Revert "Use GrVkMemoryAllocator for vulkan memory allocations in ganesh."

This reverts commit 331c266ed716526478a10885aff66181cec64486.

Reason for revert: breaking an intel vulkan bot

Original change's description:
> Use GrVkMemoryAllocator for vulkan memory allocations in ganesh.
> 
> Besides using the new allocator, the big logical change is that map
> and unmap calls form GrVkMemory are specc'd to map the entire GrVkAlloc
> instead of a specific offset and size as they did before. As a
> consequence of this, we move the handling of non-coherent alignment
> for flush/invalidate calls to GrVkMemory instead of the callers.
> 
> Bug: skia:
> Change-Id: I794d713106602f27aa7e808c306bbb69fd2b67be
> Reviewed-on: https://skia-review.googlesource.com/130021
> Commit-Queue: Greg Daniel <egdaniel@google.com>
> Reviewed-by: Jim Van Verth <jvanverth@google.com>

TBR=egdaniel@google.com,jvanverth@google.com,bsalomon@google.com

Change-Id: I5237c00625dc95d3d9b36c1e5591762988d85562
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: skia:
Reviewed-on: https://skia-review.googlesource.com/131081
Reviewed-by: Greg Daniel <egdaniel@google.com>
Commit-Queue: Greg Daniel <egdaniel@google.com>
diff --git a/src/gpu/vk/GrVkMemory.cpp b/src/gpu/vk/GrVkMemory.cpp
index f999c26..4f619a3 100644
--- a/src/gpu/vk/GrVkMemory.cpp
+++ b/src/gpu/vk/GrVkMemory.cpp
@@ -9,26 +9,49 @@
 
 #include "GrVkGpu.h"
 #include "GrVkUtil.h"
-#include "vk/GrVkMemoryAllocator.h"
 
-using AllocationPropertyFlags = GrVkMemoryAllocator::AllocationPropertyFlags;
-using BufferUsage = GrVkMemoryAllocator::BufferUsage;
+#ifdef SK_DEBUG
+// for simple tracking of how much we're using in each heap
+// last counter is for non-subheap allocations
+VkDeviceSize gHeapUsage[VK_MAX_MEMORY_HEAPS+1] = { 0 };
+#endif
 
-static BufferUsage get_buffer_usage(GrVkBuffer::Type type, bool dynamic) {
-    switch (type) {
-        case GrVkBuffer::kVertex_Type: // fall through
-        case GrVkBuffer::kIndex_Type: // fall through
-        case GrVkBuffer::kTexel_Type:
-            return dynamic ? BufferUsage::kCpuWritesGpuReads : BufferUsage::kGpuOnly;
-        case GrVkBuffer::kUniform_Type:
-            SkASSERT(dynamic);
-            return BufferUsage::kCpuWritesGpuReads;
-        case GrVkBuffer::kCopyRead_Type: // fall through
-        case GrVkBuffer::kCopyWrite_Type:
-            return BufferUsage::kCpuOnly;
+static bool get_valid_memory_type_index(const VkPhysicalDeviceMemoryProperties& physDevMemProps,
+                                        uint32_t typeBits,
+                                        VkMemoryPropertyFlags requestedMemFlags,
+                                        uint32_t* typeIndex,
+                                        uint32_t* heapIndex) {
+    for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) {
+        if (typeBits & (1 << i)) {
+            uint32_t supportedFlags = physDevMemProps.memoryTypes[i].propertyFlags &
+                                      requestedMemFlags;
+            if (supportedFlags == requestedMemFlags) {
+                *typeIndex = i;
+                *heapIndex = physDevMemProps.memoryTypes[i].heapIndex;
+                return true;
+            }
+        }
     }
-    SK_ABORT("Invalid GrVkBuffer::Type");
-    return BufferUsage::kCpuOnly; // Just returning an arbitrary value.
+    return false;
+}
+
+static GrVkGpu::Heap buffer_type_to_heap(GrVkBuffer::Type type) {
+    const GrVkGpu::Heap kBufferToHeap[]{
+        GrVkGpu::kVertexBuffer_Heap,
+        GrVkGpu::kIndexBuffer_Heap,
+        GrVkGpu::kUniformBuffer_Heap,
+        GrVkGpu::kTexelBuffer_Heap,
+        GrVkGpu::kCopyReadBuffer_Heap,
+        GrVkGpu::kCopyWriteBuffer_Heap,
+    };
+    GR_STATIC_ASSERT(0 == GrVkBuffer::kVertex_Type);
+    GR_STATIC_ASSERT(1 == GrVkBuffer::kIndex_Type);
+    GR_STATIC_ASSERT(2 == GrVkBuffer::kUniform_Type);
+    GR_STATIC_ASSERT(3 == GrVkBuffer::kTexel_Type);
+    GR_STATIC_ASSERT(4 == GrVkBuffer::kCopyRead_Type);
+    GR_STATIC_ASSERT(5 == GrVkBuffer::kCopyWrite_Type);
+
+    return kBufferToHeap[type];
 }
 
 bool GrVkMemory::AllocAndBindBufferMemory(const GrVkGpu* gpu,
@@ -36,23 +59,68 @@
                                           GrVkBuffer::Type type,
                                           bool dynamic,
                                           GrVkAlloc* alloc) {
-    GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-    GrVkBackendMemory memory = 0;
+    const GrVkInterface* iface = gpu->vkInterface();
+    VkDevice device = gpu->device();
 
-    GrVkMemoryAllocator::BufferUsage usage = get_buffer_usage(type, dynamic);
+    VkMemoryRequirements memReqs;
+    GR_VK_CALL(iface, GetBufferMemoryRequirements(device, buffer, &memReqs));
 
-    if (!allocator->allocateMemoryForBuffer(buffer, usage, AllocationPropertyFlags::kNone,
-                                            &memory)) {
-        return false;
+    uint32_t typeIndex = 0;
+    uint32_t heapIndex = 0;
+    const VkPhysicalDeviceMemoryProperties& phDevMemProps = gpu->physicalDeviceMemoryProperties();
+    const VkPhysicalDeviceProperties& phDevProps = gpu->physicalDeviceProperties();
+    if (dynamic) {
+        // try to get cached and ideally non-coherent memory first
+        if (!get_valid_memory_type_index(phDevMemProps,
+                                         memReqs.memoryTypeBits,
+                                         VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                         VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
+                                         &typeIndex,
+                                         &heapIndex)) {
+            // some sort of host-visible memory type should always be available for dynamic buffers
+            SkASSERT_RELEASE(get_valid_memory_type_index(phDevMemProps,
+                                                         memReqs.memoryTypeBits,
+                                                         VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
+                                                         &typeIndex,
+                                                         &heapIndex));
+        }
+
+        VkMemoryPropertyFlags mpf = phDevMemProps.memoryTypes[typeIndex].propertyFlags;
+        alloc->fFlags = mpf & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ? 0x0
+                                                                   : GrVkAlloc::kNoncoherent_Flag;
+        if (SkToBool(alloc->fFlags & GrVkAlloc::kNoncoherent_Flag)) {
+            SkASSERT(SkIsPow2(memReqs.alignment));
+            SkASSERT(SkIsPow2(phDevProps.limits.nonCoherentAtomSize));
+            memReqs.alignment = SkTMax(memReqs.alignment, phDevProps.limits.nonCoherentAtomSize);
+        }
+    } else {
+        // device-local memory should always be available for static buffers
+        SkASSERT_RELEASE(get_valid_memory_type_index(phDevMemProps,
+                                                     memReqs.memoryTypeBits,
+                                                     VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
+                                                     &typeIndex,
+                                                     &heapIndex));
+        alloc->fFlags = 0x0;
     }
-    allocator->getAllocInfo(memory, alloc);
+
+    GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type));
+
+    if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, heapIndex, alloc)) {
+        // if static, try to allocate from non-host-visible non-device-local memory instead
+        if (dynamic ||
+            !get_valid_memory_type_index(phDevMemProps, memReqs.memoryTypeBits,
+                                         0, &typeIndex, &heapIndex) ||
+            !heap->alloc(memReqs.size, memReqs.alignment, typeIndex, heapIndex, alloc)) {
+            SkDebugf("Failed to alloc buffer\n");
+            return false;
+        }
+    }
 
     // Bind buffer
-    VkResult err = GR_VK_CALL(gpu->vkInterface(), BindBufferMemory(gpu->device(), buffer,
-                                                                   alloc->fMemory,
-                                                                   alloc->fOffset));
+    VkResult err = GR_VK_CALL(iface, BindBufferMemory(device, buffer,
+                                                      alloc->fMemory, alloc->fOffset));
     if (err) {
-        FreeBufferMemory(gpu, type, *alloc);
+        SkASSERT_RELEASE(heap->free(*alloc));
         return false;
     }
 
@@ -61,152 +129,503 @@
 
 void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, GrVkBuffer::Type type,
                                   const GrVkAlloc& alloc) {
-    if (alloc.fBackendMemory) {
-        GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-        allocator->freeMemory(alloc.fBackendMemory);
-    } else {
-        GR_VK_CALL(gpu->vkInterface(), FreeMemory(gpu->device(), alloc.fMemory, nullptr));
-    }
+
+    GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type));
+    SkASSERT_RELEASE(heap->free(alloc));
 }
 
+// for debugging
+static uint64_t gTotalImageMemory = 0;
+static uint64_t gTotalImageMemoryFullPage = 0;
+
 const VkDeviceSize kMaxSmallImageSize = 16 * 1024;
+const VkDeviceSize kMinVulkanPageSize = 16 * 1024;
+
+static VkDeviceSize align_size(VkDeviceSize size, VkDeviceSize alignment) {
+    return (size + alignment - 1) & ~(alignment - 1);
+}
 
 bool GrVkMemory::AllocAndBindImageMemory(const GrVkGpu* gpu,
                                          VkImage image,
                                          bool linearTiling,
                                          GrVkAlloc* alloc) {
-    SkASSERT(!linearTiling);
-    GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-    GrVkBackendMemory memory = 0;
+    const GrVkInterface* iface = gpu->vkInterface();
+    VkDevice device = gpu->device();
 
     VkMemoryRequirements memReqs;
-    GR_VK_CALL(gpu->vkInterface(), GetImageMemoryRequirements(gpu->device(), image, &memReqs));
+    GR_VK_CALL(iface, GetImageMemoryRequirements(device, image, &memReqs));
 
-    AllocationPropertyFlags propFlags;
-    if (memReqs.size <= kMaxSmallImageSize) {
-        propFlags = AllocationPropertyFlags::kNone;
+    uint32_t typeIndex = 0;
+    uint32_t heapIndex = 0;
+    GrVkHeap* heap;
+    const VkPhysicalDeviceMemoryProperties& phDevMemProps = gpu->physicalDeviceMemoryProperties();
+    const VkPhysicalDeviceProperties& phDevProps = gpu->physicalDeviceProperties();
+    if (linearTiling) {
+        VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+                                                VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+        if (!get_valid_memory_type_index(phDevMemProps,
+                                         memReqs.memoryTypeBits,
+                                         desiredMemProps,
+                                         &typeIndex,
+                                         &heapIndex)) {
+            // some sort of host-visible memory type should always be available
+            SkASSERT_RELEASE(get_valid_memory_type_index(phDevMemProps,
+                                                         memReqs.memoryTypeBits,
+                                                         VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
+                                                         &typeIndex,
+                                                         &heapIndex));
+        }
+        heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap);
+        VkMemoryPropertyFlags mpf = phDevMemProps.memoryTypes[typeIndex].propertyFlags;
+        alloc->fFlags = mpf & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ? 0x0
+                                                                   : GrVkAlloc::kNoncoherent_Flag;
+        if (SkToBool(alloc->fFlags & GrVkAlloc::kNoncoherent_Flag)) {
+            SkASSERT(SkIsPow2(memReqs.alignment));
+            SkASSERT(SkIsPow2(phDevProps.limits.nonCoherentAtomSize));
+            memReqs.alignment = SkTMax(memReqs.alignment, phDevProps.limits.nonCoherentAtomSize);
+        }
     } else {
-        propFlags = AllocationPropertyFlags::kDedicatedAllocation;
+        // this memory type should always be available
+        SkASSERT_RELEASE(get_valid_memory_type_index(phDevMemProps,
+                                                     memReqs.memoryTypeBits,
+                                                     VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
+                                                     &typeIndex,
+                                                     &heapIndex));
+        if (memReqs.size <= kMaxSmallImageSize) {
+            heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap);
+        } else {
+            heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap);
+        }
+        alloc->fFlags = 0x0;
     }
 
-    if (!allocator->allocateMemoryForImage(image, AllocationPropertyFlags::kDedicatedAllocation,
-                                           &memory)) {
-        return false;
+    if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, heapIndex, alloc)) {
+        // if optimal, try to allocate from non-host-visible non-device-local memory instead
+        if (linearTiling ||
+            !get_valid_memory_type_index(phDevMemProps, memReqs.memoryTypeBits,
+                                         0, &typeIndex, &heapIndex) ||
+            !heap->alloc(memReqs.size, memReqs.alignment, typeIndex, heapIndex, alloc)) {
+            SkDebugf("Failed to alloc image\n");
+            return false;
+        }
     }
-    allocator->getAllocInfo(memory, alloc);
 
-    // Bind buffer
-    VkResult err = GR_VK_CALL(gpu->vkInterface(), BindImageMemory(gpu->device(), image,
-                                                                  alloc->fMemory, alloc->fOffset));
+    // Bind image
+    VkResult err = GR_VK_CALL(iface, BindImageMemory(device, image,
+                              alloc->fMemory, alloc->fOffset));
     if (err) {
-        FreeImageMemory(gpu, linearTiling, *alloc);
+        SkASSERT_RELEASE(heap->free(*alloc));
         return false;
     }
 
+    gTotalImageMemory += alloc->fSize;
+
+    VkDeviceSize pageAlignedSize = align_size(alloc->fSize, kMinVulkanPageSize);
+    gTotalImageMemoryFullPage += pageAlignedSize;
+
     return true;
 }
 
 void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, bool linearTiling,
                                  const GrVkAlloc& alloc) {
-    if (alloc.fBackendMemory) {
-        GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-        allocator->freeMemory(alloc.fBackendMemory);
+    GrVkHeap* heap;
+    if (linearTiling) {
+        heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap);
+    } else if (alloc.fSize <= kMaxSmallImageSize) {
+        heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap);
     } else {
+        heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap);
+    }
+    if (!heap->free(alloc)) {
+        // must be an adopted allocation
         GR_VK_CALL(gpu->vkInterface(), FreeMemory(gpu->device(), alloc.fMemory, nullptr));
-    }
-}
-
-void* GrVkMemory::MapAlloc(const GrVkGpu* gpu, const GrVkAlloc& alloc) {
-    SkASSERT(GrVkAlloc::kMappable_Flag & alloc.fFlags);
-#ifdef SK_DEBUG
-    if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) {
-        VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize;
-        SkASSERT(0 == (alloc.fOffset & (alignment-1)));
-        SkASSERT(0 == (alloc.fSize & (alignment-1)));
-    }
-#endif
-    if (alloc.fBackendMemory) {
-        GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-        return allocator->mapMemory(alloc.fBackendMemory);
-    }
-
-    void* mapPtr;
-    VkResult err = GR_VK_CALL(gpu->vkInterface(), MapMemory(gpu->device(), alloc.fMemory,
-                                                            alloc.fOffset,
-                                                            alloc.fSize, 0, &mapPtr));
-    if (err) {
-        mapPtr = nullptr;
-    }
-    return mapPtr;
-}
-
-void GrVkMemory::UnmapAlloc(const GrVkGpu* gpu, const GrVkAlloc& alloc) {
-    if (alloc.fBackendMemory) {
-        GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-        allocator->unmapMemory(alloc.fBackendMemory);
     } else {
-        GR_VK_CALL(gpu->vkInterface(), UnmapMemory(gpu->device(), alloc.fMemory));
+        gTotalImageMemory -= alloc.fSize;
+        VkDeviceSize pageAlignedSize = align_size(alloc.fSize, kMinVulkanPageSize);
+        gTotalImageMemoryFullPage -= pageAlignedSize;
     }
 }
 
-void GrVkMemory::GetNonCoherentMappedMemoryRange(const GrVkAlloc& alloc, VkDeviceSize offset,
-                                                 VkDeviceSize size, VkDeviceSize alignment,
-                                                 VkMappedMemoryRange* range) {
-    SkASSERT(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag);
-    offset = offset + alloc.fOffset;
-    VkDeviceSize offsetDiff = offset & (alignment -1);
-    offset = offset - offsetDiff;
-    size = (size + alignment - 1) & ~(alignment - 1);
-#ifdef SK_DEBUG
-    SkASSERT(offset >= alloc.fOffset);
-    SkASSERT(offset + size <= alloc.fOffset + alloc.fSize);
-    SkASSERT(0 == (offset & (alignment-1)));
-    SkASSERT(size > 0);
-    SkASSERT(0 == (size & (alignment-1)));
-#endif
-
-    memset(range, 0, sizeof(VkMappedMemoryRange));
-    range->sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
-    range->memory = alloc.fMemory;
-    range->offset = offset;
-    range->size = size;
-}
-
 void GrVkMemory::FlushMappedAlloc(const GrVkGpu* gpu, const GrVkAlloc& alloc, VkDeviceSize offset,
                                   VkDeviceSize size) {
     if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) {
-        SkASSERT(offset == 0);
-        SkASSERT(size <= alloc.fSize);
-        if (alloc.fBackendMemory) {
-            GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-            allocator->flushMappedMemory(alloc.fBackendMemory, offset, size);
-        } else {
-            VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize;
-            VkMappedMemoryRange mappedMemoryRange;
-            GrVkMemory::GetNonCoherentMappedMemoryRange(alloc, offset, size, alignment,
-                                                        &mappedMemoryRange);
-            GR_VK_CALL(gpu->vkInterface(), FlushMappedMemoryRanges(gpu->device(), 1,
-                                                                   &mappedMemoryRange));
+#ifdef SK_DEBUG
+        SkASSERT(offset >= alloc.fOffset);
+        VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize;
+        SkASSERT(0 == (offset & (alignment-1)));
+        if (size != VK_WHOLE_SIZE) {
+            SkASSERT(size > 0);
+            SkASSERT(0 == (size & (alignment-1)) ||
+                     (offset + size) == (alloc.fOffset + alloc.fSize));
+            SkASSERT(offset + size <= alloc.fOffset + alloc.fSize);
         }
+#endif
+
+        VkMappedMemoryRange mappedMemoryRange;
+        memset(&mappedMemoryRange, 0, sizeof(VkMappedMemoryRange));
+        mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+        mappedMemoryRange.memory = alloc.fMemory;
+        mappedMemoryRange.offset = offset;
+        mappedMemoryRange.size = size;
+        GR_VK_CALL(gpu->vkInterface(), FlushMappedMemoryRanges(gpu->device(),
+                                                               1, &mappedMemoryRange));
     }
 }
 
 void GrVkMemory::InvalidateMappedAlloc(const GrVkGpu* gpu, const GrVkAlloc& alloc,
                                        VkDeviceSize offset, VkDeviceSize size) {
     if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) {
-        SkASSERT(offset == 0);
-        SkASSERT(size <= alloc.fSize);
-        if (alloc.fBackendMemory) {
-            GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
-            allocator->invalidateMappedMemory(alloc.fBackendMemory, offset, size);
-        } else {
-            VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize;
-            VkMappedMemoryRange mappedMemoryRange;
-            GrVkMemory::GetNonCoherentMappedMemoryRange(alloc, offset, size, alignment,
-                                                        &mappedMemoryRange);
-            GR_VK_CALL(gpu->vkInterface(), InvalidateMappedMemoryRanges(gpu->device(), 1,
-                                                                        &mappedMemoryRange));
+#ifdef SK_DEBUG
+        SkASSERT(offset >= alloc.fOffset);
+        VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize;
+        SkASSERT(0 == (offset & (alignment-1)));
+        if (size != VK_WHOLE_SIZE) {
+            SkASSERT(size > 0);
+            SkASSERT(0 == (size & (alignment-1)) ||
+                     (offset + size) == (alloc.fOffset + alloc.fSize));
+            SkASSERT(offset + size <= alloc.fOffset + alloc.fSize);
         }
+#endif
+
+        VkMappedMemoryRange mappedMemoryRange;
+        memset(&mappedMemoryRange, 0, sizeof(VkMappedMemoryRange));
+        mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+        mappedMemoryRange.memory = alloc.fMemory;
+        mappedMemoryRange.offset = offset;
+        mappedMemoryRange.size = size;
+        GR_VK_CALL(gpu->vkInterface(), InvalidateMappedMemoryRanges(gpu->device(),
+                                                               1, &mappedMemoryRange));
     }
 }
 
+bool GrVkFreeListAlloc::alloc(VkDeviceSize requestedSize,
+                              VkDeviceSize* allocOffset, VkDeviceSize* allocSize) {
+    VkDeviceSize alignedSize = align_size(requestedSize, fAlignment);
+
+    // find the smallest block big enough for our allocation
+    FreeList::Iter iter = fFreeList.headIter();
+    FreeList::Iter bestFitIter;
+    VkDeviceSize   bestFitSize = fSize + 1;
+    VkDeviceSize   secondLargestSize = 0;
+    VkDeviceSize   secondLargestOffset = 0;
+    while (iter.get()) {
+        Block* block = iter.get();
+        // need to adjust size to match desired alignment
+        SkASSERT(align_size(block->fOffset, fAlignment) - block->fOffset == 0);
+        if (block->fSize >= alignedSize && block->fSize < bestFitSize) {
+            bestFitIter = iter;
+            bestFitSize = block->fSize;
+        }
+        if (secondLargestSize < block->fSize && block->fOffset != fLargestBlockOffset) {
+            secondLargestSize = block->fSize;
+            secondLargestOffset = block->fOffset;
+        }
+        iter.next();
+    }
+    SkASSERT(secondLargestSize <= fLargestBlockSize);
+
+    Block* bestFit = bestFitIter.get();
+    if (bestFit) {
+        SkASSERT(align_size(bestFit->fOffset, fAlignment) == bestFit->fOffset);
+        *allocOffset = bestFit->fOffset;
+        *allocSize = alignedSize;
+        // adjust or remove current block
+        VkDeviceSize originalBestFitOffset = bestFit->fOffset;
+        if (bestFit->fSize > alignedSize) {
+            bestFit->fOffset += alignedSize;
+            bestFit->fSize -= alignedSize;
+            if (fLargestBlockOffset == originalBestFitOffset) {
+                if (bestFit->fSize >= secondLargestSize) {
+                    fLargestBlockSize = bestFit->fSize;
+                    fLargestBlockOffset = bestFit->fOffset;
+                } else {
+                    fLargestBlockSize = secondLargestSize;
+                    fLargestBlockOffset = secondLargestOffset;
+                }
+            }
+#ifdef SK_DEBUG
+            VkDeviceSize largestSize = 0;
+            iter = fFreeList.headIter();
+            while (iter.get()) {
+                Block* block = iter.get();
+                if (largestSize < block->fSize) {
+                    largestSize = block->fSize;
+                }
+                iter.next();
+            }
+            SkASSERT(largestSize == fLargestBlockSize);
+#endif
+        } else {
+            SkASSERT(bestFit->fSize == alignedSize);
+            if (fLargestBlockOffset == originalBestFitOffset) {
+                fLargestBlockSize = secondLargestSize;
+                fLargestBlockOffset = secondLargestOffset;
+            }
+            fFreeList.remove(bestFit);
+#ifdef SK_DEBUG
+            VkDeviceSize largestSize = 0;
+            iter = fFreeList.headIter();
+            while (iter.get()) {
+                Block* block = iter.get();
+                if (largestSize < block->fSize) {
+                    largestSize = block->fSize;
+                }
+                iter.next();
+            }
+            SkASSERT(largestSize == fLargestBlockSize);
+#endif
+        }
+        fFreeSize -= alignedSize;
+        SkASSERT(*allocSize > 0);
+
+        return true;
+    }
+
+    SkDebugf("Can't allocate %d bytes, %d bytes available, largest free block %d\n", alignedSize, fFreeSize, fLargestBlockSize);
+
+    return false;
+}
+
+void GrVkFreeListAlloc::free(VkDeviceSize allocOffset, VkDeviceSize allocSize) {
+    // find the block right after this allocation
+    FreeList::Iter iter = fFreeList.headIter();
+    FreeList::Iter prev;
+    while (iter.get() && iter.get()->fOffset < allocOffset) {
+        prev = iter;
+        iter.next();
+    }
+    // we have four cases:
+    // we exactly follow the previous one
+    Block* block;
+    if (prev.get() && prev.get()->fOffset + prev.get()->fSize == allocOffset) {
+        block = prev.get();
+        block->fSize += allocSize;
+        if (block->fOffset == fLargestBlockOffset) {
+            fLargestBlockSize = block->fSize;
+        }
+        // and additionally we may exactly precede the next one
+        if (iter.get() && iter.get()->fOffset == allocOffset + allocSize) {
+            block->fSize += iter.get()->fSize;
+            if (iter.get()->fOffset == fLargestBlockOffset) {
+                fLargestBlockOffset = block->fOffset;
+                fLargestBlockSize = block->fSize;
+            }
+            fFreeList.remove(iter.get());
+        }
+    // or we only exactly proceed the next one
+    } else if (iter.get() && iter.get()->fOffset == allocOffset + allocSize) {
+        block = iter.get();
+        block->fSize += allocSize;
+        if (block->fOffset == fLargestBlockOffset) {
+            fLargestBlockOffset = allocOffset;
+            fLargestBlockSize = block->fSize;
+        }
+        block->fOffset = allocOffset;
+    // or we fall somewhere in between, with gaps
+    } else {
+        block = fFreeList.addBefore(iter);
+        block->fOffset = allocOffset;
+        block->fSize = allocSize;
+    }
+    fFreeSize += allocSize;
+    if (block->fSize > fLargestBlockSize) {
+        fLargestBlockSize = block->fSize;
+        fLargestBlockOffset = block->fOffset;
+    }
+
+#ifdef SK_DEBUG
+    VkDeviceSize   largestSize = 0;
+    iter = fFreeList.headIter();
+    while (iter.get()) {
+        Block* block = iter.get();
+        if (largestSize < block->fSize) {
+            largestSize = block->fSize;
+        }
+        iter.next();
+    }
+    SkASSERT(fLargestBlockSize == largestSize);
+#endif
+}
+
+GrVkSubHeap::GrVkSubHeap(const GrVkGpu* gpu, uint32_t memoryTypeIndex, uint32_t heapIndex,
+                         VkDeviceSize size, VkDeviceSize alignment)
+    : INHERITED(size, alignment)
+    , fGpu(gpu)
+#ifdef SK_DEBUG
+    , fHeapIndex(heapIndex)
+#endif
+    , fMemoryTypeIndex(memoryTypeIndex) {
+
+    VkMemoryAllocateInfo allocInfo = {
+        VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,      // sType
+        nullptr,                                     // pNext
+        size,                                        // allocationSize
+        memoryTypeIndex,                             // memoryTypeIndex
+    };
+
+    VkResult err = GR_VK_CALL(gpu->vkInterface(), AllocateMemory(gpu->device(),
+                                                                 &allocInfo,
+                                                                 nullptr,
+                                                                 &fAlloc));
+    if (VK_SUCCESS != err) {
+        this->reset();
+    }
+#ifdef SK_DEBUG
+    else {
+        gHeapUsage[heapIndex] += size;
+    }
+#endif
+}
+
+GrVkSubHeap::~GrVkSubHeap() {
+    const GrVkInterface* iface = fGpu->vkInterface();
+    GR_VK_CALL(iface, FreeMemory(fGpu->device(), fAlloc, nullptr));
+#ifdef SK_DEBUG
+    gHeapUsage[fHeapIndex] -= fSize;
+#endif
+}
+
+bool GrVkSubHeap::alloc(VkDeviceSize size, GrVkAlloc* alloc) {
+    alloc->fMemory = fAlloc;
+    return INHERITED::alloc(size, &alloc->fOffset, &alloc->fSize);
+}
+
+void GrVkSubHeap::free(const GrVkAlloc& alloc) {
+    SkASSERT(alloc.fMemory == fAlloc);
+
+    INHERITED::free(alloc.fOffset, alloc.fSize);
+}
+
+bool GrVkHeap::subAlloc(VkDeviceSize size, VkDeviceSize alignment,
+                        uint32_t memoryTypeIndex, uint32_t heapIndex, GrVkAlloc* alloc) {
+    VkDeviceSize alignedSize = align_size(size, alignment);
+
+    // if requested is larger than our subheap allocation, just alloc directly
+    if (alignedSize > fSubHeapSize) {
+        VkMemoryAllocateInfo allocInfo = {
+            VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,      // sType
+            nullptr,                                     // pNext
+            alignedSize,                                 // allocationSize
+            memoryTypeIndex,                             // memoryTypeIndex
+        };
+
+        VkResult err = GR_VK_CALL(fGpu->vkInterface(), AllocateMemory(fGpu->device(),
+                                                                      &allocInfo,
+                                                                      nullptr,
+                                                                      &alloc->fMemory));
+        if (VK_SUCCESS != err) {
+            return false;
+        }
+        alloc->fOffset = 0;
+        alloc->fSize = alignedSize;
+        alloc->fUsesSystemHeap = true;
+#ifdef SK_DEBUG
+        gHeapUsage[VK_MAX_MEMORY_HEAPS] += alignedSize;
+#endif
+
+        return true;
+    }
+
+    // first try to find a subheap that fits our allocation request
+    int bestFitIndex = -1;
+    VkDeviceSize bestFitSize = 0x7FFFFFFF;
+    for (auto i = 0; i < fSubHeaps.count(); ++i) {
+        if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex &&
+            fSubHeaps[i]->alignment() == alignment) {
+            VkDeviceSize heapSize = fSubHeaps[i]->largestBlockSize();
+            if (heapSize >= alignedSize && heapSize < bestFitSize) {
+                bestFitIndex = i;
+                bestFitSize = heapSize;
+            }
+        }
+    }
+
+    if (bestFitIndex >= 0) {
+        SkASSERT(fSubHeaps[bestFitIndex]->alignment() == alignment);
+        if (fSubHeaps[bestFitIndex]->alloc(size, alloc)) {
+            fUsedSize += alloc->fSize;
+            return true;
+        }
+        return false;
+    }
+
+    // need to allocate a new subheap
+    std::unique_ptr<GrVkSubHeap>& subHeap = fSubHeaps.push_back();
+    subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, heapIndex, fSubHeapSize, alignment));
+    // try to recover from failed allocation by only allocating what we need
+    if (subHeap->size() == 0) {
+        VkDeviceSize alignedSize = align_size(size, alignment);
+        subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, heapIndex, alignedSize, alignment));
+        if (subHeap->size() == 0) {
+            return false;
+        }
+    }
+    fAllocSize += fSubHeapSize;
+    if (subHeap->alloc(size, alloc)) {
+        fUsedSize += alloc->fSize;
+        return true;
+    }
+
+    return false;
+}
+
+bool GrVkHeap::singleAlloc(VkDeviceSize size, VkDeviceSize alignment,
+                           uint32_t memoryTypeIndex, uint32_t heapIndex, GrVkAlloc* alloc) {
+    VkDeviceSize alignedSize = align_size(size, alignment);
+
+    // first try to find an unallocated subheap that fits our allocation request
+    int bestFitIndex = -1;
+    VkDeviceSize bestFitSize = 0x7FFFFFFF;
+    for (auto i = 0; i < fSubHeaps.count(); ++i) {
+        if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex &&
+            fSubHeaps[i]->alignment() == alignment &&
+            fSubHeaps[i]->unallocated()) {
+            VkDeviceSize heapSize = fSubHeaps[i]->size();
+            if (heapSize >= alignedSize && heapSize < bestFitSize) {
+                bestFitIndex = i;
+                bestFitSize = heapSize;
+            }
+        }
+    }
+
+    if (bestFitIndex >= 0) {
+        SkASSERT(fSubHeaps[bestFitIndex]->alignment() == alignment);
+        if (fSubHeaps[bestFitIndex]->alloc(size, alloc)) {
+            fUsedSize += alloc->fSize;
+            return true;
+        }
+        return false;
+    }
+
+    // need to allocate a new subheap
+    std::unique_ptr<GrVkSubHeap>& subHeap = fSubHeaps.push_back();
+    subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, heapIndex, alignedSize, alignment));
+    fAllocSize += alignedSize;
+    if (subHeap->alloc(size, alloc)) {
+        fUsedSize += alloc->fSize;
+        return true;
+    }
+
+    return false;
+}
+
+bool GrVkHeap::free(const GrVkAlloc& alloc) {
+    // a size of 0 means we're using the system heap
+    if (alloc.fUsesSystemHeap) {
+        const GrVkInterface* iface = fGpu->vkInterface();
+        GR_VK_CALL(iface, FreeMemory(fGpu->device(), alloc.fMemory, nullptr));
+        return true;
+    }
+
+    for (auto i = 0; i < fSubHeaps.count(); ++i) {
+        if (fSubHeaps[i]->memory() == alloc.fMemory) {
+            fSubHeaps[i]->free(alloc);
+            fUsedSize -= alloc.fSize;
+            return true;
+        }
+    }
+
+    return false;
+}
+
+