joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2017 ARM Ltd. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
Mike Klein | c0bd9f9 | 2019-04-23 12:05:21 -0500 | [diff] [blame] | 8 | #include "src/core/SkDistanceFieldGen.h" |
| 9 | #include "src/gpu/GrDistanceFieldGenFromVector.h" |
Hal Canary | 95e3c05 | 2017-01-11 12:44:43 -0500 | [diff] [blame] | 10 | |
Mike Klein | c0bd9f9 | 2019-04-23 12:05:21 -0500 | [diff] [blame] | 11 | #include "include/core/SkMatrix.h" |
| 12 | #include "include/gpu/GrConfig.h" |
| 13 | #include "include/pathops/SkPathOps.h" |
| 14 | #include "src/core/SkAutoMalloc.h" |
| 15 | #include "src/core/SkGeometry.h" |
| 16 | #include "src/core/SkPointPriv.h" |
| 17 | #include "src/core/SkRectPriv.h" |
Michael Ludwig | 663afe5 | 2019-06-03 16:46:19 -0400 | [diff] [blame^] | 18 | #include "src/gpu/geometry/GrPathUtils.h" |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 19 | |
| 20 | /** |
| 21 | * If a scanline (a row of texel) cross from the kRight_SegSide |
| 22 | * of a segment to the kLeft_SegSide, the winding score should |
| 23 | * add 1. |
| 24 | * And winding score should subtract 1 if the scanline cross |
| 25 | * from kLeft_SegSide to kRight_SegSide. |
| 26 | * Always return kNA_SegSide if the scanline does not cross over |
| 27 | * the segment. Winding score should be zero in this case. |
| 28 | * You can get the winding number for each texel of the scanline |
| 29 | * by adding the winding score from left to right. |
| 30 | * Assuming we always start from outside, so the winding number |
| 31 | * should always start from zero. |
| 32 | * ________ ________ |
| 33 | * | | | | |
| 34 | * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
| 35 | * |+1 |-1 |-1 |+1 <= Winding score |
| 36 | * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
| 37 | * |________| |________| |
| 38 | * |
| 39 | * .......NA................NA.......... |
| 40 | * 0 0 |
| 41 | */ |
| 42 | enum SegSide { |
| 43 | kLeft_SegSide = -1, |
| 44 | kOn_SegSide = 0, |
| 45 | kRight_SegSide = 1, |
| 46 | kNA_SegSide = 2, |
| 47 | }; |
| 48 | |
| 49 | struct DFData { |
| 50 | float fDistSq; // distance squared to nearest (so far) edge |
| 51 | int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
| 52 | }; |
| 53 | |
| 54 | /////////////////////////////////////////////////////////////////////////////// |
| 55 | |
| 56 | /* |
| 57 | * Type definition for double precision DPoint and DAffineMatrix |
| 58 | */ |
| 59 | |
| 60 | // Point with double precision |
| 61 | struct DPoint { |
| 62 | double fX, fY; |
| 63 | |
| 64 | static DPoint Make(double x, double y) { |
| 65 | DPoint pt; |
| 66 | pt.set(x, y); |
| 67 | return pt; |
| 68 | } |
| 69 | |
| 70 | double x() const { return fX; } |
| 71 | double y() const { return fY; } |
| 72 | |
| 73 | void set(double x, double y) { fX = x; fY = y; } |
| 74 | |
| 75 | /** Returns the euclidian distance from (0,0) to (x,y) |
| 76 | */ |
| 77 | static double Length(double x, double y) { |
| 78 | return sqrt(x * x + y * y); |
| 79 | } |
| 80 | |
| 81 | /** Returns the euclidian distance between a and b |
| 82 | */ |
| 83 | static double Distance(const DPoint& a, const DPoint& b) { |
| 84 | return Length(a.fX - b.fX, a.fY - b.fY); |
| 85 | } |
| 86 | |
| 87 | double distanceToSqd(const DPoint& pt) const { |
| 88 | double dx = fX - pt.fX; |
| 89 | double dy = fY - pt.fY; |
| 90 | return dx * dx + dy * dy; |
| 91 | } |
| 92 | }; |
| 93 | |
| 94 | // Matrix with double precision for affine transformation. |
| 95 | // We don't store row 3 because its always (0, 0, 1). |
| 96 | class DAffineMatrix { |
| 97 | public: |
| 98 | double operator[](int index) const { |
| 99 | SkASSERT((unsigned)index < 6); |
| 100 | return fMat[index]; |
| 101 | } |
| 102 | |
| 103 | double& operator[](int index) { |
| 104 | SkASSERT((unsigned)index < 6); |
| 105 | return fMat[index]; |
| 106 | } |
| 107 | |
| 108 | void setAffine(double m11, double m12, double m13, |
| 109 | double m21, double m22, double m23) { |
| 110 | fMat[0] = m11; |
| 111 | fMat[1] = m12; |
| 112 | fMat[2] = m13; |
| 113 | fMat[3] = m21; |
| 114 | fMat[4] = m22; |
| 115 | fMat[5] = m23; |
| 116 | } |
| 117 | |
| 118 | /** Set the matrix to identity |
| 119 | */ |
| 120 | void reset() { |
| 121 | fMat[0] = fMat[4] = 1.0; |
| 122 | fMat[1] = fMat[3] = |
| 123 | fMat[2] = fMat[5] = 0.0; |
| 124 | } |
| 125 | |
| 126 | // alias for reset() |
| 127 | void setIdentity() { this->reset(); } |
| 128 | |
| 129 | DPoint mapPoint(const SkPoint& src) const { |
| 130 | DPoint pt = DPoint::Make(src.x(), src.y()); |
| 131 | return this->mapPoint(pt); |
| 132 | } |
| 133 | |
| 134 | DPoint mapPoint(const DPoint& src) const { |
| 135 | return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], |
| 136 | fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); |
| 137 | } |
| 138 | private: |
| 139 | double fMat[6]; |
| 140 | }; |
| 141 | |
| 142 | /////////////////////////////////////////////////////////////////////////////// |
| 143 | |
| 144 | static const double kClose = (SK_Scalar1 / 16.0); |
Mike Reed | 8be952a | 2017-02-13 20:44:33 -0500 | [diff] [blame] | 145 | static const double kCloseSqd = kClose * kClose; |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 146 | static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); |
| 147 | static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); |
| 148 | static const float kConicTolerance = 0.25f; |
| 149 | |
| 150 | static inline bool between_closed_open(double a, double b, double c, |
| 151 | double tolerance = 0.0, |
| 152 | bool xformToleranceToX = false) { |
| 153 | SkASSERT(tolerance >= 0.0); |
| 154 | double tolB = tolerance; |
| 155 | double tolC = tolerance; |
| 156 | |
| 157 | if (xformToleranceToX) { |
| 158 | // Canonical space is y = x^2 and the derivative of x^2 is 2x. |
| 159 | // So the slope of the tangent line at point (x, x^2) is 2x. |
| 160 | // |
| 161 | // /| |
| 162 | // sqrt(2x * 2x + 1 * 1) / | 2x |
| 163 | // /__| |
| 164 | // 1 |
| 165 | tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
| 166 | tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
| 167 | } |
| 168 | return b < c ? (a >= b - tolB && a < c - tolC) : |
| 169 | (a >= c - tolC && a < b - tolB); |
| 170 | } |
| 171 | |
| 172 | static inline bool between_closed(double a, double b, double c, |
| 173 | double tolerance = 0.0, |
| 174 | bool xformToleranceToX = false) { |
| 175 | SkASSERT(tolerance >= 0.0); |
| 176 | double tolB = tolerance; |
| 177 | double tolC = tolerance; |
| 178 | |
| 179 | if (xformToleranceToX) { |
| 180 | tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
| 181 | tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
| 182 | } |
| 183 | return b < c ? (a >= b - tolB && a <= c + tolC) : |
| 184 | (a >= c - tolC && a <= b + tolB); |
| 185 | } |
| 186 | |
| 187 | static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { |
| 188 | SkASSERT(tolerance >= 0.0); |
| 189 | return fabs(x) <= tolerance; |
| 190 | } |
| 191 | |
| 192 | static inline bool nearly_equal(double x, double y, |
| 193 | double tolerance = kNearlyZero, |
| 194 | bool xformToleranceToX = false) { |
| 195 | SkASSERT(tolerance >= 0.0); |
| 196 | if (xformToleranceToX) { |
| 197 | tolerance = tolerance / sqrt(4.0 * y * y + 1.0); |
| 198 | } |
| 199 | return fabs(x - y) <= tolerance; |
| 200 | } |
| 201 | |
| 202 | static inline double sign_of(const double &val) { |
| 203 | return (val < 0.0) ? -1.0 : 1.0; |
| 204 | } |
| 205 | |
| 206 | static bool is_colinear(const SkPoint pts[3]) { |
| 207 | return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - |
| 208 | (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd); |
| 209 | } |
| 210 | |
| 211 | class PathSegment { |
| 212 | public: |
| 213 | enum { |
| 214 | // These enum values are assumed in member functions below. |
| 215 | kLine = 0, |
| 216 | kQuad = 1, |
| 217 | } fType; |
| 218 | |
| 219 | // line uses 2 pts, quad uses 3 pts |
| 220 | SkPoint fPts[3]; |
| 221 | |
| 222 | DPoint fP0T, fP2T; |
| 223 | DAffineMatrix fXformMatrix; |
| 224 | double fScalingFactor; |
| 225 | double fScalingFactorSqd; |
| 226 | double fNearlyZeroScaled; |
| 227 | double fTangentTolScaledSqd; |
| 228 | SkRect fBoundingBox; |
| 229 | |
| 230 | void init(); |
| 231 | |
| 232 | int countPoints() { |
| 233 | GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| 234 | return fType + 2; |
| 235 | } |
| 236 | |
| 237 | const SkPoint& endPt() const { |
| 238 | GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| 239 | return fPts[fType + 1]; |
| 240 | } |
| 241 | }; |
| 242 | |
| 243 | typedef SkTArray<PathSegment, true> PathSegmentArray; |
| 244 | |
| 245 | void PathSegment::init() { |
| 246 | const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); |
| 247 | const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); |
| 248 | const double p0x = p0.x(); |
| 249 | const double p0y = p0.y(); |
| 250 | const double p2x = p2.x(); |
| 251 | const double p2y = p2.y(); |
| 252 | |
| 253 | fBoundingBox.set(fPts[0], this->endPt()); |
| 254 | |
| 255 | if (fType == PathSegment::kLine) { |
| 256 | fScalingFactorSqd = fScalingFactor = 1.0; |
| 257 | double hypotenuse = DPoint::Distance(p0, p2); |
| 258 | |
| 259 | const double cosTheta = (p2x - p0x) / hypotenuse; |
| 260 | const double sinTheta = (p2y - p0y) / hypotenuse; |
| 261 | |
| 262 | fXformMatrix.setAffine( |
| 263 | cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), |
| 264 | -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) |
| 265 | ); |
| 266 | } else { |
| 267 | SkASSERT(fType == PathSegment::kQuad); |
| 268 | |
| 269 | // Calculate bounding box |
| 270 | const SkPoint _P1mP0 = fPts[1] - fPts[0]; |
| 271 | SkPoint t = _P1mP0 - fPts[2] + fPts[1]; |
| 272 | t.fX = _P1mP0.x() / t.x(); |
| 273 | t.fY = _P1mP0.y() / t.y(); |
| 274 | t.fX = SkScalarClampMax(t.x(), 1.0); |
| 275 | t.fY = SkScalarClampMax(t.y(), 1.0); |
| 276 | t.fX = _P1mP0.x() * t.x(); |
| 277 | t.fY = _P1mP0.y() * t.y(); |
| 278 | const SkPoint m = fPts[0] + t; |
Mike Reed | 185ffe9 | 2018-01-08 17:09:54 -0500 | [diff] [blame] | 279 | SkRectPriv::GrowToInclude(&fBoundingBox, m); |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 280 | |
| 281 | const double p1x = fPts[1].x(); |
| 282 | const double p1y = fPts[1].y(); |
| 283 | |
| 284 | const double p0xSqd = p0x * p0x; |
| 285 | const double p0ySqd = p0y * p0y; |
| 286 | const double p2xSqd = p2x * p2x; |
| 287 | const double p2ySqd = p2y * p2y; |
| 288 | const double p1xSqd = p1x * p1x; |
| 289 | const double p1ySqd = p1y * p1y; |
| 290 | |
| 291 | const double p01xProd = p0x * p1x; |
| 292 | const double p02xProd = p0x * p2x; |
| 293 | const double b12xProd = p1x * p2x; |
| 294 | const double p01yProd = p0y * p1y; |
| 295 | const double p02yProd = p0y * p2y; |
| 296 | const double b12yProd = p1y * p2y; |
| 297 | |
| 298 | const double sqrtA = p0y - (2.0 * p1y) + p2y; |
| 299 | const double a = sqrtA * sqrtA; |
| 300 | const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); |
| 301 | const double sqrtB = p0x - (2.0 * p1x) + p2x; |
| 302 | const double b = sqrtB * sqrtB; |
| 303 | const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) |
| 304 | - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) |
| 305 | + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) |
| 306 | + (p2xSqd * p0ySqd); |
| 307 | const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) |
| 308 | + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) |
| 309 | + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) |
| 310 | + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) |
| 311 | + (2.0 * p2x * p01yProd) + (p2x * p02yProd) |
| 312 | - (2.0 * p2x * p1ySqd); |
| 313 | const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) |
| 314 | - (2.0 * p01xProd * p2y) - (p02xProd * p0y) |
| 315 | + (4.0 * p02xProd * p1y) - (p02xProd * p2y) |
| 316 | + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) |
| 317 | - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) |
| 318 | + (p2xSqd * p0y)); |
| 319 | |
| 320 | const double cosTheta = sqrt(a / (a + b)); |
| 321 | const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
| 322 | |
| 323 | const double gDef = cosTheta * g - sinTheta * f; |
| 324 | const double fDef = sinTheta * g + cosTheta * f; |
| 325 | |
| 326 | |
| 327 | const double x0 = gDef / (a + b); |
| 328 | const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); |
| 329 | |
| 330 | |
| 331 | const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
| 332 | fScalingFactor = fabs(1.0 / lambda); |
| 333 | fScalingFactorSqd = fScalingFactor * fScalingFactor; |
| 334 | |
| 335 | const double lambda_cosTheta = lambda * cosTheta; |
| 336 | const double lambda_sinTheta = lambda * sinTheta; |
| 337 | |
| 338 | fXformMatrix.setAffine( |
| 339 | lambda_cosTheta, -lambda_sinTheta, lambda * x0, |
| 340 | lambda_sinTheta, lambda_cosTheta, lambda * y0 |
| 341 | ); |
| 342 | } |
| 343 | |
| 344 | fNearlyZeroScaled = kNearlyZero / fScalingFactor; |
| 345 | fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; |
| 346 | |
| 347 | fP0T = fXformMatrix.mapPoint(p0); |
| 348 | fP2T = fXformMatrix.mapPoint(p2); |
| 349 | } |
| 350 | |
| 351 | static void init_distances(DFData* data, int size) { |
| 352 | DFData* currData = data; |
| 353 | |
| 354 | for (int i = 0; i < size; ++i) { |
| 355 | // init distance to "far away" |
| 356 | currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
| 357 | currData->fDeltaWindingScore = 0; |
| 358 | ++currData; |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | static inline void add_line_to_segment(const SkPoint pts[2], |
| 363 | PathSegmentArray* segments) { |
| 364 | segments->push_back(); |
| 365 | segments->back().fType = PathSegment::kLine; |
| 366 | segments->back().fPts[0] = pts[0]; |
| 367 | segments->back().fPts[1] = pts[1]; |
| 368 | |
| 369 | segments->back().init(); |
| 370 | } |
| 371 | |
| 372 | static inline void add_quad_segment(const SkPoint pts[3], |
| 373 | PathSegmentArray* segments) { |
Cary Clark | df429f3 | 2017-11-08 11:44:31 -0500 | [diff] [blame] | 374 | if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd || |
| 375 | SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd || |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 376 | is_colinear(pts)) { |
| 377 | if (pts[0] != pts[2]) { |
| 378 | SkPoint line_pts[2]; |
| 379 | line_pts[0] = pts[0]; |
| 380 | line_pts[1] = pts[2]; |
| 381 | add_line_to_segment(line_pts, segments); |
| 382 | } |
| 383 | } else { |
| 384 | segments->push_back(); |
| 385 | segments->back().fType = PathSegment::kQuad; |
| 386 | segments->back().fPts[0] = pts[0]; |
| 387 | segments->back().fPts[1] = pts[1]; |
| 388 | segments->back().fPts[2] = pts[2]; |
| 389 | |
| 390 | segments->back().init(); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | static inline void add_cubic_segments(const SkPoint pts[4], |
| 395 | PathSegmentArray* segments) { |
| 396 | SkSTArray<15, SkPoint, true> quads; |
| 397 | GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); |
| 398 | int count = quads.count(); |
| 399 | for (int q = 0; q < count; q += 3) { |
| 400 | add_quad_segment(&quads[q], segments); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | static float calculate_nearest_point_for_quad( |
| 405 | const PathSegment& segment, |
| 406 | const DPoint &xFormPt) { |
| 407 | static const float kThird = 0.33333333333f; |
| 408 | static const float kTwentySeventh = 0.037037037f; |
| 409 | |
| 410 | const float a = 0.5f - (float)xFormPt.y(); |
| 411 | const float b = -0.5f * (float)xFormPt.x(); |
| 412 | |
| 413 | const float a3 = a * a * a; |
| 414 | const float b2 = b * b; |
| 415 | |
| 416 | const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); |
| 417 | |
| 418 | if (c >= 0.f) { |
| 419 | const float sqrtC = sqrt(c); |
| 420 | const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
| 421 | return result; |
| 422 | } else { |
| 423 | const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
| 424 | const float phi = (float)acos(cosPhi); |
| 425 | float result; |
| 426 | if (xFormPt.x() > 0.f) { |
| 427 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
| 428 | if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
| 429 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
| 430 | } |
| 431 | } else { |
| 432 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
| 433 | if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
| 434 | result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
| 435 | } |
| 436 | } |
| 437 | return result; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // This structure contains some intermediate values shared by the same row. |
| 442 | // It is used to calculate segment side of a quadratic bezier. |
| 443 | struct RowData { |
| 444 | // The intersection type of a scanline and y = x * x parabola in canonical space. |
| 445 | enum IntersectionType { |
| 446 | kNoIntersection, |
| 447 | kVerticalLine, |
| 448 | kTangentLine, |
| 449 | kTwoPointsIntersect |
| 450 | } fIntersectionType; |
| 451 | |
| 452 | // The direction of the quadratic segment/scanline in the canonical space. |
| 453 | // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis. |
| 454 | // 0: The scanline is a vertical line in the canonical space. |
| 455 | // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. |
| 456 | int fQuadXDirection; |
| 457 | int fScanlineXDirection; |
| 458 | |
| 459 | // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. |
| 460 | double fYAtIntersection; |
| 461 | |
| 462 | // The x-value for two intersection points. |
| 463 | double fXAtIntersection1; |
| 464 | double fXAtIntersection2; |
| 465 | }; |
| 466 | |
| 467 | void precomputation_for_row( |
| 468 | RowData *rowData, |
| 469 | const PathSegment& segment, |
| 470 | const SkPoint& pointLeft, |
| 471 | const SkPoint& pointRight |
| 472 | ) { |
| 473 | if (segment.fType != PathSegment::kQuad) { |
| 474 | return; |
| 475 | } |
| 476 | |
| 477 | const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
Brian Salomon | 2335644 | 2018-11-30 15:33:19 -0500 | [diff] [blame] | 478 | const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight); |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 479 | |
| 480 | rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x()); |
| 481 | rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x()); |
| 482 | |
| 483 | const double x1 = xFormPtLeft.x(); |
| 484 | const double y1 = xFormPtLeft.y(); |
| 485 | const double x2 = xFormPtRight.x(); |
| 486 | const double y2 = xFormPtRight.y(); |
| 487 | |
| 488 | if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { |
| 489 | rowData->fIntersectionType = RowData::kVerticalLine; |
| 490 | rowData->fYAtIntersection = x1 * x1; |
| 491 | rowData->fScanlineXDirection = 0; |
| 492 | return; |
| 493 | } |
| 494 | |
| 495 | // Line y = mx + b |
| 496 | const double m = (y2 - y1) / (x2 - x1); |
| 497 | const double b = -m * x1 + y1; |
| 498 | |
| 499 | const double m2 = m * m; |
| 500 | const double c = m2 + 4.0 * b; |
| 501 | |
| 502 | const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); |
| 503 | |
| 504 | // Check if the scanline is the tangent line of the curve, |
| 505 | // and the curve start or end at the same y-coordinate of the scanline |
| 506 | if ((rowData->fScanlineXDirection == 1 && |
| 507 | (segment.fPts[0].y() == pointLeft.y() || |
| 508 | segment.fPts[2].y() == pointLeft.y())) && |
| 509 | nearly_zero(c, tol)) { |
| 510 | rowData->fIntersectionType = RowData::kTangentLine; |
| 511 | rowData->fXAtIntersection1 = m / 2.0; |
| 512 | rowData->fXAtIntersection2 = m / 2.0; |
| 513 | } else if (c <= 0.0) { |
| 514 | rowData->fIntersectionType = RowData::kNoIntersection; |
| 515 | return; |
| 516 | } else { |
| 517 | rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
| 518 | const double d = sqrt(c); |
| 519 | rowData->fXAtIntersection1 = (m + d) / 2.0; |
| 520 | rowData->fXAtIntersection2 = (m - d) / 2.0; |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | SegSide calculate_side_of_quad( |
| 525 | const PathSegment& segment, |
| 526 | const SkPoint& point, |
| 527 | const DPoint& xFormPt, |
| 528 | const RowData& rowData) { |
| 529 | SegSide side = kNA_SegSide; |
| 530 | |
| 531 | if (RowData::kVerticalLine == rowData.fIntersectionType) { |
| 532 | side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection); |
| 533 | } |
| 534 | else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { |
| 535 | const double p1 = rowData.fXAtIntersection1; |
| 536 | const double p2 = rowData.fXAtIntersection2; |
| 537 | |
| 538 | int signP1 = (int)sign_of(p1 - xFormPt.x()); |
| 539 | bool includeP1 = true; |
| 540 | bool includeP2 = true; |
| 541 | |
| 542 | if (rowData.fScanlineXDirection == 1) { |
| 543 | if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() && |
| 544 | nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) || |
| 545 | (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() && |
| 546 | nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) { |
| 547 | includeP1 = false; |
| 548 | } |
| 549 | if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() && |
| 550 | nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) || |
| 551 | (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() && |
| 552 | nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) { |
| 553 | includeP2 = false; |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(), |
| 558 | segment.fNearlyZeroScaled, true)) { |
| 559 | side = (SegSide)(signP1 * rowData.fQuadXDirection); |
| 560 | } |
| 561 | if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(), |
| 562 | segment.fNearlyZeroScaled, true)) { |
| 563 | int signP2 = (int)sign_of(p2 - xFormPt.x()); |
| 564 | if (side == kNA_SegSide || signP2 == 1) { |
| 565 | side = (SegSide)(-signP2 * rowData.fQuadXDirection); |
| 566 | } |
| 567 | } |
| 568 | } else if (RowData::kTangentLine == rowData.fIntersectionType) { |
| 569 | // The scanline is the tangent line of current quadratic segment. |
| 570 | |
| 571 | const double p = rowData.fXAtIntersection1; |
| 572 | int signP = (int)sign_of(p - xFormPt.x()); |
| 573 | if (rowData.fScanlineXDirection == 1) { |
| 574 | // The path start or end at the tangent point. |
| 575 | if (segment.fPts[0].y() == point.y()) { |
| 576 | side = (SegSide)(signP); |
| 577 | } else if (segment.fPts[2].y() == point.y()) { |
| 578 | side = (SegSide)(-signP); |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | return side; |
| 584 | } |
| 585 | |
| 586 | static float distance_to_segment(const SkPoint& point, |
| 587 | const PathSegment& segment, |
| 588 | const RowData& rowData, |
| 589 | SegSide* side) { |
| 590 | SkASSERT(side); |
| 591 | |
| 592 | const DPoint xformPt = segment.fXformMatrix.mapPoint(point); |
| 593 | |
| 594 | if (segment.fType == PathSegment::kLine) { |
| 595 | float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
| 596 | |
| 597 | if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { |
| 598 | result = (float)(xformPt.y() * xformPt.y()); |
| 599 | } else if (xformPt.x() < segment.fP0T.x()) { |
| 600 | result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); |
| 601 | } else { |
| 602 | result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x()) |
| 603 | + xformPt.y() * xformPt.y()); |
| 604 | } |
| 605 | |
| 606 | if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
| 607 | segment.fBoundingBox.bottom())) { |
| 608 | *side = (SegSide)(int)sign_of(xformPt.y()); |
| 609 | } else { |
| 610 | *side = kNA_SegSide; |
| 611 | } |
| 612 | return result; |
| 613 | } else { |
| 614 | SkASSERT(segment.fType == PathSegment::kQuad); |
| 615 | |
| 616 | const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
| 617 | |
| 618 | float dist; |
| 619 | |
| 620 | if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { |
| 621 | DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); |
| 622 | dist = (float)xformPt.distanceToSqd(x); |
| 623 | } else { |
| 624 | const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T); |
| 625 | const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T); |
| 626 | |
| 627 | if (distToB0T < distToB2T) { |
| 628 | dist = distToB0T; |
| 629 | } else { |
| 630 | dist = distToB2T; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
| 635 | segment.fBoundingBox.bottom())) { |
| 636 | *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
| 637 | } else { |
| 638 | *side = kNA_SegSide; |
| 639 | } |
| 640 | |
| 641 | return (float)(dist * segment.fScalingFactorSqd); |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | static void calculate_distance_field_data(PathSegmentArray* segments, |
| 646 | DFData* dataPtr, |
| 647 | int width, int height) { |
| 648 | int count = segments->count(); |
| 649 | for (int a = 0; a < count; ++a) { |
| 650 | PathSegment& segment = (*segments)[a]; |
| 651 | const SkRect& segBB = segment.fBoundingBox.makeOutset( |
| 652 | SK_DistanceFieldPad, SK_DistanceFieldPad); |
| 653 | int startColumn = (int)segBB.left(); |
| 654 | int endColumn = SkScalarCeilToInt(segBB.right()); |
| 655 | |
| 656 | int startRow = (int)segBB.top(); |
| 657 | int endRow = SkScalarCeilToInt(segBB.bottom()); |
| 658 | |
| 659 | SkASSERT((startColumn >= 0) && "StartColumn < 0!"); |
| 660 | SkASSERT((endColumn <= width) && "endColumn > width!"); |
| 661 | SkASSERT((startRow >= 0) && "StartRow < 0!"); |
| 662 | SkASSERT((endRow <= height) && "EndRow > height!"); |
| 663 | |
| 664 | // Clip inside the distance field to avoid overflow |
| 665 | startColumn = SkTMax(startColumn, 0); |
| 666 | endColumn = SkTMin(endColumn, width); |
| 667 | startRow = SkTMax(startRow, 0); |
| 668 | endRow = SkTMin(endRow, height); |
| 669 | |
| 670 | for (int row = startRow; row < endRow; ++row) { |
| 671 | SegSide prevSide = kNA_SegSide; |
| 672 | const float pY = row + 0.5f; |
| 673 | RowData rowData; |
| 674 | |
| 675 | const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); |
| 676 | const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); |
| 677 | |
| 678 | if (between_closed_open(pY, segment.fBoundingBox.top(), |
| 679 | segment.fBoundingBox.bottom())) { |
| 680 | precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
| 681 | } |
| 682 | |
| 683 | for (int col = startColumn; col < endColumn; ++col) { |
| 684 | int idx = (row * width) + col; |
| 685 | |
| 686 | const float pX = col + 0.5f; |
| 687 | const SkPoint point = SkPoint::Make(pX, pY); |
| 688 | |
| 689 | const float distSq = dataPtr[idx].fDistSq; |
| 690 | int dilation = distSq < 1.5 * 1.5 ? 1 : |
| 691 | distSq < 2.5 * 2.5 ? 2 : |
| 692 | distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; |
| 693 | if (dilation > SK_DistanceFieldPad) { |
| 694 | dilation = SK_DistanceFieldPad; |
| 695 | } |
| 696 | |
| 697 | // Optimisation for not calculating some points. |
| 698 | if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut() |
| 699 | .makeOutset(dilation, dilation).contains(col, row)) { |
| 700 | continue; |
| 701 | } |
| 702 | |
| 703 | SegSide side = kNA_SegSide; |
| 704 | int deltaWindingScore = 0; |
| 705 | float currDistSq = distance_to_segment(point, segment, rowData, &side); |
| 706 | if (prevSide == kLeft_SegSide && side == kRight_SegSide) { |
| 707 | deltaWindingScore = -1; |
| 708 | } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { |
| 709 | deltaWindingScore = 1; |
| 710 | } |
| 711 | |
| 712 | prevSide = side; |
| 713 | |
| 714 | if (currDistSq < distSq) { |
| 715 | dataPtr[idx].fDistSq = currDistSq; |
| 716 | } |
| 717 | |
| 718 | dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
| 719 | } |
| 720 | } |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | template <int distanceMagnitude> |
| 725 | static unsigned char pack_distance_field_val(float dist) { |
| 726 | // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
| 727 | // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
| 728 | // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
| 729 | dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
| 730 | |
| 731 | // Scale into the positive range for unsigned distance. |
| 732 | dist += distanceMagnitude; |
| 733 | |
| 734 | // Scale into unsigned char range. |
| 735 | // Round to place negative and positive values as equally as possible around 128 |
| 736 | // (which represents zero). |
| 737 | return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); |
| 738 | } |
| 739 | |
| 740 | bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
| 741 | const SkPath& path, const SkMatrix& drawMatrix, |
| 742 | int width, int height, size_t rowBytes) { |
| 743 | SkASSERT(distanceField); |
| 744 | |
Brian Salomon | 2335644 | 2018-11-30 15:33:19 -0500 | [diff] [blame] | 745 | #ifdef SK_DEBUG |
| 746 | SkPath xformPath; |
| 747 | path.transform(drawMatrix, &xformPath); |
| 748 | SkIRect pathBounds = xformPath.getBounds().roundOut(); |
| 749 | SkIRect expectPathBounds = |
| 750 | SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad, height - 2 * SK_DistanceFieldPad); |
| 751 | #endif |
| 752 | |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 753 | SkASSERT(expectPathBounds.isEmpty() || |
| 754 | expectPathBounds.contains(pathBounds.x(), pathBounds.y())); |
| 755 | SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
| 756 | expectPathBounds.contains(pathBounds)); |
| 757 | |
| 758 | SkPath simplifiedPath; |
| 759 | SkPath workingPath; |
| 760 | if (Simplify(path, &simplifiedPath)) { |
| 761 | workingPath = simplifiedPath; |
| 762 | } else { |
| 763 | workingPath = path; |
| 764 | } |
| 765 | |
| 766 | if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { |
| 767 | return false; |
| 768 | } |
| 769 | |
| 770 | workingPath.transform(drawMatrix); |
| 771 | |
| 772 | SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut()); |
| 773 | SkASSERT(expectPathBounds.isEmpty() || |
| 774 | expectPathBounds.contains(pathBounds.x(), pathBounds.y())); |
| 775 | SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
| 776 | expectPathBounds.contains(pathBounds)); |
| 777 | |
| 778 | // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) |
| 779 | SkMatrix dfMatrix; |
| 780 | dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
| 781 | workingPath.transform(dfMatrix); |
| 782 | |
| 783 | // create temp data |
| 784 | size_t dataSize = width * height * sizeof(DFData); |
| 785 | SkAutoSMalloc<1024> dfStorage(dataSize); |
| 786 | DFData* dataPtr = (DFData*) dfStorage.get(); |
| 787 | |
| 788 | // create initial distance data |
| 789 | init_distances(dataPtr, width * height); |
| 790 | |
| 791 | SkPath::Iter iter(workingPath, true); |
| 792 | SkSTArray<15, PathSegment, true> segments; |
| 793 | |
| 794 | for (;;) { |
| 795 | SkPoint pts[4]; |
| 796 | SkPath::Verb verb = iter.next(pts); |
| 797 | switch (verb) { |
| 798 | case SkPath::kMove_Verb: |
| 799 | break; |
| 800 | case SkPath::kLine_Verb: { |
| 801 | add_line_to_segment(pts, &segments); |
| 802 | break; |
| 803 | } |
| 804 | case SkPath::kQuad_Verb: |
| 805 | add_quad_segment(pts, &segments); |
| 806 | break; |
| 807 | case SkPath::kConic_Verb: { |
| 808 | SkScalar weight = iter.conicWeight(); |
| 809 | SkAutoConicToQuads converter; |
| 810 | const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance); |
| 811 | for (int i = 0; i < converter.countQuads(); ++i) { |
| 812 | add_quad_segment(quadPts + 2*i, &segments); |
| 813 | } |
| 814 | break; |
| 815 | } |
| 816 | case SkPath::kCubic_Verb: { |
| 817 | add_cubic_segments(pts, &segments); |
| 818 | break; |
Brian Salomon | 2335644 | 2018-11-30 15:33:19 -0500 | [diff] [blame] | 819 | } |
joel.liang | 8cbb424 | 2017-01-09 18:39:43 -0800 | [diff] [blame] | 820 | default: |
| 821 | break; |
| 822 | } |
| 823 | if (verb == SkPath::kDone_Verb) { |
| 824 | break; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | calculate_distance_field_data(&segments, dataPtr, width, height); |
| 829 | |
| 830 | for (int row = 0; row < height; ++row) { |
| 831 | int windingNumber = 0; // Winding number start from zero for each scanline |
| 832 | for (int col = 0; col < width; ++col) { |
| 833 | int idx = (row * width) + col; |
| 834 | windingNumber += dataPtr[idx].fDeltaWindingScore; |
| 835 | |
| 836 | enum DFSign { |
| 837 | kInside = -1, |
| 838 | kOutside = 1 |
| 839 | } dfSign; |
| 840 | |
| 841 | if (workingPath.getFillType() == SkPath::kWinding_FillType) { |
| 842 | dfSign = windingNumber ? kInside : kOutside; |
| 843 | } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) { |
| 844 | dfSign = windingNumber ? kOutside : kInside; |
| 845 | } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) { |
| 846 | dfSign = (windingNumber % 2) ? kInside : kOutside; |
| 847 | } else { |
| 848 | SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType); |
| 849 | dfSign = (windingNumber % 2) ? kOutside : kInside; |
| 850 | } |
| 851 | |
| 852 | // The winding number at the end of a scanline should be zero. |
| 853 | SkASSERT(((col != width - 1) || (windingNumber == 0)) && |
| 854 | "Winding number should be zero at the end of a scan line."); |
| 855 | // Fallback to use SkPath::contains to determine the sign of pixel in release build. |
| 856 | if (col == width - 1 && windingNumber != 0) { |
| 857 | for (int col = 0; col < width; ++col) { |
| 858 | int idx = (row * width) + col; |
| 859 | dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; |
| 860 | const float miniDist = sqrt(dataPtr[idx].fDistSq); |
| 861 | const float dist = dfSign * miniDist; |
| 862 | |
| 863 | unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
| 864 | |
| 865 | distanceField[(row * rowBytes) + col] = pixelVal; |
| 866 | } |
| 867 | continue; |
| 868 | } |
| 869 | |
| 870 | const float miniDist = sqrt(dataPtr[idx].fDistSq); |
| 871 | const float dist = dfSign * miniDist; |
| 872 | |
| 873 | unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
| 874 | |
| 875 | distanceField[(row * rowBytes) + col] = pixelVal; |
| 876 | } |
| 877 | } |
| 878 | return true; |
| 879 | } |