| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkRandom.h" |
| #include "SkRefCnt.h" |
| #include "SkTSearch.h" |
| #include "SkTSort.h" |
| #include "SkUtils.h" |
| #include "Test.h" |
| |
| class RefClass : public SkRefCnt { |
| public: |
| |
| |
| RefClass(int n) : fN(n) {} |
| int get() const { return fN; } |
| |
| private: |
| int fN; |
| |
| typedef SkRefCnt INHERITED; |
| }; |
| |
| static void test_autounref(skiatest::Reporter* reporter) { |
| RefClass obj(0); |
| REPORTER_ASSERT(reporter, obj.unique()); |
| |
| sk_sp<RefClass> tmp(&obj); |
| REPORTER_ASSERT(reporter, &obj == tmp.get()); |
| REPORTER_ASSERT(reporter, obj.unique()); |
| |
| REPORTER_ASSERT(reporter, &obj == tmp.release()); |
| REPORTER_ASSERT(reporter, obj.unique()); |
| REPORTER_ASSERT(reporter, nullptr == tmp.release()); |
| REPORTER_ASSERT(reporter, nullptr == tmp.get()); |
| |
| obj.ref(); |
| REPORTER_ASSERT(reporter, !obj.unique()); |
| { |
| sk_sp<RefClass> tmp2(&obj); |
| } |
| REPORTER_ASSERT(reporter, obj.unique()); |
| } |
| |
| static void test_autostarray(skiatest::Reporter* reporter) { |
| RefClass obj0(0); |
| RefClass obj1(1); |
| REPORTER_ASSERT(reporter, obj0.unique()); |
| REPORTER_ASSERT(reporter, obj1.unique()); |
| |
| { |
| SkAutoSTArray<2, sk_sp<RefClass> > tmp; |
| REPORTER_ASSERT(reporter, 0 == tmp.count()); |
| |
| tmp.reset(0); // test out reset(0) when already at 0 |
| tmp.reset(4); // this should force a new allocation |
| REPORTER_ASSERT(reporter, 4 == tmp.count()); |
| tmp[0].reset(SkRef(&obj0)); |
| tmp[1].reset(SkRef(&obj1)); |
| REPORTER_ASSERT(reporter, !obj0.unique()); |
| REPORTER_ASSERT(reporter, !obj1.unique()); |
| |
| // test out reset with data in the array (and a new allocation) |
| tmp.reset(0); |
| REPORTER_ASSERT(reporter, 0 == tmp.count()); |
| REPORTER_ASSERT(reporter, obj0.unique()); |
| REPORTER_ASSERT(reporter, obj1.unique()); |
| |
| tmp.reset(2); // this should use the preexisting allocation |
| REPORTER_ASSERT(reporter, 2 == tmp.count()); |
| tmp[0].reset(SkRef(&obj0)); |
| tmp[1].reset(SkRef(&obj1)); |
| } |
| |
| // test out destructor with data in the array (and using existing allocation) |
| REPORTER_ASSERT(reporter, obj0.unique()); |
| REPORTER_ASSERT(reporter, obj1.unique()); |
| |
| { |
| // test out allocating ctor (this should allocate new memory) |
| SkAutoSTArray<2, sk_sp<RefClass> > tmp(4); |
| REPORTER_ASSERT(reporter, 4 == tmp.count()); |
| |
| tmp[0].reset(SkRef(&obj0)); |
| tmp[1].reset(SkRef(&obj1)); |
| REPORTER_ASSERT(reporter, !obj0.unique()); |
| REPORTER_ASSERT(reporter, !obj1.unique()); |
| |
| // Test out resut with data in the array and malloced storage |
| tmp.reset(0); |
| REPORTER_ASSERT(reporter, obj0.unique()); |
| REPORTER_ASSERT(reporter, obj1.unique()); |
| |
| tmp.reset(2); // this should use the preexisting storage |
| tmp[0].reset(SkRef(&obj0)); |
| tmp[1].reset(SkRef(&obj1)); |
| REPORTER_ASSERT(reporter, !obj0.unique()); |
| REPORTER_ASSERT(reporter, !obj1.unique()); |
| |
| tmp.reset(4); // this should force a new malloc |
| REPORTER_ASSERT(reporter, obj0.unique()); |
| REPORTER_ASSERT(reporter, obj1.unique()); |
| |
| tmp[0].reset(SkRef(&obj0)); |
| tmp[1].reset(SkRef(&obj1)); |
| REPORTER_ASSERT(reporter, !obj0.unique()); |
| REPORTER_ASSERT(reporter, !obj1.unique()); |
| } |
| |
| REPORTER_ASSERT(reporter, obj0.unique()); |
| REPORTER_ASSERT(reporter, obj1.unique()); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| #define kSEARCH_COUNT 91 |
| |
| static void test_search(skiatest::Reporter* reporter) { |
| int i, array[kSEARCH_COUNT]; |
| SkRandom rand; |
| |
| for (i = 0; i < kSEARCH_COUNT; i++) { |
| array[i] = rand.nextS(); |
| } |
| |
| SkTHeapSort<int>(array, kSEARCH_COUNT); |
| // make sure we got sorted properly |
| for (i = 1; i < kSEARCH_COUNT; i++) { |
| REPORTER_ASSERT(reporter, array[i-1] <= array[i]); |
| } |
| |
| // make sure we can find all of our values |
| for (i = 0; i < kSEARCH_COUNT; i++) { |
| int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int)); |
| REPORTER_ASSERT(reporter, index == i); |
| } |
| |
| // make sure that random values are either found, or the correct |
| // insertion index is returned |
| for (i = 0; i < 10000; i++) { |
| int value = rand.nextS(); |
| int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int)); |
| |
| if (index >= 0) { |
| REPORTER_ASSERT(reporter, |
| index < kSEARCH_COUNT && array[index] == value); |
| } else { |
| index = ~index; |
| REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT); |
| if (index < kSEARCH_COUNT) { |
| REPORTER_ASSERT(reporter, value < array[index]); |
| if (index > 0) { |
| REPORTER_ASSERT(reporter, value > array[index - 1]); |
| } |
| } else { |
| // we should append the new value |
| REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]); |
| } |
| } |
| } |
| } |
| |
| static void test_utf16(skiatest::Reporter* reporter) { |
| // Test non-basic-multilingual-plane unicode. |
| static const SkUnichar gUni[] = { |
| 0x10000, 0x18080, 0x20202, 0xFFFFF, 0x101234 |
| }; |
| for (SkUnichar uni : gUni) { |
| uint16_t buf[2]; |
| size_t count = SkUTF::ToUTF16(uni, buf); |
| REPORTER_ASSERT(reporter, count == 2); |
| size_t count2 = SkUTF::CountUTF16(buf, sizeof(buf)); |
| REPORTER_ASSERT(reporter, count2 == 1); |
| const uint16_t* ptr = buf; |
| SkUnichar c = SkUTF::NextUTF16(&ptr, buf + SK_ARRAY_COUNT(buf)); |
| REPORTER_ASSERT(reporter, c == uni); |
| REPORTER_ASSERT(reporter, ptr - buf == 2); |
| } |
| } |
| |
| DEF_TEST(Utils, reporter) { |
| static const struct { |
| const char* fUtf8; |
| SkUnichar fUni; |
| } gTest[] = { |
| { "a", 'a' }, |
| { "\x7f", 0x7f }, |
| { "\xC2\x80", 0x80 }, |
| { "\xC3\x83", (3 << 6) | 3 }, |
| { "\xDF\xBF", 0x7ff }, |
| { "\xE0\xA0\x80", 0x800 }, |
| { "\xE0\xB0\xB8", 0xC38 }, |
| { "\xE3\x83\x83", (3 << 12) | (3 << 6) | 3 }, |
| { "\xEF\xBF\xBF", 0xFFFF }, |
| { "\xF0\x90\x80\x80", 0x10000 }, |
| { "\xF3\x83\x83\x83", (3 << 18) | (3 << 12) | (3 << 6) | 3 } |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gTest); i++) { |
| const char* p = gTest[i].fUtf8; |
| const char* stop = p + strlen(p); |
| int n = SkUTF::CountUTF8(p, strlen(p)); |
| SkUnichar u1 = SkUTF::NextUTF8(&p, stop); |
| |
| REPORTER_ASSERT(reporter, n == 1); |
| REPORTER_ASSERT(reporter, u1 == gTest[i].fUni); |
| REPORTER_ASSERT(reporter, |
| p - gTest[i].fUtf8 == (int)strlen(gTest[i].fUtf8)); |
| } |
| |
| test_utf16(reporter); |
| test_search(reporter); |
| test_autounref(reporter); |
| test_autostarray(reporter); |
| } |
| |
| #define ASCII_BYTE "X" |
| #define CONTINUATION_BYTE "\xA1" |
| #define LEADING_TWO_BYTE "\xC2" |
| #define LEADING_THREE_BYTE "\xE1" |
| #define LEADING_FOUR_BYTE "\xF0" |
| #define INVALID_BYTE "\xFC" |
| DEF_TEST(SkUTF_CountUTF8, r) { |
| struct { |
| int expectedCount; |
| const char* utf8String; |
| } testCases[] = { |
| { 0, "" }, |
| { 1, ASCII_BYTE }, |
| { 2, ASCII_BYTE ASCII_BYTE }, |
| { 1, LEADING_TWO_BYTE CONTINUATION_BYTE }, |
| { 2, ASCII_BYTE LEADING_TWO_BYTE CONTINUATION_BYTE }, |
| { 3, ASCII_BYTE ASCII_BYTE LEADING_TWO_BYTE CONTINUATION_BYTE }, |
| { 1, LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { 2, ASCII_BYTE LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { 3, ASCII_BYTE ASCII_BYTE LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { 1, LEADING_FOUR_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { 2, ASCII_BYTE LEADING_FOUR_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { 3, ASCII_BYTE ASCII_BYTE LEADING_FOUR_BYTE CONTINUATION_BYTE CONTINUATION_BYTE |
| CONTINUATION_BYTE }, |
| { -1, INVALID_BYTE }, |
| { -1, INVALID_BYTE CONTINUATION_BYTE }, |
| { -1, INVALID_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { -1, INVALID_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { -1, LEADING_TWO_BYTE }, |
| { -1, CONTINUATION_BYTE }, |
| { -1, CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { -1, LEADING_THREE_BYTE CONTINUATION_BYTE }, |
| { -1, CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { -1, LEADING_FOUR_BYTE CONTINUATION_BYTE }, |
| { -1, CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| }; |
| for (auto testCase : testCases) { |
| const char* str = testCase.utf8String; |
| REPORTER_ASSERT(r, testCase.expectedCount == SkUTF::CountUTF8(str, strlen(str))); |
| } |
| } |
| |
| DEF_TEST(SkUTF_NextUTF8_ToUTF8, r) { |
| struct { |
| SkUnichar expected; |
| const char* utf8String; |
| } testCases[] = { |
| { -1, INVALID_BYTE }, |
| { -1, "" }, |
| { 0x0058, ASCII_BYTE }, |
| { 0x00A1, LEADING_TWO_BYTE CONTINUATION_BYTE }, |
| { 0x1861, LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE }, |
| { 0x010330, LEADING_FOUR_BYTE "\x90\x8C\xB0" }, |
| }; |
| for (auto testCase : testCases) { |
| const char* str = testCase.utf8String; |
| SkUnichar uni = SkUTF::NextUTF8(&str, str + strlen(str)); |
| REPORTER_ASSERT(r, str == testCase.utf8String + strlen(testCase.utf8String)); |
| REPORTER_ASSERT(r, uni == testCase.expected); |
| char buff[5] = {0, 0, 0, 0, 0}; |
| size_t len = SkUTF::ToUTF8(uni, buff); |
| if (buff[len] != 0) { |
| ERRORF(r, "unexpected write"); |
| continue; |
| } |
| if (uni == -1) { |
| REPORTER_ASSERT(r, len == 0); |
| continue; |
| } |
| if (len == 0) { |
| ERRORF(r, "unexpected failure."); |
| continue; |
| } |
| if (len > 4) { |
| ERRORF(r, "wrote too much"); |
| continue; |
| } |
| str = testCase.utf8String; |
| REPORTER_ASSERT(r, len == strlen(buff)); |
| REPORTER_ASSERT(r, len == strlen(str)); |
| REPORTER_ASSERT(r, 0 == strcmp(str, buff)); |
| } |
| } |
| #undef ASCII_BYTE |
| #undef CONTINUATION_BYTE |
| #undef LEADING_TWO_BYTE |
| #undef LEADING_THREE_BYTE |
| #undef LEADING_FOUR_BYTE |
| #undef INVALID_BYTE |