caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "SkIntersections.h" |
| 8 | #include "SkOpAngle.h" |
| 9 | #include "SkPathOpsCurve.h" |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 10 | #include "TSearch.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 11 | |
| 12 | // FIXME: this is bogus for quads and cubics |
| 13 | // if the quads and cubics' line from end pt to ctrl pt are coincident, |
| 14 | // there's no obvious way to determine the curve ordering from the |
| 15 | // derivatives alone. In particular, if one quadratic's coincident tangent |
| 16 | // is longer than the other curve, the final control point can place the |
| 17 | // longer curve on either side of the shorter one. |
| 18 | // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
| 19 | // may provide some help, but nothing has been figured out yet. |
| 20 | |
| 21 | /*( |
| 22 | for quads and cubics, set up a parameterized line (e.g. LineParameters ) |
| 23 | for points [0] to [1]. See if point [2] is on that line, or on one side |
| 24 | or the other. If it both quads' end points are on the same side, choose |
| 25 | the shorter tangent. If the tangents are equal, choose the better second |
| 26 | tangent angle |
| 27 | |
| 28 | maybe I could set up LineParameters lazily |
| 29 | */ |
| 30 | bool SkOpAngle::operator<(const SkOpAngle& rh) const { |
| 31 | double y = dy(); |
| 32 | double ry = rh.dy(); |
| 33 | if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ? |
| 34 | return y < 0; |
| 35 | } |
| 36 | double x = dx(); |
| 37 | double rx = rh.dx(); |
| 38 | if (y == 0 && ry == 0 && x * rx < 0) { |
| 39 | return x < rx; |
| 40 | } |
| 41 | double x_ry = x * ry; |
| 42 | double rx_y = rx * y; |
| 43 | double cmp = x_ry - rx_y; |
| 44 | if (!approximately_zero(cmp)) { |
| 45 | return cmp < 0; |
| 46 | } |
| 47 | if (approximately_zero(x_ry) && approximately_zero(rx_y) |
| 48 | && !approximately_zero_squared(cmp)) { |
| 49 | return cmp < 0; |
| 50 | } |
| 51 | // at this point, the initial tangent line is coincident |
| 52 | // see if edges curl away from each other |
| 53 | if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) |
| 54 | || !approximately_zero(rh.fSide))) { |
| 55 | // FIXME: running demo will trigger this assertion |
| 56 | // (don't know if commenting out will trigger further assertion or not) |
| 57 | // commenting it out allows demo to run in release, though |
| 58 | return fSide < rh.fSide; |
| 59 | } |
| 60 | // see if either curve can be lengthened and try the tangent compare again |
| 61 | if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical |
| 62 | && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting |
| 63 | SkOpAngle longer = *this; |
| 64 | SkOpAngle rhLonger = rh; |
| 65 | if (longer.lengthen() | rhLonger.lengthen()) { |
| 66 | return longer < rhLonger; |
| 67 | } |
| 68 | } |
| 69 | if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y)) |
| 70 | || (rh.fVerb == SkPath::kLine_Verb |
| 71 | && approximately_zero(rx) && approximately_zero(ry))) { |
| 72 | // See general unsortable comment below. This case can happen when |
| 73 | // one line has a non-zero change in t but no change in x and y. |
| 74 | fUnsortable = true; |
| 75 | rh.fUnsortable = true; |
| 76 | return this < &rh; // even with no solution, return a stable sort |
| 77 | } |
| 78 | if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny |
| 79 | || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) { |
| 80 | fUnsortable = true; |
| 81 | rh.fUnsortable = true; |
| 82 | return this < &rh; // even with no solution, return a stable sort |
| 83 | } |
| 84 | SkASSERT(fVerb >= SkPath::kQuad_Verb); |
| 85 | SkASSERT(rh.fVerb >= SkPath::kQuad_Verb); |
| 86 | // FIXME: until I can think of something better, project a ray from the |
| 87 | // end of the shorter tangent to midway between the end points |
| 88 | // through both curves and use the resulting angle to sort |
| 89 | // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive |
| 90 | double len = fTangent1.normalSquared(); |
| 91 | double rlen = rh.fTangent1.normalSquared(); |
| 92 | SkDLine ray; |
| 93 | SkIntersections i, ri; |
| 94 | int roots, rroots; |
| 95 | bool flip = false; |
| 96 | do { |
| 97 | bool useThis = (len < rlen) ^ flip; |
| 98 | const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart; |
| 99 | SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb; |
| 100 | ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? |
| 101 | part[2] : part[1]; |
| 102 | ray[1].fX = (part[0].fX + part[partVerb].fX) / 2; |
| 103 | ray[1].fY = (part[0].fY + part[partVerb].fY) / 2; |
| 104 | SkASSERT(ray[0] != ray[1]); |
| 105 | roots = (i.*CurveRay[fVerb])(fPts, ray); |
| 106 | rroots = (ri.*CurveRay[rh.fVerb])(rh.fPts, ray); |
| 107 | } while ((roots == 0 || rroots == 0) && (flip ^= true)); |
| 108 | if (roots == 0 || rroots == 0) { |
| 109 | // FIXME: we don't have a solution in this case. The interim solution |
| 110 | // is to mark the edges as unsortable, exclude them from this and |
| 111 | // future computations, and allow the returned path to be fragmented |
| 112 | fUnsortable = true; |
| 113 | rh.fUnsortable = true; |
| 114 | return this < &rh; // even with no solution, return a stable sort |
| 115 | } |
| 116 | SkDPoint loc; |
| 117 | double best = SK_ScalarInfinity; |
| 118 | SkDVector dxy; |
| 119 | double dist; |
| 120 | int index; |
| 121 | for (index = 0; index < roots; ++index) { |
| 122 | loc = (*CurveDPointAtT[fVerb])(fPts, i[0][index]); |
| 123 | dxy = loc - ray[0]; |
| 124 | dist = dxy.lengthSquared(); |
| 125 | if (best > dist) { |
| 126 | best = dist; |
| 127 | } |
| 128 | } |
| 129 | for (index = 0; index < rroots; ++index) { |
| 130 | loc = (*CurveDPointAtT[rh.fVerb])(rh.fPts, ri[0][index]); |
| 131 | dxy = loc - ray[0]; |
| 132 | dist = dxy.lengthSquared(); |
| 133 | if (best > dist) { |
| 134 | return fSide < 0; |
| 135 | } |
| 136 | } |
| 137 | return fSide > 0; |
| 138 | } |
| 139 | |
| 140 | bool SkOpAngle::lengthen() { |
| 141 | int newEnd = fEnd; |
| 142 | if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { |
| 143 | fEnd = newEnd; |
| 144 | setSpans(); |
| 145 | return true; |
| 146 | } |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | bool SkOpAngle::reverseLengthen() { |
| 151 | if (fReversed) { |
| 152 | return false; |
| 153 | } |
| 154 | int newEnd = fStart; |
| 155 | if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { |
| 156 | fEnd = newEnd; |
| 157 | fReversed = true; |
| 158 | setSpans(); |
| 159 | return true; |
| 160 | } |
| 161 | return false; |
| 162 | } |
| 163 | |
| 164 | void SkOpAngle::set(const SkPoint* orig, SkPath::Verb verb, const SkOpSegment* segment, |
| 165 | int start, int end, const SkTDArray<SkOpSpan>& spans) { |
| 166 | fSegment = segment; |
| 167 | fStart = start; |
| 168 | fEnd = end; |
| 169 | fPts = orig; |
| 170 | fVerb = verb; |
| 171 | fSpans = &spans; |
| 172 | fReversed = false; |
| 173 | fUnsortable = false; |
| 174 | setSpans(); |
| 175 | } |
| 176 | |
| 177 | |
| 178 | void SkOpAngle::setSpans() { |
| 179 | double startT = (*fSpans)[fStart].fT; |
| 180 | double endT = (*fSpans)[fEnd].fT; |
| 181 | switch (fVerb) { |
| 182 | case SkPath::kLine_Verb: { |
| 183 | SkDLine l = SkDLine::SubDivide(fPts, startT, endT); |
| 184 | // OPTIMIZATION: for pure line compares, we never need fTangent1.c |
| 185 | fTangent1.lineEndPoints(l); |
| 186 | fSide = 0; |
| 187 | } break; |
| 188 | case SkPath::kQuad_Verb: { |
| 189 | SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart); |
| 190 | quad = SkDQuad::SubDivide(fPts, startT, endT); |
| 191 | fTangent1.quadEndPoints(quad, 0, 1); |
| 192 | if (dx() == 0 && dy() == 0) { |
| 193 | fTangent1.quadEndPoints(quad); |
| 194 | } |
| 195 | fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only |
| 196 | } break; |
| 197 | case SkPath::kCubic_Verb: { |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 198 | // int nextC = 2; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 199 | fCurvePart = SkDCubic::SubDivide(fPts, startT, endT); |
| 200 | fTangent1.cubicEndPoints(fCurvePart, 0, 1); |
| 201 | if (dx() == 0 && dy() == 0) { |
| 202 | fTangent1.cubicEndPoints(fCurvePart, 0, 2); |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 203 | // nextC = 3; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 204 | if (dx() == 0 && dy() == 0) { |
| 205 | fTangent1.cubicEndPoints(fCurvePart, 0, 3); |
| 206 | } |
| 207 | } |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 208 | // fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only |
| 209 | // if (nextC == 2 && approximately_zero(fSide)) { |
| 210 | // fSide = -fTangent1.pointDistance(fCurvePart[3]); |
| 211 | // } |
| 212 | double testTs[4]; |
| 213 | // OPTIMIZATION: keep inflections precomputed with cubic segment? |
| 214 | int testCount = SkDCubic::FindInflections(fPts, testTs); |
| 215 | double limitT = endT; |
| 216 | int index; |
| 217 | for (index = 0; index < testCount; ++index) { |
| 218 | if (!between(startT, testTs[index], limitT)) { |
| 219 | testTs[index] = -1; |
| 220 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 221 | } |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 222 | testTs[testCount++] = startT; |
| 223 | testTs[testCount++] = endT; |
| 224 | QSort<double>(testTs, &testTs[testCount - 1]); |
| 225 | double bestSide = 0; |
| 226 | int testCases = (testCount << 1) - 1; |
| 227 | index = 0; |
| 228 | while (testTs[index] < 0) { |
| 229 | ++index; |
| 230 | } |
| 231 | index <<= 1; |
| 232 | for (; index < testCases; ++index) { |
| 233 | int testIndex = index >> 1; |
| 234 | double testT = testTs[testIndex]; |
| 235 | if (index & 1) { |
| 236 | testT = (testT + testTs[testIndex + 1]) / 2; |
| 237 | } |
| 238 | // OPTIMIZE: could avoid call for t == startT, endT |
| 239 | SkDPoint pt = dcubic_xy_at_t(fPts, testT); |
| 240 | double testSide = fTangent1.pointDistance(pt); |
| 241 | if (fabs(bestSide) < fabs(testSide)) { |
| 242 | bestSide = testSide; |
| 243 | } |
| 244 | } |
| 245 | fSide = -bestSide; // compare sign only |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 246 | } break; |
| 247 | default: |
| 248 | SkASSERT(0); |
| 249 | } |
| 250 | fUnsortable = dx() == 0 && dy() == 0; |
| 251 | if (fUnsortable) { |
| 252 | return; |
| 253 | } |
| 254 | SkASSERT(fStart != fEnd); |
| 255 | int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro? |
| 256 | for (int index = fStart; index != fEnd; index += step) { |
| 257 | #if 1 |
| 258 | const SkOpSpan& thisSpan = (*fSpans)[index]; |
| 259 | const SkOpSpan& nextSpan = (*fSpans)[index + step]; |
| 260 | if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) { |
| 261 | continue; |
| 262 | } |
| 263 | fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd; |
| 264 | #if DEBUG_UNSORTABLE |
| 265 | if (fUnsortable) { |
| 266 | SkPoint iPt = (*CurvePointAtT[fVerb])(fPts, thisSpan.fT); |
| 267 | SkPoint ePt = (*CurvePointAtT[fVerb])(fPts, nextSpan.fT); |
| 268 | SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
| 269 | index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
| 270 | } |
| 271 | #endif |
| 272 | return; |
| 273 | #else |
| 274 | if ((*fSpans)[index].fUnsortableStart) { |
| 275 | fUnsortable = true; |
| 276 | return; |
| 277 | } |
| 278 | #endif |
| 279 | } |
| 280 | #if 1 |
| 281 | #if DEBUG_UNSORTABLE |
| 282 | SkPoint iPt = (*CurvePointAtT[fVerb])(fPts, startT); |
| 283 | SkPoint ePt = (*CurvePointAtT[fVerb])(fPts, endT); |
| 284 | SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
| 285 | fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
| 286 | #endif |
| 287 | fUnsortable = true; |
| 288 | #endif |
| 289 | } |