| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
| |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrPipeline.h" |
| #include "src/gpu/GrRenderTarget.h" |
| #include "src/gpu/GrShaderCaps.h" |
| #include "src/gpu/GrTexturePriv.h" |
| #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
| #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
| #include "src/gpu/glsl/GrGLSLVarying.h" |
| #include "src/gpu/glsl/GrGLSLXferProcessor.h" |
| #include "src/sksl/SkSLCompiler.h" |
| |
| const int GrGLSLProgramBuilder::kVarsPerBlock = 8; |
| |
| GrGLSLProgramBuilder::GrGLSLProgramBuilder(GrRenderTarget* renderTarget, |
| const GrProgramInfo& programInfo, |
| const GrProgramDesc* desc) |
| : fVS(this) |
| , fGS(this) |
| , fFS(this) |
| , fStageIndex(-1) |
| , fRenderTarget(renderTarget) |
| , fProgramInfo(programInfo) |
| , fDesc(desc) |
| , fGeometryProcessor(nullptr) |
| , fXferProcessor(nullptr) |
| , fNumFragmentSamplers(0) {} |
| |
| void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders, |
| uint32_t featureBit, |
| const char* extensionName) { |
| if (shaders & kVertex_GrShaderFlag) { |
| fVS.addFeature(featureBit, extensionName); |
| } |
| if (shaders & kGeometry_GrShaderFlag) { |
| SkASSERT(this->primitiveProcessor().willUseGeoShader()); |
| fGS.addFeature(featureBit, extensionName); |
| } |
| if (shaders & kFragment_GrShaderFlag) { |
| fFS.addFeature(featureBit, extensionName); |
| } |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallProcs() { |
| // First we loop over all of the installed processors and collect coord transforms. These will |
| // be sent to the GrGLSLPrimitiveProcessor in its emitCode function |
| SkString inputColor; |
| SkString inputCoverage; |
| this->emitAndInstallPrimProc(&inputColor, &inputCoverage); |
| this->emitAndInstallFragProcs(&inputColor, &inputCoverage); |
| this->emitAndInstallXferProc(inputColor, inputCoverage); |
| |
| return this->checkSamplerCounts(); |
| } |
| |
| void GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, |
| SkString* outputCoverage) { |
| const GrPrimitiveProcessor& proc = this->primitiveProcessor(); |
| |
| // Because all the texture properties must be consistent between all the dynamic and fixed |
| // primProc proxies, we just deal w/ the first set of dynamic proxies or the set of fixed |
| // proxies here. |
| const GrTextureProxy* const* primProcProxies = nullptr; |
| if (fProgramInfo.hasDynamicPrimProcTextures()) { |
| primProcProxies = fProgramInfo.dynamicPrimProcTextures(0); |
| } else if (fProgramInfo.hasFixedPrimProcTextures()) { |
| primProcProxies = fProgramInfo.fixedPrimProcTextures(); |
| } |
| |
| // Program builders have a bit of state we need to clear with each effect |
| AutoStageAdvance adv(this); |
| this->nameExpression(outputColor, "outputColor"); |
| this->nameExpression(outputCoverage, "outputCoverage"); |
| |
| SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); |
| GrShaderFlags rtAdjustVisibility; |
| if (proc.willUseGeoShader()) { |
| rtAdjustVisibility = kGeometry_GrShaderFlag; |
| } else { |
| rtAdjustVisibility = kVertex_GrShaderFlag; |
| } |
| fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform( |
| rtAdjustVisibility, |
| kFloat4_GrSLType, |
| SkSL::Compiler::RTADJUST_NAME); |
| const char* rtAdjustName = |
| this->uniformHandler()->getUniformCStr(fUniformHandles.fRTAdjustmentUni); |
| |
| // Enclose custom code in a block to avoid namespace conflicts |
| SkString openBrace; |
| openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| fVS.codeAppendf("// Primitive Processor %s\n", proc.name()); |
| |
| SkASSERT(!fGeometryProcessor); |
| fGeometryProcessor.reset(proc.createGLSLInstance(*this->shaderCaps())); |
| |
| SkAutoSTMalloc<4, SamplerHandle> texSamplers(proc.numTextureSamplers()); |
| for (int i = 0; i < proc.numTextureSamplers(); ++i) { |
| SkString name; |
| name.printf("TextureSampler_%d", i); |
| const auto& sampler = proc.textureSampler(i); |
| SkASSERT(sampler.textureType() == primProcProxies[i]->textureType()); |
| texSamplers[i] = this->emitSampler(primProcProxies[i], |
| sampler.samplerState(), |
| sampler.swizzle(), |
| name.c_str()); |
| } |
| |
| GrGLSLPrimitiveProcessor::FPCoordTransformHandler transformHandler(this->pipeline(), |
| &fTransformedCoordVars); |
| GrGLSLGeometryProcessor::EmitArgs args(&fVS, |
| proc.willUseGeoShader() ? &fGS : nullptr, |
| &fFS, |
| this->varyingHandler(), |
| this->uniformHandler(), |
| this->shaderCaps(), |
| proc, |
| outputColor->c_str(), |
| outputCoverage->c_str(), |
| rtAdjustName, |
| texSamplers.get(), |
| &transformHandler); |
| fGeometryProcessor->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(proc);) |
| |
| fFS.codeAppend("}"); |
| } |
| |
| void GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) { |
| int transformedCoordVarsIdx = 0; |
| SkString** inOut = &color; |
| SkSTArray<8, std::unique_ptr<GrGLSLFragmentProcessor>> glslFragmentProcessors; |
| for (int i = 0; i < this->pipeline().numFragmentProcessors(); ++i) { |
| if (i == this->pipeline().numColorFragmentProcessors()) { |
| inOut = &coverage; |
| } |
| SkString output; |
| const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); |
| output = this->emitAndInstallFragProc(fp, i, transformedCoordVarsIdx, **inOut, output, |
| &glslFragmentProcessors); |
| GrFragmentProcessor::Iter iter(&fp); |
| while (const GrFragmentProcessor* fp = iter.next()) { |
| transformedCoordVarsIdx += fp->numCoordTransforms(); |
| } |
| **inOut = output; |
| } |
| fFragmentProcessorCnt = glslFragmentProcessors.count(); |
| fFragmentProcessors.reset(new std::unique_ptr<GrGLSLFragmentProcessor>[fFragmentProcessorCnt]); |
| for (int i = 0; i < fFragmentProcessorCnt; ++i) { |
| fFragmentProcessors[i] = std::move(glslFragmentProcessors[i]); |
| } |
| } |
| |
| // TODO Processors cannot output zeros because an empty string is all 1s |
| // the fix is to allow effects to take the SkString directly |
| SkString GrGLSLProgramBuilder::emitAndInstallFragProc( |
| const GrFragmentProcessor& fp, |
| int index, |
| int transformedCoordVarsIdx, |
| const SkString& input, |
| SkString output, |
| SkTArray<std::unique_ptr<GrGLSLFragmentProcessor>>* glslFragmentProcessors) { |
| SkASSERT(input.size()); |
| // Program builders have a bit of state we need to clear with each effect |
| AutoStageAdvance adv(this); |
| this->nameExpression(&output, "output"); |
| |
| // Enclose custom code in a block to avoid namespace conflicts |
| SkString openBrace; |
| openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| |
| GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance(); |
| |
| SkSTArray<4, SamplerHandle> texSamplers; |
| GrFragmentProcessor::Iter fpIter(&fp); |
| int samplerIdx = 0; |
| while (const auto* subFP = fpIter.next()) { |
| for (int i = 0; i < subFP->numTextureSamplers(); ++i) { |
| SkString name; |
| name.printf("TextureSampler_%d", samplerIdx++); |
| const auto& sampler = subFP->textureSampler(i); |
| texSamplers.emplace_back(this->emitSampler(sampler.proxy(), |
| sampler.samplerState(), |
| sampler.swizzle(), |
| name.c_str())); |
| } |
| } |
| |
| const GrGLSLPrimitiveProcessor::TransformVar* coordVars = fTransformedCoordVars.begin() + |
| transformedCoordVarsIdx; |
| GrGLSLFragmentProcessor::TransformedCoordVars coords(&fp, coordVars); |
| GrGLSLFragmentProcessor::TextureSamplers textureSamplers(&fp, texSamplers.begin()); |
| GrGLSLFragmentProcessor::EmitArgs args(&fFS, |
| this->uniformHandler(), |
| this->shaderCaps(), |
| fp, |
| output.c_str(), |
| input.c_str(), |
| coords, |
| textureSamplers); |
| |
| fragProc->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(fp);) |
| glslFragmentProcessors->emplace_back(fragProc); |
| |
| fFS.codeAppend("}"); |
| return output; |
| } |
| |
| void GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn, |
| const SkString& coverageIn) { |
| // Program builders have a bit of state we need to clear with each effect |
| AutoStageAdvance adv(this); |
| |
| SkASSERT(!fXferProcessor); |
| const GrXferProcessor& xp = this->pipeline().getXferProcessor(); |
| fXferProcessor.reset(xp.createGLSLInstance()); |
| |
| // Enable dual source secondary output if we have one |
| if (xp.hasSecondaryOutput()) { |
| fFS.enableSecondaryOutput(); |
| } |
| |
| if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) { |
| fFS.enableCustomOutput(); |
| } |
| |
| SkString openBrace; |
| openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| |
| SamplerHandle dstTextureSamplerHandle; |
| GrSurfaceOrigin dstTextureOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| if (GrTextureProxy* dstTextureProxy = this->pipeline().dstTextureProxy()) { |
| // GrProcessor::TextureSampler sampler(dstTexture); |
| const GrSwizzle& swizzle = dstTextureProxy->textureSwizzle(); |
| dstTextureSamplerHandle = this->emitSampler(dstTextureProxy, GrSamplerState(), |
| swizzle, "DstTextureSampler"); |
| dstTextureOrigin = dstTextureProxy->origin(); |
| SkASSERT(dstTextureProxy->textureType() != GrTextureType::kExternal); |
| } |
| |
| SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)"); |
| |
| GrGLSLXferProcessor::EmitArgs args(&fFS, |
| this->uniformHandler(), |
| this->shaderCaps(), |
| xp, |
| finalInColor.c_str(), |
| coverageIn.size() ? coverageIn.c_str() : "float4(1)", |
| fFS.getPrimaryColorOutputName(), |
| fFS.getSecondaryColorOutputName(), |
| dstTextureSamplerHandle, |
| dstTextureOrigin, |
| this->pipeline().outputSwizzle()); |
| fXferProcessor->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(xp);) |
| fFS.codeAppend("}"); |
| } |
| |
| GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(const GrTextureProxy* texture, |
| const GrSamplerState& state, |
| const GrSwizzle& swizzle, |
| const char* name) { |
| ++fNumFragmentSamplers; |
| return this->uniformHandler()->addSampler(texture, state, swizzle, name, this->shaderCaps()); |
| } |
| |
| bool GrGLSLProgramBuilder::checkSamplerCounts() { |
| const GrShaderCaps& shaderCaps = *this->shaderCaps(); |
| if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) { |
| GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| #ifdef SK_DEBUG |
| void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) { |
| SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly); |
| SkASSERT(fFS.fUsedProcessorFeaturesThisStage_DebugOnly == gp.requestedFeatures()); |
| } |
| |
| void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { |
| SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly); |
| SkASSERT(fFS.fUsedProcessorFeaturesThisStage_DebugOnly == fp.requestedFeatures()); |
| } |
| |
| void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { |
| SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly); |
| SkASSERT(fFS.fUsedProcessorFeaturesThisStage_DebugOnly == xp.requestedFeatures()); |
| } |
| #endif |
| |
| void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) { |
| if ('\0' == prefix) { |
| *out = name; |
| } else { |
| out->printf("%c%s", prefix, name); |
| } |
| if (mangle) { |
| if (out->endsWith('_')) { |
| // Names containing "__" are reserved. |
| out->append("x"); |
| } |
| out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str()); |
| } |
| } |
| |
| void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) { |
| // create var to hold stage result. If we already have a valid output name, just use that |
| // otherwise create a new mangled one. This name is only valid if we are reordering stages |
| // and have to tell stage exactly where to put its output. |
| SkString outName; |
| if (output->size()) { |
| outName = output->c_str(); |
| } else { |
| this->nameVariable(&outName, '\0', baseName); |
| } |
| fFS.codeAppendf("half4 %s;", outName.c_str()); |
| *output = outName; |
| } |
| |
| void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { |
| this->uniformHandler()->appendUniformDecls(visibility, out); |
| } |
| |
| void GrGLSLProgramBuilder::addRTWidthUniform(const char* name) { |
| SkASSERT(!fUniformHandles.fRTWidthUni.isValid()); |
| GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); |
| fUniformHandles.fRTWidthUni = |
| uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kHalf_GrSLType, name, |
| false, 0, nullptr); |
| } |
| |
| void GrGLSLProgramBuilder::addRTHeightUniform(const char* name) { |
| SkASSERT(!fUniformHandles.fRTHeightUni.isValid()); |
| GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); |
| fUniformHandles.fRTHeightUni = |
| uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kHalf_GrSLType, name, |
| false, 0, nullptr); |
| } |
| |
| void GrGLSLProgramBuilder::finalizeShaders() { |
| this->varyingHandler()->finalize(); |
| fVS.finalize(kVertex_GrShaderFlag); |
| if (this->primitiveProcessor().willUseGeoShader()) { |
| SkASSERT(this->shaderCaps()->geometryShaderSupport()); |
| fGS.finalize(kGeometry_GrShaderFlag); |
| } |
| fFS.finalize(kFragment_GrShaderFlag); |
| } |