blob: 582c435bf246df449f9f77e97b4cd090959d79d4 [file] [log] [blame]
rileya@google.com589708b2012-07-26 20:04:23 +00001
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9 #include "SkTwoPointRadialGradient.h"
10
11/* Two-point radial gradients are specified by two circles, each with a center
12 point and radius. The gradient can be considered to be a series of
13 concentric circles, with the color interpolated from the start circle
14 (at t=0) to the end circle (at t=1).
15
16 For each point (x, y) in the span, we want to find the
17 interpolated circle that intersects that point. The center
18 of the desired circle (Cx, Cy) falls at some distance t
19 along the line segment between the start point (Sx, Sy) and
20 end point (Ex, Ey):
21
22 Cx = (1 - t) * Sx + t * Ex (0 <= t <= 1)
23 Cy = (1 - t) * Sy + t * Ey
24
25 The radius of the desired circle (r) is also a linear interpolation t
26 between the start and end radii (Sr and Er):
27
28 r = (1 - t) * Sr + t * Er
29
30 But
31
32 (x - Cx)^2 + (y - Cy)^2 = r^2
33
34 so
35
36 (x - ((1 - t) * Sx + t * Ex))^2
37 + (y - ((1 - t) * Sy + t * Ey))^2
38 = ((1 - t) * Sr + t * Er)^2
39
40 Solving for t yields
41
42 [(Sx - Ex)^2 + (Sy - Ey)^2 - (Er - Sr)^2)] * t^2
43 + [2 * (Sx - Ex)(x - Sx) + 2 * (Sy - Ey)(y - Sy) - 2 * (Er - Sr) * Sr] * t
44 + [(x - Sx)^2 + (y - Sy)^2 - Sr^2] = 0
45
46 To simplify, let Dx = Sx - Ex, Dy = Sy - Ey, Dr = Er - Sr, dx = x - Sx, dy = y - Sy
47
48 [Dx^2 + Dy^2 - Dr^2)] * t^2
49 + 2 * [Dx * dx + Dy * dy - Dr * Sr] * t
50 + [dx^2 + dy^2 - Sr^2] = 0
51
52 A quadratic in t. The two roots of the quadratic reflect the two
53 possible circles on which the point may fall. Solving for t yields
54 the gradient value to use.
55
56 If a<0, the start circle is entirely contained in the
57 end circle, and one of the roots will be <0 or >1 (off the line
58 segment). If a>0, the start circle falls at least partially
59 outside the end circle (or vice versa), and the gradient
60 defines a "tube" where a point may be on one circle (on the
61 inside of the tube) or the other (outside of the tube). We choose
62 one arbitrarily.
63
64 In order to keep the math to within the limits of fixed point,
65 we divide the entire quadratic by Dr^2, and replace
66 (x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving
67
68 [Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2
69 + 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t
70 + [x'^2 + y'^2 - Sr^2/Dr^2] = 0
71
72 (x' and y' are computed by appending the subtract and scale to the
73 fDstToIndex matrix in the constructor).
74
75 Since the 'A' component of the quadratic is independent of x' and y', it
76 is precomputed in the constructor. Since the 'B' component is linear in
77 x' and y', if x and y are linear in the span, 'B' can be computed
78 incrementally with a simple delta (db below). If it is not (e.g.,
79 a perspective projection), it must be computed in the loop.
80
81*/
82
83namespace {
84
85inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy,
86 SkScalar sr2d2, SkScalar foura,
87 SkScalar oneOverTwoA, bool posRoot) {
88 SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2;
89 if (0 == foura) {
90 return SkScalarToFixed(SkScalarDiv(-c, b));
91 }
92
93 SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c);
94 if (discrim < 0) {
95 discrim = -discrim;
96 }
97 SkScalar rootDiscrim = SkScalarSqrt(discrim);
98 SkScalar result;
99 if (posRoot) {
100 result = SkScalarMul(-b + rootDiscrim, oneOverTwoA);
101 } else {
102 result = SkScalarMul(-b - rootDiscrim, oneOverTwoA);
103 }
104 return SkScalarToFixed(result);
105}
106
107typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx,
108 SkScalar fy, SkScalar dy,
109 SkScalar b, SkScalar db,
110 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
111 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
112 int count);
113
114void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx,
115 SkScalar fy, SkScalar dy,
116 SkScalar b, SkScalar db,
117 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
118 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
119 int count) {
120 for (; count > 0; --count) {
121 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
122 fOneOverTwoA, posRoot);
123 SkFixed index = SkClampMax(t, 0xFFFF);
124 SkASSERT(index <= 0xFFFF);
125 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
126 fx += dx;
127 fy += dy;
128 b += db;
129 }
130}
131void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx,
132 SkScalar fy, SkScalar dy,
133 SkScalar b, SkScalar db,
134 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
135 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
136 int count) {
137 for (; count > 0; --count) {
138 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
139 fOneOverTwoA, posRoot);
140 SkFixed index = mirror_tileproc(t);
141 SkASSERT(index <= 0xFFFF);
142 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
143 fx += dx;
144 fy += dy;
145 b += db;
146 }
147}
148
149void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx,
150 SkScalar fy, SkScalar dy,
151 SkScalar b, SkScalar db,
152 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
153 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
154 int count) {
155 for (; count > 0; --count) {
156 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
157 fOneOverTwoA, posRoot);
158 SkFixed index = repeat_tileproc(t);
159 SkASSERT(index <= 0xFFFF);
160 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
161 fx += dx;
162 fy += dy;
163 b += db;
164 }
165}
166}
167
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000168/////////////////////////////////////////////////////////////////////
169
rileya@google.com589708b2012-07-26 20:04:23 +0000170SkTwoPointRadialGradient::SkTwoPointRadialGradient(
171 const SkPoint& start, SkScalar startRadius,
172 const SkPoint& end, SkScalar endRadius,
173 const SkColor colors[], const SkScalar pos[],
174 int colorCount, SkShader::TileMode mode,
175 SkUnitMapper* mapper)
176 : SkGradientShaderBase(colors, pos, colorCount, mode, mapper),
177 fCenter1(start),
178 fCenter2(end),
179 fRadius1(startRadius),
180 fRadius2(endRadius) {
181 init();
182}
183
184SkShader::BitmapType SkTwoPointRadialGradient::asABitmap(
185 SkBitmap* bitmap,
186 SkMatrix* matrix,
187 SkShader::TileMode* xy) const {
188 if (bitmap) {
rileya@google.com1c6d64b2012-07-27 15:49:05 +0000189 this->getGradientTableBitmap(bitmap);
rileya@google.com589708b2012-07-26 20:04:23 +0000190 }
191 SkScalar diffL = 0; // just to avoid gcc warning
192 if (matrix) {
193 diffL = SkScalarSqrt(SkScalarSquare(fDiff.fX) +
194 SkScalarSquare(fDiff.fY));
195 }
196 if (matrix) {
197 if (diffL) {
198 SkScalar invDiffL = SkScalarInvert(diffL);
199 matrix->setSinCos(-SkScalarMul(invDiffL, fDiff.fY),
200 SkScalarMul(invDiffL, fDiff.fX));
201 } else {
202 matrix->reset();
203 }
204 matrix->preConcat(fPtsToUnit);
205 }
206 if (xy) {
207 xy[0] = fTileMode;
208 xy[1] = kClamp_TileMode;
209 }
210 return kTwoPointRadial_BitmapType;
211}
212
213SkShader::GradientType SkTwoPointRadialGradient::asAGradient(
214 SkShader::GradientInfo* info) const {
215 if (info) {
216 commonAsAGradient(info);
217 info->fPoint[0] = fCenter1;
218 info->fPoint[1] = fCenter2;
219 info->fRadius[0] = fRadius1;
220 info->fRadius[1] = fRadius2;
221 }
222 return kRadial2_GradientType;
223}
224
rileya@google.com589708b2012-07-26 20:04:23 +0000225void SkTwoPointRadialGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
226 int count) {
227 SkASSERT(count > 0);
228
229 SkPMColor* SK_RESTRICT dstC = dstCParam;
230
231 // Zero difference between radii: fill with transparent black.
232 if (fDiffRadius == 0) {
233 sk_bzero(dstC, count * sizeof(*dstC));
234 return;
235 }
236 SkMatrix::MapXYProc dstProc = fDstToIndexProc;
237 TileProc proc = fTileProc;
238 const SkPMColor* SK_RESTRICT cache = this->getCache32();
239
240 SkScalar foura = fA * 4;
241 bool posRoot = fDiffRadius < 0;
242 if (fDstToIndexClass != kPerspective_MatrixClass) {
243 SkPoint srcPt;
244 dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
245 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
246 SkScalar dx, fx = srcPt.fX;
247 SkScalar dy, fy = srcPt.fY;
248
249 if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
250 SkFixed fixedX, fixedY;
251 (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
252 dx = SkFixedToScalar(fixedX);
253 dy = SkFixedToScalar(fixedY);
254 } else {
255 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
256 dx = fDstToIndex.getScaleX();
257 dy = fDstToIndex.getSkewY();
258 }
259 SkScalar b = (SkScalarMul(fDiff.fX, fx) +
260 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
261 SkScalar db = (SkScalarMul(fDiff.fX, dx) +
262 SkScalarMul(fDiff.fY, dy)) * 2;
263
264 TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat;
265 if (SkShader::kClamp_TileMode == fTileMode) {
266 shadeProc = shadeSpan_twopoint_clamp;
267 } else if (SkShader::kMirror_TileMode == fTileMode) {
268 shadeProc = shadeSpan_twopoint_mirror;
269 } else {
270 SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
271 }
272 (*shadeProc)(fx, dx, fy, dy, b, db,
273 fSr2D2, foura, fOneOverTwoA, posRoot,
274 dstC, cache, count);
275 } else { // perspective case
276 SkScalar dstX = SkIntToScalar(x);
277 SkScalar dstY = SkIntToScalar(y);
278 for (; count > 0; --count) {
279 SkPoint srcPt;
280 dstProc(fDstToIndex, dstX, dstY, &srcPt);
281 SkScalar fx = srcPt.fX;
282 SkScalar fy = srcPt.fY;
283 SkScalar b = (SkScalarMul(fDiff.fX, fx) +
284 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
285 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
286 fOneOverTwoA, posRoot);
287 SkFixed index = proc(t);
288 SkASSERT(index <= 0xFFFF);
289 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
290 dstX += SK_Scalar1;
291 }
292 }
293}
294
295bool SkTwoPointRadialGradient::setContext(
296 const SkBitmap& device,
297 const SkPaint& paint,
298 const SkMatrix& matrix){
299 if (!this->INHERITED::setContext(device, paint, matrix)) {
300 return false;
301 }
302
303 // For now, we might have divided by zero, so detect that
304 if (0 == fDiffRadius) {
305 return false;
306 }
307
308 // we don't have a span16 proc
309 fFlags &= ~kHasSpan16_Flag;
310 return true;
311}
312
313SkTwoPointRadialGradient::SkTwoPointRadialGradient(
314 SkFlattenableReadBuffer& buffer)
315 : INHERITED(buffer),
316 fCenter1(buffer.readPoint()),
317 fCenter2(buffer.readPoint()),
318 fRadius1(buffer.readScalar()),
319 fRadius2(buffer.readScalar()) {
320 init();
321};
322
323void SkTwoPointRadialGradient::flatten(
324 SkFlattenableWriteBuffer& buffer) const {
325 this->INHERITED::flatten(buffer);
326 buffer.writePoint(fCenter1);
327 buffer.writePoint(fCenter2);
328 buffer.writeScalar(fRadius1);
329 buffer.writeScalar(fRadius2);
330}
331
332void SkTwoPointRadialGradient::init() {
333 fDiff = fCenter1 - fCenter2;
334 fDiffRadius = fRadius2 - fRadius1;
335 // hack to avoid zero-divide for now
336 SkScalar inv = fDiffRadius ? SkScalarInvert(fDiffRadius) : 0;
337 fDiff.fX = SkScalarMul(fDiff.fX, inv);
338 fDiff.fY = SkScalarMul(fDiff.fY, inv);
339 fStartRadius = SkScalarMul(fRadius1, inv);
340 fSr2D2 = SkScalarSquare(fStartRadius);
341 fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1;
342 fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0;
343
344 fPtsToUnit.setTranslate(-fCenter1.fX, -fCenter1.fY);
345 fPtsToUnit.postScale(inv, inv);
346}
347
rileya@google.comd7cc6512012-07-27 14:00:39 +0000348/////////////////////////////////////////////////////////////////////
349
350// For brevity
351typedef GrGLUniformManager::UniformHandle UniformHandle;
352static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
353
354class GrGLRadial2Gradient : public GrGLGradientStage {
355
356public:
357
358 GrGLRadial2Gradient(const GrProgramStageFactory& factory,
359 const GrCustomStage&);
360 virtual ~GrGLRadial2Gradient() { }
361
362 virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
363 virtual void emitVS(GrGLShaderBuilder* builder,
364 const char* vertexCoords) SK_OVERRIDE;
365 virtual void emitFS(GrGLShaderBuilder* builder,
366 const char* outputColor,
367 const char* inputColor,
368 const char* samplerName) SK_OVERRIDE;
369 virtual void setData(const GrGLUniformManager&,
370 const GrCustomStage&,
371 const GrRenderTarget*,
372 int stageNum) SK_OVERRIDE;
373
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000374 static StageKey GenKey(const GrCustomStage& s);
rileya@google.comd7cc6512012-07-27 14:00:39 +0000375
376protected:
377
378 UniformHandle fVSParamUni;
379 UniformHandle fFSParamUni;
380
381 const char* fVSVaryingName;
382 const char* fFSVaryingName;
383
384 bool fIsDegenerate;
385
386 // @{
387 /// Values last uploaded as uniforms
388
389 GrScalar fCachedCenter;
390 GrScalar fCachedRadius;
391 bool fCachedPosRoot;
392
393 // @}
394
395private:
396
397 typedef GrGLGradientStage INHERITED;
398
399};
400
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000401/////////////////////////////////////////////////////////////////////
402
403class GrRadial2Gradient : public GrGradientEffect {
404public:
405
406 GrRadial2Gradient(GrContext* ctx, const SkTwoPointRadialGradient& shader,
407 GrSamplerState* sampler)
408 : INHERITED(ctx, shader, sampler)
409 , fCenterX1(shader.getCenterX1())
410 , fRadius0(shader.getStartRadius())
411 , fPosRoot(shader.getDiffRadius() < 0) { }
412 virtual ~GrRadial2Gradient() { }
413
414 static const char* Name() { return "Two-Point Radial Gradient"; }
415 virtual const GrProgramStageFactory& getFactory() const SK_OVERRIDE {
416 return GrTProgramStageFactory<GrRadial2Gradient>::getInstance();
417 }
418 virtual bool isEqual(const GrCustomStage& sBase) const SK_OVERRIDE {
419 const GrRadial2Gradient& s = static_cast<const GrRadial2Gradient&>(sBase);
420 return (INHERITED::isEqual(sBase) &&
421 this->fCenterX1 == s.fCenterX1 &&
422 this->fRadius0 == s.fRadius0 &&
423 this->fPosRoot == s.fPosRoot);
424 }
425
426 // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
427 bool isDegenerate() const { return GR_Scalar1 == fCenterX1; }
428 GrScalar center() const { return fCenterX1; }
429 GrScalar radius() const { return fRadius0; }
430 bool isPosRoot() const { return SkToBool(fPosRoot); }
431
432 typedef GrGLRadial2Gradient GLProgramStage;
433
434private:
435
436 // @{
437 // Cache of values - these can change arbitrarily, EXCEPT
438 // we shouldn't change between degenerate and non-degenerate?!
439
440 GrScalar fCenterX1;
441 GrScalar fRadius0;
442 SkBool8 fPosRoot;
443
444 // @}
445
446 typedef GrGradientEffect INHERITED;
447};
448
449/////////////////////////////////////////////////////////////////////
450
rileya@google.comd7cc6512012-07-27 14:00:39 +0000451GrGLRadial2Gradient::GrGLRadial2Gradient(
452 const GrProgramStageFactory& factory,
453 const GrCustomStage& baseData)
454 : INHERITED(factory)
455 , fVSParamUni(kInvalidUniformHandle)
456 , fFSParamUni(kInvalidUniformHandle)
457 , fVSVaryingName(NULL)
458 , fFSVaryingName(NULL)
459 , fCachedCenter(GR_ScalarMax)
460 , fCachedRadius(-GR_ScalarMax)
461 , fCachedPosRoot(0) {
462
463 const GrRadial2Gradient& data =
464 static_cast<const GrRadial2Gradient&>(baseData);
465 fIsDegenerate = data.isDegenerate();
466}
467
468void GrGLRadial2Gradient::setupVariables(GrGLShaderBuilder* builder) {
469 // 2 copies of uniform array, 1 for each of vertex & fragment shader,
470 // to work around Xoom bug. Doesn't seem to cause performance decrease
471 // in test apps, but need to keep an eye on it.
472 fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
473 kFloat_GrSLType, "Radial2VSParams", 6);
474 fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
475 kFloat_GrSLType, "Radial2FSParams", 6);
476
477 // For radial gradients without perspective we can pass the linear
478 // part of the quadratic as a varying.
479 if (builder->fVaryingDims == builder->fCoordDims) {
480 builder->addVarying(kFloat_GrSLType, "Radial2BCoeff",
481 &fVSVaryingName, &fFSVaryingName);
482 }
483}
484
485void GrGLRadial2Gradient::emitVS(GrGLShaderBuilder* builder,
486 const char* vertexCoords) {
487 SkString* code = &builder->fVSCode;
488 SkString p2;
489 SkString p3;
490 builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
491 builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
492
493 // For radial gradients without perspective we can pass the linear
494 // part of the quadratic as a varying.
495 if (builder->fVaryingDims == builder->fCoordDims) {
496 // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
497 code->appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
498 fVSVaryingName, p2.c_str(),
499 vertexCoords, p3.c_str());
500 }
501}
502
503void GrGLRadial2Gradient::emitFS(GrGLShaderBuilder* builder,
504 const char* outputColor,
505 const char* inputColor,
506 const char* samplerName) {
507 SkString* code = &builder->fFSCode;
508 SkString cName("c");
509 SkString ac4Name("ac4");
510 SkString rootName("root");
511 SkString t;
512 SkString p0;
513 SkString p1;
514 SkString p2;
515 SkString p3;
516 SkString p4;
517 SkString p5;
518 builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
519 builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
520 builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
521 builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
522 builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
523 builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
524
525 // If we we're able to interpolate the linear component,
526 // bVar is the varying; otherwise compute it
527 SkString bVar;
528 if (builder->fCoordDims == builder->fVaryingDims) {
529 bVar = fFSVaryingName;
530 GrAssert(2 == builder->fVaryingDims);
531 } else {
532 GrAssert(3 == builder->fVaryingDims);
533 bVar = "b";
534 //bVar.appendS32(stageNum);
535 code->appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
536 bVar.c_str(), p2.c_str(),
537 builder->fSampleCoords.c_str(), p3.c_str());
538 }
539
540 // c = (x^2)+(y^2) - params[4]
541 code->appendf("\tfloat %s = dot(%s, %s) - %s;\n",
542 cName.c_str(), builder->fSampleCoords.c_str(),
543 builder->fSampleCoords.c_str(),
544 p4.c_str());
545
546 // If we aren't degenerate, emit some extra code, and accept a slightly
547 // more complex coord.
548 if (!fIsDegenerate) {
549
550 // ac4 = 4.0 * params[0] * c
551 code->appendf("\tfloat %s = %s * 4.0 * %s;\n",
552 ac4Name.c_str(), p0.c_str(),
553 cName.c_str());
554
555 // root = sqrt(b^2-4ac)
556 // (abs to avoid exception due to fp precision)
557 code->appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
558 rootName.c_str(), bVar.c_str(), bVar.c_str(),
559 ac4Name.c_str());
560
561 // t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
562 t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(),
563 rootName.c_str(), p1.c_str());
564 } else {
565 // t is: -c/b
566 t.printf("-%s / %s", cName.c_str(), bVar.c_str());
567 }
568
569 this->emitColorLookup(builder, t.c_str(), outputColor, samplerName);
570}
571
572void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman,
573 const GrCustomStage& baseData,
574 const GrRenderTarget*,
575 int stageNum) {
576 const GrRadial2Gradient& data =
577 static_cast<const GrRadial2Gradient&>(baseData);
578 GrAssert(data.isDegenerate() == fIsDegenerate);
579 GrScalar centerX1 = data.center();
580 GrScalar radius0 = data.radius();
581 if (fCachedCenter != centerX1 ||
582 fCachedRadius != radius0 ||
583 fCachedPosRoot != data.isPosRoot()) {
584
585 GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1;
586
587 // When we're in the degenerate (linear) case, the second
588 // value will be INF but the program doesn't read it. (We
589 // use the same 6 uniforms even though we don't need them
590 // all in the linear case just to keep the code complexity
591 // down).
592 float values[6] = {
593 GrScalarToFloat(a),
594 1 / (2.f * GrScalarToFloat(a)),
595 GrScalarToFloat(centerX1),
596 GrScalarToFloat(radius0),
597 GrScalarToFloat(GrMul(radius0, radius0)),
598 data.isPosRoot() ? 1.f : -1.f
599 };
600
601 uman.set1fv(fVSParamUni, 0, 6, values);
602 uman.set1fv(fFSParamUni, 0, 6, values);
603 fCachedCenter = centerX1;
604 fCachedRadius = radius0;
605 fCachedPosRoot = data.isPosRoot();
606 }
607}
608
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000609GrCustomStage::StageKey GrGLRadial2Gradient::GenKey(const GrCustomStage& s) {
610 return (static_cast<const GrRadial2Gradient&>(s).isDegenerate());
611}
rileya@google.comd7cc6512012-07-27 14:00:39 +0000612
613/////////////////////////////////////////////////////////////////////
614
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000615GrCustomStage* SkTwoPointRadialGradient::asNewCustomStage(
616 GrContext* context, GrSamplerState* sampler) const {
617 SkASSERT(NULL != context && NULL != sampler);
618 SkScalar diffLen = fDiff.length();
619 if (0 != diffLen) {
620 SkScalar invDiffLen = SkScalarInvert(diffLen);
621 sampler->matrix()->setSinCos(-SkScalarMul(invDiffLen, fDiff.fY),
622 SkScalarMul(invDiffLen, fDiff.fX));
623 } else {
624 sampler->matrix()->reset();
625 }
626 sampler->matrix()->preConcat(fPtsToUnit);
627 sampler->textureParams()->setTileModeX(fTileMode);
628 sampler->textureParams()->setTileModeY(kClamp_TileMode);
629 sampler->textureParams()->setBilerp(true);
630 return SkNEW_ARGS(GrRadial2Gradient, (context, *this, sampler));
rileya@google.comd7cc6512012-07-27 14:00:39 +0000631}
632