| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "PictureRenderer.h" |
| #include "picture_utils.h" |
| #include "SamplePipeControllers.h" |
| #include "SkBitmapHasher.h" |
| #include "SkCanvas.h" |
| #include "SkData.h" |
| #include "SkDevice.h" |
| #include "SkDiscardableMemoryPool.h" |
| #include "SkGPipe.h" |
| #if SK_SUPPORT_GPU |
| #include "gl/GrGLDefines.h" |
| #include "SkGpuDevice.h" |
| #endif |
| #include "SkGraphics.h" |
| #include "SkImageEncoder.h" |
| #include "SkMaskFilter.h" |
| #include "SkMatrix.h" |
| #include "SkPicture.h" |
| #include "SkPictureUtils.h" |
| #include "SkPixelRef.h" |
| #include "SkRTree.h" |
| #include "SkScalar.h" |
| #include "SkStream.h" |
| #include "SkString.h" |
| #include "SkTemplates.h" |
| #include "SkTileGridPicture.h" |
| #include "SkTDArray.h" |
| #include "SkThreadUtils.h" |
| #include "SkTypes.h" |
| |
| static inline SkScalar scalar_log2(SkScalar x) { |
| static const SkScalar log2_conversion_factor = SkScalarDiv(1, SkScalarLog(2)); |
| |
| return SkScalarLog(x) * log2_conversion_factor; |
| } |
| |
| namespace sk_tools { |
| |
| enum { |
| kDefaultTileWidth = 256, |
| kDefaultTileHeight = 256 |
| }; |
| |
| /* TODO(epoger): These constants are already maintained in 2 other places: |
| * gm/gm_json.py and gm/gm_expectations.cpp. We shouldn't add yet a third place. |
| * Figure out a way to share the definitions instead. |
| */ |
| const static char kJsonKey_ActualResults[] = "actual-results"; |
| const static char kJsonKey_ActualResults_Failed[] = "failed"; |
| const static char kJsonKey_ActualResults_FailureIgnored[]= "failure-ignored"; |
| const static char kJsonKey_ActualResults_NoComparison[] = "no-comparison"; |
| const static char kJsonKey_ActualResults_Succeeded[] = "succeeded"; |
| const static char kJsonKey_ExpectedResults[] = "expected-results"; |
| const static char kJsonKey_ExpectedResults_AllowedDigests[] = "allowed-digests"; |
| const static char kJsonKey_ExpectedResults_IgnoreFailure[] = "ignore-failure"; |
| const static char kJsonKey_Hashtype_Bitmap_64bitMD5[] = "bitmap-64bitMD5"; |
| |
| void ImageResultsSummary::add(const char *testName, const SkBitmap& bitmap) { |
| uint64_t hash; |
| SkAssertResult(SkBitmapHasher::ComputeDigest(bitmap, &hash)); |
| Json::Value jsonTypeValuePair; |
| jsonTypeValuePair.append(Json::Value(kJsonKey_Hashtype_Bitmap_64bitMD5)); |
| jsonTypeValuePair.append(Json::UInt64(hash)); |
| fActualResultsNoComparison[testName] = jsonTypeValuePair; |
| } |
| |
| void ImageResultsSummary::writeToFile(const char *filename) { |
| Json::Value actualResults; |
| actualResults[kJsonKey_ActualResults_NoComparison] = fActualResultsNoComparison; |
| Json::Value root; |
| root[kJsonKey_ActualResults] = actualResults; |
| std::string jsonStdString = root.toStyledString(); |
| SkFILEWStream stream(filename); |
| stream.write(jsonStdString.c_str(), jsonStdString.length()); |
| } |
| |
| void PictureRenderer::init(SkPicture* pict) { |
| SkASSERT(NULL == fPicture); |
| SkASSERT(NULL == fCanvas.get()); |
| if (fPicture != NULL || NULL != fCanvas.get()) { |
| return; |
| } |
| |
| SkASSERT(pict != NULL); |
| if (NULL == pict) { |
| return; |
| } |
| |
| fPicture = pict; |
| fPicture->ref(); |
| fCanvas.reset(this->setupCanvas()); |
| } |
| |
| class FlagsDrawFilter : public SkDrawFilter { |
| public: |
| FlagsDrawFilter(PictureRenderer::DrawFilterFlags* flags) : |
| fFlags(flags) {} |
| |
| virtual bool filter(SkPaint* paint, Type t) { |
| paint->setFlags(paint->getFlags() & ~fFlags[t] & SkPaint::kAllFlags); |
| if (PictureRenderer::kMaskFilter_DrawFilterFlag & fFlags[t]) { |
| SkMaskFilter* maskFilter = paint->getMaskFilter(); |
| if (NULL != maskFilter) { |
| paint->setMaskFilter(NULL); |
| } |
| } |
| if (PictureRenderer::kHinting_DrawFilterFlag & fFlags[t]) { |
| paint->setHinting(SkPaint::kNo_Hinting); |
| } else if (PictureRenderer::kSlightHinting_DrawFilterFlag & fFlags[t]) { |
| paint->setHinting(SkPaint::kSlight_Hinting); |
| } |
| return true; |
| } |
| |
| private: |
| PictureRenderer::DrawFilterFlags* fFlags; |
| }; |
| |
| static void setUpFilter(SkCanvas* canvas, PictureRenderer::DrawFilterFlags* drawFilters) { |
| if (drawFilters && !canvas->getDrawFilter()) { |
| canvas->setDrawFilter(SkNEW_ARGS(FlagsDrawFilter, (drawFilters)))->unref(); |
| if (drawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) { |
| canvas->setAllowSoftClip(false); |
| } |
| } |
| } |
| |
| SkCanvas* PictureRenderer::setupCanvas() { |
| const int width = this->getViewWidth(); |
| const int height = this->getViewHeight(); |
| return this->setupCanvas(width, height); |
| } |
| |
| SkCanvas* PictureRenderer::setupCanvas(int width, int height) { |
| SkCanvas* canvas; |
| switch(fDeviceType) { |
| case kBitmap_DeviceType: { |
| SkBitmap bitmap; |
| sk_tools::setup_bitmap(&bitmap, width, height); |
| canvas = SkNEW_ARGS(SkCanvas, (bitmap)); |
| } |
| break; |
| #if SK_SUPPORT_GPU |
| #if SK_ANGLE |
| case kAngle_DeviceType: |
| // fall through |
| #endif |
| case kGPU_DeviceType: { |
| SkAutoTUnref<GrSurface> target; |
| if (fGrContext) { |
| // create a render target to back the device |
| GrTextureDesc desc; |
| desc.fConfig = kSkia8888_GrPixelConfig; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fSampleCnt = fSampleCount; |
| target.reset(fGrContext->createUncachedTexture(desc, NULL, 0)); |
| } |
| if (NULL == target.get()) { |
| SkASSERT(0); |
| return NULL; |
| } |
| |
| SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(target)); |
| canvas = SkNEW_ARGS(SkCanvas, (device.get())); |
| break; |
| } |
| #endif |
| default: |
| SkASSERT(0); |
| return NULL; |
| } |
| setUpFilter(canvas, fDrawFilters); |
| this->scaleToScaleFactor(canvas); |
| return canvas; |
| } |
| |
| void PictureRenderer::scaleToScaleFactor(SkCanvas* canvas) { |
| SkASSERT(canvas != NULL); |
| if (fScaleFactor != SK_Scalar1) { |
| canvas->scale(fScaleFactor, fScaleFactor); |
| } |
| } |
| |
| void PictureRenderer::end() { |
| this->resetState(true); |
| SkSafeUnref(fPicture); |
| fPicture = NULL; |
| fCanvas.reset(NULL); |
| } |
| |
| int PictureRenderer::getViewWidth() { |
| SkASSERT(fPicture != NULL); |
| int width = SkScalarCeilToInt(fPicture->width() * fScaleFactor); |
| if (fViewport.width() > 0) { |
| width = SkMin32(width, fViewport.width()); |
| } |
| return width; |
| } |
| |
| int PictureRenderer::getViewHeight() { |
| SkASSERT(fPicture != NULL); |
| int height = SkScalarCeilToInt(fPicture->height() * fScaleFactor); |
| if (fViewport.height() > 0) { |
| height = SkMin32(height, fViewport.height()); |
| } |
| return height; |
| } |
| |
| /** Converts fPicture to a picture that uses a BBoxHierarchy. |
| * PictureRenderer subclasses that are used to test picture playback |
| * should call this method during init. |
| */ |
| void PictureRenderer::buildBBoxHierarchy() { |
| SkASSERT(NULL != fPicture); |
| if (kNone_BBoxHierarchyType != fBBoxHierarchyType && NULL != fPicture) { |
| SkPicture* newPicture = this->createPicture(); |
| SkCanvas* recorder = newPicture->beginRecording(fPicture->width(), fPicture->height(), |
| this->recordFlags()); |
| fPicture->draw(recorder); |
| newPicture->endRecording(); |
| fPicture->unref(); |
| fPicture = newPicture; |
| } |
| } |
| |
| void PictureRenderer::resetState(bool callFinish) { |
| #if SK_SUPPORT_GPU |
| SkGLContextHelper* glContext = this->getGLContext(); |
| if (NULL == glContext) { |
| SkASSERT(kBitmap_DeviceType == fDeviceType); |
| return; |
| } |
| |
| fGrContext->flush(); |
| if (callFinish) { |
| SK_GL(*glContext, Finish()); |
| } |
| #endif |
| } |
| |
| void PictureRenderer::purgeTextures() { |
| SkDiscardableMemoryPool* pool = SkGetGlobalDiscardableMemoryPool(); |
| |
| pool->dumpPool(); |
| |
| #if SK_SUPPORT_GPU |
| SkGLContextHelper* glContext = this->getGLContext(); |
| if (NULL == glContext) { |
| SkASSERT(kBitmap_DeviceType == fDeviceType); |
| return; |
| } |
| |
| // resetState should've already done this |
| fGrContext->flush(); |
| |
| fGrContext->purgeAllUnlockedResources(); |
| #endif |
| } |
| |
| uint32_t PictureRenderer::recordFlags() { |
| return ((kNone_BBoxHierarchyType == fBBoxHierarchyType) ? 0 : |
| SkPicture::kOptimizeForClippedPlayback_RecordingFlag) | |
| SkPicture::kUsePathBoundsForClip_RecordingFlag; |
| } |
| |
| /** |
| * Write the canvas to the specified path. |
| * @param canvas Must be non-null. Canvas to be written to a file. |
| * @param path Path for the file to be written. Should have no extension; write() will append |
| * an appropriate one. Passed in by value so it can be modified. |
| * @param jsonSummaryPtr If not null, add image results to this summary. |
| * @return bool True if the Canvas is written to a file. |
| * |
| * TODO(epoger): Right now, all canvases must pass through this function in order to be appended |
| * to the ImageResultsSummary. We need some way to add bitmaps to the ImageResultsSummary |
| * even if --writePath has not been specified (and thus this function is not called). |
| * |
| * One fix would be to pass in these path elements separately, and allow this function to be |
| * called even if --writePath was not specified... |
| * const char *outputDir // NULL if we don't want to write image files to disk |
| * const char *filename // name we use within JSON summary, and as the filename within outputDir |
| */ |
| static bool write(SkCanvas* canvas, const SkString* path, ImageResultsSummary *jsonSummaryPtr) { |
| SkASSERT(canvas != NULL); |
| if (NULL == canvas) { |
| return false; |
| } |
| |
| SkASSERT(path != NULL); // TODO(epoger): we want to remove this constraint, as noted above |
| SkString fullPathname(*path); |
| fullPathname.append(".png"); |
| |
| SkBitmap bitmap; |
| SkISize size = canvas->getDeviceSize(); |
| sk_tools::setup_bitmap(&bitmap, size.width(), size.height()); |
| |
| canvas->readPixels(&bitmap, 0, 0); |
| sk_tools::force_all_opaque(bitmap); |
| |
| if (NULL != jsonSummaryPtr) { |
| // EPOGER: This is a hacky way of constructing the filename associated with the |
| // image checksum; we assume that outputDir is not NULL, and we remove outputDir |
| // from fullPathname. |
| // |
| // EPOGER: what about including the config type within hashFilename? That way, |
| // we could combine results of different config types without conflicting filenames. |
| SkString hashFilename; |
| sk_tools::get_basename(&hashFilename, fullPathname); |
| jsonSummaryPtr->add(hashFilename.c_str(), bitmap); |
| } |
| |
| return SkImageEncoder::EncodeFile(fullPathname.c_str(), bitmap, SkImageEncoder::kPNG_Type, 100); |
| } |
| |
| /** |
| * If path is non NULL, append number to it, and call write() to write the |
| * provided canvas to a file. Returns true if path is NULL or if write() succeeds. |
| */ |
| static bool writeAppendNumber(SkCanvas* canvas, const SkString* path, int number, |
| ImageResultsSummary *jsonSummaryPtr) { |
| if (NULL == path) { |
| return true; |
| } |
| SkString pathWithNumber(*path); |
| pathWithNumber.appendf("%i", number); |
| return write(canvas, &pathWithNumber, jsonSummaryPtr); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkCanvas* RecordPictureRenderer::setupCanvas(int width, int height) { |
| // defer the canvas setup until the render step |
| return NULL; |
| } |
| |
| static SkData* encode_bitmap_to_data(size_t* offset, const SkBitmap& bm) { |
| SkPixelRef* pr = bm.pixelRef(); |
| if (pr != NULL) { |
| SkData* data = pr->refEncodedData(); |
| if (data != NULL) { |
| *offset = bm.pixelRefOffset(); |
| return data; |
| } |
| } |
| *offset = 0; |
| return SkImageEncoder::EncodeData(bm, SkImageEncoder::kPNG_Type, 100); |
| } |
| |
| bool RecordPictureRenderer::render(const SkString* path, SkBitmap** out) { |
| SkAutoTUnref<SkPicture> replayer(this->createPicture()); |
| SkCanvas* recorder = replayer->beginRecording(this->getViewWidth(), this->getViewHeight(), |
| this->recordFlags()); |
| this->scaleToScaleFactor(recorder); |
| fPicture->draw(recorder); |
| replayer->endRecording(); |
| if (path != NULL) { |
| // Record the new picture as a new SKP with PNG encoded bitmaps. |
| SkString skpPath(*path); |
| // ".skp" was removed from 'path' before being passed in here. |
| skpPath.append(".skp"); |
| SkFILEWStream stream(skpPath.c_str()); |
| replayer->serialize(&stream, &encode_bitmap_to_data); |
| return true; |
| } |
| return false; |
| } |
| |
| SkString RecordPictureRenderer::getConfigNameInternal() { |
| return SkString("record"); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| bool PipePictureRenderer::render(const SkString* path, SkBitmap** out) { |
| SkASSERT(fCanvas.get() != NULL); |
| SkASSERT(fPicture != NULL); |
| if (NULL == fCanvas.get() || NULL == fPicture) { |
| return false; |
| } |
| |
| PipeController pipeController(fCanvas.get()); |
| SkGPipeWriter writer; |
| SkCanvas* pipeCanvas = writer.startRecording(&pipeController); |
| pipeCanvas->drawPicture(*fPicture); |
| writer.endRecording(); |
| fCanvas->flush(); |
| if (NULL != path) { |
| return write(fCanvas, path, fJsonSummaryPtr); |
| } |
| if (NULL != out) { |
| *out = SkNEW(SkBitmap); |
| setup_bitmap(*out, fPicture->width(), fPicture->height()); |
| fCanvas->readPixels(*out, 0, 0); |
| } |
| return true; |
| } |
| |
| SkString PipePictureRenderer::getConfigNameInternal() { |
| return SkString("pipe"); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void SimplePictureRenderer::init(SkPicture* picture) { |
| INHERITED::init(picture); |
| this->buildBBoxHierarchy(); |
| } |
| |
| bool SimplePictureRenderer::render(const SkString* path, SkBitmap** out) { |
| SkASSERT(fCanvas.get() != NULL); |
| SkASSERT(fPicture != NULL); |
| if (NULL == fCanvas.get() || NULL == fPicture) { |
| return false; |
| } |
| |
| fCanvas->drawPicture(*fPicture); |
| fCanvas->flush(); |
| if (NULL != path) { |
| return write(fCanvas, path, fJsonSummaryPtr); |
| } |
| |
| if (NULL != out) { |
| *out = SkNEW(SkBitmap); |
| setup_bitmap(*out, fPicture->width(), fPicture->height()); |
| fCanvas->readPixels(*out, 0, 0); |
| } |
| |
| return true; |
| } |
| |
| SkString SimplePictureRenderer::getConfigNameInternal() { |
| return SkString("simple"); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| TiledPictureRenderer::TiledPictureRenderer() |
| : fTileWidth(kDefaultTileWidth) |
| , fTileHeight(kDefaultTileHeight) |
| , fTileWidthPercentage(0.0) |
| , fTileHeightPercentage(0.0) |
| , fTileMinPowerOf2Width(0) |
| , fCurrentTileOffset(-1) |
| , fTilesX(0) |
| , fTilesY(0) { } |
| |
| void TiledPictureRenderer::init(SkPicture* pict) { |
| SkASSERT(pict != NULL); |
| SkASSERT(0 == fTileRects.count()); |
| if (NULL == pict || fTileRects.count() != 0) { |
| return; |
| } |
| |
| // Do not call INHERITED::init(), which would create a (potentially large) canvas which is not |
| // used by bench_pictures. |
| fPicture = pict; |
| fPicture->ref(); |
| this->buildBBoxHierarchy(); |
| |
| if (fTileWidthPercentage > 0) { |
| fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100)); |
| } |
| if (fTileHeightPercentage > 0) { |
| fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100)); |
| } |
| |
| if (fTileMinPowerOf2Width > 0) { |
| this->setupPowerOf2Tiles(); |
| } else { |
| this->setupTiles(); |
| } |
| fCanvas.reset(this->setupCanvas(fTileWidth, fTileHeight)); |
| // Initialize to -1 so that the first call to nextTile will set this up to draw tile 0 on the |
| // first call to drawCurrentTile. |
| fCurrentTileOffset = -1; |
| } |
| |
| void TiledPictureRenderer::end() { |
| fTileRects.reset(); |
| this->INHERITED::end(); |
| } |
| |
| void TiledPictureRenderer::setupTiles() { |
| // Only use enough tiles to cover the viewport |
| const int width = this->getViewWidth(); |
| const int height = this->getViewHeight(); |
| |
| fTilesX = fTilesY = 0; |
| for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) { |
| fTilesY++; |
| for (int tile_x_start = 0; tile_x_start < width; tile_x_start += fTileWidth) { |
| if (0 == tile_y_start) { |
| // Only count tiles in the X direction on the first pass. |
| fTilesX++; |
| } |
| *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), |
| SkIntToScalar(tile_y_start), |
| SkIntToScalar(fTileWidth), |
| SkIntToScalar(fTileHeight)); |
| } |
| } |
| } |
| |
| bool TiledPictureRenderer::tileDimensions(int &x, int &y) { |
| if (fTileRects.count() == 0 || NULL == fPicture) { |
| return false; |
| } |
| x = fTilesX; |
| y = fTilesY; |
| return true; |
| } |
| |
| // The goal of the powers of two tiles is to minimize the amount of wasted tile |
| // space in the width-wise direction and then minimize the number of tiles. The |
| // constraints are that every tile must have a pixel width that is a power of |
| // two and also be of some minimal width (that is also a power of two). |
| // |
| // This is solved by first taking our picture size and rounding it up to the |
| // multiple of the minimal width. The binary representation of this rounded |
| // value gives us the tiles we need: a bit of value one means we need a tile of |
| // that size. |
| void TiledPictureRenderer::setupPowerOf2Tiles() { |
| // Only use enough tiles to cover the viewport |
| const int width = this->getViewWidth(); |
| const int height = this->getViewHeight(); |
| |
| int rounded_value = width; |
| if (width % fTileMinPowerOf2Width != 0) { |
| rounded_value = width - (width % fTileMinPowerOf2Width) + fTileMinPowerOf2Width; |
| } |
| |
| int num_bits = SkScalarCeilToInt(scalar_log2(SkIntToScalar(width))); |
| int largest_possible_tile_size = 1 << num_bits; |
| |
| fTilesX = fTilesY = 0; |
| // The tile height is constant for a particular picture. |
| for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) { |
| fTilesY++; |
| int tile_x_start = 0; |
| int current_width = largest_possible_tile_size; |
| // Set fTileWidth to be the width of the widest tile, so that each canvas is large enough |
| // to draw each tile. |
| fTileWidth = current_width; |
| |
| while (current_width >= fTileMinPowerOf2Width) { |
| // It is very important this is a bitwise AND. |
| if (current_width & rounded_value) { |
| if (0 == tile_y_start) { |
| // Only count tiles in the X direction on the first pass. |
| fTilesX++; |
| } |
| *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), |
| SkIntToScalar(tile_y_start), |
| SkIntToScalar(current_width), |
| SkIntToScalar(fTileHeight)); |
| tile_x_start += current_width; |
| } |
| |
| current_width >>= 1; |
| } |
| } |
| } |
| |
| /** |
| * Draw the specified playback to the canvas translated to rectangle provided, so that this mini |
| * canvas represents the rectangle's portion of the overall picture. |
| * Saves and restores so that the initial clip and matrix return to their state before this function |
| * is called. |
| */ |
| template<class T> |
| static void DrawTileToCanvas(SkCanvas* canvas, const SkRect& tileRect, T* playback) { |
| int saveCount = canvas->save(); |
| // Translate so that we draw the correct portion of the picture. |
| // Perform a postTranslate so that the scaleFactor does not interfere with the positioning. |
| SkMatrix mat(canvas->getTotalMatrix()); |
| mat.postTranslate(-tileRect.fLeft, -tileRect.fTop); |
| canvas->setMatrix(mat); |
| playback->draw(canvas); |
| canvas->restoreToCount(saveCount); |
| canvas->flush(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Copies the entirety of the src bitmap (typically a tile) into a portion of the dst bitmap. |
| * If the src bitmap is too large to fit within the dst bitmap after the x and y |
| * offsets have been applied, any excess will be ignored (so only the top-left portion of the |
| * src bitmap will be copied). |
| * |
| * @param src source bitmap |
| * @param dst destination bitmap |
| * @param xOffset x-offset within destination bitmap |
| * @param yOffset y-offset within destination bitmap |
| */ |
| static void bitmapCopyAtOffset(const SkBitmap& src, SkBitmap* dst, |
| int xOffset, int yOffset) { |
| for (int y = 0; y <src.height() && y + yOffset < dst->height() ; y++) { |
| for (int x = 0; x < src.width() && x + xOffset < dst->width() ; x++) { |
| *dst->getAddr32(xOffset + x, yOffset + y) = *src.getAddr32(x, y); |
| } |
| } |
| } |
| |
| bool TiledPictureRenderer::nextTile(int &i, int &j) { |
| if (++fCurrentTileOffset < fTileRects.count()) { |
| i = fCurrentTileOffset % fTilesX; |
| j = fCurrentTileOffset / fTilesX; |
| return true; |
| } |
| return false; |
| } |
| |
| void TiledPictureRenderer::drawCurrentTile() { |
| SkASSERT(fCurrentTileOffset >= 0 && fCurrentTileOffset < fTileRects.count()); |
| DrawTileToCanvas(fCanvas, fTileRects[fCurrentTileOffset], fPicture); |
| } |
| |
| bool TiledPictureRenderer::render(const SkString* path, SkBitmap** out) { |
| SkASSERT(fPicture != NULL); |
| if (NULL == fPicture) { |
| return false; |
| } |
| |
| SkBitmap bitmap; |
| if (out){ |
| *out = SkNEW(SkBitmap); |
| setup_bitmap(*out, fPicture->width(), fPicture->height()); |
| setup_bitmap(&bitmap, fTileWidth, fTileHeight); |
| } |
| bool success = true; |
| for (int i = 0; i < fTileRects.count(); ++i) { |
| DrawTileToCanvas(fCanvas, fTileRects[i], fPicture); |
| if (NULL != path) { |
| success &= writeAppendNumber(fCanvas, path, i, fJsonSummaryPtr); |
| } |
| if (NULL != out) { |
| if (fCanvas->readPixels(&bitmap, 0, 0)) { |
| // Add this tile to the entire bitmap. |
| bitmapCopyAtOffset(bitmap, *out, SkScalarFloorToInt(fTileRects[i].left()), |
| SkScalarFloorToInt(fTileRects[i].top())); |
| } else { |
| success = false; |
| } |
| } |
| } |
| return success; |
| } |
| |
| SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) { |
| SkCanvas* canvas = this->INHERITED::setupCanvas(width, height); |
| SkASSERT(fPicture != NULL); |
| // Clip the tile to an area that is completely inside both the SkPicture and the viewport. This |
| // is mostly important for tiles on the right and bottom edges as they may go over this area and |
| // the picture may have some commands that draw outside of this area and so should not actually |
| // be written. |
| // Uses a clipRegion so that it will be unaffected by the scale factor, which may have been set |
| // by INHERITED::setupCanvas. |
| SkRegion clipRegion; |
| clipRegion.setRect(0, 0, this->getViewWidth(), this->getViewHeight()); |
| canvas->clipRegion(clipRegion); |
| return canvas; |
| } |
| |
| SkString TiledPictureRenderer::getConfigNameInternal() { |
| SkString name; |
| if (fTileMinPowerOf2Width > 0) { |
| name.append("pow2tile_"); |
| name.appendf("%i", fTileMinPowerOf2Width); |
| } else { |
| name.append("tile_"); |
| if (fTileWidthPercentage > 0) { |
| name.appendf("%.f%%", fTileWidthPercentage); |
| } else { |
| name.appendf("%i", fTileWidth); |
| } |
| } |
| name.append("x"); |
| if (fTileHeightPercentage > 0) { |
| name.appendf("%.f%%", fTileHeightPercentage); |
| } else { |
| name.appendf("%i", fTileHeight); |
| } |
| return name; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // Holds all of the information needed to draw a set of tiles. |
| class CloneData : public SkRunnable { |
| |
| public: |
| CloneData(SkPicture* clone, SkCanvas* canvas, SkTDArray<SkRect>& rects, int start, int end, |
| SkRunnable* done, ImageResultsSummary* jsonSummaryPtr) |
| : fClone(clone) |
| , fCanvas(canvas) |
| , fPath(NULL) |
| , fRects(rects) |
| , fStart(start) |
| , fEnd(end) |
| , fSuccess(NULL) |
| , fDone(done) |
| , fJsonSummaryPtr(jsonSummaryPtr) { |
| SkASSERT(fDone != NULL); |
| } |
| |
| virtual void run() SK_OVERRIDE { |
| SkGraphics::SetTLSFontCacheLimit(1024 * 1024); |
| |
| SkBitmap bitmap; |
| if (fBitmap != NULL) { |
| // All tiles are the same size. |
| setup_bitmap(&bitmap, SkScalarFloorToInt(fRects[0].width()), SkScalarFloorToInt(fRects[0].height())); |
| } |
| |
| for (int i = fStart; i < fEnd; i++) { |
| DrawTileToCanvas(fCanvas, fRects[i], fClone); |
| if ((fPath != NULL) && !writeAppendNumber(fCanvas, fPath, i, fJsonSummaryPtr) |
| && fSuccess != NULL) { |
| *fSuccess = false; |
| // If one tile fails to write to a file, do not continue drawing the rest. |
| break; |
| } |
| if (fBitmap != NULL) { |
| if (fCanvas->readPixels(&bitmap, 0, 0)) { |
| SkAutoLockPixels alp(*fBitmap); |
| bitmapCopyAtOffset(bitmap, fBitmap, SkScalarFloorToInt(fRects[i].left()), |
| SkScalarFloorToInt(fRects[i].top())); |
| } else { |
| *fSuccess = false; |
| // If one tile fails to read pixels, do not continue drawing the rest. |
| break; |
| } |
| } |
| } |
| fDone->run(); |
| } |
| |
| void setPathAndSuccess(const SkString* path, bool* success) { |
| fPath = path; |
| fSuccess = success; |
| } |
| |
| void setBitmap(SkBitmap* bitmap) { |
| fBitmap = bitmap; |
| } |
| |
| private: |
| // All pointers unowned. |
| SkPicture* fClone; // Picture to draw from. Each CloneData has a unique one which |
| // is threadsafe. |
| SkCanvas* fCanvas; // Canvas to draw to. Reused for each tile. |
| const SkString* fPath; // If non-null, path to write the result to as a PNG. |
| SkTDArray<SkRect>& fRects; // All tiles of the picture. |
| const int fStart; // Range of tiles drawn by this thread. |
| const int fEnd; |
| bool* fSuccess; // Only meaningful if path is non-null. Shared by all threads, |
| // and only set to false upon failure to write to a PNG. |
| SkRunnable* fDone; |
| SkBitmap* fBitmap; |
| ImageResultsSummary* fJsonSummaryPtr; |
| }; |
| |
| MultiCorePictureRenderer::MultiCorePictureRenderer(int threadCount) |
| : fNumThreads(threadCount) |
| , fThreadPool(threadCount) |
| , fCountdown(threadCount) { |
| // Only need to create fNumThreads - 1 clones, since one thread will use the base |
| // picture. |
| fPictureClones = SkNEW_ARRAY(SkPicture, fNumThreads - 1); |
| fCloneData = SkNEW_ARRAY(CloneData*, fNumThreads); |
| } |
| |
| void MultiCorePictureRenderer::init(SkPicture *pict) { |
| // Set fPicture and the tiles. |
| this->INHERITED::init(pict); |
| for (int i = 0; i < fNumThreads; ++i) { |
| *fCanvasPool.append() = this->setupCanvas(this->getTileWidth(), this->getTileHeight()); |
| } |
| // Only need to create fNumThreads - 1 clones, since one thread will use the base picture. |
| fPicture->clone(fPictureClones, fNumThreads - 1); |
| // Populate each thread with the appropriate data. |
| // Group the tiles into nearly equal size chunks, rounding up so we're sure to cover them all. |
| const int chunkSize = (fTileRects.count() + fNumThreads - 1) / fNumThreads; |
| |
| for (int i = 0; i < fNumThreads; i++) { |
| SkPicture* pic; |
| if (i == fNumThreads-1) { |
| // The last set will use the original SkPicture. |
| pic = fPicture; |
| } else { |
| pic = &fPictureClones[i]; |
| } |
| const int start = i * chunkSize; |
| const int end = SkMin32(start + chunkSize, fTileRects.count()); |
| fCloneData[i] = SkNEW_ARGS(CloneData, |
| (pic, fCanvasPool[i], fTileRects, start, end, &fCountdown, |
| fJsonSummaryPtr)); |
| } |
| } |
| |
| bool MultiCorePictureRenderer::render(const SkString *path, SkBitmap** out) { |
| bool success = true; |
| if (path != NULL) { |
| for (int i = 0; i < fNumThreads-1; i++) { |
| fCloneData[i]->setPathAndSuccess(path, &success); |
| } |
| } |
| |
| if (NULL != out) { |
| *out = SkNEW(SkBitmap); |
| setup_bitmap(*out, fPicture->width(), fPicture->height()); |
| for (int i = 0; i < fNumThreads; i++) { |
| fCloneData[i]->setBitmap(*out); |
| } |
| } else { |
| for (int i = 0; i < fNumThreads; i++) { |
| fCloneData[i]->setBitmap(NULL); |
| } |
| } |
| |
| fCountdown.reset(fNumThreads); |
| for (int i = 0; i < fNumThreads; i++) { |
| fThreadPool.add(fCloneData[i]); |
| } |
| fCountdown.wait(); |
| |
| return success; |
| } |
| |
| void MultiCorePictureRenderer::end() { |
| for (int i = 0; i < fNumThreads - 1; i++) { |
| SkDELETE(fCloneData[i]); |
| fCloneData[i] = NULL; |
| } |
| |
| fCanvasPool.unrefAll(); |
| |
| this->INHERITED::end(); |
| } |
| |
| MultiCorePictureRenderer::~MultiCorePictureRenderer() { |
| // Each individual CloneData was deleted in end. |
| SkDELETE_ARRAY(fCloneData); |
| SkDELETE_ARRAY(fPictureClones); |
| } |
| |
| SkString MultiCorePictureRenderer::getConfigNameInternal() { |
| SkString name = this->INHERITED::getConfigNameInternal(); |
| name.appendf("_multi_%i_threads", fNumThreads); |
| return name; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void PlaybackCreationRenderer::setup() { |
| fReplayer.reset(this->createPicture()); |
| SkCanvas* recorder = fReplayer->beginRecording(this->getViewWidth(), this->getViewHeight(), |
| this->recordFlags()); |
| this->scaleToScaleFactor(recorder); |
| fPicture->draw(recorder); |
| } |
| |
| bool PlaybackCreationRenderer::render(const SkString*, SkBitmap** out) { |
| fReplayer->endRecording(); |
| // Since this class does not actually render, return false. |
| return false; |
| } |
| |
| SkString PlaybackCreationRenderer::getConfigNameInternal() { |
| return SkString("playback_creation"); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////// |
| // SkPicture variants for each BBoxHierarchy type |
| |
| class RTreePicture : public SkPicture { |
| public: |
| virtual SkBBoxHierarchy* createBBoxHierarchy() const SK_OVERRIDE{ |
| static const int kRTreeMinChildren = 6; |
| static const int kRTreeMaxChildren = 11; |
| SkScalar aspectRatio = SkScalarDiv(SkIntToScalar(fWidth), |
| SkIntToScalar(fHeight)); |
| bool sortDraws = false; |
| return SkRTree::Create(kRTreeMinChildren, kRTreeMaxChildren, |
| aspectRatio, sortDraws); |
| } |
| }; |
| |
| SkPicture* PictureRenderer::createPicture() { |
| switch (fBBoxHierarchyType) { |
| case kNone_BBoxHierarchyType: |
| return SkNEW(SkPicture); |
| case kRTree_BBoxHierarchyType: |
| return SkNEW(RTreePicture); |
| case kTileGrid_BBoxHierarchyType: |
| return SkNEW_ARGS(SkTileGridPicture, (fPicture->width(), |
| fPicture->height(), fGridInfo)); |
| } |
| SkASSERT(0); // invalid bbhType |
| return NULL; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class GatherRenderer : public PictureRenderer { |
| public: |
| virtual bool render(const SkString* path, SkBitmap** out = NULL) |
| SK_OVERRIDE { |
| SkRect bounds = SkRect::MakeWH(SkIntToScalar(fPicture->width()), |
| SkIntToScalar(fPicture->height())); |
| SkData* data = SkPictureUtils::GatherPixelRefs(fPicture, bounds); |
| SkSafeUnref(data); |
| |
| return NULL == path; // we don't have anything to write |
| } |
| |
| private: |
| virtual SkString getConfigNameInternal() SK_OVERRIDE { |
| return SkString("gather_pixelrefs"); |
| } |
| }; |
| |
| PictureRenderer* CreateGatherPixelRefsRenderer() { |
| return SkNEW(GatherRenderer); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class PictureCloneRenderer : public PictureRenderer { |
| public: |
| virtual bool render(const SkString* path, SkBitmap** out = NULL) |
| SK_OVERRIDE { |
| for (int i = 0; i < 100; ++i) { |
| SkPicture* clone = fPicture->clone(); |
| SkSafeUnref(clone); |
| } |
| |
| return NULL == path; // we don't have anything to write |
| } |
| |
| private: |
| virtual SkString getConfigNameInternal() SK_OVERRIDE { |
| return SkString("picture_clone"); |
| } |
| }; |
| |
| PictureRenderer* CreatePictureCloneRenderer() { |
| return SkNEW(PictureCloneRenderer); |
| } |
| |
| } // namespace sk_tools |