Result of running tools/sanitize_source_files.py (which was added in https://codereview.appspot.com/6465078/)
This CL is part II of IV (I broke down the 1280 files into 4 CLs).
Review URL: https://codereview.appspot.com/6474054
git-svn-id: http://skia.googlecode.com/svn/trunk@5263 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/experimental/Intersection/QuadraticIntersection.cpp b/experimental/Intersection/QuadraticIntersection.cpp
index a8e87ef..6067275 100644
--- a/experimental/Intersection/QuadraticIntersection.cpp
+++ b/experimental/Intersection/QuadraticIntersection.cpp
@@ -6,11 +6,11 @@
class QuadraticIntersections : public Intersections {
public:
-QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
+QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
: quad1(q1)
, quad2(q2)
, intersections(i)
- , depth(0)
+ , depth(0)
, splits(0) {
}
@@ -37,10 +37,10 @@
}
protected:
-
+
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
Quadratic smaller, larger;
- // FIXME: carry last subdivide and reduceOrder result with quad
+ // FIXME: carry last subdivide and reduceOrder result with quad
sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
Quadratic smallResult;
@@ -55,11 +55,11 @@
return false;
}
if (intersections.swapped()) {
- smallT[0] = interp(minT2, maxT2, smallT[0]);
- largeT[0] = interp(minT1, maxT1, largeT[0]);
+ smallT[0] = interp(minT2, maxT2, smallT[0]);
+ largeT[0] = interp(minT1, maxT1, largeT[0]);
} else {
- smallT[0] = interp(minT1, maxT1, smallT[0]);
- largeT[0] = interp(minT2, maxT2, largeT[0]);
+ smallT[0] = interp(minT1, maxT1, smallT[0]);
+ largeT[0] = interp(minT2, maxT2, largeT[0]);
}
intersections.add(smallT[0], largeT[0]);
return true;
@@ -80,7 +80,7 @@
}
return false;
}
-
+
int split;
if (intersections.swapped()) {
double newMinT1 = interp(minT1, maxT1, minT);
@@ -210,11 +210,11 @@
where the sign of the imaginary part of the root is taken to be same as the sign
of the imaginary part of the original number, and
-
+
r = abs(x + iy) = sqrt(x^2 + y^2)
-is the absolute value or modulus of the original number. The real part of the
+is the absolute value or modulus of the original number. The real part of the
principal value is always non-negative.
-The other square root is simply –1 times the principal square root; in other
+The other square root is simply –1 times the principal square root; in other
words, the two square roots of a number sum to 0.
*/