blob: bfd12d2bc8676f01298f0a799fd13c2915bc1e89 [file] [log] [blame]
Brian Salomonab664fa2017-03-24 16:07:20 +00001/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
Jim Van Verth41964ed2018-03-28 10:10:30 -04008#include "SkOffsetPolygon.h"
Brian Salomonab664fa2017-03-24 16:07:20 +00009
Cary Clarkdf429f32017-11-08 11:44:31 -050010#include "SkPointPriv.h"
Jim Van Verth4db18ed2018-04-03 10:00:37 -040011#include "SkTArray.h"
Brian Salomonab664fa2017-03-24 16:07:20 +000012#include "SkTemplates.h"
Jim Van Verth4db18ed2018-04-03 10:00:37 -040013#include "SkTDPQueue.h"
Brian Salomonab664fa2017-03-24 16:07:20 +000014
Jim Van Verth4db18ed2018-04-03 10:00:37 -040015struct OffsetSegment {
Brian Salomonab664fa2017-03-24 16:07:20 +000016 SkPoint fP0;
17 SkPoint fP1;
18};
19
20// Computes perpDot for point compared to segment.
21// A positive value means the point is to the left of the segment,
22// negative is to the right, 0 is collinear.
23static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) {
24 SkVector v0 = s1 - s0;
25 SkVector v1 = p - s0;
26 SkScalar perpDot = v0.cross(v1);
27 if (!SkScalarNearlyZero(perpDot)) {
28 return ((perpDot > 0) ? 1 : -1);
29 }
30
31 return 0;
32}
33
34// returns 1 for ccw, -1 for cw and 0 if degenerate
35static int get_winding(const SkPoint* polygonVerts, int polygonSize) {
36 SkPoint p0 = polygonVerts[0];
37 SkPoint p1 = polygonVerts[1];
38
39 for (int i = 2; i < polygonSize; ++i) {
40 SkPoint p2 = polygonVerts[i];
41
42 // determine if cw or ccw
43 int side = compute_side(p0, p1, p2);
44 if (0 != side) {
45 return ((side > 0) ? 1 : -1);
46 }
47
48 // if nearly collinear, treat as straight line and continue
49 p1 = p2;
50 }
51
52 return 0;
53}
54
Jim Van Verthda965502017-04-11 15:29:14 -040055// Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
56bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
57 int side, SkPoint* offset0, SkPoint* offset1) {
58 SkASSERT(side == -1 || side == 1);
59 SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
60 if (SkScalarNearlyEqual(d0, d1)) {
61 // if distances are equal, can just outset by the perpendicular
62 perp.setLength(d0*side);
63 *offset0 = p0 + perp;
64 *offset1 = p1 + perp;
65 } else {
66 // Otherwise we need to compute the outer tangent.
67 // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
68 if (d0 < d1) {
69 side = -side;
70 }
71 SkScalar dD = d0 - d1;
72 // if one circle is inside another, we can't compute an offset
Cary Clarkdf429f32017-11-08 11:44:31 -050073 if (dD*dD >= SkPointPriv::DistanceToSqd(p0, p1)) {
Jim Van Verthda965502017-04-11 15:29:14 -040074 return false;
75 }
76 SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD,
77 (p1.fY*d0 - p0.fY*d1) / dD);
78
79 SkScalar d0sq = d0*d0;
80 SkVector dP = outerTangentIntersect - p0;
Cary Clarkdf429f32017-11-08 11:44:31 -050081 SkScalar dPlenSq = SkPointPriv::LengthSqd(dP);
Jim Van Verthda965502017-04-11 15:29:14 -040082 SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq);
83 offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq;
84 offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq;
85
86 SkScalar d1sq = d1*d1;
87 dP = outerTangentIntersect - p1;
Cary Clarkdf429f32017-11-08 11:44:31 -050088 dPlenSq = SkPointPriv::LengthSqd(dP);
Jim Van Verthda965502017-04-11 15:29:14 -040089 discrim = SkScalarSqrt(dPlenSq - d1sq);
90 offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq;
91 offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq;
92 }
93
94 return true;
Brian Salomonab664fa2017-03-24 16:07:20 +000095}
96
97// Compute the intersection 'p' between segments s0 and s1, if any.
98// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
99// Returns false if there is no intersection.
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400100static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
Brian Salomonab664fa2017-03-24 16:07:20 +0000101 SkPoint* p, SkScalar* s, SkScalar* t) {
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400102 // Common cases for polygon chains -- check if endpoints are touching
103 if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) {
104 *p = s0.fP1;
105 *s = SK_Scalar1;
106 *t = 0;
107 return true;
108 }
109 if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) {
110 *p = s1.fP1;
111 *s = 0;
112 *t = SK_Scalar1;
113 return true;
114 }
115
Brian Salomonab664fa2017-03-24 16:07:20 +0000116 SkVector v0 = s0.fP1 - s0.fP0;
117 SkVector v1 = s1.fP1 - s1.fP0;
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400118 // We should have culled coincident points before this
119 SkASSERT(!SkPointPriv::EqualsWithinTolerance(s0.fP0, s0.fP1));
120 SkASSERT(!SkPointPriv::EqualsWithinTolerance(s1.fP0, s1.fP1));
Brian Salomonab664fa2017-03-24 16:07:20 +0000121
122 SkVector d = s1.fP0 - s0.fP0;
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400123 SkScalar perpDot = v0.cross(v1);
124 SkScalar localS, localT;
125 if (SkScalarNearlyZero(perpDot)) {
126 // segments are parallel, but not collinear
127 if (!SkScalarNearlyZero(d.dot(d), SK_ScalarNearlyZero*SK_ScalarNearlyZero)) {
128 return false;
129 }
130
131 // project segment1's endpoints onto segment0
132 localS = d.fX / v0.fX;
133 localT = 0;
134 if (localS < 0 || localS > SK_Scalar1) {
135 // the first endpoint doesn't lie on segment0, try the other one
136 SkScalar oldLocalS = localS;
137 localS = (s1.fP1.fX - s0.fP0.fX) / v0.fX;
138 localT = SK_Scalar1;
139 if (localS < 0 || localS > SK_Scalar1) {
140 // it's possible that segment1's interval surrounds segment0
141 // this is false if the params have the same signs, and in that case no collision
142 if (localS*oldLocalS > 0) {
143 return false;
144 }
145 // otherwise project segment0's endpoint onto segment1 instead
146 localS = 0;
147 localT = -d.fX / v1.fX;
148 }
149 }
150 } else {
151 localS = d.cross(v1) / perpDot;
152 if (localS < 0 || localS > SK_Scalar1) {
153 return false;
154 }
155 localT = d.cross(v0) / perpDot;
156 if (localT < 0 || localT > SK_Scalar1) {
157 return false;
158 }
Brian Salomonab664fa2017-03-24 16:07:20 +0000159 }
160
161 v0 *= localS;
162 *p = s0.fP0 + v0;
163 *s = localS;
164 *t = localT;
165
166 return true;
167}
168
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400169// computes the line intersection and then the distance to s0's endpoint
170static SkScalar compute_crossing_distance(const OffsetSegment& s0, const OffsetSegment& s1) {
171 SkVector v0 = s0.fP1 - s0.fP0;
172 SkVector v1 = s1.fP1 - s1.fP0;
173
174 SkScalar perpDot = v0.cross(v1);
175 if (SkScalarNearlyZero(perpDot)) {
176 // segments are parallel
177 return SK_ScalarMax;
178 }
179
180 SkVector d = s1.fP0 - s0.fP0;
181 SkScalar localS = d.cross(v1) / perpDot;
182 if (localS < 0) {
183 localS = -localS;
184 } else {
185 localS -= SK_Scalar1;
186 }
187
188 localS *= v0.length();
189
190 return localS;
191}
192
Jim Van Verth0513f142017-03-24 14:28:57 -0400193static bool is_convex(const SkTDArray<SkPoint>& poly) {
194 if (poly.count() <= 3) {
195 return true;
196 }
197
198 SkVector v0 = poly[0] - poly[poly.count() - 1];
199 SkVector v1 = poly[1] - poly[poly.count() - 1];
200 SkScalar winding = v0.cross(v1);
201
202 for (int i = 0; i < poly.count() - 1; ++i) {
203 int j = i + 1;
204 int k = (i + 2) % poly.count();
205
206 SkVector v0 = poly[j] - poly[i];
207 SkVector v1 = poly[k] - poly[i];
208 SkScalar perpDot = v0.cross(v1);
Jim Van Verth291932e2017-03-29 14:37:28 -0400209 if (winding*perpDot < 0) {
Jim Van Verth0513f142017-03-24 14:28:57 -0400210 return false;
211 }
212 }
213
214 return true;
215}
Jim Van Verth0513f142017-03-24 14:28:57 -0400216
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400217struct EdgeData {
218 OffsetSegment fInset;
219 SkPoint fIntersection;
220 SkScalar fTValue;
221 bool fValid;
222
223 void init() {
224 fIntersection = fInset.fP0;
225 fTValue = SK_ScalarMin;
226 fValid = true;
227 }
228};
229
Brian Salomonab664fa2017-03-24 16:07:20 +0000230// The objective here is to inset all of the edges by the given distance, and then
231// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
232// we should only be making left-hand turns (for cw polygons, we use the winding
233// parameter to reverse this). We detect this by checking whether the second intersection
234// on an edge is closer to its tail than the first one.
235//
236// We might also have the case that there is no intersection between two neighboring inset edges.
237// In this case, one edge will lie to the right of the other and should be discarded along with
238// its previous intersection (if any).
239//
240// Note: the assumption is that inputPolygon is convex and has no coincident points.
241//
242bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
Jim Van Verthda965502017-04-11 15:29:14 -0400243 std::function<SkScalar(int index)> insetDistanceFunc,
244 SkTDArray<SkPoint>* insetPolygon) {
Brian Salomonab664fa2017-03-24 16:07:20 +0000245 if (inputPolygonSize < 3) {
246 return false;
247 }
248
249 int winding = get_winding(inputPolygonVerts, inputPolygonSize);
250 if (0 == winding) {
251 return false;
252 }
253
254 // set up
Brian Salomonab664fa2017-03-24 16:07:20 +0000255 SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
256 for (int i = 0; i < inputPolygonSize; ++i) {
Brian Salomonab664fa2017-03-24 16:07:20 +0000257 int j = (i + 1) % inputPolygonSize;
Jim Van Verthb55eb282017-07-18 14:13:45 -0400258 int k = (i + 2) % inputPolygonSize;
259 // check for convexity just to be sure
260 if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j],
261 inputPolygonVerts[k])*winding < 0) {
262 return false;
263 }
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400264 if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
265 insetDistanceFunc(i), insetDistanceFunc(j),
266 winding,
267 &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) {
268 return false;
269 }
270 edgeData[i].init();
Brian Salomonab664fa2017-03-24 16:07:20 +0000271 }
272
273 int prevIndex = inputPolygonSize - 1;
274 int currIndex = 0;
275 int insetVertexCount = inputPolygonSize;
276 while (prevIndex != currIndex) {
277 if (!edgeData[prevIndex].fValid) {
278 prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
279 continue;
280 }
281
282 SkScalar s, t;
283 SkPoint intersection;
284 if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
285 &intersection, &s, &t)) {
286 // if new intersection is further back on previous inset from the prior intersection
287 if (s < edgeData[prevIndex].fTValue) {
288 // no point in considering this one again
289 edgeData[prevIndex].fValid = false;
290 --insetVertexCount;
291 // go back one segment
292 prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
293 // we've already considered this intersection, we're done
294 } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
Cary Clarkdf429f32017-11-08 11:44:31 -0500295 SkPointPriv::EqualsWithinTolerance(intersection,
296 edgeData[currIndex].fIntersection,
Brian Salomonab664fa2017-03-24 16:07:20 +0000297 1.0e-6f)) {
298 break;
299 } else {
300 // add intersection
301 edgeData[currIndex].fIntersection = intersection;
302 edgeData[currIndex].fTValue = t;
303
304 // go to next segment
305 prevIndex = currIndex;
306 currIndex = (currIndex + 1) % inputPolygonSize;
307 }
308 } else {
309 // if prev to right side of curr
310 int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
311 edgeData[currIndex].fInset.fP1,
312 edgeData[prevIndex].fInset.fP1);
313 if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
314 edgeData[currIndex].fInset.fP1,
315 edgeData[prevIndex].fInset.fP0)) {
316 // no point in considering this one again
317 edgeData[prevIndex].fValid = false;
318 --insetVertexCount;
319 // go back one segment
320 prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
321 } else {
322 // move to next segment
323 edgeData[currIndex].fValid = false;
324 --insetVertexCount;
325 currIndex = (currIndex + 1) % inputPolygonSize;
326 }
327 }
328 }
329
Jim Van Verthda965502017-04-11 15:29:14 -0400330 // store all the valid intersections that aren't nearly coincident
331 // TODO: look at the main algorithm and see if we can detect these better
332 static constexpr SkScalar kCleanupTolerance = 0.01f;
333
Brian Salomonab664fa2017-03-24 16:07:20 +0000334 insetPolygon->reset();
Mike Klein22c1f372018-04-02 20:37:42 +0000335 insetPolygon->setReserve(insetVertexCount);
Jim Van Verthda965502017-04-11 15:29:14 -0400336 currIndex = -1;
Brian Salomonab664fa2017-03-24 16:07:20 +0000337 for (int i = 0; i < inputPolygonSize; ++i) {
Jim Van Verthda965502017-04-11 15:29:14 -0400338 if (edgeData[i].fValid && (currIndex == -1 ||
Cary Clarkdf429f32017-11-08 11:44:31 -0500339 !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
340 (*insetPolygon)[currIndex],
341 kCleanupTolerance))) {
Brian Salomonab664fa2017-03-24 16:07:20 +0000342 *insetPolygon->push() = edgeData[i].fIntersection;
Jim Van Verthda965502017-04-11 15:29:14 -0400343 currIndex++;
Brian Salomonab664fa2017-03-24 16:07:20 +0000344 }
345 }
Jim Van Verthda965502017-04-11 15:29:14 -0400346 // make sure the first and last points aren't coincident
347 if (currIndex >= 1 &&
Cary Clarkdf429f32017-11-08 11:44:31 -0500348 SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
349 kCleanupTolerance)) {
Jim Van Verthda965502017-04-11 15:29:14 -0400350 insetPolygon->pop();
351 }
Brian Salomonab664fa2017-03-24 16:07:20 +0000352
Jim Van Verthb55eb282017-07-18 14:13:45 -0400353 return (insetPolygon->count() >= 3 && is_convex(*insetPolygon));
Brian Salomonab664fa2017-03-24 16:07:20 +0000354}
Jim Van Verth4db18ed2018-04-03 10:00:37 -0400355
356// compute the number of points needed for a circular join when offsetting a reflex vertex
357static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r,
358 SkScalar* rotSin, SkScalar* rotCos, int* n) {
359 const SkScalar kRecipPixelsPerArcSegment = 0.25f;
360
361 SkScalar rCos = v1.dot(v2);
362 SkScalar rSin = v1.cross(v2);
363 SkScalar theta = SkScalarATan2(rSin, rCos);
364
365 int steps = SkScalarRoundToInt(SkScalarAbs(r*theta*kRecipPixelsPerArcSegment));
366
367 SkScalar dTheta = theta / steps;
368 *rotSin = SkScalarSinCos(dTheta, rotCos);
369 *n = steps;
370}
371
372// tolerant less-than comparison
373static inline bool nearly_lt(SkScalar a, SkScalar b, SkScalar tolerance = SK_ScalarNearlyZero) {
374 return a < b - tolerance;
375}
376
377// a point is "left" to another if its x coordinate is less, or if equal, its y coordinate
378static bool left(const SkPoint& p0, const SkPoint& p1) {
379 return nearly_lt(p0.fX, p1.fX) ||
380 (SkScalarNearlyEqual(p0.fX, p1.fX) && nearly_lt(p0.fY, p1.fY));
381}
382
383struct Vertex {
384 static bool Left(const Vertex& qv0, const Vertex& qv1) {
385 return left(qv0.fPosition, qv1.fPosition);
386 }
387 // packed to fit into 16 bytes (one cache line)
388 SkPoint fPosition;
389 uint16_t fIndex; // index in unsorted polygon
390 uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
391 uint16_t fNextIndex;
392 uint16_t fFlags;
393};
394
395enum VertexFlags {
396 kPrevLeft_VertexFlag = 0x1,
397 kNextLeft_VertexFlag = 0x2,
398};
399
400struct Edge {
401 // returns true if "this" is above "that"
402 bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) {
403 SkASSERT(nearly_lt(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance) ||
404 SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance));
405 // The idea here is that if the vector between the origins of the two segments (dv)
406 // rotates counterclockwise up to the vector representing the "this" segment (u),
407 // then we know that "this" is above that. If the result is clockwise we say it's below.
408 SkVector dv = that.fSegment.fP0 - this->fSegment.fP0;
409 SkVector u = this->fSegment.fP1 - this->fSegment.fP0;
410 SkScalar cross = dv.cross(u);
411 if (cross > tolerance) {
412 return true;
413 } else if (cross < -tolerance) {
414 return false;
415 }
416 // If the result is 0 then either the two origins are equal or the origin of "that"
417 // lies on dv. So then we try the same for the vector from the tail of "this"
418 // to the head of "that". Again, ccw means "this" is above "that".
419 dv = that.fSegment.fP1 - this->fSegment.fP0;
420 return (dv.cross(u) > tolerance);
421 }
422
423 bool intersect(const Edge& that) const {
424 SkPoint intersection;
425 SkScalar s, t;
426 // check first to see if these edges are neighbors in the polygon
427 if (this->fIndex0 == that.fIndex0 || this->fIndex1 == that.fIndex0 ||
428 this->fIndex0 == that.fIndex1 || this->fIndex1 == that.fIndex1) {
429 return false;
430 }
431 return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t);
432 }
433
434 bool operator==(const Edge& that) const {
435 return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1);
436 }
437
438 bool operator!=(const Edge& that) const {
439 return !operator==(that);
440 }
441
442 OffsetSegment fSegment;
443 int32_t fIndex0; // indices for previous and next vertex
444 int32_t fIndex1;
445};
446
447class EdgeList {
448public:
449 void reserve(int count) { fEdges.reserve(count); }
450
451 bool insert(const Edge& newEdge) {
452 // linear search for now (expected case is very few active edges)
453 int insertIndex = 0;
454 while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) {
455 ++insertIndex;
456 }
457 // if we intersect with the existing edge above or below us
458 // then we know this polygon is not simple, so don't insert, just fail
459 if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) {
460 return false;
461 }
462 if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) {
463 return false;
464 }
465
466 fEdges.push_back();
467 for (int i = fEdges.count() - 1; i > insertIndex; --i) {
468 fEdges[i] = fEdges[i - 1];
469 }
470 fEdges[insertIndex] = newEdge;
471
472 return true;
473 }
474
475 bool remove(const Edge& edge) {
476 SkASSERT(fEdges.count() > 0);
477
478 // linear search for now (expected case is very few active edges)
479 int removeIndex = 0;
480 while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) {
481 ++removeIndex;
482 }
483 // we'd better find it or something is wrong
484 SkASSERT(removeIndex < fEdges.count());
485
486 // if we intersect with the edge above or below us
487 // then we know this polygon is not simple, so don't remove, just fail
488 if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex-1])) {
489 return false;
490 }
491 if (removeIndex < fEdges.count()-1) {
492 if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) {
493 return false;
494 }
495 // copy over the old entry
496 memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1],
497 sizeof(Edge)*(fEdges.count() - removeIndex - 1));
498 }
499
500 fEdges.pop_back();
501 return true;
502 }
503
504private:
505 SkSTArray<1, Edge> fEdges;
506};
507
508// Here we implement a sweep line algorithm to determine whether the provided points
509// represent a simple polygon, i.e., the polygon is non-self-intersecting.
510// We first insert the vertices into a priority queue sorting horizontally from left to right.
511// Then as we pop the vertices from the queue we generate events which indicate that an edge
512// should be added or removed from an edge list. If any intersections are detected in the edge
513// list, then we know the polygon is self-intersecting and hence not simple.
514static bool is_simple_polygon(const SkPoint* polygon, int polygonSize) {
515 SkTDPQueue <Vertex, Vertex::Left> vertexQueue;
516 EdgeList sweepLine;
517
518 sweepLine.reserve(polygonSize);
519 for (int i = 0; i < polygonSize; ++i) {
520 Vertex newVertex;
521 newVertex.fPosition = polygon[i];
522 newVertex.fIndex = i;
523 newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
524 newVertex.fNextIndex = (i + 1) % polygonSize;
525 newVertex.fFlags = 0;
526 if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
527 newVertex.fFlags |= kPrevLeft_VertexFlag;
528 }
529 if (left(polygon[newVertex.fNextIndex], polygon[i])) {
530 newVertex.fFlags |= kNextLeft_VertexFlag;
531 }
532 vertexQueue.insert(newVertex);
533 }
534
535 // pop each vertex from the queue and generate events depending on
536 // where it lies relative to its neighboring edges
537 while (vertexQueue.count() > 0) {
538 const Vertex& v = vertexQueue.peek();
539
540 // check edge to previous vertex
541 if (v.fFlags & kPrevLeft_VertexFlag) {
542 Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex };
543 if (!sweepLine.remove(edge)) {
544 break;
545 }
546 } else {
547 Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex };
548 if (!sweepLine.insert(edge)) {
549 break;
550 }
551 }
552
553 // check edge to next vertex
554 if (v.fFlags & kNextLeft_VertexFlag) {
555 Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex };
556 if (!sweepLine.remove(edge)) {
557 break;
558 }
559 } else {
560 Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex };
561 if (!sweepLine.insert(edge)) {
562 break;
563 }
564 }
565
566 vertexQueue.pop();
567 }
568
569 return (vertexQueue.count() == 0);
570}
571
572// TODO: assuming a constant offset here -- do we want to support variable offset?
573bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
574 SkScalar offset, SkTDArray<SkPoint>* offsetPolygon) {
575 if (inputPolygonSize < 3) {
576 return false;
577 }
578
579 if (!is_simple_polygon(inputPolygonVerts, inputPolygonSize)) {
580 return false;
581 }
582
583 // compute area and use sign to determine winding
584 // do initial pass to build normals
585 SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize);
586 SkScalar quadArea = 0;
587 for (int curr = 0; curr < inputPolygonSize; ++curr) {
588 int next = (curr + 1) % inputPolygonSize;
589 SkVector tangent = inputPolygonVerts[next] - inputPolygonVerts[curr];
590 SkVector normal = SkVector::Make(-tangent.fY, tangent.fX);
591 normals[curr] = normal;
592 quadArea += inputPolygonVerts[curr].cross(inputPolygonVerts[next]);
593 }
594 // 1 == ccw, -1 == cw
595 int winding = (quadArea > 0) ? 1 : -1;
596 if (0 == winding) {
597 return false;
598 }
599
600 // resize normals to match offset
601 for (int curr = 0; curr < inputPolygonSize; ++curr) {
602 normals[curr].setLength(winding*offset);
603 }
604
605 // build initial offset edge list
606 SkSTArray<64, EdgeData> edgeData(inputPolygonSize);
607 int prevIndex = inputPolygonSize - 1;
608 int currIndex = 0;
609 int nextIndex = 1;
610 while (currIndex < inputPolygonSize) {
611 int side = compute_side(inputPolygonVerts[prevIndex],
612 inputPolygonVerts[currIndex],
613 inputPolygonVerts[nextIndex]);
614
615 // if reflex point, fill in curve
616 if (side*winding*offset < 0) {
617 SkScalar rotSin, rotCos;
618 int numSteps;
619 SkVector prevNormal = normals[prevIndex];
620 compute_radial_steps(prevNormal, normals[currIndex], SkScalarAbs(offset),
621 &rotSin, &rotCos, &numSteps);
622 for (int i = 0; i < numSteps - 1; ++i) {
623 SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
624 prevNormal.fY*rotCos + prevNormal.fX*rotSin);
625 EdgeData& edge = edgeData.push_back();
626 edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
627 edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal;
628 edge.init();
629 prevNormal = currNormal;
630 }
631 EdgeData& edge = edgeData.push_back();
632 edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
633 edge.fInset.fP1 = inputPolygonVerts[currIndex] + normals[currIndex];
634 edge.init();
635 }
636
637 // Add the edge
638 EdgeData& edge = edgeData.push_back();
639 edge.fInset.fP0 = inputPolygonVerts[currIndex] + normals[currIndex];
640 edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normals[currIndex];
641 edge.init();
642
643 prevIndex = currIndex;
644 currIndex++;
645 nextIndex = (nextIndex + 1) % inputPolygonSize;
646 }
647
648 int edgeDataSize = edgeData.count();
649 prevIndex = edgeDataSize - 1;
650 currIndex = 0;
651 int insetVertexCount = edgeDataSize;
652 while (prevIndex != currIndex) {
653 if (!edgeData[prevIndex].fValid) {
654 prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
655 continue;
656 }
657
658 SkScalar s, t;
659 SkPoint intersection;
660 if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
661 &intersection, &s, &t)) {
662 // if new intersection is further back on previous inset from the prior intersection
663 if (s < edgeData[prevIndex].fTValue) {
664 // no point in considering this one again
665 edgeData[prevIndex].fValid = false;
666 --insetVertexCount;
667 // go back one segment
668 prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
669 // we've already considered this intersection, we're done
670 } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
671 SkPointPriv::EqualsWithinTolerance(intersection,
672 edgeData[currIndex].fIntersection,
673 1.0e-6f)) {
674 break;
675 } else {
676 // add intersection
677 edgeData[currIndex].fIntersection = intersection;
678 edgeData[currIndex].fTValue = t;
679
680 // go to next segment
681 prevIndex = currIndex;
682 currIndex = (currIndex + 1) % edgeDataSize;
683 }
684 } else {
685 // If there is no intersection, we want to minimize the distance between
686 // the point where the segment lines cross and the segments themselves.
687 SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
688 SkScalar currNextIndex = (currIndex + 1) % edgeDataSize;
689 SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset,
690 edgeData[prevPrevIndex].fInset);
691 SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset,
692 edgeData[currNextIndex].fInset);
693 if (dist0 < dist1) {
694 edgeData[prevIndex].fValid = false;
695 prevIndex = prevPrevIndex;
696 } else {
697 edgeData[currIndex].fValid = false;
698 currIndex = currNextIndex;
699 }
700 --insetVertexCount;
701 }
702 }
703
704 // store all the valid intersections that aren't nearly coincident
705 // TODO: look at the main algorithm and see if we can detect these better
706 static constexpr SkScalar kCleanupTolerance = 0.01f;
707
708 offsetPolygon->reset();
709 offsetPolygon->setReserve(insetVertexCount);
710 currIndex = -1;
711 for (int i = 0; i < edgeData.count(); ++i) {
712 if (edgeData[i].fValid && (currIndex == -1 ||
713 !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
714 (*offsetPolygon)[currIndex],
715 kCleanupTolerance))) {
716 *offsetPolygon->push() = edgeData[i].fIntersection;
717 currIndex++;
718 }
719 }
720 // make sure the first and last points aren't coincident
721 if (currIndex >= 1 &&
722 SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
723 kCleanupTolerance)) {
724 offsetPolygon->pop();
725 }
726
727 // compute signed area to check winding (it should be same as the original polygon)
728 quadArea = 0;
729 for (int curr = 0; curr < offsetPolygon->count(); ++curr) {
730 int next = (curr + 1) % offsetPolygon->count();
731 quadArea += (*offsetPolygon)[curr].cross((*offsetPolygon)[next]);
732 }
733
734 return (winding*quadArea > 0 &&
735 is_simple_polygon(offsetPolygon->begin(), offsetPolygon->count()));
736}
737