Add SkOffsetSimplePolygon.

Performs inset and outset operations on simple polygons and returns
a simple polygon, if possible.

Bug: skia:
Change-Id: I6d468174ad70b5279b736c532e19cbb84ff9f955
Reviewed-on: https://skia-review.googlesource.com/116483
Commit-Queue: Jim Van Verth <jvanverth@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
diff --git a/gm/convex_all_line_paths.cpp b/gm/convex_all_line_paths.cpp
index b8cdbce..b1907bc 100644
--- a/gm/convex_all_line_paths.cpp
+++ b/gm/convex_all_line_paths.cpp
@@ -350,173 +350,8 @@
     typedef GM INHERITED;
 };
 
-// This GM is intended to exercise the insetting of convex polygons
-class ConvexPolygonInsetGM : public GM {
-public:
-    ConvexPolygonInsetGM() {
-        this->setBGColor(0xFFFFFFFF);
-    }
-
-protected:
-    SkString onShortName() override {
-        return SkString("convex-polygon-inset");
-    }
-    SkISize onISize() override { return SkISize::Make(kGMWidth, kGMHeight); }
-    bool runAsBench() const override { return true; }
-
-    static void GetPath(int index, SkPath::Direction dir,
-                        std::unique_ptr<SkPoint[]>* data, int* numPts) {
-        if (index < (int)SK_ARRAY_COUNT(ConvexLineOnlyData::gPoints)) {
-            // manually specified
-            *numPts = (int)ConvexLineOnlyData::gSizes[index];
-            data->reset(new SkPoint[*numPts]);
-            if (SkPath::kCW_Direction == dir) {
-                for (int i = 0; i < *numPts; ++i) {
-                    (*data)[i] = ConvexLineOnlyData::gPoints[index][i];
-                }
-            } else {
-                for (int i = 0; i < *numPts; ++i) {
-                    (*data)[i] = ConvexLineOnlyData::gPoints[index][*numPts - i - 1];
-                }
-            }
-        } else {
-            // procedurally generated
-            SkScalar width = kMaxPathHeight / 2;
-            SkScalar height = kMaxPathHeight / 2;
-            switch (index - SK_ARRAY_COUNT(ConvexLineOnlyData::gPoints)) {
-                case 0:
-                    *numPts = 3;
-                    break;
-                case 1:
-                    *numPts = 4;
-                    break;
-                case 2:
-                    *numPts = 5;
-                    break;
-                case 3:             // squashed pentagon
-                    *numPts = 5;
-                    width = kMaxPathHeight / 5;
-                    break;
-                case 4:
-                    *numPts = 6;
-                    break;
-                case 5:
-                    *numPts = 8;
-                    break;
-                case 6:              // squashed octogon
-                    *numPts = 8;
-                    width = kMaxPathHeight / 5;
-                    break;
-                case 7:
-                    *numPts = 20;
-                    break;
-                case 8:
-                    *numPts = 100;
-                    break;
-                default:
-                    *numPts = 3;
-                    break;
-            }
-
-            data->reset(new SkPoint[*numPts]);
-
-            create_ngon(*numPts, data->get(), width, height);
-            if (SkPath::kCCW_Direction == dir) {
-                // reverse it
-                for (int i = 0; i < *numPts/2; ++i) {
-                    SkPoint tmp = (*data)[i];
-                    (*data)[i] = (*data)[*numPts - i - 1];
-                    (*data)[*numPts - i - 1] = tmp;
-                }
-            }
-        }
-    }
-
-    // Draw a single path several times, shrinking it, flipping its direction
-    // and changing its start vertex each time.
-    void drawPath(SkCanvas* canvas, int index, SkPoint* offset) {
-
-        SkPoint center;
-        {
-            std::unique_ptr<SkPoint[]> data(nullptr);
-            int numPts;
-            GetPath(index, SkPath::kCW_Direction, &data, &numPts);
-            SkRect bounds;
-            bounds.set(data.get(), numPts);
-            if (offset->fX + bounds.width() > kGMWidth) {
-                offset->fX = 0;
-                offset->fY += kMaxPathHeight;
-            }
-            center = { offset->fX + SkScalarHalf(bounds.width()), offset->fY };
-            offset->fX += bounds.width();
-        }
-
-        const SkPath::Direction dirs[2] = { SkPath::kCW_Direction, SkPath::kCCW_Direction };
-        const float insets[] = { 5, 10, 15, 20, 25, 30, 35, 40 };
-        const SkColor colors[] = { 0xFF901313, 0xFF8D6214, 0xFF698B14, 0xFF1C8914,
-                                   0xFF148755, 0xFF146C84, 0xFF142482, 0xFF4A1480 };
-
-        SkPaint paint;
-        paint.setAntiAlias(true);
-        paint.setStyle(SkPaint::kStroke_Style);
-        paint.setStrokeWidth(1);
-
-        std::unique_ptr<SkPoint[]> data(nullptr);
-        int numPts;
-        GetPath(index, dirs[index % 2], &data, &numPts);
-        {
-            SkPath path;
-            path.moveTo(data.get()[0]);
-            for (int i = 1; i < numPts; ++i) {
-                path.lineTo(data.get()[i]);
-            }
-            path.close();
-            canvas->save();
-            canvas->translate(center.fX, center.fY);
-            canvas->drawPath(path, paint);
-            canvas->restore();
-        }
-
-        SkTDArray<SkPoint> insetPoly;
-        for (size_t i = 0; i < SK_ARRAY_COUNT(insets); ++i) {
-            if (SkInsetConvexPolygon(data.get(), numPts, insets[i], &insetPoly)) {
-                SkPath path;
-                path.moveTo(insetPoly[0]);
-                for (int i = 1; i < insetPoly.count(); ++i) {
-                    path.lineTo(insetPoly[i]);
-                }
-                path.close();
-
-                paint.setColor(colors[i]);
-                canvas->save();
-                canvas->translate(center.fX, center.fY);
-                canvas->drawPath(path, paint);
-                canvas->restore();
-            }
-        }
-    }
-
-    void onDraw(SkCanvas* canvas) override {
-        // the right edge of the last drawn path
-        SkPoint offset = { 0, SkScalarHalf(kMaxPathHeight) };
-
-        for (int i = 0; i < kNumPaths; ++i) {
-            this->drawPath(canvas, i, &offset);
-        }
-    }
-
-private:
-    static constexpr int kNumPaths = 20;
-    static constexpr int kMaxPathHeight = 100;
-    static constexpr int kGMWidth = 512;
-    static constexpr int kGMHeight = 512;
-
-    typedef GM INHERITED;
-};
-
 //////////////////////////////////////////////////////////////////////////////
 
 DEF_GM(return new ConvexLineOnlyPathsGM(false);)
 DEF_GM(return new ConvexLineOnlyPathsGM(true);)
-DEF_GM(return new ConvexPolygonInsetGM();)
 }
diff --git a/gm/polygonoffset.cpp b/gm/polygonoffset.cpp
new file mode 100644
index 0000000..cbf0849
--- /dev/null
+++ b/gm/polygonoffset.cpp
@@ -0,0 +1,606 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "gm.h"
+#include "sk_tool_utils.h"
+#include "SkOffsetPolygon.h"
+#include "SkPathPriv.h"
+
+static void create_ngon(int n, SkPoint* pts, SkScalar w, SkScalar h, SkPath::Direction dir) {
+    float angleStep = 360.0f / n, angle = 0.0f, sin, cos;
+    if ((n % 2) == 1) {
+        angle = angleStep/2.0f;
+    }
+    if (SkPath::kCCW_Direction == dir) {
+        angle = -angle;
+        angleStep = -angleStep;
+    }
+
+    for (int i = 0; i < n; ++i) {
+        sin = SkScalarSinCos(SkDegreesToRadians(angle), &cos);
+        pts[i].fX = -sin * w;
+        pts[i].fY = cos * h;
+        angle += angleStep;
+    }
+}
+
+namespace PolygonOffsetData {
+// narrow rect
+const SkPoint gPoints0[] = {
+    { -1.5f, -50.0f },
+    { 1.5f, -50.0f },
+    { 1.5f,  50.0f },
+    { -1.5f,  50.0f }
+};
+// narrow rect on an angle
+const SkPoint gPoints1[] = {
+    { -50.0f, -49.0f },
+    { -49.0f, -50.0f },
+    { 50.0f,  49.0f },
+    { 49.0f,  50.0f }
+};
+// trap - narrow on top - wide on bottom
+const SkPoint gPoints2[] = {
+    { -10.0f, -50.0f },
+    { 10.0f, -50.0f },
+    { 50.0f,  50.0f },
+    { -50.0f,  50.0f }
+};
+// wide skewed rect
+const SkPoint gPoints3[] = {
+    { -50.0f, -50.0f },
+    { 0.0f, -50.0f },
+    { 50.0f,  50.0f },
+    { 0.0f,  50.0f }
+};
+// thin rect with colinear-ish lines
+const SkPoint gPoints4[] = {
+    { -6.0f, -50.0f },
+    { 4.0f, -50.0f },
+    { 5.0f, -25.0f },
+    { 6.0f,   0.0f },
+    { 5.0f,  25.0f },
+    { 4.0f,  50.0f },
+    { -4.0f,  50.0f }
+};
+// degenerate
+const SkPoint gPoints5[] = {
+    { -0.025f, -0.025f },
+    { 0.025f, -0.025f },
+    { 0.025f,  0.025f },
+    { -0.025f,  0.025f }
+};
+// Quad with near coincident point
+const SkPoint gPoints6[] = {
+    { -20.0f, -13.0f },
+    { -20.0f, -13.05f },
+    { 20.0f, -13.0f },
+    { 20.0f,  27.0f }
+};
+// thin rect with colinear lines
+const SkPoint gPoints7[] = {
+    { -10.0f, -50.0f },
+    { 10.0f, -50.0f },
+    { 10.0f, -25.0f },
+    { 10.0f,   0.0f },
+    { 10.0f,  25.0f },
+    { 10.0f,  50.0f },
+    { -10.0f,  50.0f }
+};
+// capped teardrop
+const SkPoint gPoints8[] = {
+    { 50.00f,  50.00f },
+    { 0.00f,  50.00f },
+    { -15.45f,  47.55f },
+    { -29.39f,  40.45f },
+    { -40.45f,  29.39f },
+    { -47.55f,  15.45f },
+    { -50.00f,   0.00f },
+    { -47.55f, -15.45f },
+    { -40.45f, -29.39f },
+    { -29.39f, -40.45f },
+    { -15.45f, -47.55f },
+    { 0.00f, -50.00f },
+    { 50.00f, -50.00f }
+};
+// teardrop
+const SkPoint gPoints9[] = {
+    { 4.39f,  40.45f },
+    { -9.55f,  47.55f },
+    { -25.00f,  50.00f },
+    { -40.45f,  47.55f },
+    { -54.39f,  40.45f },
+    { -65.45f,  29.39f },
+    { -72.55f,  15.45f },
+    { -75.00f,   0.00f },
+    { -72.55f, -15.45f },
+    { -65.45f, -29.39f },
+    { -54.39f, -40.45f },
+    { -40.45f, -47.55f },
+    { -25.0f,  -50.0f },
+    { -9.55f, -47.55f },
+    { 4.39f, -40.45f },
+    { 75.00f,   0.00f }
+};
+// clipped triangle
+const SkPoint gPoints10[] = {
+    { -10.0f, -50.0f },
+    { 10.0f, -50.0f },
+    { 50.0f,  31.0f },
+    { 40.0f,  50.0f },
+    { -40.0f,  50.0f },
+    { -50.0f,  31.0f },
+};
+
+// tab
+const SkPoint gPoints11[] = {
+    { -45, -25 },
+    { 45, -25 },
+    { 45, 25 },
+    { 20, 25 },
+    { 19.6157f, 25.f + 3.9018f },
+    { 18.4776f, 25.f + 7.6537f },
+    { 16.6294f, 25.f + 11.1114f },
+    { 14.1421f, 25.f + 14.1421f },
+    { 11.1114f, 25.f + 16.6294f },
+    { 7.6537f, 25.f + 18.4776f },
+    { 3.9018f, 25.f + 19.6157f },
+    { 0, 45.f },
+    { -3.9018f, 25.f + 19.6157f },
+    { -7.6537f, 25.f + 18.4776f },
+    { -11.1114f, 25.f + 16.6294f },
+    { -14.1421f, 25.f + 14.1421f },
+    { -16.6294f, 25.f + 11.1114f },
+    { -18.4776f, 25.f + 7.6537f },
+    { -19.6157f, 25.f + 3.9018f },
+    { -20, 25 },
+    { -45, 25 }
+};
+
+// star of david
+const SkPoint gPoints12[] = {
+    { 0.0f, -50.0f },
+    { 14.43f, -25.0f },
+    { 43.30f, -25.0f },
+    { 28.86f, 0.0f },
+    { 43.30f, 25.0f },
+    { 14.43f, 25.0f },
+    { 0.0f, 50.0f },
+    { -14.43f, 25.0f },
+    { -43.30f, 25.0f },
+    { -28.86f, 0.0f },
+    { -43.30f, -25.0f },
+    { -14.43f, -25.0f },
+};
+
+// notch
+const SkScalar kBottom = 25.f;
+const SkPoint gPoints13[] = {
+    { -50, kBottom - 50.f },
+    { 50, kBottom - 50.f },
+    { 50, kBottom },
+    { 20, kBottom },
+    { 19.6157f, kBottom - 3.9018f },
+    { 18.4776f, kBottom - 7.6537f },
+    { 16.6294f, kBottom - 11.1114f },
+    { 14.1421f, kBottom - 14.1421f },
+    { 11.1114f, kBottom - 16.6294f },
+    { 7.6537f, kBottom - 18.4776f },
+    { 3.9018f, kBottom - 19.6157f },
+    { 0, kBottom - 20.f },
+    { -3.9018f, kBottom - 19.6157f },
+    { -7.6537f, kBottom - 18.4776f },
+    { -11.1114f, kBottom - 16.6294f },
+    { -14.1421f, kBottom - 14.1421f },
+    { -16.6294f, kBottom - 11.1114f },
+    { -18.4776f, kBottom - 7.6537f },
+    { -19.6157f, kBottom - 3.9018f },
+    { -20, kBottom },
+    { -50, kBottom }
+};
+
+// crown
+const SkPoint gPoints14[] = {
+    { -40, -39 },
+    { 40, -39 },
+    { 40, -20 },
+    { 30, 40 },
+    { 20, -20 },
+    { 10, 40 },
+    { 0, -20 },
+    { -10, 40 },
+    { -20, -20 },
+    { -30, 40 },
+    { -40, -20 }
+};
+
+// dumbbell
+const SkPoint gPoints15[] = {
+    { -26, -3 },
+    { -24, -6.2f },
+    { -22.5f, -8 },
+    { -20, -9.9f },
+    { -17.5f, -10.3f },
+    { -15, -10.9f },
+    { -12.5f, -10.2f },
+    { -10, -9.7f },
+    { -7.5f, -8.1f },
+    { -5, -7.7f },
+    { -2.5f, -7.4f },
+    { 0, -7.7f },
+    { 3, -9 },
+    { 6.5f, -11.5f },
+    { 10.6f, -14 },
+    { 14, -15.2f },
+    { 17, -15.5f },
+    { 20, -15.2f },
+    { 23.4f, -14 },
+    { 27.5f, -11.5f },
+    { 30, -8 },
+    { 32, -4 },
+    { 32.5f, 0 },
+    { 32, 4 },
+    { 30, 8 },
+    { 27.5f, 11.5f },
+    { 23.4f, 14 },
+    { 20, 15.2f },
+    { 17, 15.5f },
+    { 14, 15.2f },
+    { 10.6f, 14 },
+    { 6.5f, 11.5f },
+    { 3, 9 },
+    { 0, 7.7f },
+    { -2.5f, 7.4f },
+    { -5, 7.7f },
+    { -7.5f, 8.1f },
+    { -10, 9.7f },
+    { -12.5f, 10.2f },
+    { -15, 10.9f },
+    { -17.5f, 10.3f },
+    { -20, 9.9f },
+    { -22.5f, 8 },
+    { -24, 6.2f },
+    { -26, 3 },
+    { -26.5f, 0 }
+};
+
+// truncated dumbbell
+// (checks winding computation in OffsetSimplePolygon)
+const SkPoint gPoints16[] = {
+    { -15 + 3, -9 },
+    { -15 + 6.5f, -11.5f },
+    { -15 + 10.6f, -14 },
+    { -15 + 14, -15.2f },
+    { -15 + 17, -15.5f },
+    { -15 + 20, -15.2f },
+    { -15 + 23.4f, -14 },
+    { -15 + 27.5f, -11.5f },
+    { -15 + 30, -8 },
+    { -15 + 32, -4 },
+    { -15 + 32.5f, 0 },
+    { -15 + 32, 4 },
+    { -15 + 30, 8 },
+    { -15 + 27.5f, 11.5f },
+    { -15 + 23.4f, 14 },
+    { -15 + 20, 15.2f },
+    { -15 + 17, 15.5f },
+    { -15 + 14, 15.2f },
+    { -15 + 10.6f, 14 },
+    { -15 + 6.5f, 11.5f },
+    { -15 + 3, 9 },
+};
+
+// square notch
+// (to detect segment-segment intersection)
+const SkPoint gPoints17[] = {
+    { -50, kBottom - 50.f },
+    { 50, kBottom - 50.f },
+    { 50, kBottom },
+    { 20, kBottom },
+    { 20, kBottom - 20.f },
+    { -20, kBottom - 20.f },
+    { -20, kBottom },
+    { -50, kBottom }
+};
+
+// box with Peano curve
+const SkPoint gPoints18[] = {
+    { 0, 0 },
+    { 0, -12 },
+    { -6, -12 },
+    { -6, 0 },
+    { -12, 0 },
+    { -12, -12},
+    { -18, -12},
+    { -18, 18},
+    { -12, 18},
+    {-12, 6},
+    {-6, 6},
+    {-6, 36},
+    {-12, 36},
+    {-12, 24},
+    {-18, 24},
+    {-18, 36},
+    {-24, 36},
+    {-24, 24},
+    {-30, 24},
+    {-30, 36},
+    {-36, 36},
+    {-36, 6},
+    {-30, 6},
+    {-30, 18},
+    {-24, 18},
+    {-24, -12},
+    {-30, -12},
+    {-30, 0},
+    {-36, 0},
+    {-36, -36},
+    {36, -36},
+    {36, 36},
+    {12, 36},
+    {12, 24},
+    {6, 24},
+    {6, 36},
+    {0, 36},
+    {0, 6},
+    {6, 6},
+    {6, 18},
+    {12, 18},
+    {12, -12},
+    {6, -12},
+    {6, 0}
+};
+
+
+const SkPoint* gConvexPoints[] = {
+    gPoints0, gPoints1, gPoints2, gPoints3, gPoints4, gPoints5, gPoints6,
+    gPoints7, gPoints8, gPoints9, gPoints10,
+};
+
+const size_t gConvexSizes[] = {
+    SK_ARRAY_COUNT(gPoints0),
+    SK_ARRAY_COUNT(gPoints1),
+    SK_ARRAY_COUNT(gPoints2),
+    SK_ARRAY_COUNT(gPoints3),
+    SK_ARRAY_COUNT(gPoints4),
+    SK_ARRAY_COUNT(gPoints5),
+    SK_ARRAY_COUNT(gPoints6),
+    SK_ARRAY_COUNT(gPoints7),
+    SK_ARRAY_COUNT(gPoints8),
+    SK_ARRAY_COUNT(gPoints9),
+    SK_ARRAY_COUNT(gPoints10),
+};
+static_assert(SK_ARRAY_COUNT(gConvexSizes) == SK_ARRAY_COUNT(gConvexPoints), "array_mismatch");
+
+const SkPoint* gSimplePoints[] = {
+    gPoints0, gPoints1, gPoints2, gPoints4, gPoints5, gPoints7,
+    gPoints8, gPoints11, gPoints12, gPoints13, gPoints14, gPoints15,
+    gPoints16, gPoints17, gPoints18,
+};
+
+const size_t gSimpleSizes[] = {
+    SK_ARRAY_COUNT(gPoints0),
+    SK_ARRAY_COUNT(gPoints1),
+    SK_ARRAY_COUNT(gPoints2),
+    SK_ARRAY_COUNT(gPoints4),
+    SK_ARRAY_COUNT(gPoints5),
+    SK_ARRAY_COUNT(gPoints7),
+    SK_ARRAY_COUNT(gPoints8),
+    SK_ARRAY_COUNT(gPoints11),
+    SK_ARRAY_COUNT(gPoints12),
+    SK_ARRAY_COUNT(gPoints13),
+    SK_ARRAY_COUNT(gPoints14),
+    SK_ARRAY_COUNT(gPoints15),
+    SK_ARRAY_COUNT(gPoints16),
+    SK_ARRAY_COUNT(gPoints17),
+    SK_ARRAY_COUNT(gPoints18),
+};
+static_assert(SK_ARRAY_COUNT(gSimpleSizes) == SK_ARRAY_COUNT(gSimplePoints), "array_mismatch");
+
+}
+
+namespace skiagm {
+
+// This GM is intended to exercise the offsetting of polygons
+class PolygonOffsetGM : public GM {
+public:
+    PolygonOffsetGM(bool convexOnly) : fConvexOnly(convexOnly) {
+        this->setBGColor(0xFFFFFFFF);
+    }
+
+protected:
+    SkString onShortName() override {
+        if (fConvexOnly) {
+            return SkString("convex-polygon-inset");
+        } else {
+            return SkString("simple-polygon-offset");
+        }
+    }
+    SkISize onISize() override { return SkISize::Make(kGMWidth, kGMHeight); }
+    bool runAsBench() const override { return true; }
+
+    static void GetConvexPolygon(int index, SkPath::Direction dir,
+                                 std::unique_ptr<SkPoint[]>* data, int* numPts) {
+        if (index < (int)SK_ARRAY_COUNT(PolygonOffsetData::gConvexPoints)) {
+            // manually specified
+            *numPts = (int)PolygonOffsetData::gConvexSizes[index];
+            data->reset(new SkPoint[*numPts]);
+            if (SkPath::kCW_Direction == dir) {
+                for (int i = 0; i < *numPts; ++i) {
+                    (*data)[i] = PolygonOffsetData::gConvexPoints[index][i];
+                }
+            } else {
+                for (int i = 0; i < *numPts; ++i) {
+                    (*data)[i] = PolygonOffsetData::gConvexPoints[index][*numPts - i - 1];
+                }
+            }
+        } else {
+            // procedurally generated
+            SkScalar width = kMaxPathHeight / 2;
+            SkScalar height = kMaxPathHeight / 2;
+            int numPtsArray[] = { 3, 4, 5, 5, 6, 8, 8, 20, 100 };
+
+            size_t arrayIndex = index - SK_ARRAY_COUNT(PolygonOffsetData::gConvexPoints);
+            SkASSERT(arrayIndex < SK_ARRAY_COUNT(numPtsArray));
+            *numPts = numPtsArray[arrayIndex];
+            if (arrayIndex == 3 || arrayIndex == 6) {
+                // squashed pentagon and octagon
+                width = kMaxPathHeight / 5;
+            }
+
+            data->reset(new SkPoint[*numPts]);
+
+            create_ngon(*numPts, data->get(), width, height, dir);
+        }
+    }
+
+    static void GetSimplePolygon(int index, SkPath::Direction dir,
+                                 std::unique_ptr<SkPoint[]>* data, int* numPts) {
+        if (index < (int)SK_ARRAY_COUNT(PolygonOffsetData::gSimplePoints)) {
+            // manually specified
+            *numPts = (int)PolygonOffsetData::gSimpleSizes[index];
+            data->reset(new SkPoint[*numPts]);
+            if (SkPath::kCW_Direction == dir) {
+                for (int i = 0; i < *numPts; ++i) {
+                    (*data)[i] = PolygonOffsetData::gSimplePoints[index][i];
+                }
+            } else {
+                for (int i = 0; i < *numPts; ++i) {
+                    (*data)[i] = PolygonOffsetData::gSimplePoints[index][*numPts - i - 1];
+                }
+            }
+        } else {
+            // procedurally generated
+            SkScalar width = kMaxPathHeight / 2;
+            SkScalar height = kMaxPathHeight / 2;
+            int numPtsArray[] = { 5, 7, 8, 20, 100 };
+
+            size_t arrayIndex = index - SK_ARRAY_COUNT(PolygonOffsetData::gSimplePoints);
+            arrayIndex = SkTMin(arrayIndex, SK_ARRAY_COUNT(numPtsArray) - 1);
+            SkASSERT(arrayIndex < SK_ARRAY_COUNT(numPtsArray));
+            *numPts = numPtsArray[arrayIndex];
+            // squash horizontally
+            width = kMaxPathHeight / 5;
+
+            data->reset(new SkPoint[*numPts]);
+
+            create_ngon(*numPts, data->get(), width, height, dir);
+        }
+    }
+    // Draw a single polygon with insets and potentially outsets
+    void drawPolygon(SkCanvas* canvas, int index, SkPoint* offset) {
+
+        SkPoint center;
+        {
+            std::unique_ptr<SkPoint[]> data(nullptr);
+            int numPts;
+            if (fConvexOnly) {
+                GetConvexPolygon(index, SkPath::kCW_Direction, &data, &numPts);
+            } else {
+                GetSimplePolygon(index, SkPath::kCW_Direction, &data, &numPts);
+            }
+            SkRect bounds;
+            bounds.set(data.get(), numPts);
+            if (!fConvexOnly) {
+                bounds.outset(kMaxOutset, kMaxOutset);
+            }
+            if (offset->fX + bounds.width() > kGMWidth) {
+                offset->fX = 0;
+                offset->fY += kMaxPathHeight;
+            }
+            center = { offset->fX + SkScalarHalf(bounds.width()), offset->fY };
+            offset->fX += bounds.width();
+        }
+
+        const SkPath::Direction dirs[2] = { SkPath::kCW_Direction, SkPath::kCCW_Direction };
+        const float insets[] = { 5, 10, 15, 20, 25, 30, 35, 40 };
+        const float offsets[] = { 2, 5, 9, 14, 20, 27, 35, 44, -2, -5, -9 };
+        const SkColor colors[] = { 0xFF901313, 0xFF8D6214, 0xFF698B14, 0xFF1C8914,
+                                   0xFF148755, 0xFF146C84, 0xFF142482, 0xFF4A1480,
+                                   0xFF901313, 0xFF8D6214, 0xFF698B14 };
+
+        SkPaint paint;
+        paint.setAntiAlias(true);
+        paint.setStyle(SkPaint::kStroke_Style);
+        paint.setStrokeWidth(1);
+
+        std::unique_ptr<SkPoint[]> data(nullptr);
+        int numPts;
+        if (fConvexOnly) {
+            GetConvexPolygon(index, dirs[index % 2], &data, &numPts);
+        } else {
+            GetSimplePolygon(index, dirs[index % 2], &data, &numPts);
+        }
+
+        {
+            SkPath path;
+            path.moveTo(data.get()[0]);
+            for (int i = 1; i < numPts; ++i) {
+                path.lineTo(data.get()[i]);
+            }
+            path.close();
+            canvas->save();
+            canvas->translate(center.fX, center.fY);
+            canvas->drawPath(path, paint);
+            canvas->restore();
+        }
+
+        SkTDArray<SkPoint> offsetPoly;
+        size_t count = fConvexOnly ? SK_ARRAY_COUNT(insets) : SK_ARRAY_COUNT(offsets);
+        for (size_t i = 0; i < count; ++i) {
+            bool result;
+            if (fConvexOnly) {
+                result = SkInsetConvexPolygon(data.get(), numPts, insets[i], &offsetPoly);
+            } else {
+                result = SkOffsetSimplePolygon(data.get(), numPts, offsets[i], &offsetPoly);
+            }
+            if (result) {
+                SkPath path;
+                path.moveTo(offsetPoly[0]);
+                for (int i = 1; i < offsetPoly.count(); ++i) {
+                    path.lineTo(offsetPoly[i]);
+                }
+                path.close();
+
+                paint.setColor(sk_tool_utils::color_to_565(colors[i]));
+                canvas->save();
+                canvas->translate(center.fX, center.fY);
+                canvas->drawPath(path, paint);
+                canvas->restore();
+            }
+        }
+    }
+
+    void onDraw(SkCanvas* canvas) override {
+        // the right edge of the last drawn path
+        SkPoint offset = { 0, SkScalarHalf(kMaxPathHeight) };
+        if (!fConvexOnly) {
+            offset.fY += kMaxOutset;
+        }
+
+        for (int i = 0; i < kNumPaths; ++i) {
+            this->drawPolygon(canvas, i, &offset);
+        }
+    }
+
+private:
+    static constexpr int kNumPaths = 20;
+    static constexpr int kMaxPathHeight = 100;
+    static constexpr int kMaxOutset = 16;
+    static constexpr int kGMWidth = 512;
+    static constexpr int kGMHeight = 512;
+
+    bool fConvexOnly;
+
+    typedef GM INHERITED;
+};
+
+//////////////////////////////////////////////////////////////////////////////
+
+DEF_GM(return new PolygonOffsetGM(true);)
+DEF_GM(return new PolygonOffsetGM(false);)
+}
diff --git a/gn/gm.gni b/gn/gm.gni
index 5443fa8..1558881 100644
--- a/gn/gm.gni
+++ b/gn/gm.gni
@@ -247,6 +247,7 @@
   "$_gm/points.cpp",
   "$_gm/poly2poly.cpp",
   "$_gm/polygons.cpp",
+  "$_gm/polygonoffset.cpp",
   "$_gm/quadpaths.cpp",
   "$_gm/radial_gradient_precision.cpp",
   "$_gm/readpixels.cpp",
diff --git a/gn/tests.gni b/gn/tests.gni
index 958ef3a..154e300 100644
--- a/gn/tests.gni
+++ b/gn/tests.gni
@@ -160,6 +160,7 @@
   "$_tests/PDFMetadataAttributeTest.cpp",
   "$_tests/PDFOpaqueSrcModeToSrcOverTest.cpp",
   "$_tests/PDFPrimitivesTest.cpp",
+  "$_tests/OffsetSimplePolyTest.cpp",
   "$_tests/OnFlushCallbackTest.cpp",
   "$_tests/PathRendererCacheTests.cpp",
   "$_tests/PictureBBHTest.cpp",
diff --git a/src/utils/SkOffsetPolygon.cpp b/src/utils/SkOffsetPolygon.cpp
index c8ebbeb..bfd12d2 100755
--- a/src/utils/SkOffsetPolygon.cpp
+++ b/src/utils/SkOffsetPolygon.cpp
@@ -8,9 +8,11 @@
 #include "SkOffsetPolygon.h"
 
 #include "SkPointPriv.h"
+#include "SkTArray.h"
 #include "SkTemplates.h"
+#include "SkTDPQueue.h"
 
-struct InsetSegment {
+struct OffsetSegment {
     SkPoint fP0;
     SkPoint fP1;
 };
@@ -95,39 +97,65 @@
 // Compute the intersection 'p' between segments s0 and s1, if any.
 // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
 // Returns false if there is no intersection.
-static bool compute_intersection(const InsetSegment& s0, const InsetSegment& s1,
+static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
                                  SkPoint* p, SkScalar* s, SkScalar* t) {
+    // Common cases for polygon chains -- check if endpoints are touching
+    if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) {
+        *p = s0.fP1;
+        *s = SK_Scalar1;
+        *t = 0;
+        return true;
+    }
+    if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) {
+        *p = s1.fP1;
+        *s = 0;
+        *t = SK_Scalar1;
+        return true;
+    }
+
     SkVector v0 = s0.fP1 - s0.fP0;
     SkVector v1 = s1.fP1 - s1.fP0;
-
-    SkScalar perpDot = v0.cross(v1);
-    if (SkScalarNearlyZero(perpDot)) {
-        // segments are parallel
-        // check if endpoints are touching
-        if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) {
-            *p = s0.fP1;
-            *s = SK_Scalar1;
-            *t = 0;
-            return true;
-        }
-        if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) {
-            *p = s1.fP1;
-            *s = 0;
-            *t = SK_Scalar1;
-            return true;
-        }
-
-        return false;
-    }
+    // We should have culled coincident points before this
+    SkASSERT(!SkPointPriv::EqualsWithinTolerance(s0.fP0, s0.fP1));
+    SkASSERT(!SkPointPriv::EqualsWithinTolerance(s1.fP0, s1.fP1));
 
     SkVector d = s1.fP0 - s0.fP0;
-    SkScalar localS = d.cross(v1) / perpDot;
-    if (localS < 0 || localS > SK_Scalar1) {
-        return false;
-    }
-    SkScalar localT = d.cross(v0) / perpDot;
-    if (localT < 0 || localT > SK_Scalar1) {
-        return false;
+    SkScalar perpDot = v0.cross(v1);
+    SkScalar localS, localT;
+    if (SkScalarNearlyZero(perpDot)) {
+        // segments are parallel, but not collinear
+        if (!SkScalarNearlyZero(d.dot(d), SK_ScalarNearlyZero*SK_ScalarNearlyZero)) {
+            return false;
+        }
+
+        // project segment1's endpoints onto segment0
+        localS = d.fX / v0.fX;
+        localT = 0;
+        if (localS < 0 || localS > SK_Scalar1) {
+            // the first endpoint doesn't lie on segment0, try the other one
+            SkScalar oldLocalS = localS;
+            localS = (s1.fP1.fX - s0.fP0.fX) / v0.fX;
+            localT = SK_Scalar1;
+            if (localS < 0 || localS > SK_Scalar1) {
+                // it's possible that segment1's interval surrounds segment0
+                // this is false if the params have the same signs, and in that case no collision
+                if (localS*oldLocalS > 0) {
+                    return false;
+                }
+                // otherwise project segment0's endpoint onto segment1 instead
+                localS = 0;
+                localT = -d.fX / v1.fX;
+            }
+        }
+    } else {
+        localS = d.cross(v1) / perpDot;
+        if (localS < 0 || localS > SK_Scalar1) {
+            return false;
+        }
+        localT = d.cross(v0) / perpDot;
+        if (localT < 0 || localT > SK_Scalar1) {
+            return false;
+        }
     }
 
     v0 *= localS;
@@ -138,6 +166,30 @@
     return true;
 }
 
+// computes the line intersection and then the distance to s0's endpoint
+static SkScalar compute_crossing_distance(const OffsetSegment& s0, const OffsetSegment& s1) {
+    SkVector v0 = s0.fP1 - s0.fP0;
+    SkVector v1 = s1.fP1 - s1.fP0;
+
+    SkScalar perpDot = v0.cross(v1);
+    if (SkScalarNearlyZero(perpDot)) {
+        // segments are parallel
+        return SK_ScalarMax;
+    }
+
+    SkVector d = s1.fP0 - s0.fP0;
+    SkScalar localS = d.cross(v1) / perpDot;
+    if (localS < 0) {
+        localS = -localS;
+    } else {
+        localS -= SK_Scalar1;
+    }
+
+    localS *= v0.length();
+
+    return localS;
+}
+
 static bool is_convex(const SkTDArray<SkPoint>& poly) {
     if (poly.count() <= 3) {
         return true;
@@ -162,6 +214,19 @@
     return true;
 }
 
+struct EdgeData {
+    OffsetSegment fInset;
+    SkPoint       fIntersection;
+    SkScalar      fTValue;
+    bool          fValid;
+
+    void init() {
+        fIntersection = fInset.fP0;
+        fTValue = SK_ScalarMin;
+        fValid = true;
+    }
+};
+
 // The objective here is to inset all of the edges by the given distance, and then
 // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
 // we should only be making left-hand turns (for cw polygons, we use the winding
@@ -187,13 +252,6 @@
     }
 
     // set up
-    struct EdgeData {
-        InsetSegment fInset;
-        SkPoint      fIntersection;
-        SkScalar     fTValue;
-        bool         fValid;
-    };
-
     SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
     for (int i = 0; i < inputPolygonSize; ++i) {
         int j = (i + 1) % inputPolygonSize;
@@ -203,13 +261,13 @@
                          inputPolygonVerts[k])*winding < 0) {
             return false;
         }
-        SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
-                        insetDistanceFunc(i), insetDistanceFunc(j),
-                        winding,
-                        &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1);
-        edgeData[i].fIntersection = edgeData[i].fInset.fP0;
-        edgeData[i].fTValue = SK_ScalarMin;
-        edgeData[i].fValid = true;
+        if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
+                             insetDistanceFunc(i), insetDistanceFunc(j),
+                             winding,
+                             &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) {
+            return false;
+        }
+        edgeData[i].init();
     }
 
     int prevIndex = inputPolygonSize - 1;
@@ -294,3 +352,386 @@
 
     return (insetPolygon->count() >= 3 && is_convex(*insetPolygon));
 }
+
+// compute the number of points needed for a circular join when offsetting a  reflex vertex
+static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r,
+                                 SkScalar* rotSin, SkScalar* rotCos, int* n) {
+    const SkScalar kRecipPixelsPerArcSegment = 0.25f;
+
+    SkScalar rCos = v1.dot(v2);
+    SkScalar rSin = v1.cross(v2);
+    SkScalar theta = SkScalarATan2(rSin, rCos);
+
+    int steps = SkScalarRoundToInt(SkScalarAbs(r*theta*kRecipPixelsPerArcSegment));
+
+    SkScalar dTheta = theta / steps;
+    *rotSin = SkScalarSinCos(dTheta, rotCos);
+    *n = steps;
+}
+
+// tolerant less-than comparison
+static inline bool nearly_lt(SkScalar a, SkScalar b, SkScalar tolerance = SK_ScalarNearlyZero) {
+    return a < b - tolerance;
+}
+
+// a point is "left" to another if its x coordinate is less, or if equal, its y coordinate
+static bool left(const SkPoint& p0, const SkPoint& p1) {
+    return nearly_lt(p0.fX, p1.fX) ||
+           (SkScalarNearlyEqual(p0.fX, p1.fX) && nearly_lt(p0.fY, p1.fY));
+}
+
+struct Vertex {
+    static bool Left(const Vertex& qv0, const Vertex& qv1) {
+        return left(qv0.fPosition, qv1.fPosition);
+    }
+    // packed to fit into 16 bytes (one cache line)
+    SkPoint  fPosition;
+    uint16_t fIndex;       // index in unsorted polygon
+    uint16_t fPrevIndex;   // indices for previous and next vertex in unsorted polygon
+    uint16_t fNextIndex;
+    uint16_t fFlags;
+};
+
+enum VertexFlags {
+    kPrevLeft_VertexFlag = 0x1,
+    kNextLeft_VertexFlag = 0x2,
+};
+
+struct Edge {
+    // returns true if "this" is above "that"
+    bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) {
+        SkASSERT(nearly_lt(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance) ||
+                 SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance));
+        // The idea here is that if the vector between the origins of the two segments (dv)
+        // rotates counterclockwise up to the vector representing the "this" segment (u),
+        // then we know that "this" is above that. If the result is clockwise we say it's below.
+        SkVector dv = that.fSegment.fP0 - this->fSegment.fP0;
+        SkVector u = this->fSegment.fP1 - this->fSegment.fP0;
+        SkScalar cross = dv.cross(u);
+        if (cross > tolerance) {
+            return true;
+        } else if (cross < -tolerance) {
+            return false;
+        }
+        // If the result is 0 then either the two origins are equal or the origin of "that"
+        // lies on dv. So then we try the same for the vector from the tail of "this"
+        // to the head of "that". Again, ccw means "this" is above "that".
+        dv = that.fSegment.fP1 - this->fSegment.fP0;
+        return (dv.cross(u) > tolerance);
+    }
+
+    bool intersect(const Edge& that) const {
+        SkPoint intersection;
+        SkScalar s, t;
+        // check first to see if these edges are neighbors in the polygon
+        if (this->fIndex0 == that.fIndex0 || this->fIndex1 == that.fIndex0 ||
+            this->fIndex0 == that.fIndex1 || this->fIndex1 == that.fIndex1) {
+            return false;
+        }
+        return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t);
+    }
+
+    bool operator==(const Edge& that) const {
+        return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1);
+    }
+
+    bool operator!=(const Edge& that) const {
+        return !operator==(that);
+    }
+
+    OffsetSegment fSegment;
+    int32_t fIndex0;   // indices for previous and next vertex
+    int32_t fIndex1;
+};
+
+class EdgeList {
+public:
+    void reserve(int count) { fEdges.reserve(count); }
+
+    bool insert(const Edge& newEdge) {
+        // linear search for now (expected case is very few active edges)
+        int insertIndex = 0;
+        while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) {
+            ++insertIndex;
+        }
+        // if we intersect with the existing edge above or below us
+        // then we know this polygon is not simple, so don't insert, just fail
+        if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) {
+            return false;
+        }
+        if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) {
+            return false;
+        }
+
+        fEdges.push_back();
+        for (int i = fEdges.count() - 1; i > insertIndex; --i) {
+            fEdges[i] = fEdges[i - 1];
+        }
+        fEdges[insertIndex] = newEdge;
+
+        return true;
+    }
+
+    bool remove(const Edge& edge) {
+        SkASSERT(fEdges.count() > 0);
+
+        // linear search for now (expected case is very few active edges)
+        int removeIndex = 0;
+        while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) {
+            ++removeIndex;
+        }
+        // we'd better find it or something is wrong
+        SkASSERT(removeIndex < fEdges.count());
+
+        // if we intersect with the edge above or below us
+        // then we know this polygon is not simple, so don't remove, just fail
+        if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex-1])) {
+            return false;
+        }
+        if (removeIndex < fEdges.count()-1) {
+            if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) {
+                return false;
+            }
+            // copy over the old entry
+            memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1],
+                    sizeof(Edge)*(fEdges.count() - removeIndex - 1));
+        }
+
+        fEdges.pop_back();
+        return true;
+    }
+
+private:
+    SkSTArray<1, Edge> fEdges;
+};
+
+// Here we implement a sweep line algorithm to determine whether the provided points
+// represent a simple polygon, i.e., the polygon is non-self-intersecting.
+// We first insert the vertices into a priority queue sorting horizontally from left to right.
+// Then as we pop the vertices from the queue we generate events which indicate that an edge
+// should be added or removed from an edge list. If any intersections are detected in the edge
+// list, then we know the polygon is self-intersecting and hence not simple.
+static bool is_simple_polygon(const SkPoint* polygon, int polygonSize) {
+    SkTDPQueue <Vertex, Vertex::Left> vertexQueue;
+    EdgeList sweepLine;
+
+    sweepLine.reserve(polygonSize);
+    for (int i = 0; i < polygonSize; ++i) {
+        Vertex newVertex;
+        newVertex.fPosition = polygon[i];
+        newVertex.fIndex = i;
+        newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
+        newVertex.fNextIndex = (i + 1) % polygonSize;
+        newVertex.fFlags = 0;
+        if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
+            newVertex.fFlags |= kPrevLeft_VertexFlag;
+        }
+        if (left(polygon[newVertex.fNextIndex], polygon[i])) {
+            newVertex.fFlags |= kNextLeft_VertexFlag;
+        }
+        vertexQueue.insert(newVertex);
+    }
+
+    // pop each vertex from the queue and generate events depending on
+    // where it lies relative to its neighboring edges
+    while (vertexQueue.count() > 0) {
+        const Vertex& v = vertexQueue.peek();
+
+        // check edge to previous vertex
+        if (v.fFlags & kPrevLeft_VertexFlag) {
+            Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex };
+            if (!sweepLine.remove(edge)) {
+                break;
+            }
+        } else {
+            Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex };
+            if (!sweepLine.insert(edge)) {
+                break;
+            }
+        }
+
+        // check edge to next vertex
+        if (v.fFlags & kNextLeft_VertexFlag) {
+            Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex };
+            if (!sweepLine.remove(edge)) {
+                break;
+            }
+        } else {
+            Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex };
+            if (!sweepLine.insert(edge)) {
+                break;
+            }
+        }
+
+        vertexQueue.pop();
+    }
+
+    return (vertexQueue.count() == 0);
+}
+
+// TODO: assuming a constant offset here -- do we want to support variable offset?
+bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
+                           SkScalar offset, SkTDArray<SkPoint>* offsetPolygon) {
+    if (inputPolygonSize < 3) {
+        return false;
+    }
+
+    if (!is_simple_polygon(inputPolygonVerts, inputPolygonSize)) {
+        return false;
+    }
+
+    // compute area and use sign to determine winding
+    // do initial pass to build normals
+    SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize);
+    SkScalar quadArea = 0;
+    for (int curr = 0; curr < inputPolygonSize; ++curr) {
+        int next = (curr + 1) % inputPolygonSize;
+        SkVector tangent = inputPolygonVerts[next] - inputPolygonVerts[curr];
+        SkVector normal = SkVector::Make(-tangent.fY, tangent.fX);
+        normals[curr] = normal;
+        quadArea += inputPolygonVerts[curr].cross(inputPolygonVerts[next]);
+    }
+    // 1 == ccw, -1 == cw
+    int winding = (quadArea > 0) ? 1 : -1;
+    if (0 == winding) {
+        return false;
+    }
+
+    // resize normals to match offset
+    for (int curr = 0; curr < inputPolygonSize; ++curr) {
+        normals[curr].setLength(winding*offset);
+    }
+
+    // build initial offset edge list
+    SkSTArray<64, EdgeData> edgeData(inputPolygonSize);
+    int prevIndex = inputPolygonSize - 1;
+    int currIndex = 0;
+    int nextIndex = 1;
+    while (currIndex < inputPolygonSize) {
+        int side = compute_side(inputPolygonVerts[prevIndex],
+                                inputPolygonVerts[currIndex],
+                                inputPolygonVerts[nextIndex]);
+
+        // if reflex point, fill in curve
+        if (side*winding*offset < 0) {
+            SkScalar rotSin, rotCos;
+            int numSteps;
+            SkVector prevNormal = normals[prevIndex];
+            compute_radial_steps(prevNormal, normals[currIndex], SkScalarAbs(offset),
+                                 &rotSin, &rotCos, &numSteps);
+            for (int i = 0; i < numSteps - 1; ++i) {
+                SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
+                                                     prevNormal.fY*rotCos + prevNormal.fX*rotSin);
+                EdgeData& edge = edgeData.push_back();
+                edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
+                edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal;
+                edge.init();
+                prevNormal = currNormal;
+            }
+            EdgeData& edge = edgeData.push_back();
+            edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
+            edge.fInset.fP1 = inputPolygonVerts[currIndex] + normals[currIndex];
+            edge.init();
+        }
+
+        // Add the edge
+        EdgeData& edge = edgeData.push_back();
+        edge.fInset.fP0 = inputPolygonVerts[currIndex] + normals[currIndex];
+        edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normals[currIndex];
+        edge.init();
+
+        prevIndex = currIndex;
+        currIndex++;
+        nextIndex = (nextIndex + 1) % inputPolygonSize;
+    }
+
+    int edgeDataSize = edgeData.count();
+    prevIndex = edgeDataSize - 1;
+    currIndex = 0;
+    int insetVertexCount = edgeDataSize;
+    while (prevIndex != currIndex) {
+        if (!edgeData[prevIndex].fValid) {
+            prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
+            continue;
+        }
+
+        SkScalar s, t;
+        SkPoint intersection;
+        if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
+                                 &intersection, &s, &t)) {
+            // if new intersection is further back on previous inset from the prior intersection
+            if (s < edgeData[prevIndex].fTValue) {
+                // no point in considering this one again
+                edgeData[prevIndex].fValid = false;
+                --insetVertexCount;
+                // go back one segment
+                prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
+                // we've already considered this intersection, we're done
+            } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
+                       SkPointPriv::EqualsWithinTolerance(intersection,
+                                                          edgeData[currIndex].fIntersection,
+                                                          1.0e-6f)) {
+                break;
+            } else {
+                // add intersection
+                edgeData[currIndex].fIntersection = intersection;
+                edgeData[currIndex].fTValue = t;
+
+                // go to next segment
+                prevIndex = currIndex;
+                currIndex = (currIndex + 1) % edgeDataSize;
+            }
+        } else {
+            // If there is no intersection, we want to minimize the distance between
+            // the point where the segment lines cross and the segments themselves.
+            SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
+            SkScalar currNextIndex = (currIndex + 1) % edgeDataSize;
+            SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset,
+                                                       edgeData[prevPrevIndex].fInset);
+            SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset,
+                                                       edgeData[currNextIndex].fInset);
+            if (dist0 < dist1) {
+                edgeData[prevIndex].fValid = false;
+                prevIndex = prevPrevIndex;
+            } else {
+                edgeData[currIndex].fValid = false;
+                currIndex = currNextIndex;
+            }
+            --insetVertexCount;
+        }
+    }
+
+    // store all the valid intersections that aren't nearly coincident
+    // TODO: look at the main algorithm and see if we can detect these better
+    static constexpr SkScalar kCleanupTolerance = 0.01f;
+
+    offsetPolygon->reset();
+    offsetPolygon->setReserve(insetVertexCount);
+    currIndex = -1;
+    for (int i = 0; i < edgeData.count(); ++i) {
+        if (edgeData[i].fValid && (currIndex == -1 ||
+                                   !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
+                                                                       (*offsetPolygon)[currIndex],
+                                                                       kCleanupTolerance))) {
+            *offsetPolygon->push() = edgeData[i].fIntersection;
+            currIndex++;
+        }
+    }
+    // make sure the first and last points aren't coincident
+    if (currIndex >= 1 &&
+        SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
+                                           kCleanupTolerance)) {
+        offsetPolygon->pop();
+    }
+
+    // compute signed area to check winding (it should be same as the original polygon)
+    quadArea = 0;
+    for (int curr = 0; curr < offsetPolygon->count(); ++curr) {
+        int next = (curr + 1) % offsetPolygon->count();
+        quadArea += (*offsetPolygon)[curr].cross((*offsetPolygon)[next]);
+    }
+
+    return (winding*quadArea > 0 &&
+            is_simple_polygon(offsetPolygon->begin(), offsetPolygon->count()));
+}
+
diff --git a/src/utils/SkOffsetPolygon.h b/src/utils/SkOffsetPolygon.h
index 1d5a19c..a0555ab 100755
--- a/src/utils/SkOffsetPolygon.h
+++ b/src/utils/SkOffsetPolygon.h
@@ -5,8 +5,8 @@
  * found in the LICENSE file.
  */
 
-#ifndef SkInsetConvexPolygon_DEFINED
-#define SkInsetConvexPolygon_DEFINED
+#ifndef SkOffsetPolygon_DEFINED
+#define SkOffsetPolygon_DEFINED
 
 #include <functional>
 
@@ -29,14 +29,27 @@
                           SkTDArray<SkPoint>* insetPolygon);
 
 inline bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
-                                 SkScalar inset,
-                                 SkTDArray<SkPoint>* insetPolygon) {
+                                 SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
     return SkInsetConvexPolygon(inputPolygonVerts, inputPolygonSize,
                                 [inset](int) { return inset; },
                                 insetPolygon);
 }
 
 /**
+ * Generates a simple polygon (if possible) that is offset a given distance from the boundary of a
+ * given simple polygon.
+ *
+ * @param inputPolygonVerts  Array of points representing the vertices of the original polygon.
+ * @param inputPolygonSize  Number of vertices in the original polygon.
+ * @param offset  How far we wish to offset the polygon.
+ *                Positive value means inset, negative value means outset.
+ * @param offsetPolgon  The resulting offset polygon, if any.
+ * @return true if an offset simple polygon exists, false otherwise.
+ */
+bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
+                           SkScalar offset, SkTDArray<SkPoint>* offsetPolygon);
+
+/**
  * Offset a segment by the given distance at each point.
  * Uses the outer tangents of two circles centered on each endpoint.
  * See: https://en.wikipedia.org/wiki/Tangent_lines_to_circles
diff --git a/tests/OffsetSimplePolyTest.cpp b/tests/OffsetSimplePolyTest.cpp
new file mode 100644
index 0000000..50f680e
--- /dev/null
+++ b/tests/OffsetSimplePolyTest.cpp
@@ -0,0 +1,210 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "Test.h"
+#include "SkOffsetPolygon.h"
+
+static bool is_convex(const SkTDArray<SkPoint>& poly) {
+    if (poly.count() < 3) {
+        return false;
+    }
+
+    SkVector v0 = poly[0] - poly[poly.count() - 1];
+    SkVector v1 = poly[1] - poly[poly.count() - 1];
+    SkScalar winding = v0.cross(v1);
+
+    for (int i = 0; i < poly.count()-1; ++i) {
+        int j = i + 1;
+        int k = (i + 2) % poly.count();
+
+        SkVector v0 = poly[j] - poly[i];
+        SkVector v1 = poly[k] - poly[i];
+        SkScalar perpDot = v0.cross(v1);
+        if (winding*perpDot < 0) {
+            return false;
+        }
+    }
+
+    return true;
+}
+
+DEF_TEST(OffsetSimplePoly, reporter) {
+    SkTDArray<SkPoint> rrectPoly;
+
+    ///////////////////////////////////////////////////////////////////////
+    // Try convex tests first
+
+    // round rect
+    *rrectPoly.push() = SkPoint::Make(-100, 55);
+    *rrectPoly.push() = SkPoint::Make(100, 55);
+    *rrectPoly.push() = SkPoint::Make(100 + 2.5f, 50 + 4.330127f);
+    *rrectPoly.push() = SkPoint::Make(100 + 3.535534f, 50 + 3.535534f);
+    *rrectPoly.push() = SkPoint::Make(100 + 4.330127f, 50 + 2.5f);
+    *rrectPoly.push() = SkPoint::Make(105, 50);
+    *rrectPoly.push() = SkPoint::Make(105, -50);
+    *rrectPoly.push() = SkPoint::Make(100 + 4.330127f, -50 - 2.5f);
+    *rrectPoly.push() = SkPoint::Make(100 + 3.535534f, -50 - 3.535534f);
+    *rrectPoly.push() = SkPoint::Make(100 + 2.5f, -50 - 4.330127f);
+    *rrectPoly.push() = SkPoint::Make(100, -55);
+    *rrectPoly.push() = SkPoint::Make(-100, -55);
+    *rrectPoly.push() = SkPoint::Make(-100 - 2.5f, -50 - 4.330127f);
+    *rrectPoly.push() = SkPoint::Make(-100 - 3.535534f, -50 - 3.535534f);
+    *rrectPoly.push() = SkPoint::Make(-100 - 4.330127f, -50 - 2.5f);
+    *rrectPoly.push() = SkPoint::Make(-105, -50);
+    *rrectPoly.push() = SkPoint::Make(-105, 50);
+    *rrectPoly.push() = SkPoint::Make(-100 - 4.330127f, 50 + 2.5f);
+    *rrectPoly.push() = SkPoint::Make(-100 - 3.535534f, 50 + 3.535534f);
+    *rrectPoly.push() = SkPoint::Make(-100 - 2.5f, 50 + 4.330127f);
+    REPORTER_ASSERT(reporter, is_convex(rrectPoly));
+
+    // inset a little
+    SkTDArray<SkPoint> offsetPoly;
+    bool result = SkOffsetSimplePolygon(&rrectPoly[0], rrectPoly.count(), 3, &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+    REPORTER_ASSERT(reporter, is_convex(offsetPoly));
+
+    // inset to rect
+    result = SkOffsetSimplePolygon(&rrectPoly[0], rrectPoly.count(), 10, &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+    REPORTER_ASSERT(reporter, is_convex(offsetPoly));
+    REPORTER_ASSERT(reporter, offsetPoly.count() == 4);
+    if (offsetPoly.count() == 4) {
+        REPORTER_ASSERT(reporter, offsetPoly[0].equals(-95, 45));
+        REPORTER_ASSERT(reporter, offsetPoly[1].equals(95, 45));
+        REPORTER_ASSERT(reporter, offsetPoly[2].equals(95, -45));
+        REPORTER_ASSERT(reporter, offsetPoly[3].equals(-95, -45));
+    }
+
+    // just to full inset
+    // fails, but outputs a line segment
+    result = SkOffsetSimplePolygon(&rrectPoly[0], rrectPoly.count(), 55, &offsetPoly);
+    REPORTER_ASSERT(reporter, !result);
+    REPORTER_ASSERT(reporter, !is_convex(offsetPoly));
+    REPORTER_ASSERT(reporter, offsetPoly.count() == 2);
+    if (offsetPoly.count() == 2) {
+        REPORTER_ASSERT(reporter, offsetPoly[0].equals(-50, 0));
+        REPORTER_ASSERT(reporter, offsetPoly[1].equals(50, 0));
+    }
+
+    // past full inset
+    result = SkOffsetSimplePolygon(&rrectPoly[0], rrectPoly.count(), 75, &offsetPoly);
+    REPORTER_ASSERT(reporter, !result);
+    REPORTER_ASSERT(reporter, offsetPoly.count() == 0);
+
+    // troublesome case
+    SkTDArray<SkPoint> clippedRRectPoly;
+    *clippedRRectPoly.push() = SkPoint::Make(335.928101f, 428.219055f);
+    *clippedRRectPoly.push() = SkPoint::Make(330.414459f, 423.034912f);
+    *clippedRRectPoly.push() = SkPoint::Make(325.749084f, 417.395508f);
+    *clippedRRectPoly.push() = SkPoint::Make(321.931946f, 411.300842f);
+    *clippedRRectPoly.push() = SkPoint::Make(318.963074f, 404.750977f);
+    *clippedRRectPoly.push() = SkPoint::Make(316.842468f, 397.745850f);
+    *clippedRRectPoly.push() = SkPoint::Make(315.570068f, 390.285522f);
+    *clippedRRectPoly.push() = SkPoint::Make(315.145966f, 382.369965f);
+    *clippedRRectPoly.push() = SkPoint::Make(315.570068f, 374.454346f);
+    *clippedRRectPoly.push() = SkPoint::Make(316.842468f, 366.994019f);
+    *clippedRRectPoly.push() = SkPoint::Make(318.963074f, 359.988892f);
+    *clippedRRectPoly.push() = SkPoint::Make(321.931946f, 353.439056f);
+    *clippedRRectPoly.push() = SkPoint::Make(325.749084f, 347.344421f);
+    *clippedRRectPoly.push() = SkPoint::Make(330.414459f, 341.705017f);
+    *clippedRRectPoly.push() = SkPoint::Make(335.928101f, 336.520813f);
+    *clippedRRectPoly.push() = SkPoint::Make(342.289948f, 331.791901f);
+    *clippedRRectPoly.push() = SkPoint::Make(377.312134f, 331.791901f);
+    *clippedRRectPoly.push() = SkPoint::Make(381.195313f, 332.532593f);
+    *clippedRRectPoly.push() = SkPoint::Make(384.464935f, 334.754700f);
+    *clippedRRectPoly.push() = SkPoint::Make(386.687042f, 338.024292f);
+    *clippedRRectPoly.push() = SkPoint::Make(387.427765f, 341.907532f);
+    *clippedRRectPoly.push() = SkPoint::Make(387.427765f, 422.832367f);
+    *clippedRRectPoly.push() = SkPoint::Make(386.687042f, 426.715576f);
+    *clippedRRectPoly.push() = SkPoint::Make(384.464935f, 429.985168f);
+    *clippedRRectPoly.push() = SkPoint::Make(381.195313f, 432.207275f);
+    *clippedRRectPoly.push() = SkPoint::Make(377.312134f, 432.947998f);
+    *clippedRRectPoly.push() = SkPoint::Make(342.289948f, 432.947998f);
+    REPORTER_ASSERT(reporter, is_convex(clippedRRectPoly));
+
+    result = SkOffsetSimplePolygon(&clippedRRectPoly[0], clippedRRectPoly.count(), 32.3699417f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+    REPORTER_ASSERT(reporter, is_convex(offsetPoly));
+
+    ////////////////////////////////////////////////////////////////////////////////
+    // Concave tests
+
+    SkTDArray<SkPoint> starPoly;
+    *starPoly.push() = SkPoint::Make(0.0f, -50.0f);
+    *starPoly.push() = SkPoint::Make(14.43f, -25.0f);
+    *starPoly.push() = SkPoint::Make(43.30f, -25.0f);
+    *starPoly.push() = SkPoint::Make(28.86f, 0.0f);
+    *starPoly.push() = SkPoint::Make(43.30f, 25.0f);
+    *starPoly.push() = SkPoint::Make(14.43f, 25.0f);
+    *starPoly.push() = SkPoint::Make(0.0f, 50.0f);
+    *starPoly.push() = SkPoint::Make(-14.43f, 25.0f);
+    *starPoly.push() = SkPoint::Make(-43.30f, 25.0f);
+    *starPoly.push() = SkPoint::Make(-28.86f, 0.0f);
+    *starPoly.push() = SkPoint::Make(-43.30f, -25.0f);
+    *starPoly.push() = SkPoint::Make(-14.43f, -25.0f);
+
+    // try a variety of distances
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), 0.1f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), 5.665f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), 28,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    // down to a point
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), 28.866f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, !result);
+
+    // and past
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), 50.5f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, !result);
+
+    // and now out
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), -0.1f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), -5.6665f,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), -50,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    result = SkOffsetSimplePolygon(&starPoly[0], starPoly.count(), -100,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, result);
+
+    SkTDArray<SkPoint> intersectingPoly;
+    *intersectingPoly.push() = SkPoint::Make(0.0f, -50.0f);
+    *intersectingPoly.push() = SkPoint::Make(14.43f, -25.0f);
+    *intersectingPoly.push() = SkPoint::Make(43.30f, -25.0f);
+    *intersectingPoly.push() = SkPoint::Make(-28.86f, 0.0f);
+    *intersectingPoly.push() = SkPoint::Make(43.30f, 25.0f);
+    *intersectingPoly.push() = SkPoint::Make(14.43f, 25.0f);
+    *intersectingPoly.push() = SkPoint::Make(0.0f, 50.0f);
+    *intersectingPoly.push() = SkPoint::Make(-14.43f, 25.0f);
+    *intersectingPoly.push() = SkPoint::Make(-43.30f, 25.0f);
+    *intersectingPoly.push() = SkPoint::Make(28.86f, 0.0f);
+    *intersectingPoly.push() = SkPoint::Make(-43.30f, -25.0f);
+    *intersectingPoly.push() = SkPoint::Make(-14.43f, -25.0f);
+
+    result = SkOffsetSimplePolygon(&intersectingPoly[0], intersectingPoly.count(), -100,
+                                   &offsetPoly);
+    REPORTER_ASSERT(reporter, !result);
+
+
+
+}