| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkBitmapDevice.h" |
| #include "SkBitmapSource.h" |
| #include "SkCanvas.h" |
| #include "SkMallocPixelRef.h" |
| #include "SkPictureRecorder.h" |
| #include "SkTemplates.h" |
| #include "SkWriteBuffer.h" |
| #include "SkValidatingReadBuffer.h" |
| #include "SkXfermodeImageFilter.h" |
| #include "Test.h" |
| |
| static const uint32_t kArraySize = 64; |
| static const int kBitmapSize = 256; |
| |
| template<typename T> |
| static void TestAlignment(T* testObj, skiatest::Reporter* reporter) { |
| // Test memory read/write functions directly |
| unsigned char dataWritten[1024]; |
| size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten); |
| REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory); |
| size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory); |
| REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory); |
| } |
| |
| template<typename T> struct SerializationUtils { |
| // Generic case for flattenables |
| static void Write(SkWriteBuffer& writer, const T* flattenable) { |
| writer.writeFlattenable(flattenable); |
| } |
| static void Read(SkValidatingReadBuffer& reader, T** flattenable) { |
| *flattenable = (T*)reader.readFlattenable(T::GetFlattenableType()); |
| } |
| }; |
| |
| template<> struct SerializationUtils<SkMatrix> { |
| static void Write(SkWriteBuffer& writer, const SkMatrix* matrix) { |
| writer.writeMatrix(*matrix); |
| } |
| static void Read(SkValidatingReadBuffer& reader, SkMatrix* matrix) { |
| reader.readMatrix(matrix); |
| } |
| }; |
| |
| template<> struct SerializationUtils<SkPath> { |
| static void Write(SkWriteBuffer& writer, const SkPath* path) { |
| writer.writePath(*path); |
| } |
| static void Read(SkValidatingReadBuffer& reader, SkPath* path) { |
| reader.readPath(path); |
| } |
| }; |
| |
| template<> struct SerializationUtils<SkRegion> { |
| static void Write(SkWriteBuffer& writer, const SkRegion* region) { |
| writer.writeRegion(*region); |
| } |
| static void Read(SkValidatingReadBuffer& reader, SkRegion* region) { |
| reader.readRegion(region); |
| } |
| }; |
| |
| template<> struct SerializationUtils<unsigned char> { |
| static void Write(SkWriteBuffer& writer, unsigned char* data, uint32_t arraySize) { |
| writer.writeByteArray(data, arraySize); |
| } |
| static bool Read(SkValidatingReadBuffer& reader, unsigned char* data, uint32_t arraySize) { |
| return reader.readByteArray(data, arraySize); |
| } |
| }; |
| |
| template<> struct SerializationUtils<SkColor> { |
| static void Write(SkWriteBuffer& writer, SkColor* data, uint32_t arraySize) { |
| writer.writeColorArray(data, arraySize); |
| } |
| static bool Read(SkValidatingReadBuffer& reader, SkColor* data, uint32_t arraySize) { |
| return reader.readColorArray(data, arraySize); |
| } |
| }; |
| |
| template<> struct SerializationUtils<int32_t> { |
| static void Write(SkWriteBuffer& writer, int32_t* data, uint32_t arraySize) { |
| writer.writeIntArray(data, arraySize); |
| } |
| static bool Read(SkValidatingReadBuffer& reader, int32_t* data, uint32_t arraySize) { |
| return reader.readIntArray(data, arraySize); |
| } |
| }; |
| |
| template<> struct SerializationUtils<SkPoint> { |
| static void Write(SkWriteBuffer& writer, SkPoint* data, uint32_t arraySize) { |
| writer.writePointArray(data, arraySize); |
| } |
| static bool Read(SkValidatingReadBuffer& reader, SkPoint* data, uint32_t arraySize) { |
| return reader.readPointArray(data, arraySize); |
| } |
| }; |
| |
| template<> struct SerializationUtils<SkScalar> { |
| static void Write(SkWriteBuffer& writer, SkScalar* data, uint32_t arraySize) { |
| writer.writeScalarArray(data, arraySize); |
| } |
| static bool Read(SkValidatingReadBuffer& reader, SkScalar* data, uint32_t arraySize) { |
| return reader.readScalarArray(data, arraySize); |
| } |
| }; |
| |
| template<typename T> |
| static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) { |
| SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); |
| SerializationUtils<T>::Write(writer, testObj); |
| size_t bytesWritten = writer.bytesWritten(); |
| REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); |
| |
| unsigned char dataWritten[1024]; |
| writer.writeToMemory(dataWritten); |
| |
| // Make sure this fails when it should (test with smaller size, but still multiple of 4) |
| SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4); |
| T obj; |
| SerializationUtils<T>::Read(buffer, &obj); |
| REPORTER_ASSERT(reporter, !buffer.isValid()); |
| |
| // Make sure this succeeds when it should |
| SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); |
| const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0)); |
| T obj2; |
| SerializationUtils<T>::Read(buffer2, &obj2); |
| const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0)); |
| // This should have succeeded, since there are enough bytes to read this |
| REPORTER_ASSERT(reporter, buffer2.isValid()); |
| REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten); |
| |
| TestAlignment(testObj, reporter); |
| } |
| |
| template<typename T> |
| static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed, |
| skiatest::Reporter* reporter) { |
| SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); |
| SerializationUtils<T>::Write(writer, testObj); |
| size_t bytesWritten = writer.bytesWritten(); |
| REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); |
| |
| unsigned char dataWritten[1024]; |
| SkASSERT(bytesWritten <= sizeof(dataWritten)); |
| writer.writeToMemory(dataWritten); |
| |
| // Make sure this fails when it should (test with smaller size, but still multiple of 4) |
| SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4); |
| T* obj = NULL; |
| SerializationUtils<T>::Read(buffer, &obj); |
| REPORTER_ASSERT(reporter, !buffer.isValid()); |
| REPORTER_ASSERT(reporter, NULL == obj); |
| |
| // Make sure this succeeds when it should |
| SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); |
| const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0)); |
| T* obj2 = NULL; |
| SerializationUtils<T>::Read(buffer2, &obj2); |
| const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0)); |
| if (shouldSucceed) { |
| // This should have succeeded, since there are enough bytes to read this |
| REPORTER_ASSERT(reporter, buffer2.isValid()); |
| REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten); |
| REPORTER_ASSERT(reporter, NULL != obj2); |
| } else { |
| // If the deserialization was supposed to fail, make sure it did |
| REPORTER_ASSERT(reporter, !buffer.isValid()); |
| REPORTER_ASSERT(reporter, NULL == obj2); |
| } |
| |
| return obj2; // Return object to perform further validity tests on it |
| } |
| |
| template<typename T> |
| static void TestArraySerialization(T* data, skiatest::Reporter* reporter) { |
| SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); |
| SerializationUtils<T>::Write(writer, data, kArraySize); |
| size_t bytesWritten = writer.bytesWritten(); |
| // This should write the length (in 4 bytes) and the array |
| REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten); |
| |
| unsigned char dataWritten[1024]; |
| writer.writeToMemory(dataWritten); |
| |
| // Make sure this fails when it should |
| SkValidatingReadBuffer buffer(dataWritten, bytesWritten); |
| T dataRead[kArraySize]; |
| bool success = SerializationUtils<T>::Read(buffer, dataRead, kArraySize / 2); |
| // This should have failed, since the provided size was too small |
| REPORTER_ASSERT(reporter, !success); |
| |
| // Make sure this succeeds when it should |
| SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); |
| success = SerializationUtils<T>::Read(buffer2, dataRead, kArraySize); |
| // This should have succeeded, since there are enough bytes to read this |
| REPORTER_ASSERT(reporter, success); |
| } |
| |
| static void TestBitmapSerialization(const SkBitmap& validBitmap, |
| const SkBitmap& invalidBitmap, |
| bool shouldSucceed, |
| skiatest::Reporter* reporter) { |
| SkAutoTUnref<SkBitmapSource> validBitmapSource(SkBitmapSource::Create(validBitmap)); |
| SkAutoTUnref<SkBitmapSource> invalidBitmapSource(SkBitmapSource::Create(invalidBitmap)); |
| SkAutoTUnref<SkXfermode> mode(SkXfermode::Create(SkXfermode::kSrcOver_Mode)); |
| SkAutoTUnref<SkXfermodeImageFilter> xfermodeImageFilter( |
| SkXfermodeImageFilter::Create(mode, invalidBitmapSource, validBitmapSource)); |
| |
| SkAutoTUnref<SkImageFilter> deserializedFilter( |
| TestFlattenableSerialization<SkImageFilter>( |
| xfermodeImageFilter, shouldSucceed, reporter)); |
| |
| // Try to render a small bitmap using the invalid deserialized filter |
| // to make sure we don't crash while trying to render it |
| if (shouldSucceed) { |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(24, 24); |
| SkCanvas canvas(bitmap); |
| canvas.clear(0x00000000); |
| SkPaint paint; |
| paint.setImageFilter(deserializedFilter); |
| canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24))); |
| canvas.drawBitmap(bitmap, 0, 0, &paint); |
| } |
| } |
| |
| static bool setup_bitmap_for_canvas(SkBitmap* bitmap) { |
| SkImageInfo info = SkImageInfo::Make( |
| kBitmapSize, kBitmapSize, kN32_SkColorType, kPremul_SkAlphaType); |
| return bitmap->allocPixels(info); |
| } |
| |
| static bool make_checkerboard_bitmap(SkBitmap& bitmap) { |
| bool success = setup_bitmap_for_canvas(&bitmap); |
| |
| SkCanvas canvas(bitmap); |
| canvas.clear(0x00000000); |
| SkPaint darkPaint; |
| darkPaint.setColor(0xFF804020); |
| SkPaint lightPaint; |
| lightPaint.setColor(0xFF244484); |
| const int i = kBitmapSize / 8; |
| const SkScalar f = SkIntToScalar(i); |
| for (int y = 0; y < kBitmapSize; y += i) { |
| for (int x = 0; x < kBitmapSize; x += i) { |
| canvas.save(); |
| canvas.translate(SkIntToScalar(x), SkIntToScalar(y)); |
| canvas.drawRect(SkRect::MakeXYWH(0, 0, f, f), darkPaint); |
| canvas.drawRect(SkRect::MakeXYWH(f, 0, f, f), lightPaint); |
| canvas.drawRect(SkRect::MakeXYWH(0, f, f, f), lightPaint); |
| canvas.drawRect(SkRect::MakeXYWH(f, f, f, f), darkPaint); |
| canvas.restore(); |
| } |
| } |
| |
| return success; |
| } |
| |
| static bool drawSomething(SkCanvas* canvas) { |
| SkPaint paint; |
| SkBitmap bitmap; |
| bool success = make_checkerboard_bitmap(bitmap); |
| |
| canvas->save(); |
| canvas->scale(0.5f, 0.5f); |
| canvas->drawBitmap(bitmap, 0, 0, NULL); |
| canvas->restore(); |
| |
| const char beforeStr[] = "before circle"; |
| const char afterStr[] = "after circle"; |
| |
| paint.setAntiAlias(true); |
| |
| paint.setColor(SK_ColorRED); |
| canvas->drawData(beforeStr, sizeof(beforeStr)); |
| canvas->drawCircle(SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/3), paint); |
| canvas->drawData(afterStr, sizeof(afterStr)); |
| paint.setColor(SK_ColorBLACK); |
| paint.setTextSize(SkIntToScalar(kBitmapSize/3)); |
| canvas->drawText("Picture", 7, SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/4), paint); |
| |
| return success; |
| } |
| |
| DEF_TEST(Serialization, reporter) { |
| // Test matrix serialization |
| { |
| SkMatrix matrix = SkMatrix::I(); |
| TestObjectSerialization(&matrix, reporter); |
| } |
| |
| // Test path serialization |
| { |
| SkPath path; |
| TestObjectSerialization(&path, reporter); |
| } |
| |
| // Test region serialization |
| { |
| SkRegion region; |
| TestObjectSerialization(®ion, reporter); |
| } |
| |
| // Test rrect serialization |
| { |
| // SkRRect does not initialize anything. |
| // An uninitialized SkRRect can be serialized, |
| // but will branch on uninitialized data when deserialized. |
| SkRRect rrect; |
| SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30); |
| SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} }; |
| rrect.setRectRadii(rect, corners); |
| TestAlignment(&rrect, reporter); |
| } |
| |
| // Test readByteArray |
| { |
| unsigned char data[kArraySize] = { 1, 2, 3 }; |
| TestArraySerialization(data, reporter); |
| } |
| |
| // Test readColorArray |
| { |
| SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED }; |
| TestArraySerialization(data, reporter); |
| } |
| |
| // Test readIntArray |
| { |
| int32_t data[kArraySize] = { 1, 2, 4, 8 }; |
| TestArraySerialization(data, reporter); |
| } |
| |
| // Test readPointArray |
| { |
| SkPoint data[kArraySize] = { {6, 7}, {42, 128} }; |
| TestArraySerialization(data, reporter); |
| } |
| |
| // Test readScalarArray |
| { |
| SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax }; |
| TestArraySerialization(data, reporter); |
| } |
| |
| // Test invalid deserializations |
| { |
| SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize); |
| |
| SkBitmap validBitmap; |
| validBitmap.setConfig(info); |
| |
| // Create a bitmap with a really large height |
| info.fHeight = 1000000000; |
| SkBitmap invalidBitmap; |
| invalidBitmap.setConfig(info); |
| |
| // The deserialization should succeed, and the rendering shouldn't crash, |
| // even when the device fails to initialize, due to its size |
| TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter); |
| } |
| |
| // Test simple SkPicture serialization |
| { |
| SkPictureRecorder recorder; |
| bool didDraw = drawSomething(recorder.beginRecording(kBitmapSize, kBitmapSize, NULL, 0)); |
| REPORTER_ASSERT(reporter, didDraw); |
| SkAutoTUnref<SkPicture> pict(recorder.endRecording()); |
| |
| // Serialize picture |
| SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); |
| pict->flatten(writer); |
| size_t size = writer.bytesWritten(); |
| SkAutoTMalloc<unsigned char> data(size); |
| writer.writeToMemory(static_cast<void*>(data.get())); |
| |
| // Deserialize picture |
| SkValidatingReadBuffer reader(static_cast<void*>(data.get()), size); |
| SkAutoTUnref<SkPicture> readPict( |
| SkPicture::CreateFromBuffer(reader)); |
| REPORTER_ASSERT(reporter, NULL != readPict.get()); |
| } |
| } |