blob: 8407f10086999227cd22d1e953074745de739e4a [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcShader.h"
#include "SkBitmapProvider.h"
#include "SkColorShader.h"
#include "SkColorTable.h"
#include "SkEmptyShader.h"
#include "SkImage_Base.h"
#include "SkImageShader.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
SkImageShader::SkImageShader(sk_sp<SkImage> img, TileMode tmx, TileMode tmy, const SkMatrix* matrix)
: INHERITED(matrix)
, fImage(std::move(img))
, fTileModeX(tmx)
, fTileModeY(tmy)
{}
sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) {
const TileMode tx = (TileMode)buffer.readUInt();
const TileMode ty = (TileMode)buffer.readUInt();
SkMatrix matrix;
buffer.readMatrix(&matrix);
sk_sp<SkImage> img = buffer.readImage();
if (!img) {
return nullptr;
}
return SkImageShader::Make(std::move(img), tx, ty, &matrix);
}
void SkImageShader::flatten(SkWriteBuffer& buffer) const {
buffer.writeUInt(fTileModeX);
buffer.writeUInt(fTileModeY);
buffer.writeMatrix(this->getLocalMatrix());
buffer.writeImage(fImage.get());
}
bool SkImageShader::isOpaque() const {
return fImage->isOpaque();
}
size_t SkImageShader::onContextSize(const ContextRec& rec) const {
return SkBitmapProcLegacyShader::ContextSize(rec, SkBitmapProvider(fImage.get()).info());
}
SkShader::Context* SkImageShader::onCreateContext(const ContextRec& rec, void* storage) const {
return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY,
SkBitmapProvider(fImage.get()), rec, storage);
}
SkImage* SkImageShader::onIsAImage(SkMatrix* texM, TileMode xy[]) const {
if (texM) {
*texM = this->getLocalMatrix();
}
if (xy) {
xy[0] = (TileMode)fTileModeX;
xy[1] = (TileMode)fTileModeY;
}
return const_cast<SkImage*>(fImage.get());
}
#ifdef SK_SUPPORT_LEGACY_SHADER_ISABITMAP
bool SkImageShader::onIsABitmap(SkBitmap* texture, SkMatrix* texM, TileMode xy[]) const {
const SkBitmap* bm = as_IB(fImage)->onPeekBitmap();
if (!bm) {
return false;
}
if (texture) {
*texture = *bm;
}
if (texM) {
*texM = this->getLocalMatrix();
}
if (xy) {
xy[0] = (TileMode)fTileModeX;
xy[1] = (TileMode)fTileModeY;
}
return true;
}
#endif
static bool bitmap_is_too_big(int w, int h) {
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
// communicates between its matrix-proc and its sampler-proc. Until we can
// widen that, we have to reject bitmaps that are larger.
//
static const int kMaxSize = 65535;
return w > kMaxSize || h > kMaxSize;
}
// returns true and set color if the bitmap can be drawn as a single color
// (for efficiency)
static bool can_use_color_shader(const SkImage* image, SkColor* color) {
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// HWUI does not support color shaders (see b/22390304)
return false;
#endif
if (1 != image->width() || 1 != image->height()) {
return false;
}
SkPixmap pmap;
if (!image->peekPixels(&pmap)) {
return false;
}
switch (pmap.colorType()) {
case kN32_SkColorType:
*color = SkUnPreMultiply::PMColorToColor(*pmap.addr32(0, 0));
return true;
case kRGB_565_SkColorType:
*color = SkPixel16ToColor(*pmap.addr16(0, 0));
return true;
case kIndex_8_SkColorType: {
const SkColorTable& ctable = *pmap.ctable();
*color = SkUnPreMultiply::PMColorToColor(ctable[*pmap.addr8(0, 0)]);
return true;
}
default: // just skip the other configs for now
break;
}
return false;
}
sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image, TileMode tx, TileMode ty,
const SkMatrix* localMatrix,
SkTBlitterAllocator* allocator) {
SkShader* shader;
SkColor color;
if (!image || bitmap_is_too_big(image->width(), image->height())) {
if (nullptr == allocator) {
shader = new SkEmptyShader;
} else {
shader = allocator->createT<SkEmptyShader>();
}
} else if (can_use_color_shader(image.get(), &color)) {
if (nullptr == allocator) {
shader = new SkColorShader(color);
} else {
shader = allocator->createT<SkColorShader>(color);
}
} else {
if (nullptr == allocator) {
shader = new SkImageShader(image, tx, ty, localMatrix);
} else {
shader = allocator->createT<SkImageShader>(image, tx, ty, localMatrix);
}
}
return sk_sp<SkShader>(shader);
}
#ifndef SK_IGNORE_TO_STRING
void SkImageShader::toString(SkString* str) const {
const char* gTileModeName[SkShader::kTileModeCount] = {
"clamp", "repeat", "mirror"
};
str->appendf("ImageShader: ((%s %s) ", gTileModeName[fTileModeX], gTileModeName[fTileModeY]);
fImage->toString(str);
this->INHERITED::toString(str);
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrTextureAccess.h"
#include "SkGr.h"
#include "SkGrPriv.h"
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrBicubicEffect.h"
#include "effects/GrSimpleTextureEffect.h"
sk_sp<GrFragmentProcessor> SkImageShader::asFragmentProcessor(const AsFPArgs& args) const {
SkMatrix matrix;
matrix.setIDiv(fImage->width(), fImage->height());
SkMatrix lmInverse;
if (!this->getLocalMatrix().invert(&lmInverse)) {
return nullptr;
}
if (args.fLocalMatrix) {
SkMatrix inv;
if (!args.fLocalMatrix->invert(&inv)) {
return nullptr;
}
lmInverse.postConcat(inv);
}
matrix.preConcat(lmInverse);
SkShader::TileMode tm[] = { fTileModeX, fTileModeY };
// Must set wrap and filter on the sampler before requesting a texture. In two places below
// we check the matrix scale factors to determine how to interpret the filter quality setting.
// This completely ignores the complexity of the drawVertices case where explicit local coords
// are provided by the caller.
bool doBicubic;
GrTextureParams::FilterMode textureFilterMode =
GrSkFilterQualityToGrFilterMode(args.fFilterQuality, *args.fViewMatrix, this->getLocalMatrix(),
&doBicubic);
GrTextureParams params(tm, textureFilterMode);
SkAutoTUnref<GrTexture> texture(as_IB(fImage)->asTextureRef(args.fContext, params,
args.fGammaTreatment));
if (!texture) {
return nullptr;
}
SkImageInfo info = as_IB(fImage)->onImageInfo();
sk_sp<GrColorSpaceXform> colorSpaceXform = GrColorSpaceXform::Make(info.colorSpace(),
args.fDstColorSpace);
sk_sp<GrFragmentProcessor> inner;
if (doBicubic) {
inner = GrBicubicEffect::Make(texture, std::move(colorSpaceXform), matrix, tm);
} else {
inner = GrSimpleTextureEffect::Make(texture, std::move(colorSpaceXform), matrix, params);
}
if (GrPixelConfigIsAlphaOnly(texture->config())) {
return inner;
}
return sk_sp<GrFragmentProcessor>(GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner)));
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkImagePriv.h"
sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkShader::TileMode tmx,
SkShader::TileMode tmy, const SkMatrix* localMatrix,
SkCopyPixelsMode cpm, SkTBlitterAllocator* allocator) {
// Until we learn otherwise, it seems that any caller that is passing an allocator must be
// assuming that the returned shader will have a stack-frame lifetime, so we assert that
// they are also asking for kNever_SkCopyPixelsMode. If that proves otherwise, we can remove
// or modify this assert.
SkASSERT(!allocator || (kNever_SkCopyPixelsMode == cpm));
return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, cpm, allocator),
tmx, tmy, localMatrix, allocator);
}
static sk_sp<SkFlattenable> SkBitmapProcShader_CreateProc(SkReadBuffer& buffer) {
SkMatrix lm;
buffer.readMatrix(&lm);
sk_sp<SkImage> image = buffer.readBitmapAsImage();
SkShader::TileMode mx = (SkShader::TileMode)buffer.readUInt();
SkShader::TileMode my = (SkShader::TileMode)buffer.readUInt();
return image ? image->makeShader(mx, my, &lm) : nullptr;
}
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkShader)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkImageShader)
SkFlattenable::Register("SkBitmapProcShader", SkBitmapProcShader_CreateProc, kSkShader_Type);
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END