add SkPath::contains(x, y)



git-svn-id: http://skia.googlecode.com/svn/trunk@4526 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/src/core/SkPath.cpp b/src/core/SkPath.cpp
index 3861977..77d0854 100644
--- a/src/core/SkPath.cpp
+++ b/src/core/SkPath.cpp
@@ -2255,3 +2255,253 @@
 
     return ymaxCross ? crossToDir(ymaxCross, dir) : false;
 }
+
+///////////////////////////////////////////////////////////////////////////////
+
+static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
+                                 SkScalar D, SkScalar t) {
+    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
+}
+
+static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
+                               SkScalar t) {
+    SkScalar A = c3 + 3*(c1 - c2) - c0;
+    SkScalar B = 3*(c2 - c1 - c1 + c0);
+    SkScalar C = 3*(c1 - c0);
+    SkScalar D = c0;
+    return eval_cubic_coeff(A, B, C, D, t);
+}
+
+/*  Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
+ t value such that cubic(t) = target
+ */
+static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
+                            SkScalar target, SkScalar* t) {
+    //   SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
+    SkASSERT(c0 < target && target < c3);
+    
+    SkScalar D = c0 - target;
+    SkScalar A = c3 + 3*(c1 - c2) - c0;
+    SkScalar B = 3*(c2 - c1 - c1 + c0);
+    SkScalar C = 3*(c1 - c0);
+    
+    const SkScalar TOLERANCE = SK_Scalar1 / 4096;
+    SkScalar minT = 0;
+    SkScalar maxT = SK_Scalar1;
+    SkScalar mid;
+    int i;
+    for (i = 0; i < 16; i++) {
+        mid = SkScalarAve(minT, maxT);
+        SkScalar delta = eval_cubic_coeff(A, B, C, D, mid);
+        if (delta < 0) {
+            minT = mid;
+            delta = -delta;
+        } else {
+            maxT = mid;
+        }
+        if (delta < TOLERANCE) {
+            break;
+        }
+    }
+    *t = mid;
+    return true;
+}
+
+template <size_t N> static void find_minmax(const SkPoint pts[],
+                                            SkScalar* minPtr, SkScalar* maxPtr) {
+    SkScalar min, max;
+    min = max = pts[0].fX;
+    for (size_t i = 1; i < N; ++i) {
+        min = SkMinScalar(min, pts[i].fX);
+        max = SkMaxScalar(max, pts[i].fX);
+    }
+    *minPtr = min;
+    *maxPtr = max;
+}
+
+static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
+    SkPoint storage[4];
+    
+    int dir = 1;
+    if (pts[0].fY > pts[3].fY) {
+        storage[0] = pts[3];
+        storage[1] = pts[2];
+        storage[2] = pts[1];
+        storage[3] = pts[0];
+        pts = storage;
+        dir = -1;
+    }
+    if (y < pts[0].fY || y >= pts[3].fY) {
+        return 0;
+    }
+    
+    // quickreject or quickaccept
+    SkScalar min, max;
+    find_minmax<4>(pts, &min, &max);
+    if (x < min) {
+        return 0;
+    }
+    if (x > max) {
+        return dir;
+    }
+    
+    // compute the actual x(t) value
+    SkScalar t, xt;
+    if (chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t)) {
+        xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t);
+    } else {
+        SkScalar mid = SkScalarAve(pts[0].fY, pts[3].fY);
+        xt = y < mid ? pts[0].fX : pts[3].fX;
+    }
+    return xt < x ? dir : 0;
+}
+
+static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
+    SkPoint dst[10];
+    int n = SkChopCubicAtYExtrema(pts, dst);
+    int w = 0;
+    for (int i = 0; i <= n; ++i) {
+        w += winding_mono_cubic(&dst[i * 3], x, y);
+    }
+    return w;
+}
+
+static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
+    SkScalar y0 = pts[0].fY;
+    SkScalar y2 = pts[2].fY;
+    
+    int dir = 1;
+    if (y0 > y2) {
+        SkTSwap(y0, y2);
+        dir = -1;
+    }
+    if (y < y0 || y >= y2) {
+        return 0;
+    }
+    
+    // bounds check on X (not required. is it faster?)
+#if 0
+    if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) {
+        return 0;
+    }
+#endif
+    
+    SkScalar roots[2];
+    int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY,
+                                2 * (pts[1].fY - pts[0].fY),
+                                pts[0].fY - y,
+                                roots);
+    SkASSERT(n <= 1);
+    SkScalar xt;
+    if (0 == n) {
+        SkScalar mid = SkScalarAve(y0, y2);
+        // Need [0] and [2] if dir == 1
+        // and  [2] and [0] if dir == -1
+        xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX;
+    } else {
+        SkScalar t = roots[0];
+        SkScalar C = pts[0].fX;
+        SkScalar A = pts[2].fX - 2 * pts[1].fX + C;
+        SkScalar B = 2 * (pts[1].fX - C);
+        xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
+    }
+    return xt < x ? dir : 0;
+}
+
+static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) {
+    //    return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0;
+    if (y0 == y1) {
+        return true;
+    }
+    if (y0 < y1) {
+        return y1 <= y2;
+    } else {
+        return y1 >= y2;
+    }
+}
+
+static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
+    SkPoint dst[5];
+    int     n = 0;
+    
+    if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) {
+        n = SkChopQuadAtYExtrema(pts, dst);
+        pts = dst;
+    }
+    int w = winding_mono_quad(pts, x, y);
+    if (n > 0) {
+        w += winding_mono_quad(&pts[2], x, y);
+    }
+    return w;
+}
+
+static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) {
+    SkScalar x0 = pts[0].fX;
+    SkScalar y0 = pts[0].fY;
+    SkScalar x1 = pts[1].fX;
+    SkScalar y1 = pts[1].fY;
+    
+    SkScalar dy = y1 - y0;
+    
+    int dir = 1;
+    if (y0 > y1) {
+        SkTSwap(y0, y1);
+        dir = -1;
+    }
+    if (y < y0 || y >= y1) {
+        return 0;
+    }
+    
+    SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) -
+    SkScalarMul(dy, x - pts[0].fX);
+    
+    if (SkScalarSignAsInt(cross) == dir) {
+        dir = 0;
+    }
+    return dir;
+}
+
+bool SkPath::contains(SkScalar x, SkScalar y) const {
+    bool isInverse = this->isInverseFillType();
+    if (this->isEmpty()) {
+        return isInverse;
+    }
+    
+    const SkRect& bounds = this->getBounds();
+    if (!bounds.contains(x, y)) {
+        return isInverse;
+    }
+    
+    SkPath::Iter iter(*this, true);
+    bool done = false;
+    int w = 0;
+    do {
+        SkPoint pts[4];
+        switch (iter.next(pts, false)) {
+            case SkPath::kMove_Verb:
+            case SkPath::kClose_Verb:
+                break;
+            case SkPath::kLine_Verb:
+                w += winding_line(pts, x, y);
+                break;
+            case SkPath::kQuad_Verb:
+                w += winding_quad(pts, x, y);
+                break;
+            case SkPath::kCubic_Verb:
+                w += winding_cubic(pts, x, y);
+                break;
+            case SkPath::kDone_Verb:
+                done = true;
+                break;
+        }
+    } while (!done);
+    
+    switch (this->getFillType()) {
+        case SkPath::kEvenOdd_FillType:
+        case SkPath::kInverseEvenOdd_FillType:
+            w &= 1;
+            break;
+    }
+    return SkToBool(w);
+}
+