Intersection work in progress
Review URL: https://codereview.appspot.com/5576043

git-svn-id: http://skia.googlecode.com/svn/trunk@3087 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/experimental/Intersection/LineQuadraticIntersection.cpp b/experimental/Intersection/LineQuadraticIntersection.cpp
new file mode 100644
index 0000000..02810ac
--- /dev/null
+++ b/experimental/Intersection/LineQuadraticIntersection.cpp
@@ -0,0 +1,163 @@
+#include "CubicIntersection.h"
+#include "Intersections.h"
+#include "LineUtilities.h"
+#include "QuadraticUtilities.h"
+
+/* 
+Find the interection of a line and quadratic by solving for valid t values.
+
+From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
+
+"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three 
+control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where 
+A, B and C are points and t goes from zero to one.
+
+This will give you two equations:
+
+  x = a(1 - t)^2 + b(1 - t)t + ct^2
+  y = d(1 - t)^2 + e(1 - t)t + ft^2
+
+If you add for instance the line equation (y = kx + m) to that, you'll end up 
+with three equations and three unknowns (x, y and t)."
+
+Similar to above, the quadratic is represented as
+  x = a(1-t)^2 + 2b(1-t)t + ct^2
+  y = d(1-t)^2 + 2e(1-t)t + ft^2
+and the line as
+  y = g*x + h
+
+Using Mathematica, solve for the values of t where the quadratic intersects the
+line:
+
+  (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, 
+                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
+  (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + 
+         g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
+  (in)  Solve[t1 == 0, t]
+  (out) {
+    {t -> (-2 d + 2 e +   2 a g - 2 b g    -
+      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 - 
+          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
+         (2 (-d + 2 e - f + a g - 2 b g    + c g))
+         },
+    {t -> (-2 d + 2 e +   2 a g - 2 b g    +
+      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 - 
+          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
+         (2 (-d + 2 e - f + a g - 2 b g    + c g))
+         }
+        }
+        
+Numeric Solutions (5.6) suggests to solve the quadratic by computing
+
+       Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
+
+and using the roots
+
+      t1 = Q / A
+      t2 = C / Q
+      
+Using the results above (when the line tends towards horizontal)
+       A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
+       B = 2*( (d -   e    ) - g*(a -   b    )     )
+       C =   (-(d          ) + g*(a          ) + h )
+
+If g goes to infinity, we can rewrite the line in terms of x.
+  x = g'*y + h'
+
+And solve accordingly in Mathematica:
+
+  (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', 
+                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
+  (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - 
+         g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
+  (in)  Solve[t2 == 0, t]
+  (out) {
+    {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
+    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 - 
+          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
+         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
+         },
+    {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
+    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 - 
+          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
+         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
+         }
+        }
+
+Thus, if the slope of the line tends towards vertical, we use:
+       A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
+       B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
+       C =   ( (a          ) - g'*(d           ) - h' )
+ */
+ 
+
+class LineQuadraticIntersections : public Intersections {
+public:
+
+LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
+    : quad(q)
+    , line(l)
+    , intersections(i) {
+}
+
+bool intersect() {
+    double slope;
+    double axisIntercept;
+    moreHorizontal = implicitLine(line, slope, axisIntercept);
+    double A = quad[2].x; // c
+    double B = quad[1].x; // b
+    double C = quad[0].x; // a
+    A += C - 2 * B; // A = a - 2*b + c
+    B -= C; // B = -(a - b)
+    double D = quad[2].y; // f
+    double E = quad[1].y; // e
+    double F = quad[0].y; // d
+    D += F - 2 * E; // D = d - 2*e + f
+    E -= F; // E = -(d - e)
+    if (moreHorizontal) {
+        A = A * slope - D;
+        B = B * slope - E;
+        C = C * slope - F + axisIntercept;
+    } else {
+        A = A - D * slope;
+        B = B - E * slope;
+        C = C - F * slope - axisIntercept;
+    }
+    double t[2];
+    int roots = quadraticRoots(A, B, C, t);
+    for (int x = 0; x < roots; ++x) {
+        intersections.add(t[x], findLineT(t[x]));
+    }
+    return roots > 0;
+}
+
+protected:
+    
+double findLineT(double t) {
+    const double* qPtr;
+    const double* lPtr;
+    if (moreHorizontal) {
+        qPtr = &quad[0].x;
+        lPtr = &line[0].x;
+    } else {
+        qPtr = &quad[0].y;
+        lPtr = &line[0].y;
+    }
+    double s = 1 - t;
+    double quadVal = qPtr[0] * s * s + 2 * qPtr[2] * s * t + qPtr[4] * t * t;
+    return (quadVal - lPtr[0]) / (lPtr[2] - lPtr[0]);
+}
+
+private:
+
+const Quadratic& quad;
+const _Line& line;
+Intersections& intersections;
+bool moreHorizontal;
+
+};
+ 
+bool intersectStart(const Quadratic& quad, const _Line& line, Intersections& i) {
+    LineQuadraticIntersections q(quad, line, i);
+    return q.intersect();
+}