| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkFloatingPoint_DEFINED |
| #define SkFloatingPoint_DEFINED |
| |
| #include "../private/SkFloatBits.h" |
| #include "SkTypes.h" |
| #include "SkSafe_math.h" |
| #include <float.h> |
| #include <math.h> |
| #include <cstring> |
| |
| |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| #include <xmmintrin.h> |
| #elif defined(SK_ARM_HAS_NEON) |
| #include <arm_neon.h> |
| #endif |
| |
| // For _POSIX_VERSION |
| #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) |
| #include <unistd.h> |
| #endif |
| |
| // C++98 cmath std::pow seems to be the earliest portable way to get float pow. |
| // However, on Linux including cmath undefines isfinite. |
| // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 |
| static inline float sk_float_pow(float base, float exp) { |
| return powf(base, exp); |
| } |
| |
| #define sk_float_sqrt(x) sqrtf(x) |
| #define sk_float_sin(x) sinf(x) |
| #define sk_float_cos(x) cosf(x) |
| #define sk_float_tan(x) tanf(x) |
| #define sk_float_floor(x) floorf(x) |
| #define sk_float_ceil(x) ceilf(x) |
| #define sk_float_trunc(x) truncf(x) |
| #ifdef SK_BUILD_FOR_MAC |
| # define sk_float_acos(x) static_cast<float>(acos(x)) |
| # define sk_float_asin(x) static_cast<float>(asin(x)) |
| #else |
| # define sk_float_acos(x) acosf(x) |
| # define sk_float_asin(x) asinf(x) |
| #endif |
| #define sk_float_atan2(y,x) atan2f(y,x) |
| #define sk_float_abs(x) fabsf(x) |
| #define sk_float_copysign(x, y) copysignf(x, y) |
| #define sk_float_mod(x,y) fmodf(x,y) |
| #define sk_float_exp(x) expf(x) |
| #define sk_float_log(x) logf(x) |
| |
| #define sk_float_round(x) sk_float_floor((x) + 0.5f) |
| |
| // can't find log2f on android, but maybe that just a tool bug? |
| #ifdef SK_BUILD_FOR_ANDROID |
| static inline float sk_float_log2(float x) { |
| const double inv_ln_2 = 1.44269504088896; |
| return (float)(log(x) * inv_ln_2); |
| } |
| #else |
| #define sk_float_log2(x) log2f(x) |
| #endif |
| |
| static inline bool sk_float_isfinite(float x) { |
| return SkFloatBits_IsFinite(SkFloat2Bits(x)); |
| } |
| |
| static inline bool sk_float_isinf(float x) { |
| return SkFloatBits_IsInf(SkFloat2Bits(x)); |
| } |
| |
| static inline bool sk_float_isnan(float x) { |
| return !(x == x); |
| } |
| |
| #define sk_double_isnan(a) sk_float_isnan(a) |
| |
| #define SK_MaxS32FitsInFloat 2147483520 |
| #define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat |
| |
| #define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000 |
| #define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat |
| |
| /** |
| * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. |
| */ |
| static inline int sk_float_saturate2int(float x) { |
| x = SkTMin<float>(x, SK_MaxS32FitsInFloat); |
| x = SkTMax<float>(x, SK_MinS32FitsInFloat); |
| return (int)x; |
| } |
| |
| /** |
| * Return the closest int for the given double. Returns SK_MaxS32 for NaN. |
| */ |
| static inline int sk_double_saturate2int(double x) { |
| x = SkTMin<double>(x, SK_MaxS32); |
| x = SkTMax<double>(x, SK_MinS32); |
| return (int)x; |
| } |
| |
| /** |
| * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. |
| */ |
| static inline int64_t sk_float_saturate2int64(float x) { |
| x = SkTMin<float>(x, SK_MaxS64FitsInFloat); |
| x = SkTMax<float>(x, SK_MinS64FitsInFloat); |
| return (int64_t)x; |
| } |
| |
| #define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x)) |
| #define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f)) |
| #define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x)) |
| |
| #define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x) |
| #define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f) |
| #define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x) |
| |
| #define sk_double_floor(x) floor(x) |
| #define sk_double_round(x) floor((x) + 0.5) |
| #define sk_double_ceil(x) ceil(x) |
| #define sk_double_floor2int(x) (int)floor(x) |
| #define sk_double_round2int(x) (int)floor((x) + 0.5) |
| #define sk_double_ceil2int(x) (int)ceil(x) |
| |
| // Cast double to float, ignoring any warning about too-large finite values being cast to float. |
| // Clang thinks this is undefined, but it's actually implementation defined to return either |
| // the largest float or infinity (one of the two bracketing representable floats). Good enough! |
| #if defined(__clang__) && (__clang_major__ * 1000 + __clang_minor__) >= 3007 |
| __attribute__((no_sanitize("float-cast-overflow"))) |
| #endif |
| static inline float sk_double_to_float(double x) { |
| return static_cast<float>(x); |
| } |
| |
| #define SK_FloatNaN NAN |
| #define SK_FloatInfinity (+INFINITY) |
| #define SK_FloatNegativeInfinity (-INFINITY) |
| |
| static inline float sk_float_rsqrt_portable(float x) { |
| // Get initial estimate. |
| int i; |
| memcpy(&i, &x, 4); |
| i = 0x5F1FFFF9 - (i>>1); |
| float estimate; |
| memcpy(&estimate, &i, 4); |
| |
| // One step of Newton's method to refine. |
| const float estimate_sq = estimate*estimate; |
| estimate *= 0.703952253f*(2.38924456f-x*estimate_sq); |
| return estimate; |
| } |
| |
| // Fast, approximate inverse square root. |
| // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. |
| static inline float sk_float_rsqrt(float x) { |
| // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got |
| // it at compile time. This is going to be too fast to productively hide behind a function pointer. |
| // |
| // We do one step of Newton's method to refine the estimates in the NEON and portable paths. No |
| // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. |
| // |
| // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); |
| #elif defined(SK_ARM_HAS_NEON) |
| // Get initial estimate. |
| const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. |
| float32x2_t estimate = vrsqrte_f32(xx); |
| |
| // One step of Newton's method to refine. |
| const float32x2_t estimate_sq = vmul_f32(estimate, estimate); |
| estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); |
| return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. |
| #else |
| return sk_float_rsqrt_portable(x); |
| #endif |
| } |
| |
| // This is the number of significant digits we can print in a string such that when we read that |
| // string back we get the floating point number we expect. The minimum value C requires is 6, but |
| // most compilers support 9 |
| #ifdef FLT_DECIMAL_DIG |
| #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG |
| #else |
| #define SK_FLT_DECIMAL_DIG 9 |
| #endif |
| |
| // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not |
| // so we have a helper that suppresses the possible undefined-behavior warnings. |
| |
| #ifdef __clang__ |
| __attribute__((no_sanitize("float-divide-by-zero"))) |
| #endif |
| static inline float sk_ieee_float_divide(float numer, float denom) { |
| return numer / denom; |
| } |
| |
| #ifdef __clang__ |
| __attribute__((no_sanitize("float-divide-by-zero"))) |
| #endif |
| static inline double sk_ieee_double_divide(double numer, double denom) { |
| return numer / denom; |
| } |
| |
| #endif |