmaAllocation_T)(VMA_FRAME_INDEX_LOST, false);

+    (*pAllocation)->InitLost();

+}

+

+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)

+{

+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);

+

+    VkResult res;

+    if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)

+    {

+        VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);

+        if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize)

+        {

+            res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);

+            if(res == VK_SUCCESS)

+            {

+                m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;

+            }

+        }

+        else

+        {

+            res = VK_ERROR_OUT_OF_DEVICE_MEMORY;

+        }

+    }

+    else

+    {

+        res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);

+    }

+

+    if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)

+    {

+        (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);

+    }

+

+    return res;

+}

+

+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)

+{

+    if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)

+    {

+        (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);

+    }

+

+    (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());

+

+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);

+    if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)

+    {

+        VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);

+        m_HeapSizeLimit[heapIndex] += size;

+    }

+}

+

+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)

+{

+    if(hAllocation->CanBecomeLost())

+    {

+        return VK_ERROR_MEMORY_MAP_FAILED;

+    }

+

+    switch(hAllocation->GetType())

+    {

+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

+        {

+            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();

+            char *pBytes = VMA_NULL;

+            VkResult res = pBlock->Map(this, 1, (void**)&pBytes);

+            if(res == VK_SUCCESS)

+            {

+                *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();

+                hAllocation->BlockAllocMap();

+            }

+            return res;

+        }

+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

+        return hAllocation->DedicatedAllocMap(this, ppData);

+    default:

+        VMA_ASSERT(0);

+        return VK_ERROR_MEMORY_MAP_FAILED;

+    }

+}

+

+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)

+{

+    switch(hAllocation->GetType())

+    {

+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

+        {

+            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();

+            hAllocation->BlockAllocUnmap();

+            pBlock->Unmap(this, 1);

+        }

+        break;

+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

+        hAllocation->DedicatedAllocUnmap(this);

+        break;

+    default:

+        VMA_ASSERT(0);

+    }

+}

+

+VkResult VmaAllocator_T::BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer)

+{

+    VkResult res = VK_SUCCESS;

+    switch(hAllocation->GetType())

+    {

+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

+        res = GetVulkanFunctions().vkBindBufferMemory(

+            m_hDevice,

+            hBuffer,

+            hAllocation->GetMemory(),

+            0); //memoryOffset

+        break;

+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

+    {

+        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();

+        VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");

+        res = pBlock->BindBufferMemory(this, hAllocation, hBuffer);

+        break;

+    }

+    default:

+        VMA_ASSERT(0);

+    }

+    return res;

+}

+

+VkResult VmaAllocator_T::BindImageMemory(VmaAllocation hAllocation, VkImage hImage)

+{

+    VkResult res = VK_SUCCESS;

+    switch(hAllocation->GetType())

+    {

+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

+        res = GetVulkanFunctions().vkBindImageMemory(

+            m_hDevice,

+            hImage,

+            hAllocation->GetMemory(),

+            0); //memoryOffset

+        break;

+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

+    {

+        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();

+        VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");

+        res = pBlock->BindImageMemory(this, hAllocation, hImage);

+        break;

+    }

+    default:

+        VMA_ASSERT(0);

+    }

+    return res;

+}

+

+void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation)

+{

+    VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);

+

+    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();

+    {

+        VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

+        AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];

+        VMA_ASSERT(pDedicatedAllocations);

+        bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);

+        VMA_ASSERT(success);

+    }

+

+    VkDeviceMemory hMemory = allocation->GetMemory();

+    

+    if(allocation->GetMappedData() != VMA_NULL)

+    {

+        (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);

+    }

+    

+    FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);

+

+    VMA_DEBUG_LOG("    Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);

+}

+

+#if VMA_STATS_STRING_ENABLED

+

+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)

+{

+    bool dedicatedAllocationsStarted = false;

+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

+    {

+        VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

+        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];

+        VMA_ASSERT(pDedicatedAllocVector);

+        if(pDedicatedAllocVector->empty() == false)

+        {

+            if(dedicatedAllocationsStarted == false)

+            {

+                dedicatedAllocationsStarted = true;

+                json.WriteString("DedicatedAllocations");

+                json.BeginObject();

+            }

+

+            json.BeginString("Type ");

+            json.ContinueString(memTypeIndex);

+            json.EndString();

+                

+            json.BeginArray();

+

+            for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)

+            {

+                const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];

+                json.BeginObject(true);

+                    

+                json.WriteString("Type");

+                json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[hAlloc->GetSuballocationType()]);

+

+                json.WriteString("Size");

+                json.WriteNumber(hAlloc->GetSize());

+

+                const void* pUserData = hAlloc->GetUserData();

+                if(pUserData != VMA_NULL)

+                {

+                    json.WriteString("UserData");

+                    if(hAlloc->IsUserDataString())

+                    {

+                        json.WriteString((const char*)pUserData);

+                    }

+                    else

+                    {

+                        json.BeginString();

+                        json.ContinueString_Pointer(pUserData);

+                        json.EndString();

+                    }

+                }

+

+                json.EndObject();

+            }

+

+            json.EndArray();

+        }

+    }

+    if(dedicatedAllocationsStarted)

+    {

+        json.EndObject();

+    }

+

+    {

+        bool allocationsStarted = false;

+        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

+        {

+            if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)

+            {

+                if(allocationsStarted == false)

+                {

+                    allocationsStarted = true;

+                    json.WriteString("DefaultPools");

+                    json.BeginObject();

+                }

+

+                json.BeginString("Type ");

+                json.ContinueString(memTypeIndex);

+                json.EndString();

+

+                m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);

+            }

+        }

+        if(allocationsStarted)

+        {

+            json.EndObject();

+        }

+    }

+

+    {

+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);

+        const size_t poolCount = m_Pools.size();

+        if(poolCount > 0)

+        {

+            json.WriteString("Pools");

+            json.BeginArray();

+            for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)

+            {

+                m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);

+            }

+            json.EndArray();

+        }

+    }

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+static VkResult AllocateMemoryForImage(

+    VmaAllocator allocator,

+    VkImage image,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    VmaSuballocationType suballocType,

+    VmaAllocation* pAllocation)

+{

+    VMA_ASSERT(allocator && (image != VK_NULL_HANDLE) && pAllocationCreateInfo && pAllocation);

+    

+    VkMemoryRequirements vkMemReq = {};

+    bool requiresDedicatedAllocation = false;

+    bool prefersDedicatedAllocation  = false;

+    allocator->GetImageMemoryRequirements(image, vkMemReq,

+        requiresDedicatedAllocation, prefersDedicatedAllocation);

+

+    return allocator->AllocateMemory(

+        vkMemReq,

+        requiresDedicatedAllocation,

+        prefersDedicatedAllocation,

+        VK_NULL_HANDLE, // dedicatedBuffer

+        image, // dedicatedImage

+        *pAllocationCreateInfo,

+        suballocType,

+        pAllocation);

+}

+

+////////////////////////////////////////////////////////////////////////////////

+// Public interface

+

+VkResult vmaCreateAllocator(

+    const VmaAllocatorCreateInfo* pCreateInfo,

+    VmaAllocator* pAllocator)

+{

+    VMA_ASSERT(pCreateInfo && pAllocator);

+    VMA_DEBUG_LOG("vmaCreateAllocator");

+    *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);

+    return VK_SUCCESS;

+}

+

+void vmaDestroyAllocator(

+    VmaAllocator allocator)

+{

+    if(allocator != VK_NULL_HANDLE)

+    {

+        VMA_DEBUG_LOG("vmaDestroyAllocator");

+        VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;

+        vma_delete(&allocationCallbacks, allocator);

+    }

+}

+

+void vmaGetPhysicalDeviceProperties(

+    VmaAllocator allocator,

+    const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)

+{

+    VMA_ASSERT(allocator && ppPhysicalDeviceProperties);

+    *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;

+}

+

+void vmaGetMemoryProperties(

+    VmaAllocator allocator,

+    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)

+{

+    VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);

+    *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;

+}

+

+void vmaGetMemoryTypeProperties(

+    VmaAllocator allocator,

+    uint32_t memoryTypeIndex,

+    VkMemoryPropertyFlags* pFlags)

+{

+    VMA_ASSERT(allocator && pFlags);

+    VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());

+    *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;

+}

+

+void vmaSetCurrentFrameIndex(

+    VmaAllocator allocator,

+    uint32_t frameIndex)

+{

+    VMA_ASSERT(allocator);

+    VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->SetCurrentFrameIndex(frameIndex);

+}

+

+void vmaCalculateStats(

+    VmaAllocator allocator,

+    VmaStats* pStats)

+{

+    VMA_ASSERT(allocator && pStats);

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+    allocator->CalculateStats(pStats);

+}

+

+#if VMA_STATS_STRING_ENABLED

+

+void vmaBuildStatsString(

+    VmaAllocator allocator,

+    char** ppStatsString,

+    VkBool32 detailedMap)

+{

+    VMA_ASSERT(allocator && ppStatsString);

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    VmaStringBuilder sb(allocator);

+    {

+        VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);

+        json.BeginObject();

+

+        VmaStats stats;

+        allocator->CalculateStats(&stats);

+

+        json.WriteString("Total");

+        VmaPrintStatInfo(json, stats.total);

+    

+        for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)

+        {

+            json.BeginString("Heap ");

+            json.ContinueString(heapIndex);

+            json.EndString();

+            json.BeginObject();

+

+            json.WriteString("Size");

+            json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);

+

+            json.WriteString("Flags");

+            json.BeginArray(true);

+            if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)

+            {

+                json.WriteString("DEVICE_LOCAL");

+            }

+            json.EndArray();

+

+            if(stats.memoryHeap[heapIndex].blockCount > 0)

+            {

+                json.WriteString("Stats");

+                VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);

+            }

+

+            for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)

+            {

+                if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)

+                {

+                    json.BeginString("Type ");

+                    json.ContinueString(typeIndex);

+                    json.EndString();

+

+                    json.BeginObject();

+

+                    json.WriteString("Flags");

+                    json.BeginArray(true);

+                    VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;

+                    if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)

+                    {

+                        json.WriteString("DEVICE_LOCAL");

+                    }

+                    if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)

+                    {

+                        json.WriteString("HOST_VISIBLE");

+                    }

+                    if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)

+                    {

+                        json.WriteString("HOST_COHERENT");

+                    }

+                    if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)

+                    {

+                        json.WriteString("HOST_CACHED");

+                    }

+                    if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)

+                    {

+                        json.WriteString("LAZILY_ALLOCATED");

+                    }

+                    json.EndArray();

+

+                    if(stats.memoryType[typeIndex].blockCount > 0)

+                    {

+                        json.WriteString("Stats");

+                        VmaPrintStatInfo(json, stats.memoryType[typeIndex]);

+                    }

+

+                    json.EndObject();

+                }

+            }

+

+            json.EndObject();

+        }

+        if(detailedMap == VK_TRUE)

+        {

+            allocator->PrintDetailedMap(json);

+        }

+

+        json.EndObject();

+    }

+

+    const size_t len = sb.GetLength();

+    char* const pChars = vma_new_array(allocator, char, len + 1);

+    if(len > 0)

+    {

+        memcpy(pChars, sb.GetData(), len);

+    }

+    pChars[len] = '\0';

+    *ppStatsString = pChars;

+}

+

+void vmaFreeStatsString(

+    VmaAllocator allocator,

+    char* pStatsString)

+{

+    if(pStatsString != VMA_NULL)

+    {

+        VMA_ASSERT(allocator);

+        size_t len = strlen(pStatsString);

+        vma_delete_array(allocator, pStatsString, len + 1);

+    }

+}

+

+#endif // #if VMA_STATS_STRING_ENABLED

+

+/*

+This function is not protected by any mutex because it just reads immutable data.

+*/

+VkResult vmaFindMemoryTypeIndex(

+    VmaAllocator allocator,

+    uint32_t memoryTypeBits,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    uint32_t* pMemoryTypeIndex)

+{

+    VMA_ASSERT(allocator != VK_NULL_HANDLE);

+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);

+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);

+

+    if(pAllocationCreateInfo->memoryTypeBits != 0)

+    {

+        memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;

+    }

+    

+    uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;

+    uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;

+

+    // Convert usage to requiredFlags and preferredFlags.

+    switch(pAllocationCreateInfo->usage)

+    {

+    case VMA_MEMORY_USAGE_UNKNOWN:

+        break;

+    case VMA_MEMORY_USAGE_GPU_ONLY:

+        preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;

+        break;

+    case VMA_MEMORY_USAGE_CPU_ONLY:

+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;

+        break;

+    case VMA_MEMORY_USAGE_CPU_TO_GPU:

+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

+        preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;

+        break;

+    case VMA_MEMORY_USAGE_GPU_TO_CPU:

+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

+        preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;

+        break;

+    default:

+        break;

+    }

+

+    *pMemoryTypeIndex = UINT32_MAX;

+    uint32_t minCost = UINT32_MAX;

+    for(uint32_t memTypeIndex = 0, memTypeBit = 1;

+        memTypeIndex < allocator->GetMemoryTypeCount();

+        ++memTypeIndex, memTypeBit <<= 1)

+    {

+        // This memory type is acceptable according to memoryTypeBits bitmask.

+        if((memTypeBit & memoryTypeBits) != 0)

+        {

+            const VkMemoryPropertyFlags currFlags =

+                allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;

+            // This memory type contains requiredFlags.

+            if((requiredFlags & ~currFlags) == 0)

+            {

+                // Calculate cost as number of bits from preferredFlags not present in this memory type.

+                uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags);

+                // Remember memory type with lowest cost.

+                if(currCost < minCost)

+                {

+                    *pMemoryTypeIndex = memTypeIndex;

+                    if(currCost == 0)

+                    {

+                        return VK_SUCCESS;

+                    }

+                    minCost = currCost;

+                }

+            }

+        }

+    }

+    return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;

+}

+

+VkResult vmaFindMemoryTypeIndexForBufferInfo(

+    VmaAllocator allocator,

+    const VkBufferCreateInfo* pBufferCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    uint32_t* pMemoryTypeIndex)

+{

+    VMA_ASSERT(allocator != VK_NULL_HANDLE);

+    VMA_ASSERT(pBufferCreateInfo != VMA_NULL);

+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);

+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);

+

+    const VkDevice hDev = allocator->m_hDevice;

+    VkBuffer hBuffer = VK_NULL_HANDLE;

+    VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(

+        hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);

+    if(res == VK_SUCCESS)

+    {

+        VkMemoryRequirements memReq = {};

+        allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(

+            hDev, hBuffer, &memReq);

+

+        res = vmaFindMemoryTypeIndex(

+            allocator,

+            memReq.memoryTypeBits,

+            pAllocationCreateInfo,

+            pMemoryTypeIndex);

+

+        allocator->GetVulkanFunctions().vkDestroyBuffer(

+            hDev, hBuffer, allocator->GetAllocationCallbacks());

+    }

+    return res;

+}

+

+VkResult vmaFindMemoryTypeIndexForImageInfo(

+    VmaAllocator allocator,

+    const VkImageCreateInfo* pImageCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    uint32_t* pMemoryTypeIndex)

+{

+    VMA_ASSERT(allocator != VK_NULL_HANDLE);

+    VMA_ASSERT(pImageCreateInfo != VMA_NULL);

+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);

+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);

+

+    const VkDevice hDev = allocator->m_hDevice;

+    VkImage hImage = VK_NULL_HANDLE;

+    VkResult res = allocator->GetVulkanFunctions().vkCreateImage(

+        hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);

+    if(res == VK_SUCCESS)

+    {

+        VkMemoryRequirements memReq = {};

+        allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(

+            hDev, hImage, &memReq);

+

+        res = vmaFindMemoryTypeIndex(

+            allocator,

+            memReq.memoryTypeBits,

+            pAllocationCreateInfo,

+            pMemoryTypeIndex);

+

+        allocator->GetVulkanFunctions().vkDestroyImage(

+            hDev, hImage, allocator->GetAllocationCallbacks());

+    }

+    return res;

+}

+

+VkResult vmaCreatePool(

+	VmaAllocator allocator,

+	const VmaPoolCreateInfo* pCreateInfo,

+	VmaPool* pPool)

+{

+    VMA_ASSERT(allocator && pCreateInfo && pPool);

+

+    VMA_DEBUG_LOG("vmaCreatePool");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    return allocator->CreatePool(pCreateInfo, pPool);

+}

+

+void vmaDestroyPool(

+    VmaAllocator allocator,

+    VmaPool pool)

+{

+    VMA_ASSERT(allocator);

+

+    if(pool == VK_NULL_HANDLE)

+    {

+        return;

+    }

+

+    VMA_DEBUG_LOG("vmaDestroyPool");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->DestroyPool(pool);

+}

+

+void vmaGetPoolStats(

+    VmaAllocator allocator,

+    VmaPool pool,

+    VmaPoolStats* pPoolStats)

+{

+    VMA_ASSERT(allocator && pool && pPoolStats);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->GetPoolStats(pool, pPoolStats);

+}

+

+void vmaMakePoolAllocationsLost(

+    VmaAllocator allocator,

+    VmaPool pool,

+    size_t* pLostAllocationCount)

+{

+    VMA_ASSERT(allocator && pool);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);

+}

+

+VkResult vmaAllocateMemory(

+    VmaAllocator allocator,

+    const VkMemoryRequirements* pVkMemoryRequirements,

+    const VmaAllocationCreateInfo* pCreateInfo,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo)

+{

+    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);

+

+    VMA_DEBUG_LOG("vmaAllocateMemory");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+	VkResult result = allocator->AllocateMemory(

+        *pVkMemoryRequirements,

+        false, // requiresDedicatedAllocation

+        false, // prefersDedicatedAllocation

+        VK_NULL_HANDLE, // dedicatedBuffer

+        VK_NULL_HANDLE, // dedicatedImage

+        *pCreateInfo,

+        VMA_SUBALLOCATION_TYPE_UNKNOWN,

+        pAllocation);

+

+    if(pAllocationInfo && result == VK_SUCCESS)

+    {

+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

+    }

+

+	return result;

+}

+

+VkResult vmaAllocateMemoryForBuffer(

+    VmaAllocator allocator,

+    VkBuffer buffer,

+    const VmaAllocationCreateInfo* pCreateInfo,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo)

+{

+    VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);

+

+    VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    VkMemoryRequirements vkMemReq = {};

+    bool requiresDedicatedAllocation = false;

+    bool prefersDedicatedAllocation = false;

+    allocator->GetBufferMemoryRequirements(buffer, vkMemReq,

+        requiresDedicatedAllocation,

+        prefersDedicatedAllocation);

+

+    VkResult result = allocator->AllocateMemory(

+        vkMemReq,

+        requiresDedicatedAllocation,

+        prefersDedicatedAllocation,

+        buffer, // dedicatedBuffer

+        VK_NULL_HANDLE, // dedicatedImage

+        *pCreateInfo,

+        VMA_SUBALLOCATION_TYPE_BUFFER,

+        pAllocation);

+

+    if(pAllocationInfo && result == VK_SUCCESS)

+    {

+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

+    }

+

+	return result;

+}

+

+VkResult vmaAllocateMemoryForImage(

+    VmaAllocator allocator,

+    VkImage image,

+    const VmaAllocationCreateInfo* pCreateInfo,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo)

+{

+    VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);

+

+    VMA_DEBUG_LOG("vmaAllocateMemoryForImage");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    VkResult result = AllocateMemoryForImage(

+        allocator,

+        image,

+        pCreateInfo,

+        VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,

+        pAllocation);

+

+    if(pAllocationInfo && result == VK_SUCCESS)

+    {

+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

+    }

+

+	return result;

+}

+

+void vmaFreeMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation)

+{

+    VMA_ASSERT(allocator && allocation);

+

+    VMA_DEBUG_LOG("vmaFreeMemory");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->FreeMemory(allocation);

+}

+

+void vmaGetAllocationInfo(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    VmaAllocationInfo* pAllocationInfo)

+{

+    VMA_ASSERT(allocator && allocation && pAllocationInfo);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->GetAllocationInfo(allocation, pAllocationInfo);

+}

+

+VkBool32 vmaTouchAllocation(

+    VmaAllocator allocator,

+    VmaAllocation allocation)

+{

+    VMA_ASSERT(allocator && allocation);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    return allocator->TouchAllocation(allocation);

+}

+

+void vmaSetAllocationUserData(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    void* pUserData)

+{

+    VMA_ASSERT(allocator && allocation);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocation->SetUserData(allocator, pUserData);

+}

+

+void vmaCreateLostAllocation(

+    VmaAllocator allocator,

+    VmaAllocation* pAllocation)

+{

+    VMA_ASSERT(allocator && pAllocation);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK;

+

+    allocator->CreateLostAllocation(pAllocation);

+}

+

+VkResult vmaMapMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    void** ppData)

+{

+    VMA_ASSERT(allocator && allocation && ppData);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    return allocator->Map(allocation, ppData);

+}

+

+void vmaUnmapMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation)

+{

+    VMA_ASSERT(allocator && allocation);

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    allocator->Unmap(allocation);

+}

+

+VkResult vmaDefragment(

+    VmaAllocator allocator,

+    VmaAllocation* pAllocations,

+    size_t allocationCount,

+    VkBool32* pAllocationsChanged,

+    const VmaDefragmentationInfo *pDefragmentationInfo,

+    VmaDefragmentationStats* pDefragmentationStats)

+{

+    VMA_ASSERT(allocator && pAllocations);

+

+    VMA_DEBUG_LOG("vmaDefragment");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    return allocator->Defragment(pAllocations, allocationCount, pAllocationsChanged, pDefragmentationInfo, pDefragmentationStats);

+}

+

+VkResult vmaBindBufferMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    VkBuffer buffer)

+{

+    VMA_ASSERT(allocator && allocation && buffer);

+

+    VMA_DEBUG_LOG("vmaBindBufferMemory");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    return allocator->BindBufferMemory(allocation, buffer);

+}

+

+VkResult vmaBindImageMemory(

+    VmaAllocator allocator,

+    VmaAllocation allocation,

+    VkImage image)

+{

+    VMA_ASSERT(allocator && allocation && image);

+

+    VMA_DEBUG_LOG("vmaBindImageMemory");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    return allocator->BindImageMemory(allocation, image);

+}

+

+VkResult vmaCreateBuffer(

+    VmaAllocator allocator,

+    const VkBufferCreateInfo* pBufferCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    VkBuffer* pBuffer,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo)

+{

+    VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);

+    

+    VMA_DEBUG_LOG("vmaCreateBuffer");

+    

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    *pBuffer = VK_NULL_HANDLE;

+    *pAllocation = VK_NULL_HANDLE;

+

+    // 1. Create VkBuffer.

+    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(

+        allocator->m_hDevice,

+        pBufferCreateInfo,

+        allocator->GetAllocationCallbacks(),

+        pBuffer);

+    if(res >= 0)

+    {

+        // 2. vkGetBufferMemoryRequirements.

+        VkMemoryRequirements vkMemReq = {};

+        bool requiresDedicatedAllocation = false;

+        bool prefersDedicatedAllocation  = false;

+        allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,

+            requiresDedicatedAllocation, prefersDedicatedAllocation);

+

+         // Make sure alignment requirements for specific buffer usages reported

+         // in Physical Device Properties are included in alignment reported by memory requirements.

+        if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0)

+        {

+           VMA_ASSERT(vkMemReq.alignment %

+              allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0);

+        }

+        if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0)

+        {

+           VMA_ASSERT(vkMemReq.alignment %

+              allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0);

+        }

+        if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0)

+        {

+           VMA_ASSERT(vkMemReq.alignment %

+              allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0);

+        }

+

+        // 3. Allocate memory using allocator.

+        res = allocator->AllocateMemory(

+            vkMemReq,

+            requiresDedicatedAllocation,

+            prefersDedicatedAllocation,

+            *pBuffer, // dedicatedBuffer

+            VK_NULL_HANDLE, // dedicatedImage

+            *pAllocationCreateInfo,

+            VMA_SUBALLOCATION_TYPE_BUFFER,

+            pAllocation);

+        if(res >= 0)

+        {

+            // 3. Bind buffer with memory.

+            res = allocator->BindBufferMemory(*pAllocation, *pBuffer);

+            if(res >= 0)

+            {

+                // All steps succeeded.

+                if(pAllocationInfo != VMA_NULL)

+                {

+                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

+                }

+                return VK_SUCCESS;

+            }

+            allocator->FreeMemory(*pAllocation);

+            *pAllocation = VK_NULL_HANDLE;

+            (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());

+            *pBuffer = VK_NULL_HANDLE;

+            return res;

+        }

+        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());

+        *pBuffer = VK_NULL_HANDLE;

+        return res;

+    }

+    return res;

+}

+

+void vmaDestroyBuffer(

+    VmaAllocator allocator,

+    VkBuffer buffer,

+    VmaAllocation allocation)

+{

+    if(buffer != VK_NULL_HANDLE)

+    {

+        VMA_ASSERT(allocator);

+

+        VMA_DEBUG_LOG("vmaDestroyBuffer");

+

+        VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());

+        

+        allocator->FreeMemory(allocation);

+    }

+}

+

+VkResult vmaCreateImage(

+    VmaAllocator allocator,

+    const VkImageCreateInfo* pImageCreateInfo,

+    const VmaAllocationCreateInfo* pAllocationCreateInfo,

+    VkImage* pImage,

+    VmaAllocation* pAllocation,

+    VmaAllocationInfo* pAllocationInfo)

+{

+    VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);

+

+    VMA_DEBUG_LOG("vmaCreateImage");

+

+    VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+    *pImage = VK_NULL_HANDLE;

+    *pAllocation = VK_NULL_HANDLE;

+

+    // 1. Create VkImage.

+    VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(

+        allocator->m_hDevice,

+        pImageCreateInfo,

+        allocator->GetAllocationCallbacks(),

+        pImage);

+    if(res >= 0)

+    {

+        VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?

+            VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :

+            VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;

+        

+        // 2. Allocate memory using allocator.

+        res = AllocateMemoryForImage(allocator, *pImage, pAllocationCreateInfo, suballocType, pAllocation);

+        if(res >= 0)

+        {

+            // 3. Bind image with memory.

+            res = allocator->BindImageMemory(*pAllocation, *pImage);

+            if(res >= 0)

+            {

+                // All steps succeeded.

+                if(pAllocationInfo != VMA_NULL)

+                {

+                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

+                }

+                return VK_SUCCESS;

+            }

+            allocator->FreeMemory(*pAllocation);

+            *pAllocation = VK_NULL_HANDLE;

+            (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());

+            *pImage = VK_NULL_HANDLE;

+            return res;

+        }

+        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());

+        *pImage = VK_NULL_HANDLE;

+        return res;

+    }

+    return res;

+}

+

+void vmaDestroyImage(

+    VmaAllocator allocator,

+    VkImage image,

+    VmaAllocation allocation)

+{

+    if(image != VK_NULL_HANDLE)

+    {

+        VMA_ASSERT(allocator);

+

+        VMA_DEBUG_LOG("vmaDestroyImage");

+

+        VMA_DEBUG_GLOBAL_MUTEX_LOCK

+

+        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());

+

+        allocator->FreeMemory(allocation);

+    }

+}

+

+#endif // #ifdef VMA_IMPLEMENTATION