Move GrPathUtils, GrRect, and GrShape into src/gpu/geometry/

Change-Id: I864d3c2452f3affdc744bf8b11ed3b3e37d6d922
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/216602
Commit-Queue: Michael Ludwig <michaelludwig@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
diff --git a/src/gpu/geometry/GrPathUtils.cpp b/src/gpu/geometry/GrPathUtils.cpp
new file mode 100644
index 0000000..3da6e13
--- /dev/null
+++ b/src/gpu/geometry/GrPathUtils.cpp
@@ -0,0 +1,859 @@
+/*
+ * Copyright 2011 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "src/gpu/geometry/GrPathUtils.h"
+
+#include "include/gpu/GrTypes.h"
+#include "src/core/SkMathPriv.h"
+#include "src/core/SkPointPriv.h"
+
+static const SkScalar gMinCurveTol = 0.0001f;
+
+SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
+                                          const SkMatrix& viewM,
+                                          const SkRect& pathBounds) {
+    // In order to tesselate the path we get a bound on how much the matrix can
+    // scale when mapping to screen coordinates.
+    SkScalar stretch = viewM.getMaxScale();
+
+    if (stretch < 0) {
+        // take worst case mapRadius amoung four corners.
+        // (less than perfect)
+        for (int i = 0; i < 4; ++i) {
+            SkMatrix mat;
+            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
+                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
+            mat.postConcat(viewM);
+            stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
+        }
+    }
+    SkScalar srcTol = 0;
+    if (stretch <= 0) {
+        // We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the
+        // max of the path pathBounds width and height.
+        srcTol = SkTMax(pathBounds.width(), pathBounds.height());
+    } else {
+        srcTol = devTol / stretch;
+    }
+    if (srcTol < gMinCurveTol) {
+        srcTol = gMinCurveTol;
+    }
+    return srcTol;
+}
+
+uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
+    // You should have called scaleToleranceToSrc, which guarantees this
+    SkASSERT(tol >= gMinCurveTol);
+
+    SkScalar d = SkPointPriv::DistanceToLineSegmentBetween(points[1], points[0], points[2]);
+    if (!SkScalarIsFinite(d)) {
+        return kMaxPointsPerCurve;
+    } else if (d <= tol) {
+        return 1;
+    } else {
+        // Each time we subdivide, d should be cut in 4. So we need to
+        // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
+        // points.
+        // 2^(log4(x)) = sqrt(x);
+        SkScalar divSqrt = SkScalarSqrt(d / tol);
+        if (((SkScalar)SK_MaxS32) <= divSqrt) {
+            return kMaxPointsPerCurve;
+        } else {
+            int temp = SkScalarCeilToInt(divSqrt);
+            int pow2 = GrNextPow2(temp);
+            // Because of NaNs & INFs we can wind up with a degenerate temp
+            // such that pow2 comes out negative. Also, our point generator
+            // will always output at least one pt.
+            if (pow2 < 1) {
+                pow2 = 1;
+            }
+            return SkTMin(pow2, kMaxPointsPerCurve);
+        }
+    }
+}
+
+uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
+                                              const SkPoint& p1,
+                                              const SkPoint& p2,
+                                              SkScalar tolSqd,
+                                              SkPoint** points,
+                                              uint32_t pointsLeft) {
+    if (pointsLeft < 2 ||
+        (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
+        (*points)[0] = p2;
+        *points += 1;
+        return 1;
+    }
+
+    SkPoint q[] = {
+        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
+        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
+    };
+    SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
+
+    pointsLeft >>= 1;
+    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
+    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
+    return a + b;
+}
+
+uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
+                                           SkScalar tol) {
+    // You should have called scaleToleranceToSrc, which guarantees this
+    SkASSERT(tol >= gMinCurveTol);
+
+    SkScalar d = SkTMax(
+        SkPointPriv::DistanceToLineSegmentBetweenSqd(points[1], points[0], points[3]),
+        SkPointPriv::DistanceToLineSegmentBetweenSqd(points[2], points[0], points[3]));
+    d = SkScalarSqrt(d);
+    if (!SkScalarIsFinite(d)) {
+        return kMaxPointsPerCurve;
+    } else if (d <= tol) {
+        return 1;
+    } else {
+        SkScalar divSqrt = SkScalarSqrt(d / tol);
+        if (((SkScalar)SK_MaxS32) <= divSqrt) {
+            return kMaxPointsPerCurve;
+        } else {
+            int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
+            int pow2 = GrNextPow2(temp);
+            // Because of NaNs & INFs we can wind up with a degenerate temp
+            // such that pow2 comes out negative. Also, our point generator
+            // will always output at least one pt.
+            if (pow2 < 1) {
+                pow2 = 1;
+            }
+            return SkTMin(pow2, kMaxPointsPerCurve);
+        }
+    }
+}
+
+uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
+                                          const SkPoint& p1,
+                                          const SkPoint& p2,
+                                          const SkPoint& p3,
+                                          SkScalar tolSqd,
+                                          SkPoint** points,
+                                          uint32_t pointsLeft) {
+    if (pointsLeft < 2 ||
+        (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
+         SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
+        (*points)[0] = p3;
+        *points += 1;
+        return 1;
+    }
+    SkPoint q[] = {
+        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
+        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
+        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
+    };
+    SkPoint r[] = {
+        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
+        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
+    };
+    SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
+    pointsLeft >>= 1;
+    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
+    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
+    return a + b;
+}
+
+int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) {
+    // You should have called scaleToleranceToSrc, which guarantees this
+    SkASSERT(tol >= gMinCurveTol);
+
+    int pointCount = 0;
+    *subpaths = 1;
+
+    bool first = true;
+
+    SkPath::Iter iter(path, false);
+    SkPath::Verb verb;
+
+    SkPoint pts[4];
+    while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
+
+        switch (verb) {
+            case SkPath::kLine_Verb:
+                pointCount += 1;
+                break;
+            case SkPath::kConic_Verb: {
+                SkScalar weight = iter.conicWeight();
+                SkAutoConicToQuads converter;
+                const SkPoint* quadPts = converter.computeQuads(pts, weight, tol);
+                for (int i = 0; i < converter.countQuads(); ++i) {
+                    pointCount += quadraticPointCount(quadPts + 2*i, tol);
+                }
+            }
+            case SkPath::kQuad_Verb:
+                pointCount += quadraticPointCount(pts, tol);
+                break;
+            case SkPath::kCubic_Verb:
+                pointCount += cubicPointCount(pts, tol);
+                break;
+            case SkPath::kMove_Verb:
+                pointCount += 1;
+                if (!first) {
+                    ++(*subpaths);
+                }
+                break;
+            default:
+                break;
+        }
+        first = false;
+    }
+    return pointCount;
+}
+
+void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
+    SkMatrix m;
+    // We want M such that M * xy_pt = uv_pt
+    // We know M * control_pts = [0  1/2 1]
+    //                           [0  0   1]
+    //                           [1  1   1]
+    // And control_pts = [x0 x1 x2]
+    //                   [y0 y1 y2]
+    //                   [1  1  1 ]
+    // We invert the control pt matrix and post concat to both sides to get M.
+    // Using the known form of the control point matrix and the result, we can
+    // optimize and improve precision.
+
+    double x0 = qPts[0].fX;
+    double y0 = qPts[0].fY;
+    double x1 = qPts[1].fX;
+    double y1 = qPts[1].fY;
+    double x2 = qPts[2].fX;
+    double y2 = qPts[2].fY;
+    double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
+
+    if (!sk_float_isfinite(det)
+        || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
+        // The quad is degenerate. Hopefully this is rare. Find the pts that are
+        // farthest apart to compute a line (unless it is really a pt).
+        SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
+        int maxEdge = 0;
+        SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
+        if (d > maxD) {
+            maxD = d;
+            maxEdge = 1;
+        }
+        d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
+        if (d > maxD) {
+            maxD = d;
+            maxEdge = 2;
+        }
+        // We could have a tolerance here, not sure if it would improve anything
+        if (maxD > 0) {
+            // Set the matrix to give (u = 0, v = distance_to_line)
+            SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
+            // when looking from the point 0 down the line we want positive
+            // distances to be to the left. This matches the non-degenerate
+            // case.
+            lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side);
+            // first row
+            fM[0] = 0;
+            fM[1] = 0;
+            fM[2] = 0;
+            // second row
+            fM[3] = lineVec.fX;
+            fM[4] = lineVec.fY;
+            fM[5] = -lineVec.dot(qPts[maxEdge]);
+        } else {
+            // It's a point. It should cover zero area. Just set the matrix such
+            // that (u, v) will always be far away from the quad.
+            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
+            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
+        }
+    } else {
+        double scale = 1.0/det;
+
+        // compute adjugate matrix
+        double a2, a3, a4, a5, a6, a7, a8;
+        a2 = x1*y2-x2*y1;
+
+        a3 = y2-y0;
+        a4 = x0-x2;
+        a5 = x2*y0-x0*y2;
+
+        a6 = y0-y1;
+        a7 = x1-x0;
+        a8 = x0*y1-x1*y0;
+
+        // this performs the uv_pts*adjugate(control_pts) multiply,
+        // then does the scale by 1/det afterwards to improve precision
+        m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
+        m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
+        m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
+
+        m[SkMatrix::kMSkewY]  = (float)(a6*scale);
+        m[SkMatrix::kMScaleY] = (float)(a7*scale);
+        m[SkMatrix::kMTransY] = (float)(a8*scale);
+
+        // kMPersp0 & kMPersp1 should algebraically be zero
+        m[SkMatrix::kMPersp0] = 0.0f;
+        m[SkMatrix::kMPersp1] = 0.0f;
+        m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
+
+        // It may not be normalized to have 1.0 in the bottom right
+        float m33 = m.get(SkMatrix::kMPersp2);
+        if (1.f != m33) {
+            m33 = 1.f / m33;
+            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
+            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
+            fM[2] = m33 * m.get(SkMatrix::kMTransX);
+            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
+            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
+            fM[5] = m33 * m.get(SkMatrix::kMTransY);
+        } else {
+            fM[0] = m.get(SkMatrix::kMScaleX);
+            fM[1] = m.get(SkMatrix::kMSkewX);
+            fM[2] = m.get(SkMatrix::kMTransX);
+            fM[3] = m.get(SkMatrix::kMSkewY);
+            fM[4] = m.get(SkMatrix::kMScaleY);
+            fM[5] = m.get(SkMatrix::kMTransY);
+        }
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
+// l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
+// m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
+void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
+    SkMatrix& klm = *out;
+    const SkScalar w2 = 2.f * weight;
+    klm[0] = p[2].fY - p[0].fY;
+    klm[1] = p[0].fX - p[2].fX;
+    klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
+
+    klm[3] = w2 * (p[1].fY - p[0].fY);
+    klm[4] = w2 * (p[0].fX - p[1].fX);
+    klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
+
+    klm[6] = w2 * (p[2].fY - p[1].fY);
+    klm[7] = w2 * (p[1].fX - p[2].fX);
+    klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
+
+    // scale the max absolute value of coeffs to 10
+    SkScalar scale = 0.f;
+    for (int i = 0; i < 9; ++i) {
+       scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
+    }
+    SkASSERT(scale > 0.f);
+    scale = 10.f / scale;
+    for (int i = 0; i < 9; ++i) {
+        klm[i] *= scale;
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+namespace {
+
+// a is the first control point of the cubic.
+// ab is the vector from a to the second control point.
+// dc is the vector from the fourth to the third control point.
+// d is the fourth control point.
+// p is the candidate quadratic control point.
+// this assumes that the cubic doesn't inflect and is simple
+bool is_point_within_cubic_tangents(const SkPoint& a,
+                                    const SkVector& ab,
+                                    const SkVector& dc,
+                                    const SkPoint& d,
+                                    SkPathPriv::FirstDirection dir,
+                                    const SkPoint p) {
+    SkVector ap = p - a;
+    SkScalar apXab = ap.cross(ab);
+    if (SkPathPriv::kCW_FirstDirection == dir) {
+        if (apXab > 0) {
+            return false;
+        }
+    } else {
+        SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
+        if (apXab < 0) {
+            return false;
+        }
+    }
+
+    SkVector dp = p - d;
+    SkScalar dpXdc = dp.cross(dc);
+    if (SkPathPriv::kCW_FirstDirection == dir) {
+        if (dpXdc < 0) {
+            return false;
+        }
+    } else {
+        SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
+        if (dpXdc > 0) {
+            return false;
+        }
+    }
+    return true;
+}
+
+void convert_noninflect_cubic_to_quads(const SkPoint p[4],
+                                       SkScalar toleranceSqd,
+                                       SkTArray<SkPoint, true>* quads,
+                                       int sublevel = 0,
+                                       bool preserveFirstTangent = true,
+                                       bool preserveLastTangent = true) {
+    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
+    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
+    SkVector ab = p[1] - p[0];
+    SkVector dc = p[2] - p[3];
+
+    if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
+        if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
+            SkPoint* degQuad = quads->push_back_n(3);
+            degQuad[0] = p[0];
+            degQuad[1] = p[0];
+            degQuad[2] = p[3];
+            return;
+        }
+        ab = p[2] - p[0];
+    }
+    if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
+        dc = p[1] - p[3];
+    }
+
+    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
+    static const int kMaxSubdivs = 10;
+
+    ab.scale(kLengthScale);
+    dc.scale(kLengthScale);
+
+    // c0 and c1 are extrapolations along vectors ab and dc.
+    SkPoint c0 = p[0] + ab;
+    SkPoint c1 = p[3] + dc;
+
+    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
+    if (dSqd < toleranceSqd) {
+        SkPoint newC;
+        if (preserveFirstTangent == preserveLastTangent) {
+            // We used to force a split when both tangents need to be preserved and c0 != c1.
+            // This introduced a large performance regression for tiny paths for no noticeable
+            // quality improvement. However, we aren't quite fulfilling our contract of guaranteeing
+            // the two tangent vectors and this could introduce a missed pixel in
+            // GrAAHairlinePathRenderer.
+            newC = (c0 + c1) * 0.5f;
+        } else if (preserveFirstTangent) {
+            newC = c0;
+        } else {
+            newC = c1;
+        }
+
+        SkPoint* pts = quads->push_back_n(3);
+        pts[0] = p[0];
+        pts[1] = newC;
+        pts[2] = p[3];
+        return;
+    }
+    SkPoint choppedPts[7];
+    SkChopCubicAtHalf(p, choppedPts);
+    convert_noninflect_cubic_to_quads(
+            choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false);
+    convert_noninflect_cubic_to_quads(
+            choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent);
+}
+
+void convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],
+                                                       SkScalar toleranceSqd,
+                                                       SkPathPriv::FirstDirection dir,
+                                                       SkTArray<SkPoint, true>* quads,
+                                                       int sublevel = 0) {
+    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
+    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
+
+    SkVector ab = p[1] - p[0];
+    SkVector dc = p[2] - p[3];
+
+    if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
+        if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
+            SkPoint* degQuad = quads->push_back_n(3);
+            degQuad[0] = p[0];
+            degQuad[1] = p[0];
+            degQuad[2] = p[3];
+            return;
+        }
+        ab = p[2] - p[0];
+    }
+    if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
+        dc = p[1] - p[3];
+    }
+
+    // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
+    // constraint that the quad point falls between the tangents becomes hard to enforce and we are
+    // likely to hit the max subdivision count. However, in this case the cubic is approaching a
+    // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
+    // control points are very close to the baseline vector. If so then we just pick quadratic
+    // points on the control polygon.
+
+    SkVector da = p[0] - p[3];
+    bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
+                   SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
+    if (!doQuads) {
+        SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
+        if (invDALengthSqd > SK_ScalarNearlyZero) {
+            invDALengthSqd = SkScalarInvert(invDALengthSqd);
+            // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
+            // same goes for point c using vector cd.
+            SkScalar detABSqd = ab.cross(da);
+            detABSqd = SkScalarSquare(detABSqd);
+            SkScalar detDCSqd = dc.cross(da);
+            detDCSqd = SkScalarSquare(detDCSqd);
+            if (detABSqd * invDALengthSqd < toleranceSqd &&
+                detDCSqd * invDALengthSqd < toleranceSqd) {
+                doQuads = true;
+            }
+        }
+    }
+    if (doQuads) {
+        SkPoint b = p[0] + ab;
+        SkPoint c = p[3] + dc;
+        SkPoint mid = b + c;
+        mid.scale(SK_ScalarHalf);
+        // Insert two quadratics to cover the case when ab points away from d and/or dc
+        // points away from a.
+        if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) {
+            SkPoint* qpts = quads->push_back_n(6);
+            qpts[0] = p[0];
+            qpts[1] = b;
+            qpts[2] = mid;
+            qpts[3] = mid;
+            qpts[4] = c;
+            qpts[5] = p[3];
+        } else {
+            SkPoint* qpts = quads->push_back_n(3);
+            qpts[0] = p[0];
+            qpts[1] = mid;
+            qpts[2] = p[3];
+        }
+        return;
+    }
+
+    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
+    static const int kMaxSubdivs = 10;
+
+    ab.scale(kLengthScale);
+    dc.scale(kLengthScale);
+
+    // c0 and c1 are extrapolations along vectors ab and dc.
+    SkVector c0 = p[0] + ab;
+    SkVector c1 = p[3] + dc;
+
+    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
+    if (dSqd < toleranceSqd) {
+        SkPoint cAvg = (c0 + c1) * 0.5f;
+        bool subdivide = false;
+
+        if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
+            // choose a new cAvg that is the intersection of the two tangent lines.
+            ab = SkPointPriv::MakeOrthog(ab);
+            SkScalar z0 = -ab.dot(p[0]);
+            dc = SkPointPriv::MakeOrthog(dc);
+            SkScalar z1 = -dc.dot(p[3]);
+            cAvg.fX = ab.fY * z1 - z0 * dc.fY;
+            cAvg.fY = z0 * dc.fX - ab.fX * z1;
+            SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
+            z = SkScalarInvert(z);
+            cAvg.fX *= z;
+            cAvg.fY *= z;
+            if (sublevel <= kMaxSubdivs) {
+                SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
+                SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
+                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
+                // the distances and tolerance can't be negative.
+                // (d0 + d1)^2 > toleranceSqd
+                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
+                SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
+                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
+            }
+        }
+        if (!subdivide) {
+            SkPoint* pts = quads->push_back_n(3);
+            pts[0] = p[0];
+            pts[1] = cAvg;
+            pts[2] = p[3];
+            return;
+        }
+    }
+    SkPoint choppedPts[7];
+    SkChopCubicAtHalf(p, choppedPts);
+    convert_noninflect_cubic_to_quads_with_constraint(
+            choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1);
+    convert_noninflect_cubic_to_quads_with_constraint(
+            choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1);
+}
+}
+
+void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
+                                      SkScalar tolScale,
+                                      SkTArray<SkPoint, true>* quads) {
+    if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
+        return;
+    }
+    if (!SkScalarIsFinite(tolScale)) {
+        return;
+    }
+    SkPoint chopped[10];
+    int count = SkChopCubicAtInflections(p, chopped);
+
+    const SkScalar tolSqd = SkScalarSquare(tolScale);
+
+    for (int i = 0; i < count; ++i) {
+        SkPoint* cubic = chopped + 3*i;
+        convert_noninflect_cubic_to_quads(cubic, tolSqd, quads);
+    }
+}
+
+void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
+                                                         SkScalar tolScale,
+                                                         SkPathPriv::FirstDirection dir,
+                                                         SkTArray<SkPoint, true>* quads) {
+    if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
+        return;
+    }
+    if (!SkScalarIsFinite(tolScale)) {
+        return;
+    }
+    SkPoint chopped[10];
+    int count = SkChopCubicAtInflections(p, chopped);
+
+    const SkScalar tolSqd = SkScalarSquare(tolScale);
+
+    for (int i = 0; i < count; ++i) {
+        SkPoint* cubic = chopped + 3*i;
+        convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads);
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+using ExcludedTerm = GrPathUtils::ExcludedTerm;
+
+ExcludedTerm GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4],
+                                                                    SkMatrix* out) {
+    GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
+
+    // First convert the bezier coordinates p[0..3] to power basis coefficients X,Y(,W=[0 0 0 1]).
+    // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
+    //
+    //                                     | X   Y   0 |
+    // C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | .   .   0 |
+    //                                     | .   .   0 |
+    //                                     | .   .   1 |
+    //
+    const Sk4f M3[3] = {Sk4f(-1, 3, -3, 1),
+                        Sk4f(3, -6, 3, 0),
+                        Sk4f(-3, 3, 0, 0)};
+    // 4th col of M3 =  Sk4f(1, 0, 0, 0)};
+    Sk4f X(p[3].x(), 0, 0, 0);
+    Sk4f Y(p[3].y(), 0, 0, 0);
+    for (int i = 2; i >= 0; --i) {
+        X += M3[i] * p[i].x();
+        Y += M3[i] * p[i].y();
+    }
+
+    // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
+    // of the middle two rows. We toss the row that leaves us with the largest absolute determinant.
+    // Since the right column will be [0 0 1], the respective determinants reduce to x0*y2 - y0*x2
+    // and x0*y1 - y0*x1.
+    SkScalar dets[4];
+    Sk4f D = SkNx_shuffle<0,0,2,1>(X) * SkNx_shuffle<2,1,0,0>(Y);
+    D -= SkNx_shuffle<2,3,0,1>(D);
+    D.store(dets);
+    ExcludedTerm skipTerm = SkScalarAbs(dets[0]) > SkScalarAbs(dets[1]) ?
+                            ExcludedTerm::kQuadraticTerm : ExcludedTerm::kLinearTerm;
+    SkScalar det = dets[ExcludedTerm::kQuadraticTerm == skipTerm ? 0 : 1];
+    if (0 == det) {
+        return ExcludedTerm::kNonInvertible;
+    }
+    SkScalar rdet = 1 / det;
+
+    // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
+    // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
+    //
+    //             |  y1  -x1   x1*y2 - y1*x2 |
+    //     1/det * | -y0   x0  -x0*y2 + y0*x2 |
+    //             |   0    0             det |
+    //
+    SkScalar x[4], y[4], z[4];
+    X.store(x);
+    Y.store(y);
+    (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
+
+    int middleRow = ExcludedTerm::kQuadraticTerm == skipTerm ? 2 : 1;
+    out->setAll( y[middleRow] * rdet, -x[middleRow] * rdet,  z[middleRow] * rdet,
+                        -y[0] * rdet,          x[0] * rdet,         -z[0] * rdet,
+                                   0,                    0,                    1);
+
+    return skipTerm;
+}
+
+inline static void calc_serp_kcoeffs(SkScalar tl, SkScalar sl, SkScalar tm, SkScalar sm,
+                                     ExcludedTerm skipTerm, SkScalar outCoeffs[3]) {
+    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
+    outCoeffs[0] = 0;
+    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sm : -tl*sm - tm*sl;
+    outCoeffs[2] = tl*tm;
+}
+
+inline static void calc_serp_lmcoeffs(SkScalar t, SkScalar s, ExcludedTerm skipTerm,
+                                      SkScalar outCoeffs[3]) {
+    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
+    outCoeffs[0] = -s*s*s;
+    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? 3*s*s*t : -3*s*t*t;
+    outCoeffs[2] = t*t*t;
+}
+
+inline static void calc_loop_kcoeffs(SkScalar td, SkScalar sd, SkScalar te, SkScalar se,
+                                     SkScalar tdse, SkScalar tesd, ExcludedTerm skipTerm,
+                                     SkScalar outCoeffs[3]) {
+    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
+    outCoeffs[0] = 0;
+    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sd*se : -tdse - tesd;
+    outCoeffs[2] = td*te;
+}
+
+inline static void calc_loop_lmcoeffs(SkScalar t2, SkScalar s2, SkScalar t1, SkScalar s1,
+                                      SkScalar t2s1, SkScalar t1s2, ExcludedTerm skipTerm,
+                                      SkScalar outCoeffs[3]) {
+    SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
+    outCoeffs[0] = -s2*s2*s1;
+    outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? s2 * (2*t2s1 + t1s2)
+                                                           : -t2 * (t2s1 + 2*t1s2);
+    outCoeffs[2] = t2*t2*t1;
+}
+
+// For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
+// implicit becomes:
+//
+//     k^3 - l*m == k^3 - l*k == k * (k^2 - l)
+//
+// In the quadratic case we can simply assign fixed values at each control point:
+//
+//     | ..K.. |     | pts[0]  pts[1]  pts[2]  pts[3] |      | 0   1/3  2/3  1 |
+//     | ..L.. |  *  |   .       .       .       .    |  ==  | 0     0  1/3  1 |
+//     | ..K.. |     |   1       1       1       1    |      | 0   1/3  2/3  1 |
+//
+static void calc_quadratic_klm(const SkPoint pts[4], double d3, SkMatrix* klm) {
+    SkMatrix klmAtPts;
+    klmAtPts.setAll(0,  1.f/3,  1,
+                    0,      0,  1,
+                    0,  1.f/3,  1);
+
+    SkMatrix inversePts;
+    inversePts.setAll(pts[0].x(),  pts[1].x(),  pts[3].x(),
+                      pts[0].y(),  pts[1].y(),  pts[3].y(),
+                               1,           1,           1);
+    SkAssertResult(inversePts.invert(&inversePts));
+
+    klm->setConcat(klmAtPts, inversePts);
+
+    // If d3 > 0 we need to flip the orientation of our curve
+    // This is done by negating the k and l values
+    if (d3 > 0) {
+        klm->postScale(-1, -1);
+    }
+}
+
+// For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
+// the following implicit:
+//
+//     k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
+//
+static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
+    SkScalar ny = pts[0].x() - pts[3].x();
+    SkScalar nx = pts[3].y() - pts[0].y();
+    SkScalar k = nx * pts[0].x() + ny * pts[0].y();
+    klm->setAll(  0,   0, 0,
+                  0,   0, 1,
+                -nx, -ny, k);
+}
+
+SkCubicType GrPathUtils::getCubicKLM(const SkPoint src[4], SkMatrix* klm, double tt[2],
+                                     double ss[2]) {
+    double d[4];
+    SkCubicType type = SkClassifyCubic(src, tt, ss, d);
+
+    if (SkCubicType::kLineOrPoint == type) {
+        calc_line_klm(src, klm);
+        return SkCubicType::kLineOrPoint;
+    }
+
+    if (SkCubicType::kQuadratic == type) {
+        calc_quadratic_klm(src, d[3], klm);
+        return SkCubicType::kQuadratic;
+    }
+
+    SkMatrix CIT;
+    ExcludedTerm skipTerm = calcCubicInverseTransposePowerBasisMatrix(src, &CIT);
+    if (ExcludedTerm::kNonInvertible == skipTerm) {
+        // This could technically also happen if the curve were quadratic, but SkClassifyCubic
+        // should have detected that case already with tolerance.
+        calc_line_klm(src, klm);
+        return SkCubicType::kLineOrPoint;
+    }
+
+    const SkScalar t0 = static_cast<SkScalar>(tt[0]), t1 = static_cast<SkScalar>(tt[1]),
+                   s0 = static_cast<SkScalar>(ss[0]), s1 = static_cast<SkScalar>(ss[1]);
+
+    SkMatrix klmCoeffs;
+    switch (type) {
+        case SkCubicType::kCuspAtInfinity:
+            SkASSERT(1 == t1 && 0 == s1); // Infinity.
+            // fallthru.
+        case SkCubicType::kLocalCusp:
+        case SkCubicType::kSerpentine:
+            calc_serp_kcoeffs(t0, s0, t1, s1, skipTerm, &klmCoeffs[0]);
+            calc_serp_lmcoeffs(t0, s0, skipTerm, &klmCoeffs[3]);
+            calc_serp_lmcoeffs(t1, s1, skipTerm, &klmCoeffs[6]);
+            break;
+        case SkCubicType::kLoop: {
+            const SkScalar tdse = t0 * s1;
+            const SkScalar tesd = t1 * s0;
+            calc_loop_kcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[0]);
+            calc_loop_lmcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[3]);
+            calc_loop_lmcoeffs(t1, s1, t0, s0, tesd, tdse, skipTerm, &klmCoeffs[6]);
+            break;
+        }
+        default:
+            SK_ABORT("Unexpected cubic type.");
+            break;
+    }
+
+    klm->setConcat(klmCoeffs, CIT);
+    return type;
+}
+
+int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
+                                             int* loopIndex) {
+    SkSTArray<2, SkScalar> chops;
+    *loopIndex = -1;
+
+    double t[2], s[2];
+    if (SkCubicType::kLoop == GrPathUtils::getCubicKLM(src, klm, t, s)) {
+        SkScalar t0 = static_cast<SkScalar>(t[0] / s[0]);
+        SkScalar t1 = static_cast<SkScalar>(t[1] / s[1]);
+        SkASSERT(t0 <= t1); // Technically t0 != t1 in a loop, but there may be FP error.
+
+        if (t0 < 1 && t1 > 0) {
+            *loopIndex = 0;
+            if (t0 > 0) {
+                chops.push_back(t0);
+                *loopIndex = 1;
+            }
+            if (t1 < 1) {
+                chops.push_back(t1);
+                *loopIndex = chops.count() - 1;
+            }
+        }
+    }
+
+    SkChopCubicAt(src, dst, chops.begin(), chops.count());
+    return chops.count() + 1;
+}