| #include "CubicUtilities.h" |
| #include "DataTypes.h" |
| #include "QuadraticUtilities.h" |
| |
| const double PI = 4 * atan(1); |
| |
| static bool is_unit_interval(double x) { |
| return x > 0 && x < 1; |
| } |
| |
| // from SkGeometry.cpp (and Numeric Solutions, 5.6) |
| int cubicRoots(double A, double B, double C, double D, double t[3]) { |
| if (approximately_zero(A)) { // we're just a quadratic |
| return quadraticRoots(B, C, D, t); |
| } |
| double a, b, c; |
| { |
| double invA = 1 / A; |
| a = B * invA; |
| b = C * invA; |
| c = D * invA; |
| } |
| double a2 = a * a; |
| double Q = (a2 - b * 3) / 9; |
| double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| double Q3 = Q * Q * Q; |
| double R2MinusQ3 = R * R - Q3; |
| double adiv3 = a / 3; |
| double* roots = t; |
| double r; |
| |
| if (R2MinusQ3 < 0) // we have 3 real roots |
| { |
| double theta = acos(R / sqrt(Q3)); |
| double neg2RootQ = -2 * sqrt(Q); |
| |
| r = neg2RootQ * cos(theta / 3) - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| } |
| else // we have 1 real root |
| { |
| double A = fabs(R) + sqrt(R2MinusQ3); |
| A = cube_root(A); |
| if (R > 0) { |
| A = -A; |
| } |
| if (A != 0) { |
| A += Q / A; |
| } |
| r = A - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| } |
| return (int)(roots - t); |
| } |