Move several more PathRenderers to skgpu::v1 namespace

Bug: skia:11837
Change-Id: Ifa1da88aafcaa96e0e885facaeb849cc9963bcfe
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/439938
Commit-Queue: Robert Phillips <robertphillips@google.com>
Reviewed-by: Michael Ludwig <michaelludwig@google.com>
diff --git a/src/gpu/ops/AAHairLinePathRenderer.cpp b/src/gpu/ops/AAHairLinePathRenderer.cpp
new file mode 100644
index 0000000..1643b8e
--- /dev/null
+++ b/src/gpu/ops/AAHairLinePathRenderer.cpp
@@ -0,0 +1,1328 @@
+/*
+ * Copyright 2011 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "src/gpu/ops/AAHairLinePathRenderer.h"
+
+#include "include/core/SkPoint3.h"
+#include "include/private/SkTemplates.h"
+#include "src/core/SkGeometry.h"
+#include "src/core/SkMatrixPriv.h"
+#include "src/core/SkPointPriv.h"
+#include "src/core/SkRectPriv.h"
+#include "src/core/SkStroke.h"
+#include "src/gpu/GrAuditTrail.h"
+#include "src/gpu/GrBuffer.h"
+#include "src/gpu/GrCaps.h"
+#include "src/gpu/GrDefaultGeoProcFactory.h"
+#include "src/gpu/GrDrawOpTest.h"
+#include "src/gpu/GrOpFlushState.h"
+#include "src/gpu/GrProcessor.h"
+#include "src/gpu/GrProgramInfo.h"
+#include "src/gpu/GrResourceProvider.h"
+#include "src/gpu/GrStyle.h"
+#include "src/gpu/GrUtil.h"
+#include "src/gpu/effects/GrBezierEffect.h"
+#include "src/gpu/geometry/GrPathUtils.h"
+#include "src/gpu/geometry/GrStyledShape.h"
+#include "src/gpu/ops/GrMeshDrawOp.h"
+#include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
+#include "src/gpu/v1/SurfaceDrawContext_v1.h"
+
+#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
+
+using PtArray = SkTArray<SkPoint, true>;
+using IntArray = SkTArray<int, true>;
+using FloatArray = SkTArray<float, true>;
+
+namespace {
+
+// quadratics are rendered as 5-sided polys in order to bound the
+// AA stroke around the center-curve. See comments in push_quad_index_buffer and
+// bloat_quad. Quadratics and conics share an index buffer
+
+// lines are rendered as:
+//      *______________*
+//      |\ -_______   /|
+//      | \        \ / |
+//      |  *--------*  |
+//      | /  ______/ \ |
+//      */_-__________\*
+// For: 6 vertices and 18 indices (for 6 triangles)
+
+// Each quadratic is rendered as a five sided polygon. This poly bounds
+// the quadratic's bounding triangle but has been expanded so that the
+// 1-pixel wide area around the curve is inside the poly.
+// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
+// that is rendered would look like this:
+//              b0
+//              b
+//
+//     a0              c0
+//      a            c
+//       a1       c1
+// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
+// specified by these 9 indices:
+static const uint16_t kQuadIdxBufPattern[] = {
+    0, 1, 2,
+    2, 4, 3,
+    1, 4, 2
+};
+
+static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
+static const int kQuadNumVertices = 5;
+static const int kQuadsNumInIdxBuffer = 256;
+GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
+
+sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
+    GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
+    return resourceProvider->findOrCreatePatternedIndexBuffer(
+        kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
+        gQuadsIndexBufferKey);
+}
+
+
+// Each line segment is rendered as two quads and two triangles.
+// p0 and p1 have alpha = 1 while all other points have alpha = 0.
+// The four external points are offset 1 pixel perpendicular to the
+// line and half a pixel parallel to the line.
+//
+// p4                  p5
+//      p0         p1
+// p2                  p3
+//
+// Each is drawn as six triangles specified by these 18 indices:
+
+static const uint16_t kLineSegIdxBufPattern[] = {
+    0, 1, 3,
+    0, 3, 2,
+    0, 4, 5,
+    0, 5, 1,
+    0, 2, 4,
+    1, 5, 3
+};
+
+static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
+static const int kLineSegNumVertices = 6;
+static const int kLineSegsNumInIdxBuffer = 256;
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
+
+sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
+    GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
+    return resourceProvider->findOrCreatePatternedIndexBuffer(
+        kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
+        gLinesIndexBufferKey);
+}
+
+// Takes 178th time of logf on Z600 / VC2010
+int get_float_exp(float x) {
+    static_assert(sizeof(int) == sizeof(float));
+#ifdef SK_DEBUG
+    static bool tested;
+    if (!tested) {
+        tested = true;
+        SkASSERT(get_float_exp(0.25f) == -2);
+        SkASSERT(get_float_exp(0.3f) == -2);
+        SkASSERT(get_float_exp(0.5f) == -1);
+        SkASSERT(get_float_exp(1.f) == 0);
+        SkASSERT(get_float_exp(2.f) == 1);
+        SkASSERT(get_float_exp(2.5f) == 1);
+        SkASSERT(get_float_exp(8.f) == 3);
+        SkASSERT(get_float_exp(100.f) == 6);
+        SkASSERT(get_float_exp(1000.f) == 9);
+        SkASSERT(get_float_exp(1024.f) == 10);
+        SkASSERT(get_float_exp(3000000.f) == 21);
+    }
+#endif
+    const int* iptr = (const int*)&x;
+    return (((*iptr) & 0x7f800000) >> 23) - 127;
+}
+
+// Uses the max curvature function for quads to estimate
+// where to chop the conic. If the max curvature is not
+// found along the curve segment it will return 1 and
+// dst[0] is the original conic. If it returns 2 the dst[0]
+// and dst[1] are the two new conics.
+int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
+    SkScalar t = SkFindQuadMaxCurvature(src);
+    if (t == 0 || t == 1) {
+        if (dst) {
+            dst[0].set(src, weight);
+        }
+        return 1;
+    } else {
+        if (dst) {
+            SkConic conic;
+            conic.set(src, weight);
+            if (!conic.chopAt(t, dst)) {
+                dst[0].set(src, weight);
+                return 1;
+            }
+        }
+        return 2;
+    }
+}
+
+// Calls split_conic on the entire conic and then once more on each subsection.
+// Most cases will result in either 1 conic (chop point is not within t range)
+// or 3 points (split once and then one subsection is split again).
+int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
+    SkConic dstTemp[2];
+    int conicCnt = split_conic(src, dstTemp, weight);
+    if (2 == conicCnt) {
+        int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
+        conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
+    } else {
+        dst[0] = dstTemp[0];
+    }
+    return conicCnt;
+}
+
+// returns 0 if quad/conic is degen or close to it
+// in this case approx the path with lines
+// otherwise returns 1
+int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
+    static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
+    static const SkScalar gDegenerateToLineTolSqd =
+        gDegenerateToLineTol * gDegenerateToLineTol;
+
+    if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
+        SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
+        return 1;
+    }
+
+    *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
+    if (*dsqd < gDegenerateToLineTolSqd) {
+        return 1;
+    }
+
+    if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
+        return 1;
+    }
+    return 0;
+}
+
+int is_degen_quad_or_conic(const SkPoint p[3]) {
+    SkScalar dsqd;
+    return is_degen_quad_or_conic(p, &dsqd);
+}
+
+// we subdivide the quads to avoid huge overfill
+// if it returns -1 then should be drawn as lines
+int num_quad_subdivs(const SkPoint p[3]) {
+    SkScalar dsqd;
+    if (is_degen_quad_or_conic(p, &dsqd)) {
+        return -1;
+    }
+
+    // tolerance of triangle height in pixels
+    // tuned on windows  Quadro FX 380 / Z600
+    // trade off of fill vs cpu time on verts
+    // maybe different when do this using gpu (geo or tess shaders)
+    static const SkScalar gSubdivTol = 175 * SK_Scalar1;
+
+    if (dsqd <= gSubdivTol * gSubdivTol) {
+        return 0;
+    } else {
+        static const int kMaxSub = 4;
+        // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
+        // = log4(d*d/tol*tol)/2
+        // = log2(d*d/tol*tol)
+
+        // +1 since we're ignoring the mantissa contribution.
+        int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
+        log = std::min(std::max(0, log), kMaxSub);
+        return log;
+    }
+}
+
+/**
+ * Generates the lines and quads to be rendered. Lines are always recorded in
+ * device space. We will do a device space bloat to account for the 1pixel
+ * thickness.
+ * Quads are recorded in device space unless m contains
+ * perspective, then in they are in src space. We do this because we will
+ * subdivide large quads to reduce over-fill. This subdivision has to be
+ * performed before applying the perspective matrix.
+ */
+int gather_lines_and_quads(const SkPath& path,
+                           const SkMatrix& m,
+                           const SkIRect& devClipBounds,
+                           SkScalar capLength,
+                           bool convertConicsToQuads,
+                           PtArray* lines,
+                           PtArray* quads,
+                           PtArray* conics,
+                           IntArray* quadSubdivCnts,
+                           FloatArray* conicWeights) {
+    SkPath::Iter iter(path, false);
+
+    int totalQuadCount = 0;
+    SkRect bounds;
+    SkIRect ibounds;
+
+    bool persp = m.hasPerspective();
+
+    // Whenever a degenerate, zero-length contour is encountered, this code will insert a
+    // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
+    // suffice for AA square & circle capping.
+    int verbsInContour = 0; // Does not count moves
+    bool seenZeroLengthVerb = false;
+    SkPoint zeroVerbPt;
+
+    // Adds a quad that has already been chopped to the list and checks for quads that are close to
+    // lines. Also does a bounding box check. It takes points that are in src space and device
+    // space. The src points are only required if the view matrix has perspective.
+    auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
+                              bool isContourStart) {
+        SkRect bounds;
+        SkIRect ibounds;
+        bounds.setBounds(devPts, 3);
+        bounds.outset(SK_Scalar1, SK_Scalar1);
+        bounds.roundOut(&ibounds);
+        // We only need the src space space pts when not in perspective.
+        SkASSERT(srcPts || !persp);
+        if (SkIRect::Intersects(devClipBounds, ibounds)) {
+            int subdiv = num_quad_subdivs(devPts);
+            SkASSERT(subdiv >= -1);
+            if (-1 == subdiv) {
+                SkPoint* pts = lines->push_back_n(4);
+                pts[0] = devPts[0];
+                pts[1] = devPts[1];
+                pts[2] = devPts[1];
+                pts[3] = devPts[2];
+                if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
+                    seenZeroLengthVerb = true;
+                    zeroVerbPt = pts[0];
+                }
+            } else {
+                // when in perspective keep quads in src space
+                const SkPoint* qPts = persp ? srcPts : devPts;
+                SkPoint* pts = quads->push_back_n(3);
+                pts[0] = qPts[0];
+                pts[1] = qPts[1];
+                pts[2] = qPts[2];
+                quadSubdivCnts->push_back() = subdiv;
+                totalQuadCount += 1 << subdiv;
+            }
+        }
+    };
+
+    // Applies the view matrix to quad src points and calls the above helper.
+    auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
+        SkPoint devPts[3];
+        m.mapPoints(devPts, srcSpaceQuadPts, 3);
+        addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
+    };
+
+    for (;;) {
+        SkPoint pathPts[4];
+        SkPath::Verb verb = iter.next(pathPts);
+        switch (verb) {
+            case SkPath::kConic_Verb:
+                if (convertConicsToQuads) {
+                    SkScalar weight = iter.conicWeight();
+                    SkAutoConicToQuads converter;
+                    const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
+                    for (int i = 0; i < converter.countQuads(); ++i) {
+                        addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
+                    }
+                } else {
+                    SkConic dst[4];
+                    // We chop the conics to create tighter clipping to hide error
+                    // that appears near max curvature of very thin conics. Thin
+                    // hyperbolas with high weight still show error.
+                    int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
+                    for (int i = 0; i < conicCnt; ++i) {
+                        SkPoint devPts[4];
+                        SkPoint* chopPnts = dst[i].fPts;
+                        m.mapPoints(devPts, chopPnts, 3);
+                        bounds.setBounds(devPts, 3);
+                        bounds.outset(SK_Scalar1, SK_Scalar1);
+                        bounds.roundOut(&ibounds);
+                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
+                            if (is_degen_quad_or_conic(devPts)) {
+                                SkPoint* pts = lines->push_back_n(4);
+                                pts[0] = devPts[0];
+                                pts[1] = devPts[1];
+                                pts[2] = devPts[1];
+                                pts[3] = devPts[2];
+                                if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
+                                    pts[2] == pts[3]) {
+                                    seenZeroLengthVerb = true;
+                                    zeroVerbPt = pts[0];
+                                }
+                            } else {
+                                // when in perspective keep conics in src space
+                                SkPoint* cPts = persp ? chopPnts : devPts;
+                                SkPoint* pts = conics->push_back_n(3);
+                                pts[0] = cPts[0];
+                                pts[1] = cPts[1];
+                                pts[2] = cPts[2];
+                                conicWeights->push_back() = dst[i].fW;
+                            }
+                        }
+                    }
+                }
+                verbsInContour++;
+                break;
+            case SkPath::kMove_Verb:
+                // New contour (and last one was unclosed). If it was just a zero length drawing
+                // operation, and we're supposed to draw caps, then add a tiny line.
+                if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
+                    SkPoint* pts = lines->push_back_n(2);
+                    pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
+                    pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
+                }
+                verbsInContour = 0;
+                seenZeroLengthVerb = false;
+                break;
+            case SkPath::kLine_Verb: {
+                SkPoint devPts[2];
+                m.mapPoints(devPts, pathPts, 2);
+                bounds.setBounds(devPts, 2);
+                bounds.outset(SK_Scalar1, SK_Scalar1);
+                bounds.roundOut(&ibounds);
+                if (SkIRect::Intersects(devClipBounds, ibounds)) {
+                    SkPoint* pts = lines->push_back_n(2);
+                    pts[0] = devPts[0];
+                    pts[1] = devPts[1];
+                    if (verbsInContour == 0 && pts[0] == pts[1]) {
+                        seenZeroLengthVerb = true;
+                        zeroVerbPt = pts[0];
+                    }
+                }
+                verbsInContour++;
+                break;
+            }
+            case SkPath::kQuad_Verb: {
+                SkPoint choppedPts[5];
+                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
+                // When it is degenerate it allows the approximation with lines to work since the
+                // chop point (if there is one) will be at the parabola's vertex. In the nearly
+                // degenerate the QuadUVMatrix computed for the points is almost singular which
+                // can cause rendering artifacts.
+                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
+                for (int i = 0; i < n; ++i) {
+                    addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
+                }
+                verbsInContour++;
+                break;
+            }
+            case SkPath::kCubic_Verb: {
+                SkPoint devPts[4];
+                m.mapPoints(devPts, pathPts, 4);
+                bounds.setBounds(devPts, 4);
+                bounds.outset(SK_Scalar1, SK_Scalar1);
+                bounds.roundOut(&ibounds);
+                if (SkIRect::Intersects(devClipBounds, ibounds)) {
+                    PREALLOC_PTARRAY(32) q;
+                    // We convert cubics to quadratics (for now).
+                    // In perspective have to do conversion in src space.
+                    if (persp) {
+                        SkScalar tolScale =
+                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
+                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
+                    } else {
+                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
+                    }
+                    for (int i = 0; i < q.count(); i += 3) {
+                        if (persp) {
+                            addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
+                        } else {
+                            addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
+                        }
+                    }
+                }
+                verbsInContour++;
+                break;
+            }
+            case SkPath::kClose_Verb:
+                // Contour is closed, so we don't need to grow the starting line, unless it's
+                // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
+                if (capLength > 0) {
+                    if (seenZeroLengthVerb && verbsInContour == 1) {
+                        SkPoint* pts = lines->push_back_n(2);
+                        pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
+                        pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
+                    } else if (verbsInContour == 0) {
+                        // Contour was (moveTo, close). Add a line.
+                        SkPoint devPts[2];
+                        m.mapPoints(devPts, pathPts, 1);
+                        devPts[1] = devPts[0];
+                        bounds.setBounds(devPts, 2);
+                        bounds.outset(SK_Scalar1, SK_Scalar1);
+                        bounds.roundOut(&ibounds);
+                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
+                            SkPoint* pts = lines->push_back_n(2);
+                            pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
+                            pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
+                        }
+                    }
+                }
+                break;
+            case SkPath::kDone_Verb:
+                if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
+                    // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
+                    // degenerate, we need to draw a line.
+                    SkPoint* pts = lines->push_back_n(2);
+                    pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
+                    pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
+                }
+                return totalQuadCount;
+        }
+    }
+}
+
+struct LineVertex {
+    SkPoint fPos;
+    float fCoverage;
+};
+
+struct BezierVertex {
+    SkPoint fPos;
+    union {
+        struct {
+            SkScalar fKLM[3];
+        } fConic;
+        SkVector   fQuadCoord;
+        struct {
+            SkScalar fBogus[4];
+        };
+    };
+};
+
+static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
+
+void intersect_lines(const SkPoint& ptA, const SkVector& normA,
+                     const SkPoint& ptB, const SkVector& normB,
+                     SkPoint* result) {
+
+    SkScalar lineAW = -normA.dot(ptA);
+    SkScalar lineBW = -normB.dot(ptB);
+
+    SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
+    wInv = SkScalarInvert(wInv);
+    if (!SkScalarIsFinite(wInv)) {
+        // lines are parallel, pick the point in between
+        *result = (ptA + ptB)*SK_ScalarHalf;
+        *result += normA;
+    } else {
+        result->fX = normA.fY * lineBW - lineAW * normB.fY;
+        result->fX *= wInv;
+
+        result->fY = lineAW * normB.fX - normA.fX * lineBW;
+        result->fY *= wInv;
+    }
+}
+
+void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
+    // this should be in the src space, not dev coords, when we have perspective
+    GrPathUtils::QuadUVMatrix DevToUV(qpts);
+    DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
+}
+
+void bloat_quad(const SkPoint qpts[3],
+                const SkMatrix* toDevice,
+                const SkMatrix* toSrc,
+                BezierVertex verts[kQuadNumVertices]) {
+    SkASSERT(!toDevice == !toSrc);
+    // original quad is specified by tri a,b,c
+    SkPoint a = qpts[0];
+    SkPoint b = qpts[1];
+    SkPoint c = qpts[2];
+
+    if (toDevice) {
+        toDevice->mapPoints(&a, 1);
+        toDevice->mapPoints(&b, 1);
+        toDevice->mapPoints(&c, 1);
+    }
+    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
+    // to edges ab and bc:
+    //
+    //   before       |        after
+    //                |              b0
+    //         b      |
+    //                |
+    //                |     a0            c0
+    // a         c    |        a1       c1
+    //
+    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
+    // respectively.
+    BezierVertex& a0 = verts[0];
+    BezierVertex& a1 = verts[1];
+    BezierVertex& b0 = verts[2];
+    BezierVertex& c0 = verts[3];
+    BezierVertex& c1 = verts[4];
+
+    SkVector ab = b;
+    ab -= a;
+    SkVector ac = c;
+    ac -= a;
+    SkVector cb = b;
+    cb -= c;
+
+    // After the transform (or due to floating point math) we might have a line,
+    // try to do something reasonable
+    if (SkPointPriv::LengthSqd(ab) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
+        ab = cb;
+    }
+    if (SkPointPriv::LengthSqd(cb) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
+        cb = ab;
+    }
+
+    // We should have already handled degenerates
+    SkASSERT(ab.length() > 0 && cb.length() > 0);
+
+    ab.normalize();
+    SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
+    if (abN.dot(ac) > 0) {
+        abN.negate();
+    }
+
+    cb.normalize();
+    SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
+    if (cbN.dot(ac) < 0) {
+        cbN.negate();
+    }
+
+    a0.fPos = a;
+    a0.fPos += abN;
+    a1.fPos = a;
+    a1.fPos -= abN;
+
+    if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
+        c = b;
+    }
+    c0.fPos = c;
+    c0.fPos += cbN;
+    c1.fPos = c;
+    c1.fPos -= cbN;
+
+    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
+
+    if (toSrc) {
+        SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
+                                          kQuadNumVertices);
+    }
+}
+
+// Equations based off of Loop-Blinn Quadratic GPU Rendering
+// Input Parametric:
+// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
+// Output Implicit:
+// f(x, y, w) = f(P) = K^2 - LM
+// K = dot(k, P), L = dot(l, P), M = dot(m, P)
+// k, l, m are calculated in function GrPathUtils::getConicKLM
+void set_conic_coeffs(const SkPoint p[3],
+                      BezierVertex verts[kQuadNumVertices],
+                      const SkScalar weight) {
+    SkMatrix klm;
+
+    GrPathUtils::getConicKLM(p, weight, &klm);
+
+    for (int i = 0; i < kQuadNumVertices; ++i) {
+        const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
+        klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
+    }
+}
+
+void add_conics(const SkPoint p[3],
+                const SkScalar weight,
+                const SkMatrix* toDevice,
+                const SkMatrix* toSrc,
+                BezierVertex** vert) {
+    bloat_quad(p, toDevice, toSrc, *vert);
+    set_conic_coeffs(p, *vert, weight);
+    *vert += kQuadNumVertices;
+}
+
+void add_quads(const SkPoint p[3],
+               int subdiv,
+               const SkMatrix* toDevice,
+               const SkMatrix* toSrc,
+               BezierVertex** vert) {
+    SkASSERT(subdiv >= 0);
+    // temporary vertex storage to avoid reading the vertex buffer
+    BezierVertex outVerts[kQuadNumVertices] = {};
+
+    // storage for the chopped quad
+    // pts 0,1,2 are the first quad, and 2,3,4 the second quad
+    SkPoint choppedQuadPts[5];
+    // start off with our original curve in the second quad slot
+    memcpy(&choppedQuadPts[2], p, 3*sizeof(SkPoint));
+
+    int stepCount = 1 << subdiv;
+    while (stepCount > 1) {
+        // The general idea is:
+        // * chop the quad using pts 2,3,4 as the input
+        // * write out verts using pts 0,1,2
+        // * now 2,3,4 is the remainder of the curve, chop again until all subdivisions are done
+        SkScalar h = 1.f / stepCount;
+        SkChopQuadAt(&choppedQuadPts[2], choppedQuadPts, h);
+
+        bloat_quad(choppedQuadPts, toDevice, toSrc, outVerts);
+        set_uv_quad(choppedQuadPts, outVerts);
+        memcpy(*vert, outVerts, kQuadNumVertices*sizeof(BezierVertex));
+        *vert += kQuadNumVertices;
+        --stepCount;
+    }
+
+    // finish up, write out the final quad
+    bloat_quad(&choppedQuadPts[2], toDevice, toSrc, outVerts);
+    set_uv_quad(&choppedQuadPts[2], outVerts);
+    memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
+    *vert += kQuadNumVertices;
+}
+
+void add_line(const SkPoint p[2],
+              const SkMatrix* toSrc,
+              uint8_t coverage,
+              LineVertex** vert) {
+    const SkPoint& a = p[0];
+    const SkPoint& b = p[1];
+
+    SkVector ortho, vec = b;
+    vec -= a;
+
+    SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
+
+    if (vec.setLength(SK_ScalarHalf)) {
+        // Create a vector orthogonal to 'vec' and of unit length
+        ortho.fX = 2.0f * vec.fY;
+        ortho.fY = -2.0f * vec.fX;
+
+        float floatCoverage = GrNormalizeByteToFloat(coverage);
+
+        if (lengthSqd >= 1.0f) {
+            // Relative to points a and b:
+            // The inner vertices are inset half a pixel along the line a,b
+            (*vert)[0].fPos = a + vec;
+            (*vert)[0].fCoverage = floatCoverage;
+            (*vert)[1].fPos = b - vec;
+            (*vert)[1].fCoverage = floatCoverage;
+        } else {
+            // The inner vertices are inset a distance of length(a,b) from the outer edge of
+            // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
+            // The coverage is then modulated by the length. This gives us the correct
+            // coverage for rects shorter than a pixel as they get translated subpixel amounts
+            // inside of a pixel.
+            SkScalar length = SkScalarSqrt(lengthSqd);
+            (*vert)[0].fPos = b - vec;
+            (*vert)[0].fCoverage = floatCoverage * length;
+            (*vert)[1].fPos = a + vec;
+            (*vert)[1].fCoverage = floatCoverage * length;
+        }
+        // Relative to points a and b:
+        // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
+        // orthogonally.
+        (*vert)[2].fPos = a - vec + ortho;
+        (*vert)[2].fCoverage = 0;
+        (*vert)[3].fPos = b + vec + ortho;
+        (*vert)[3].fCoverage = 0;
+        (*vert)[4].fPos = a - vec - ortho;
+        (*vert)[4].fCoverage = 0;
+        (*vert)[5].fPos = b + vec - ortho;
+        (*vert)[5].fCoverage = 0;
+
+        if (toSrc) {
+            SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
+                                              kLineSegNumVertices);
+        }
+    } else {
+        // just make it degenerate and likely offscreen
+        for (int i = 0; i < kLineSegNumVertices; ++i) {
+            (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
+        }
+    }
+
+    *vert += kLineSegNumVertices;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+class AAHairlineOp final : public GrMeshDrawOp {
+private:
+    using Helper = GrSimpleMeshDrawOpHelperWithStencil;
+
+public:
+    DEFINE_OP_CLASS_ID
+
+    static GrOp::Owner Make(GrRecordingContext* context,
+                            GrPaint&& paint,
+                            const SkMatrix& viewMatrix,
+                            const SkPath& path,
+                            const GrStyle& style,
+                            const SkIRect& devClipBounds,
+                            const GrUserStencilSettings* stencilSettings) {
+        SkScalar hairlineCoverage;
+        uint8_t newCoverage = 0xff;
+        if (GrIsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
+            newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
+        }
+
+        const SkStrokeRec& stroke = style.strokeRec();
+        SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
+
+        return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
+                                                   viewMatrix, path,
+                                                   devClipBounds, capLength, stencilSettings);
+    }
+
+    AAHairlineOp(GrProcessorSet* processorSet,
+                 const SkPMColor4f& color,
+                 uint8_t coverage,
+                 const SkMatrix& viewMatrix,
+                 const SkPath& path,
+                 SkIRect devClipBounds,
+                 SkScalar capLength,
+                 const GrUserStencilSettings* stencilSettings)
+            : INHERITED(ClassID())
+            , fHelper(processorSet, GrAAType::kCoverage, stencilSettings)
+            , fColor(color)
+            , fCoverage(coverage) {
+        fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
+
+        this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
+                                   IsHairline::kYes);
+    }
+
+    const char* name() const override { return "AAHairlineOp"; }
+
+    void visitProxies(const GrVisitProxyFunc& func) const override {
+
+        bool visited = false;
+        for (int i = 0; i < 3; ++i) {
+            if (fProgramInfos[i]) {
+                fProgramInfos[i]->visitFPProxies(func);
+                visited = true;
+            }
+        }
+
+        if (!visited) {
+            fHelper.visitProxies(func);
+        }
+    }
+
+    FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
+
+    GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
+                                      GrClampType clampType) override {
+        // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
+        return fHelper.finalizeProcessors(caps, clip, clampType,
+                                          GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
+                                          nullptr);
+    }
+
+    enum class Program : uint8_t {
+        kNone  = 0x0,
+        kLine  = 0x1,
+        kQuad  = 0x2,
+        kConic = 0x4,
+    };
+
+private:
+    void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
+                             const GrSurfaceProxyView& writeView,
+                             const SkMatrix* geometryProcessorViewM,
+                             const SkMatrix* geometryProcessorLocalM,
+                             GrXferBarrierFlags renderPassXferBarriers,
+                             GrLoadOp colorLoadOp);
+    void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
+                             const GrSurfaceProxyView& writeView,
+                             const SkMatrix* geometryProcessorViewM,
+                             const SkMatrix* geometryProcessorLocalM,
+                             GrXferBarrierFlags renderPassXferBarriers,
+                             GrLoadOp colorLoadOp);
+    void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
+                              const GrSurfaceProxyView& writeView,
+                              const SkMatrix* geometryProcessorViewM,
+                              const SkMatrix* geometryProcessorLocalM,
+                              GrXferBarrierFlags renderPassXferBarriers,
+                              GrLoadOp colorLoadOp);
+
+    GrProgramInfo* programInfo() override {
+        // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point
+        // should really never be called.
+        SkASSERT(0);
+        return nullptr;
+    }
+
+    Program predictPrograms(const GrCaps*) const;
+
+    void onCreateProgramInfo(const GrCaps*,
+                             SkArenaAlloc*,
+                             const GrSurfaceProxyView& writeView,
+                             bool usesMSAASurface,
+                             GrAppliedClip&&,
+                             const GrDstProxyView&,
+                             GrXferBarrierFlags renderPassXferBarriers,
+                             GrLoadOp colorLoadOp) override;
+
+    void onPrePrepareDraws(GrRecordingContext*,
+                           const GrSurfaceProxyView& writeView,
+                           GrAppliedClip*,
+                           const GrDstProxyView&,
+                           GrXferBarrierFlags renderPassXferBarriers,
+                           GrLoadOp colorLoadOp) override;
+
+    void onPrepareDraws(GrMeshDrawTarget*) override;
+    void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
+
+    CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
+        AAHairlineOp* that = t->cast<AAHairlineOp>();
+
+        if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
+            return CombineResult::kCannotCombine;
+        }
+
+        if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
+            return CombineResult::kCannotCombine;
+        }
+
+        // We go to identity if we don't have perspective
+        if (this->viewMatrix().hasPerspective() &&
+            !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
+            return CombineResult::kCannotCombine;
+        }
+
+        // TODO we can actually combine hairlines if they are the same color in a kind of bulk
+        // method but we haven't implemented this yet
+        // TODO investigate going to vertex color and coverage?
+        if (this->coverage() != that->coverage()) {
+            return CombineResult::kCannotCombine;
+        }
+
+        if (this->color() != that->color()) {
+            return CombineResult::kCannotCombine;
+        }
+
+        if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(),
+                                                                   that->viewMatrix())) {
+            return CombineResult::kCannotCombine;
+        }
+
+        fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
+        return CombineResult::kMerged;
+    }
+
+#if GR_TEST_UTILS
+    SkString onDumpInfo() const override {
+        return SkStringPrintf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n%s",
+                              fColor.toBytes_RGBA(), fCoverage, fPaths.count(),
+                              fHelper.dumpInfo().c_str());
+    }
+#endif
+
+    const SkPMColor4f& color() const { return fColor; }
+    uint8_t coverage() const { return fCoverage; }
+    const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
+
+    struct PathData {
+        SkMatrix fViewMatrix;
+        SkPath fPath;
+        SkIRect fDevClipBounds;
+        SkScalar fCapLength;
+    };
+
+    SkSTArray<1, PathData, true> fPaths;
+    Helper fHelper;
+    SkPMColor4f fColor;
+    uint8_t fCoverage;
+
+    Program        fCharacterization = Program::kNone;       // holds a mask of required programs
+    GrSimpleMesh*  fMeshes[3] = { nullptr };
+    GrProgramInfo* fProgramInfos[3] = { nullptr };
+
+    using INHERITED = GrMeshDrawOp;
+};
+
+GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)
+
+void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
+                                       const GrPipeline* pipeline,
+                                       const GrSurfaceProxyView& writeView,
+                                       const SkMatrix* geometryProcessorViewM,
+                                       const SkMatrix* geometryProcessorLocalM,
+                                       GrXferBarrierFlags renderPassXferBarriers,
+                                       GrLoadOp colorLoadOp) {
+    if (fProgramInfos[0]) {
+        return;
+    }
+
+    GrGeometryProcessor* lineGP;
+    {
+        using namespace GrDefaultGeoProcFactory;
+
+        Color color(this->color());
+        LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
+                                                          : LocalCoords::kUnused_Type);
+        localCoords.fMatrix = geometryProcessorLocalM;
+
+        lineGP = GrDefaultGeoProcFactory::Make(arena,
+                                               color,
+                                               Coverage::kAttribute_Type,
+                                               localCoords,
+                                               *geometryProcessorViewM);
+        SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
+    }
+
+    fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
+            arena, pipeline, writeView, lineGP, GrPrimitiveType::kTriangles,
+            renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
+}
+
+void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
+                                       const GrPipeline* pipeline,
+                                       const GrSurfaceProxyView& writeView,
+                                       const SkMatrix* geometryProcessorViewM,
+                                       const SkMatrix* geometryProcessorLocalM,
+                                       GrXferBarrierFlags renderPassXferBarriers,
+                                       GrLoadOp colorLoadOp) {
+    if (fProgramInfos[1]) {
+        return;
+    }
+
+    GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena,
+                                                     this->color(),
+                                                     *geometryProcessorViewM,
+                                                     caps,
+                                                     *geometryProcessorLocalM,
+                                                     fHelper.usesLocalCoords(),
+                                                     this->coverage());
+    SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
+
+    fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
+            arena, pipeline, writeView, quadGP, GrPrimitiveType::kTriangles,
+            renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
+}
+
+void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
+                                        const GrPipeline* pipeline,
+                                        const GrSurfaceProxyView& writeView,
+                                        const SkMatrix* geometryProcessorViewM,
+                                        const SkMatrix* geometryProcessorLocalM,
+                                        GrXferBarrierFlags renderPassXferBarriers,
+                                        GrLoadOp colorLoadOp) {
+    if (fProgramInfos[2]) {
+        return;
+    }
+
+    GrGeometryProcessor* conicGP = GrConicEffect::Make(arena,
+                                                       this->color(),
+                                                       *geometryProcessorViewM,
+                                                       caps,
+                                                       *geometryProcessorLocalM,
+                                                       fHelper.usesLocalCoords(),
+                                                       this->coverage());
+    SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
+
+    fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
+            arena, pipeline, writeView, conicGP, GrPrimitiveType::kTriangles,
+            renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
+}
+
+AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const {
+    bool convertConicsToQuads = !caps->shaderCaps()->floatIs32Bits();
+
+    // When predicting the programs we always include the lineProgram bc it is used as a fallback
+    // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a
+    // given path.
+    Program neededPrograms = Program::kLine;
+
+    for (int i = 0; i < fPaths.count(); i++) {
+        uint32_t mask = fPaths[i].fPath.getSegmentMasks();
+
+        if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) {
+            neededPrograms |= Program::kQuad;
+        }
+        if (mask & SkPath::kConic_SegmentMask) {
+            if (convertConicsToQuads) {
+                neededPrograms |= Program::kQuad;
+            } else {
+                neededPrograms |= Program::kConic;
+            }
+        }
+    }
+
+    return neededPrograms;
+}
+
+void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps,
+                                       SkArenaAlloc* arena,
+                                       const GrSurfaceProxyView& writeView,
+                                       bool usesMSAASurface,
+                                       GrAppliedClip&& appliedClip,
+                                       const GrDstProxyView& dstProxyView,
+                                       GrXferBarrierFlags renderPassXferBarriers,
+                                       GrLoadOp colorLoadOp) {
+    // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
+    SkMatrix invert;
+    if (!this->viewMatrix().invert(&invert)) {
+        return;
+    }
+
+    // we will transform to identity space if the viewmatrix does not have perspective
+    bool hasPerspective = this->viewMatrix().hasPerspective();
+    const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
+    const SkMatrix* geometryProcessorLocalM = &invert;
+    if (hasPerspective) {
+        geometryProcessorViewM = &this->viewMatrix();
+        geometryProcessorLocalM = &SkMatrix::I();
+    }
+
+    auto pipeline = fHelper.createPipeline(caps, arena, writeView.swizzle(),
+                                           std::move(appliedClip), dstProxyView);
+
+    if (fCharacterization & Program::kLine) {
+        this->makeLineProgramInfo(*caps, arena, pipeline, writeView,
+                                  geometryProcessorViewM, geometryProcessorLocalM,
+                                  renderPassXferBarriers, colorLoadOp);
+    }
+    if (fCharacterization & Program::kQuad) {
+        this->makeQuadProgramInfo(*caps, arena, pipeline, writeView,
+                                  geometryProcessorViewM, geometryProcessorLocalM,
+                                  renderPassXferBarriers, colorLoadOp);
+    }
+    if (fCharacterization & Program::kConic) {
+        this->makeConicProgramInfo(*caps, arena, pipeline, writeView,
+                                   geometryProcessorViewM, geometryProcessorLocalM,
+                                   renderPassXferBarriers, colorLoadOp);
+
+    }
+}
+
+void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context,
+                                     const GrSurfaceProxyView& writeView,
+                                     GrAppliedClip* clip,
+                                     const GrDstProxyView& dstProxyView,
+                                     GrXferBarrierFlags renderPassXferBarriers,
+                                     GrLoadOp colorLoadOp) {
+    SkArenaAlloc* arena = context->priv().recordTimeAllocator();
+    const GrCaps* caps = context->priv().caps();
+
+    // http://skbug.com/12201 -- DDL does not yet support DMSAA.
+    bool usesMSAASurface = writeView.asRenderTargetProxy()->numSamples() > 1;
+
+    // This is equivalent to a GrOpFlushState::detachAppliedClip
+    GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip::Disabled();
+
+    // Conservatively predict which programs will be required
+    fCharacterization = this->predictPrograms(caps);
+
+    this->createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip),
+                            dstProxyView, renderPassXferBarriers, colorLoadOp);
+
+    context->priv().recordProgramInfo(fProgramInfos[0]);
+    context->priv().recordProgramInfo(fProgramInfos[1]);
+    context->priv().recordProgramInfo(fProgramInfos[2]);
+}
+
+void AAHairlineOp::onPrepareDraws(GrMeshDrawTarget* target) {
+    // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
+    SkMatrix invert;
+    if (!this->viewMatrix().invert(&invert)) {
+        return;
+    }
+
+    // we will transform to identity space if the viewmatrix does not have perspective
+    const SkMatrix* toDevice = nullptr;
+    const SkMatrix* toSrc = nullptr;
+    if (this->viewMatrix().hasPerspective()) {
+        toDevice = &this->viewMatrix();
+        toSrc = &invert;
+    }
+
+    SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps()));
+    Program actualPrograms = Program::kNone;
+
+    // This is hand inlined for maximum performance.
+    PREALLOC_PTARRAY(128) lines;
+    PREALLOC_PTARRAY(128) quads;
+    PREALLOC_PTARRAY(128) conics;
+    IntArray qSubdivs;
+    FloatArray cWeights;
+    int quadCount = 0;
+
+    int instanceCount = fPaths.count();
+    bool convertConicsToQuads = !target->caps().shaderCaps()->floatIs32Bits();
+    for (int i = 0; i < instanceCount; i++) {
+        const PathData& args = fPaths[i];
+        quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
+                                            args.fCapLength, convertConicsToQuads, &lines, &quads,
+                                            &conics, &qSubdivs, &cWeights);
+    }
+
+    int lineCount = lines.count() / 2;
+    int conicCount = conics.count() / 3;
+    int quadAndConicCount = conicCount + quadCount;
+
+    static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
+    static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
+    if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
+        return;
+    }
+
+    // do lines first
+    if (lineCount) {
+        SkASSERT(predictedPrograms & Program::kLine);
+        actualPrograms |= Program::kLine;
+
+        sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
+
+        GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex),
+                                           std::move(linesIndexBuffer), kLineSegNumVertices,
+                                           kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer);
+
+        LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices());
+        if (!verts) {
+            SkDebugf("Could not allocate vertices\n");
+            return;
+        }
+
+        for (int i = 0; i < lineCount; ++i) {
+            add_line(&lines[2*i], toSrc, this->coverage(), &verts);
+        }
+
+        fMeshes[0] = helper.mesh();
+    }
+
+    if (quadCount || conicCount) {
+        sk_sp<const GrBuffer> vertexBuffer;
+        int firstVertex;
+
+        sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
+
+        int vertexCount = kQuadNumVertices * quadAndConicCount;
+        void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
+                                                 &firstVertex);
+
+        if (!vertices || !quadsIndexBuffer) {
+            SkDebugf("Could not allocate vertices\n");
+            return;
+        }
+
+        // Setup vertices
+        BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
+
+        int unsubdivQuadCnt = quads.count() / 3;
+        for (int i = 0; i < unsubdivQuadCnt; ++i) {
+            SkASSERT(qSubdivs[i] >= 0);
+            if (!quads[3*i].isFinite() || !quads[3*i+1].isFinite() || !quads[3*i+2].isFinite()) {
+                return;
+            }
+            add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
+        }
+
+        // Start Conics
+        for (int i = 0; i < conicCount; ++i) {
+            add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
+        }
+
+        if (quadCount > 0) {
+            SkASSERT(predictedPrograms & Program::kQuad);
+            actualPrograms |= Program::kQuad;
+
+            fMeshes[1] = target->allocMesh();
+            fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount,
+                                            kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices,
+                                            firstVertex);
+            firstVertex += quadCount * kQuadNumVertices;
+        }
+
+        if (conicCount > 0) {
+            SkASSERT(predictedPrograms & Program::kConic);
+            actualPrograms |= Program::kConic;
+
+            fMeshes[2] = target->allocMesh();
+            fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount,
+                                            kQuadsNumInIdxBuffer, std::move(vertexBuffer),
+                                            kQuadNumVertices, firstVertex);
+        }
+    }
+
+    // In DDL mode this will replace the predicted program requirements with the actual ones.
+    // However, we will already have surfaced the predicted programs to the DDL.
+    fCharacterization = actualPrograms;
+}
+
+void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
+    this->createProgramInfo(flushState);
+
+    for (int i = 0; i < 3; ++i) {
+        if (fProgramInfos[i] && fMeshes[i]) {
+            flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds);
+            flushState->bindTextures(fProgramInfos[i]->geomProc(), nullptr,
+                                     fProgramInfos[i]->pipeline());
+            flushState->drawMesh(*fMeshes[i]);
+        }
+    }
+}
+
+} // anonymous namespace
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+#if GR_TEST_UTILS
+
+GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
+    SkMatrix viewMatrix = GrTest::TestMatrix(random);
+    const SkPath& path = GrTest::TestPath(random);
+    SkIRect devClipBounds;
+    devClipBounds.setEmpty();
+    return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
+                              GrStyle::SimpleHairline(), devClipBounds,
+                              GrGetRandomStencil(random, context));
+}
+
+#endif
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+namespace skgpu::v1 {
+
+GrPathRenderer::CanDrawPath
+AAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
+    if (GrAAType::kCoverage != args.fAAType) {
+        return CanDrawPath::kNo;
+    }
+
+    if (!GrIsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
+        return CanDrawPath::kNo;
+    }
+
+    // We don't currently handle dashing in this class though perhaps we should.
+    if (args.fShape->style().pathEffect()) {
+        return CanDrawPath::kNo;
+    }
+
+    if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
+        args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
+        return CanDrawPath::kYes;
+    }
+
+    return CanDrawPath::kNo;
+}
+
+
+bool AAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
+    GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(),
+                              "AAHairlinePathRenderer::onDrawPath");
+    SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1);
+
+    SkPath path;
+    args.fShape->asPath(&path);
+    GrOp::Owner op =
+            AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
+                               args.fShape->style(), *args.fClipConservativeBounds,
+                               args.fUserStencilSettings);
+    args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op));
+    return true;
+}
+
+} // namespace skgpu::v1
+