blob: d441d9ba9fd298c6b6a44503e591e0939f47e91c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkColor.h"
#include "SkEmptyShader.h"
#include "SkErrorInternals.h"
#include "SkLightingShader.h"
#include "SkMathPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
////////////////////////////////////////////////////////////////////////////
/*
SkLightingShader TODOs:
support other than clamp mode
allow 'diffuse' & 'normal' to be of different dimensions?
support different light types
support multiple lights
enforce normal map is 4 channel
use SkImages instead if SkBitmaps
To Test:
non-opaque diffuse textures
A8 diffuse textures
down & upsampled draws
*/
/** \class SkLightingShaderImpl
This subclass of shader applies lighting.
*/
class SK_API SkLightingShaderImpl : public SkShader {
public:
/** Create a new lighting shader that use the provided normal map, light
and ambient color to light the diffuse bitmap.
@param diffuse the diffuse bitmap
@param normal the normal map
@param light the light applied to the normal map
@param ambient the linear (unpremul) ambient light color
*/
SkLightingShaderImpl(const SkBitmap& diffuse, const SkBitmap& normal,
const SkLightingShader::Light& light,
const SkColor3f& ambient, const SkMatrix* localMatrix)
: INHERITED(localMatrix)
, fDiffuseMap(diffuse)
, fNormalMap(normal)
, fLight(light)
, fAmbientColor(ambient) {
if (!fLight.fDirection.normalize()) {
fLight.fDirection = SkPoint3::Make(0.0f, 0.0f, 1.0f);
}
}
bool isOpaque() const override;
bool asFragmentProcessor(GrContext*, const SkPaint& paint, const SkMatrix& viewM,
const SkMatrix* localMatrix, GrColor* color,
GrProcessorDataManager*, GrFragmentProcessor** fp) const override;
size_t contextSize() const override;
class LightingShaderContext : public SkShader::Context {
public:
// The context takes ownership of the states. It will call their destructors
// but will NOT free the memory.
LightingShaderContext(const SkLightingShaderImpl&, const ContextRec&,
SkBitmapProcState* diffuseState, SkBitmapProcState* normalState);
~LightingShaderContext() override;
void shadeSpan(int x, int y, SkPMColor[], int count) override;
uint32_t getFlags() const override { return fFlags; }
private:
SkBitmapProcState* fDiffuseState;
SkBitmapProcState* fNormalState;
uint32_t fFlags;
typedef SkShader::Context INHERITED;
};
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkLightingShaderImpl)
protected:
void flatten(SkWriteBuffer&) const override;
Context* onCreateContext(const ContextRec&, void*) const override;
private:
SkBitmap fDiffuseMap;
SkBitmap fNormalMap;
SkLightingShader::Light fLight;
SkColor3f fAmbientColor; // linear (unpremul) color. Range is 0..1/channel.
friend class SkLightingShader;
typedef SkShader INHERITED;
};
////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrCoordTransform.h"
#include "GrFragmentProcessor.h"
#include "GrTextureAccess.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#include "SkGr.h"
class LightingFP : public GrFragmentProcessor {
public:
LightingFP(GrTexture* diffuse, GrTexture* normal, const SkMatrix& matrix,
const SkVector3& lightDir, const SkColor3f& lightColor,
const SkColor3f& ambientColor)
: fDeviceTransform(kDevice_GrCoordSet, matrix)
, fDiffuseTextureAccess(diffuse)
, fNormalTextureAccess(normal)
, fLightDir(lightDir)
, fLightColor(lightColor)
, fAmbientColor(ambientColor) {
this->addCoordTransform(&fDeviceTransform);
this->addTextureAccess(&fDiffuseTextureAccess);
this->addTextureAccess(&fNormalTextureAccess);
this->initClassID<LightingFP>();
}
class LightingGLFP : public GrGLFragmentProcessor {
public:
LightingGLFP() {
fLightDir.fX = 10000.0f;
fLightColor.fX = 0.0f;
fAmbientColor.fX = 0.0f;
}
void emitCode(EmitArgs& args) override {
GrGLFragmentBuilder* fpb = args.fBuilder->getFragmentShaderBuilder();
// add uniforms
const char* lightDirUniName = NULL;
fLightDirUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightDir", &lightDirUniName);
const char* lightColorUniName = NULL;
fLightColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightColor", &lightColorUniName);
const char* ambientColorUniName = NULL;
fAmbientColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"AmbientColor", &ambientColorUniName);
fpb->codeAppend("vec4 diffuseColor = ");
fpb->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0],
args.fCoords[0].c_str(),
args.fCoords[0].getType());
fpb->codeAppend(";");
fpb->codeAppend("vec4 normalColor = ");
fpb->appendTextureLookup(args.fSamplers[1],
args.fCoords[0].c_str(),
args.fCoords[0].getType());
fpb->codeAppend(";");
fpb->codeAppend("vec3 normal = normalize(normalColor.rgb - vec3(0.5));");
fpb->codeAppendf("vec3 lightDir = normalize(%s);", lightDirUniName);
fpb->codeAppend("float NdotL = dot(normal, lightDir);");
// diffuse light
fpb->codeAppendf("vec3 result = %s*diffuseColor.rgb*NdotL;", lightColorUniName);
// ambient light
fpb->codeAppendf("result += %s;", ambientColorUniName);
fpb->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOutputColor);
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
// const LightingFP& lightingFP = proc.cast<LightingFP>();
// only one shader generated currently
b->add32(0x0);
}
protected:
void onSetData(const GrGLProgramDataManager& pdman, const GrProcessor& proc) override {
const LightingFP& lightingFP = proc.cast<LightingFP>();
const SkVector3& lightDir = lightingFP.lightDir();
if (lightDir != fLightDir) {
pdman.set3fv(fLightDirUni, 1, &lightDir.fX);
fLightDir = lightDir;
}
const SkColor3f& lightColor = lightingFP.lightColor();
if (lightColor != fLightColor) {
pdman.set3fv(fLightColorUni, 1, &lightColor.fX);
fLightColor = lightColor;
}
const SkColor3f& ambientColor = lightingFP.ambientColor();
if (ambientColor != fAmbientColor) {
pdman.set3fv(fAmbientColorUni, 1, &ambientColor.fX);
fAmbientColor = ambientColor;
}
}
private:
SkVector3 fLightDir;
GrGLProgramDataManager::UniformHandle fLightDirUni;
SkColor3f fLightColor;
GrGLProgramDataManager::UniformHandle fLightColorUni;
SkColor3f fAmbientColor;
GrGLProgramDataManager::UniformHandle fAmbientColorUni;
};
void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
LightingGLFP::GenKey(*this, caps, b);
}
const char* name() const override { return "LightingFP"; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->mulByUnknownFourComponents();
}
const SkVector3& lightDir() const { return fLightDir; }
const SkColor3f& lightColor() const { return fLightColor; }
const SkColor3f& ambientColor() const { return fAmbientColor; }
private:
GrGLFragmentProcessor* onCreateGLInstance() const override { return SkNEW(LightingGLFP); }
bool onIsEqual(const GrFragmentProcessor& proc) const override {
const LightingFP& lightingFP = proc.cast<LightingFP>();
return fDeviceTransform == lightingFP.fDeviceTransform &&
fDiffuseTextureAccess == lightingFP.fDiffuseTextureAccess &&
fNormalTextureAccess == lightingFP.fNormalTextureAccess &&
fLightDir == lightingFP.fLightDir &&
fLightColor == lightingFP.fLightColor &&
fAmbientColor == lightingFP.fAmbientColor;
}
GrCoordTransform fDeviceTransform;
GrTextureAccess fDiffuseTextureAccess;
GrTextureAccess fNormalTextureAccess;
SkVector3 fLightDir;
SkColor3f fLightColor;
SkColor3f fAmbientColor;
};
////////////////////////////////////////////////////////////////////////////
bool SkLightingShaderImpl::asFragmentProcessor(GrContext* context, const SkPaint& paint,
const SkMatrix& viewM, const SkMatrix* localMatrix,
GrColor* color, GrProcessorDataManager*,
GrFragmentProcessor** fp) const {
// we assume diffuse and normal maps have same width and height
// TODO: support different sizes
SkASSERT(fDiffuseMap.width() == fNormalMap.width() &&
fDiffuseMap.height() == fNormalMap.height());
SkMatrix matrix;
matrix.setIDiv(fDiffuseMap.width(), fDiffuseMap.height());
SkMatrix lmInverse;
if (!this->getLocalMatrix().invert(&lmInverse)) {
return false;
}
if (localMatrix) {
SkMatrix inv;
if (!localMatrix->invert(&inv)) {
return false;
}
lmInverse.postConcat(inv);
}
matrix.preConcat(lmInverse);
// Must set wrap and filter on the sampler before requesting a texture. In two places below
// we check the matrix scale factors to determine how to interpret the filter quality setting.
// This completely ignores the complexity of the drawVertices case where explicit local coords
// are provided by the caller.
GrTextureParams::FilterMode textureFilterMode = GrTextureParams::kBilerp_FilterMode;
switch (paint.getFilterQuality()) {
case kNone_SkFilterQuality:
textureFilterMode = GrTextureParams::kNone_FilterMode;
break;
case kLow_SkFilterQuality:
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
break;
case kMedium_SkFilterQuality:{
SkMatrix matrix;
matrix.setConcat(viewM, this->getLocalMatrix());
if (matrix.getMinScale() < SK_Scalar1) {
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
} else {
// Don't trigger MIP level generation unnecessarily.
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
}
break;
}
case kHigh_SkFilterQuality:
default:
SkErrorInternals::SetError(kInvalidPaint_SkError,
"Sorry, I don't understand the filtering "
"mode you asked for. Falling back to "
"MIPMaps.");
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
break;
}
// TODO: support other tile modes
GrTextureParams params(kClamp_TileMode, textureFilterMode);
SkAutoTUnref<GrTexture> diffuseTexture(GrRefCachedBitmapTexture(context, fDiffuseMap, &params));
if (!diffuseTexture) {
SkErrorInternals::SetError(kInternalError_SkError,
"Couldn't convert bitmap to texture.");
return false;
}
SkAutoTUnref<GrTexture> normalTexture(GrRefCachedBitmapTexture(context, fNormalMap, &params));
if (!normalTexture) {
SkErrorInternals::SetError(kInternalError_SkError,
"Couldn't convert bitmap to texture.");
return false;
}
*fp = SkNEW_ARGS(LightingFP, (diffuseTexture, normalTexture, matrix,
fLight.fDirection, fLight.fColor, fAmbientColor));
*color = GrColorPackA4(paint.getAlpha());
return true;
}
#else
bool SkLightingShaderImpl::asFragmentProcessor(GrContext* context, const SkPaint& paint,
const SkMatrix& viewM, const SkMatrix* localMatrix,
GrColor* color, GrProcessorDataManager*,
GrFragmentProcessor** fp) const {
SkDEBUGFAIL("Should not call in GPU-less build");
return false;
}
#endif
////////////////////////////////////////////////////////////////////////////
bool SkLightingShaderImpl::isOpaque() const {
return fDiffuseMap.isOpaque();
}
size_t SkLightingShaderImpl::contextSize() const {
return 2 * sizeof(SkBitmapProcState) + sizeof(LightingShaderContext);
}
SkLightingShaderImpl::LightingShaderContext::LightingShaderContext(const SkLightingShaderImpl& shader,
const ContextRec& rec,
SkBitmapProcState* diffuseState,
SkBitmapProcState* normalState)
: INHERITED(shader, rec)
, fDiffuseState(diffuseState)
, fNormalState(normalState)
{
const SkPixmap& pixmap = fDiffuseState->fPixmap;
bool isOpaque = pixmap.isOpaque();
// update fFlags
uint32_t flags = 0;
if (isOpaque && (255 == this->getPaintAlpha())) {
flags |= kOpaqueAlpha_Flag;
}
fFlags = flags;
}
SkLightingShaderImpl::LightingShaderContext::~LightingShaderContext() {
// The bitmap proc states have been created outside of the context on memory that will be freed
// elsewhere. Call the destructors but leave the freeing of the memory to the caller.
fDiffuseState->~SkBitmapProcState();
fNormalState->~SkBitmapProcState();
}
static inline int light(SkScalar light, int diff, SkScalar NdotL, SkScalar ambient) {
SkScalar color = light * diff * NdotL + 255 * ambient;
if (color <= 0.0f) {
return 0;
} else if (color >= 255.0f) {
return 255;
} else {
return (int) color;
}
}
// larger is better (fewer times we have to loop), but we shouldn't
// take up too much stack-space (each could here costs 16 bytes)
#define TMP_COUNT 16
void SkLightingShaderImpl::LightingShaderContext::shadeSpan(int x, int y,
SkPMColor result[], int count) {
const SkLightingShaderImpl& lightShader = static_cast<const SkLightingShaderImpl&>(fShader);
SkPMColor tmpColor[TMP_COUNT], tmpColor2[TMP_COUNT];
SkPMColor tmpNormal[TMP_COUNT], tmpNormal2[TMP_COUNT];
SkBitmapProcState::MatrixProc diffMProc = fDiffuseState->getMatrixProc();
SkBitmapProcState::SampleProc32 diffSProc = fDiffuseState->getSampleProc32();
SkBitmapProcState::MatrixProc normalMProc = fNormalState->getMatrixProc();
SkBitmapProcState::SampleProc32 normalSProc = fNormalState->getSampleProc32();
SkASSERT(fDiffuseState->fPixmap.addr());
SkASSERT(fNormalState->fPixmap.addr());
SkPoint3 norm;
SkScalar NdotL;
int r, g, b;
do {
int n = count;
if (n > TMP_COUNT) {
n = TMP_COUNT;
}
diffMProc(*fDiffuseState, tmpColor, n, x, y);
diffSProc(*fDiffuseState, tmpColor, n, tmpColor2);
normalMProc(*fNormalState, tmpNormal, n, x, y);
normalSProc(*fNormalState, tmpNormal, n, tmpNormal2);
for (int i = 0; i < n; ++i) {
SkASSERT(0xFF == SkColorGetA(tmpNormal2[i])); // opaque -> unpremul
norm.set(SkIntToScalar(SkGetPackedR32(tmpNormal2[i]))-127.0f,
SkIntToScalar(SkGetPackedG32(tmpNormal2[i]))-127.0f,
SkIntToScalar(SkGetPackedB32(tmpNormal2[i]))-127.0f);
norm.normalize();
SkColor diffColor = SkUnPreMultiply::PMColorToColor(tmpColor2[i]);
NdotL = norm.dot(lightShader.fLight.fDirection);
// This is all done in linear unpremul color space
r = light(lightShader.fLight.fColor.fX, SkColorGetR(diffColor), NdotL,
lightShader.fAmbientColor.fX);
g = light(lightShader.fLight.fColor.fY, SkColorGetG(diffColor), NdotL,
lightShader.fAmbientColor.fY);
b = light(lightShader.fLight.fColor.fZ, SkColorGetB(diffColor), NdotL,
lightShader.fAmbientColor.fZ);
result[i] = SkPreMultiplyARGB(SkColorGetA(diffColor), r, g, b);
}
result += n;
x += n;
count -= n;
} while (count > 0);
}
////////////////////////////////////////////////////////////////////////////
#ifndef SK_IGNORE_TO_STRING
void SkLightingShaderImpl::toString(SkString* str) const {
str->appendf("LightingShader: ()");
}
#endif
SkFlattenable* SkLightingShaderImpl::CreateProc(SkReadBuffer& buf) {
SkMatrix localMatrix;
buf.readMatrix(&localMatrix);
SkBitmap diffuse;
if (!buf.readBitmap(&diffuse)) {
return NULL;
}
diffuse.setImmutable();
SkBitmap normal;
if (!buf.readBitmap(&normal)) {
return NULL;
}
normal.setImmutable();
SkLightingShader::Light light;
if (!buf.readScalarArray(&light.fDirection.fX, 3)) {
return NULL;
}
if (!buf.readScalarArray(&light.fColor.fX, 3)) {
return NULL;
}
SkColor3f ambient;
if (!buf.readScalarArray(&ambient.fX, 3)) {
return NULL;
}
return SkNEW_ARGS(SkLightingShaderImpl, (diffuse, normal, light, ambient, &localMatrix));
}
void SkLightingShaderImpl::flatten(SkWriteBuffer& buf) const {
buf.writeMatrix(this->getLocalMatrix());
buf.writeBitmap(fDiffuseMap);
buf.writeBitmap(fNormalMap);
buf.writeScalarArray(&fLight.fDirection.fX, 3);
buf.writeScalarArray(&fLight.fColor.fX, 3);
buf.writeScalarArray(&fAmbientColor.fX, 3);
}
SkShader::Context* SkLightingShaderImpl::onCreateContext(const ContextRec& rec,
void* storage) const {
SkMatrix totalInverse;
// Do this first, so we know the matrix can be inverted.
if (!this->computeTotalInverse(rec, &totalInverse)) {
return NULL;
}
void* diffuseStateStorage = (char*)storage + sizeof(LightingShaderContext);
SkBitmapProcState* diffuseState = SkNEW_PLACEMENT(diffuseStateStorage, SkBitmapProcState);
SkASSERT(diffuseState);
diffuseState->fTileModeX = SkShader::kClamp_TileMode;
diffuseState->fTileModeY = SkShader::kClamp_TileMode;
diffuseState->fOrigBitmap = fDiffuseMap;
if (!diffuseState->chooseProcs(totalInverse, *rec.fPaint)) {
diffuseState->~SkBitmapProcState();
return NULL;
}
void* normalStateStorage = (char*)storage + sizeof(LightingShaderContext) + sizeof(SkBitmapProcState);
SkBitmapProcState* normalState = SkNEW_PLACEMENT(normalStateStorage, SkBitmapProcState);
SkASSERT(normalState);
normalState->fTileModeX = SkShader::kClamp_TileMode;
normalState->fTileModeY = SkShader::kClamp_TileMode;
normalState->fOrigBitmap = fNormalMap;
if (!normalState->chooseProcs(totalInverse, *rec.fPaint)) {
diffuseState->~SkBitmapProcState();
normalState->~SkBitmapProcState();
return NULL;
}
return SkNEW_PLACEMENT_ARGS(storage, LightingShaderContext, (*this, rec,
diffuseState, normalState));
}
///////////////////////////////////////////////////////////////////////////////
static bool bitmap_is_too_big(const SkBitmap& bm) {
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
// communicates between its matrix-proc and its sampler-proc. Until we can
// widen that, we have to reject bitmaps that are larger.
//
static const int kMaxSize = 65535;
return bm.width() > kMaxSize || bm.height() > kMaxSize;
}
SkShader* SkLightingShader::Create(const SkBitmap& diffuse, const SkBitmap& normal,
const SkLightingShader::Light& light,
const SkColor3f& ambient,
const SkMatrix* localMatrix) {
if (diffuse.isNull() || bitmap_is_too_big(diffuse) ||
normal.isNull() || bitmap_is_too_big(normal) ||
diffuse.width() != normal.width() ||
diffuse.height() != normal.height()) {
return nullptr;
}
return SkNEW_ARGS(SkLightingShaderImpl, (diffuse, normal, light, ambient, localMatrix));
}
///////////////////////////////////////////////////////////////////////////////
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkLightingShader)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLightingShaderImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
///////////////////////////////////////////////////////////////////////////////