Create free list heap for suballocation

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2029763002

Review-Url: https://codereview.chromium.org/2029763002
diff --git a/src/gpu/vk/GrVkMemory.cpp b/src/gpu/vk/GrVkMemory.cpp
index e0ab3a6..fa0bcb5 100644
--- a/src/gpu/vk/GrVkMemory.cpp
+++ b/src/gpu/vk/GrVkMemory.cpp
@@ -29,38 +29,26 @@
     return false;
 }
 
-static bool alloc_device_memory(const GrVkGpu* gpu,
-                                VkMemoryRequirements* memReqs,
-                                const VkMemoryPropertyFlags flags,
-                                VkDeviceMemory* memory) {
-    uint32_t typeIndex;
-    if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(),
-                                     memReqs->memoryTypeBits,
-                                     flags,
-                                     &typeIndex)) {
-        return false;
-    }
-
-    VkMemoryAllocateInfo allocInfo = {
-        VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,      // sType
-        NULL,                                        // pNext
-        memReqs->size,                               // allocationSize
-        typeIndex,                                   // memoryTypeIndex
+static GrVkGpu::Heap buffer_type_to_heap(GrVkBuffer::Type type) {
+    const GrVkGpu::Heap kBufferToHeap[]{
+        GrVkGpu::kVertexBuffer_Heap,
+        GrVkGpu::kIndexBuffer_Heap,
+        GrVkGpu::kUniformBuffer_Heap,
+        GrVkGpu::kCopyReadBuffer_Heap,
+        GrVkGpu::kCopyWriteBuffer_Heap,
     };
+    GR_STATIC_ASSERT(0 == GrVkBuffer::kVertex_Type);
+    GR_STATIC_ASSERT(1 == GrVkBuffer::kIndex_Type);
+    GR_STATIC_ASSERT(2 == GrVkBuffer::kUniform_Type);
+    GR_STATIC_ASSERT(3 == GrVkBuffer::kCopyRead_Type);
+    GR_STATIC_ASSERT(4 == GrVkBuffer::kCopyWrite_Type);
 
-    VkResult err = GR_VK_CALL(gpu->vkInterface(), AllocateMemory(gpu->device(),
-                                                                 &allocInfo,
-                                                                 nullptr,
-                                                                 memory));
-    if (err) {
-        return false;
-    }
-    return true;
+    return kBufferToHeap[type];
 }
 
 bool GrVkMemory::AllocAndBindBufferMemory(const GrVkGpu* gpu,
                                           VkBuffer buffer,
-                                          const VkMemoryPropertyFlags flags,
+                                          GrVkBuffer::Type type,
                                           GrVkAlloc* alloc) {
     const GrVkInterface* iface = gpu->vkInterface();
     VkDevice device = gpu->device();
@@ -68,30 +56,61 @@
     VkMemoryRequirements memReqs;
     GR_VK_CALL(iface, GetBufferMemoryRequirements(device, buffer, &memReqs));
 
-    if (!alloc_device_memory(gpu, &memReqs, flags, &alloc->fMemory)) {
+    VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                            VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
+                                            VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+    uint32_t typeIndex;
+    if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(),
+                                     memReqs.memoryTypeBits,
+                                     desiredMemProps,
+                                     &typeIndex)) {
+        // this memory type should always be available
+        SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(),
+                                                     memReqs.memoryTypeBits,
+                                                     VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                                     VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
+                                                     &typeIndex));
+    }
+
+    GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type));
+
+    if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, alloc)) {
+        SkDebugf("Failed to alloc buffer\n");
         return false;
     }
-    // for now, offset is always 0
-    alloc->fOffset = 0;
 
     // Bind Memory to device
     VkResult err = GR_VK_CALL(iface, BindBufferMemory(device, buffer, 
                                                       alloc->fMemory, alloc->fOffset));
     if (err) {
-        GR_VK_CALL(iface, FreeMemory(device, alloc->fMemory, nullptr));
+        SkASSERT_RELEASE(heap->free(*alloc));
         return false;
     }
+
     return true;
 }
 
-void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, const GrVkAlloc& alloc) {
-    const GrVkInterface* iface = gpu->vkInterface();
-    GR_VK_CALL(iface, FreeMemory(gpu->device(), alloc.fMemory, nullptr));
+void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, GrVkBuffer::Type type,
+                                  const GrVkAlloc& alloc) {
+
+    GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type));
+    SkASSERT_RELEASE(heap->free(alloc));
+}
+
+// for debugging
+static uint64_t gTotalImageMemory = 0;
+static uint64_t gTotalImageMemoryFullPage = 0;
+
+const VkDeviceSize kMaxSmallImageSize = 16 * 1024;
+const VkDeviceSize kMinVulkanPageSize = 16 * 1024;
+
+static VkDeviceSize align_size(VkDeviceSize size, VkDeviceSize alignment) {
+    return (size + alignment - 1) & ~(alignment - 1);
 }
 
 bool GrVkMemory::AllocAndBindImageMemory(const GrVkGpu* gpu,
                                          VkImage image,
-                                         const VkMemoryPropertyFlags flags,
+                                         bool linearTiling,
                                          GrVkAlloc* alloc) {
     const GrVkInterface* iface = gpu->vkInterface();
     VkDevice device = gpu->device();
@@ -99,25 +118,76 @@
     VkMemoryRequirements memReqs;
     GR_VK_CALL(iface, GetImageMemoryRequirements(device, image, &memReqs));
 
-    if (!alloc_device_memory(gpu, &memReqs, flags, &alloc->fMemory)) {
+    uint32_t typeIndex;
+    GrVkHeap* heap;
+    if (linearTiling) {
+        VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                                VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
+                                                VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+        if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(),
+                                         memReqs.memoryTypeBits,
+                                         desiredMemProps,
+                                         &typeIndex)) {
+            // this memory type should always be available
+            SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(),
+                                                         memReqs.memoryTypeBits,
+                                                         VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                                         VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
+                                                         &typeIndex));
+        }
+        heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap);
+    } else {
+        // this memory type should always be available
+        SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(),
+                                                     memReqs.memoryTypeBits,
+                                                     VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
+                                                     &typeIndex));
+        if (memReqs.size <= kMaxSmallImageSize) {
+            heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap);
+        } else {
+            heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap);
+        }
+    }
+
+    if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, alloc)) {
+        SkDebugf("Failed to alloc image\n");
         return false;
     }
-    // for now, offset is always 0
-    alloc->fOffset = 0;
 
     // Bind Memory to device
     VkResult err = GR_VK_CALL(iface, BindImageMemory(device, image,
                               alloc->fMemory, alloc->fOffset));
     if (err) {
-        GR_VK_CALL(iface, FreeMemory(device, alloc->fMemory, nullptr));
+        SkASSERT_RELEASE(heap->free(*alloc));
         return false;
     }
+
+    gTotalImageMemory += alloc->fSize;
+
+    VkDeviceSize pageAlignedSize = align_size(alloc->fSize, kMinVulkanPageSize);
+    gTotalImageMemoryFullPage += pageAlignedSize;
+
     return true;
 }
 
-void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, const GrVkAlloc& alloc) {
-    const GrVkInterface* iface = gpu->vkInterface();
-    GR_VK_CALL(iface, FreeMemory(gpu->device(), alloc.fMemory, nullptr));
+void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, bool linearTiling,
+                                 const GrVkAlloc& alloc) {
+    GrVkHeap* heap;
+    if (linearTiling) {
+        heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap);
+    } else if (alloc.fSize <= kMaxSmallImageSize) {
+        heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap);
+    } else {
+        heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap);
+    }
+    if (!heap->free(alloc)) {
+        // must be an adopted allocation
+        GR_VK_CALL(gpu->vkInterface(), FreeMemory(gpu->device(), alloc.fMemory, nullptr));
+    } else {
+        gTotalImageMemory -= alloc.fSize;
+        VkDeviceSize pageAlignedSize = align_size(alloc.fSize, kMinVulkanPageSize);
+        gTotalImageMemoryFullPage -= pageAlignedSize;
+    }
 }
 
 VkPipelineStageFlags GrVkMemory::LayoutToPipelineStageFlags(const VkImageLayout layout) {
@@ -169,3 +239,289 @@
     }
     return flags;
 }
+
+GrVkSubHeap::GrVkSubHeap(const GrVkGpu* gpu, uint32_t memoryTypeIndex, 
+                         VkDeviceSize size, VkDeviceSize alignment)
+    : fGpu(gpu)
+    , fMemoryTypeIndex(memoryTypeIndex) {
+
+    VkMemoryAllocateInfo allocInfo = {
+        VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,      // sType
+        NULL,                                        // pNext
+        size,                                        // allocationSize
+        memoryTypeIndex,                             // memoryTypeIndex
+    };
+
+    VkResult err = GR_VK_CALL(gpu->vkInterface(), AllocateMemory(gpu->device(),
+                                                                 &allocInfo,
+                                                                 nullptr,
+                                                                 &fAlloc));
+
+    if (VK_SUCCESS == err) {
+        fSize = size;
+        fAlignment = alignment;
+        fFreeSize = size;
+        fLargestBlockSize = size;
+        fLargestBlockOffset = 0;
+
+        Block* block = fFreeList.addToTail();
+        block->fOffset = 0;
+        block->fSize = fSize;
+    } else {
+        fSize = 0;
+        fAlignment = 0;
+        fFreeSize = 0;
+        fLargestBlockSize = 0;
+    }
+}
+
+GrVkSubHeap::~GrVkSubHeap() {
+    const GrVkInterface* iface = fGpu->vkInterface();
+    GR_VK_CALL(iface, FreeMemory(fGpu->device(), fAlloc, nullptr));
+
+    fFreeList.reset();
+}
+
+bool GrVkSubHeap::alloc(VkDeviceSize size, GrVkAlloc* alloc) {
+    VkDeviceSize alignedSize = align_size(size, fAlignment);
+
+    // find the smallest block big enough for our allocation
+    FreeList::Iter iter = fFreeList.headIter();
+    FreeList::Iter bestFitIter;
+    VkDeviceSize   bestFitSize = fSize + 1;
+    VkDeviceSize   secondLargestSize = 0;
+    VkDeviceSize   secondLargestOffset = 0;
+    while (iter.get()) {
+        Block* block = iter.get();
+        // need to adjust size to match desired alignment
+        SkASSERT(align_size(block->fOffset, fAlignment) - block->fOffset == 0);
+        if (block->fSize >= alignedSize && block->fSize < bestFitSize) {
+            bestFitIter = iter;
+            bestFitSize = block->fSize;
+        }
+        if (secondLargestSize < block->fSize && block->fOffset != fLargestBlockOffset) {
+            secondLargestSize = block->fSize;
+            secondLargestOffset = block->fOffset;
+        }
+        iter.next();
+    }
+    SkASSERT(secondLargestSize <= fLargestBlockSize);
+
+    Block* bestFit = bestFitIter.get();
+    if (bestFit) {
+        alloc->fMemory = fAlloc;
+        SkASSERT(align_size(bestFit->fOffset, fAlignment) == bestFit->fOffset);
+        alloc->fOffset = bestFit->fOffset;
+        alloc->fSize = alignedSize;
+        // adjust or remove current block
+        VkDeviceSize originalBestFitOffset = bestFit->fOffset;
+        if (bestFit->fSize > alignedSize) {
+            bestFit->fOffset += alignedSize;
+            bestFit->fSize -= alignedSize;
+            if (fLargestBlockOffset == originalBestFitOffset) {
+                if (bestFit->fSize >= secondLargestSize) {
+                    fLargestBlockSize = bestFit->fSize;
+                    fLargestBlockOffset = bestFit->fOffset;
+                } else {
+                    fLargestBlockSize = secondLargestSize;
+                    fLargestBlockOffset = secondLargestOffset;
+                }
+            }
+#ifdef SK_DEBUG
+            VkDeviceSize largestSize = 0;
+            iter = fFreeList.headIter();
+            while (iter.get()) {
+                Block* block = iter.get();
+                if (largestSize < block->fSize) {
+                    largestSize = block->fSize;
+                }
+                iter.next();
+            }
+            SkASSERT(largestSize == fLargestBlockSize)
+#endif
+        } else {
+            SkASSERT(bestFit->fSize == alignedSize);
+            if (fLargestBlockOffset == originalBestFitOffset) {
+                fLargestBlockSize = secondLargestSize;
+                fLargestBlockOffset = secondLargestOffset;
+            }
+            fFreeList.remove(bestFit);
+#ifdef SK_DEBUG
+            VkDeviceSize largestSize = 0;
+            iter = fFreeList.headIter();
+            while (iter.get()) {
+                Block* block = iter.get();
+                if (largestSize < block->fSize) {
+                    largestSize = block->fSize;
+                }
+                iter.next();
+            }
+            SkASSERT(largestSize == fLargestBlockSize);
+#endif
+        }
+        fFreeSize -= alignedSize;
+
+        return true;
+    }
+    
+    SkDebugf("Can't allocate %d bytes, %d bytes available, largest free block %d\n", alignedSize, fFreeSize, fLargestBlockSize);
+
+    return false;
+}
+
+
+void GrVkSubHeap::free(const GrVkAlloc& alloc) {
+    SkASSERT(alloc.fMemory == fAlloc);
+
+    // find the block right after this allocation
+    FreeList::Iter iter = fFreeList.headIter();
+    while (iter.get() && iter.get()->fOffset < alloc.fOffset) {
+        iter.next();
+    } 
+    FreeList::Iter prev = iter;
+    prev.prev();
+    // we have four cases:
+    // we exactly follow the previous one
+    Block* block;
+    if (prev.get() && prev.get()->fOffset + prev.get()->fSize == alloc.fOffset) {
+        block = prev.get();
+        block->fSize += alloc.fSize;
+        if (block->fOffset == fLargestBlockOffset) {
+            fLargestBlockSize = block->fSize;
+        }
+        // and additionally we may exactly precede the next one
+        if (iter.get() && iter.get()->fOffset == alloc.fOffset + alloc.fSize) {
+            block->fSize += iter.get()->fSize;
+            if (iter.get()->fOffset == fLargestBlockOffset) {
+                fLargestBlockOffset = block->fOffset;
+                fLargestBlockSize = block->fSize;
+            }
+            fFreeList.remove(iter.get());
+        }
+    // or we only exactly proceed the next one
+    } else if (iter.get() && iter.get()->fOffset == alloc.fOffset + alloc.fSize) {
+        block = iter.get();
+        block->fSize += alloc.fSize;
+        if (block->fOffset == fLargestBlockOffset) {
+            fLargestBlockOffset = alloc.fOffset;
+            fLargestBlockSize = block->fSize;
+        }
+        block->fOffset = alloc.fOffset;
+    // or we fall somewhere in between, with gaps
+    } else {
+        block = fFreeList.addBefore(iter);
+        block->fOffset = alloc.fOffset;
+        block->fSize = alloc.fSize;
+    }
+    fFreeSize += alloc.fSize;
+    if (block->fSize > fLargestBlockSize) {
+        fLargestBlockSize = block->fSize;
+        fLargestBlockOffset = block->fOffset;
+    }
+
+#ifdef SK_DEBUG
+    VkDeviceSize   largestSize = 0;
+    iter = fFreeList.headIter();
+    while (iter.get()) {
+        Block* block = iter.get();
+        if (largestSize < block->fSize) {
+            largestSize = block->fSize;
+        }
+        iter.next();
+    }
+    SkASSERT(fLargestBlockSize == largestSize);
+#endif
+}
+
+GrVkHeap::~GrVkHeap() {
+}
+
+bool GrVkHeap::subAlloc(VkDeviceSize size, VkDeviceSize alignment, 
+                        uint32_t memoryTypeIndex, GrVkAlloc* alloc) {
+    VkDeviceSize alignedSize = align_size(size, alignment);
+
+    // first try to find a subheap that fits our allocation request
+    int bestFitIndex = -1;
+    VkDeviceSize bestFitSize = 0x7FFFFFFF;
+    for (auto i = 0; i < fSubHeaps.count(); ++i) {
+        if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex) {
+            VkDeviceSize heapSize = fSubHeaps[i]->largestBlockSize();
+            if (heapSize > alignedSize && heapSize < bestFitSize) {
+                bestFitIndex = i;
+                bestFitSize = heapSize;
+            }
+        }
+    }
+
+    if (bestFitIndex >= 0) {
+        SkASSERT(fSubHeaps[bestFitIndex]->alignment() == alignment);
+        if (fSubHeaps[bestFitIndex]->alloc(size, alloc)) {
+            fUsedSize += alloc->fSize;
+            return true;
+        }
+        return false;
+    } 
+
+    // need to allocate a new subheap
+    SkAutoTDelete<GrVkSubHeap>& subHeap = fSubHeaps.push_back();
+    subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, fSubHeapSize, alignment));
+    fAllocSize += fSubHeapSize;
+    if (subHeap->alloc(size, alloc)) {
+        fUsedSize += alloc->fSize;
+        return true;
+    }
+
+    return false;
+}
+
+bool GrVkHeap::singleAlloc(VkDeviceSize size, VkDeviceSize alignment, 
+                           uint32_t memoryTypeIndex, GrVkAlloc* alloc) {
+    VkDeviceSize alignedSize = align_size(size, alignment);
+
+    // first try to find an unallocated subheap that fits our allocation request
+    int bestFitIndex = -1;
+    VkDeviceSize bestFitSize = 0x7FFFFFFF;
+    for (auto i = 0; i < fSubHeaps.count(); ++i) {
+        if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex && fSubHeaps[i]->unallocated()) {
+            VkDeviceSize heapSize = fSubHeaps[i]->size();
+            if (heapSize > alignedSize && heapSize < bestFitSize) {
+                bestFitIndex = i;
+                bestFitSize = heapSize;
+            }
+        }
+    }
+
+    if (bestFitIndex >= 0) {
+        SkASSERT(fSubHeaps[bestFitIndex]->alignment() == alignment);
+        if (fSubHeaps[bestFitIndex]->alloc(size, alloc)) {
+            fUsedSize += alloc->fSize;
+            return true;
+        }
+        return false;
+    }
+
+    // need to allocate a new subheap
+    SkAutoTDelete<GrVkSubHeap>& subHeap = fSubHeaps.push_back();
+    subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, alignedSize, alignment));
+    fAllocSize += alignedSize;
+    if (subHeap->alloc(size, alloc)) {
+        fUsedSize += alloc->fSize;
+        return true;
+    }
+
+    return false;
+}
+
+bool GrVkHeap::free(const GrVkAlloc& alloc) {
+    for (auto i = 0; i < fSubHeaps.count(); ++i) {
+        if (fSubHeaps[i]->memory() == alloc.fMemory) {
+            fSubHeaps[i]->free(alloc);
+            fUsedSize -= alloc.fSize;
+            return true;
+        }
+    }
+
+    return false;
+}
+
+