blob: a3da70051ce48c2130d1c9fcb05db9a283aef266 [file] [log] [blame]
caryclark@google.com639df892012-01-10 21:46:10 +00001#include "CubicIntersection.h"
2
3//http://planetmath.org/encyclopedia/CubicEquation.html
4/* the roots of x^3 + ax^2 + bx + c are
5j = -2a^3 + 9ab - 27c
6k = sqrt((2a^3 - 9ab + 27c)^2 + 4(-a^2 + 3b)^3)
7t1 = -a/3 + cuberoot((j + k) / 54) + cuberoot((j - k) / 54)
8t2 = -a/3 - ( 1 + i*cuberoot(3))/2 * cuberoot((j + k) / 54)
9 + (-1 + i*cuberoot(3))/2 * cuberoot((j - k) / 54)
10t3 = -a/3 + (-1 + i*cuberoot(3))/2 * cuberoot((j + k) / 54)
11 - ( 1 + i*cuberoot(3))/2 * cuberoot((j - k) / 54)
12*/
13
14
15static bool is_unit_interval(double x) {
16 return x > 0 && x < 1;
17}
18
19const double PI = 4 * atan(1);
20
21// from SkGeometry.cpp
22int cubic_roots(const double coeff[4], double tValues[3]) {
23 if (approximately_zero(coeff[0])) // we're just a quadratic
24 {
25 return quadratic_roots(&coeff[1], tValues);
26 }
27 double inva = 1 / coeff[0];
28 double a = coeff[1] * inva;
29 double b = coeff[2] * inva;
30 double c = coeff[3] * inva;
31 double a2 = a * a;
32 double Q = (a2 - b * 3) / 9;
33 double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
34 double Q3 = Q * Q * Q;
35 double R2MinusQ3 = R * R - Q3;
36 double adiv3 = a / 3;
37 double* roots = tValues;
38 double r;
39
40 if (R2MinusQ3 < 0) // we have 3 real roots
41 {
42 double theta = acos(R / sqrt(Q3));
43 double neg2RootQ = -2 * sqrt(Q);
44
45 r = neg2RootQ * cos(theta / 3) - adiv3;
46 if (is_unit_interval(r))
47 *roots++ = r;
48
49 r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
50 if (is_unit_interval(r))
51 *roots++ = r;
52
53 r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
54 if (is_unit_interval(r))
55 *roots++ = r;
56 }
57 else // we have 1 real root
58 {
59 double A = fabs(R) + sqrt(R2MinusQ3);
60 A = cube_root(A);
61 if (R > 0) {
62 A = -A;
63 }
64 if (A != 0) {
65 A += Q / A;
66 }
67 r = A - adiv3;
68 if (is_unit_interval(r))
69 *roots++ = r;
70 }
71 return (int)(roots - tValues);
72}