Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2020 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkBitmap.h" |
| 9 | #include "include/core/SkCanvas.h" |
| 10 | #include "include/core/SkPath.h" |
| 11 | #include "include/utils/SkParsePath.h" |
| 12 | #include "samplecode/Sample.h" |
| 13 | |
| 14 | #include "src/core/SkGeometry.h" |
| 15 | |
| 16 | namespace { |
| 17 | |
| 18 | ////////////////////////////////////////////////////////////////////////////// |
| 19 | |
Tyler Denniston | f219aad | 2020-07-21 16:16:55 -0400 | [diff] [blame] | 20 | static SkPoint rotate90(const SkPoint& p) { return {p.fY, -p.fX}; } |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 21 | static SkPoint rotate180(const SkPoint& p) { return p * -1; } |
| 22 | static SkPoint setLength(SkPoint p, float len) { |
| 23 | if (!p.setLength(len)) { |
| 24 | SkDebugf("Failed to set point length\n"); |
| 25 | } |
| 26 | return p; |
| 27 | } |
| 28 | static bool isClockwise(const SkPoint& a, const SkPoint& b) { return a.cross(b) > 0; } |
| 29 | |
| 30 | ////////////////////////////////////////////////////////////////////////////// |
| 31 | |
| 32 | // Testing ground for a new stroker implementation |
| 33 | class SkPathStroker2 { |
| 34 | public: |
| 35 | // Returns the fill path |
| 36 | SkPath getFillPath(const SkPath& path, const SkPaint& paint); |
| 37 | |
| 38 | private: |
| 39 | struct PathSegment { |
| 40 | SkPath::Verb fVerb; |
| 41 | SkPoint fPoints[4]; |
| 42 | }; |
| 43 | |
| 44 | float fRadius; |
| 45 | SkPaint::Cap fCap; |
| 46 | SkPaint::Join fJoin; |
| 47 | SkPath fInnerPath, fOuterPath; |
| 48 | SkPath *fInner = &fInnerPath, *fOuter = &fOuterPath; |
| 49 | |
| 50 | // Initialize stroker state |
| 51 | void initForPath(const SkPath& path, const SkPaint& paint); |
| 52 | |
| 53 | // Strokes a line segment |
| 54 | void strokeLine(const PathSegment& line, bool needsMove); |
| 55 | |
| 56 | // Adds an endcap to fOuter |
| 57 | enum class CapLocation { Start, End }; |
| 58 | void endcap(CapLocation loc); |
| 59 | |
| 60 | // Adds a join between the two segments |
| 61 | void join(const PathSegment& prev, const PathSegment& curr); |
| 62 | |
| 63 | // Appends path in reverse to result |
| 64 | static void appendPathReversed(const SkPath* path, SkPath* result); |
| 65 | |
| 66 | // Returns the segment unit normal |
| 67 | static SkPoint unitNormal(const PathSegment& seg, float t); |
Tyler Denniston | e9ced4f | 2020-07-22 09:29:42 -0400 | [diff] [blame] | 68 | |
| 69 | // Returns squared magnitude of line segments. |
| 70 | static float squaredLineLength(const PathSegment& lineSeg); |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 71 | }; |
| 72 | |
| 73 | void SkPathStroker2::initForPath(const SkPath& path, const SkPaint& paint) { |
| 74 | fRadius = paint.getStrokeWidth() / 2; |
| 75 | fCap = paint.getStrokeCap(); |
| 76 | fJoin = paint.getStrokeJoin(); |
| 77 | fInnerPath.rewind(); |
| 78 | fOuterPath.rewind(); |
| 79 | fInner = &fInnerPath; |
| 80 | fOuter = &fOuterPath; |
| 81 | } |
| 82 | |
| 83 | SkPath SkPathStroker2::getFillPath(const SkPath& path, const SkPaint& paint) { |
| 84 | initForPath(path, paint); |
| 85 | |
| 86 | // Trace the inner and outer paths simultaneously. Inner will therefore be |
| 87 | // recorded in reverse from how we trace the outline. |
| 88 | SkPath::Iter it(path, false); |
| 89 | PathSegment segment, prevSegment; |
| 90 | bool firstSegment = true; |
| 91 | while ((segment.fVerb = it.next(segment.fPoints)) != SkPath::kDone_Verb) { |
| 92 | // Join to the previous segment |
| 93 | if (!firstSegment) { |
| 94 | join(prevSegment, segment); |
| 95 | } |
| 96 | |
| 97 | // Stroke the current segment |
| 98 | switch (segment.fVerb) { |
| 99 | case SkPath::kLine_Verb: |
| 100 | strokeLine(segment, firstSegment); |
| 101 | break; |
| 102 | case SkPath::kMove_Verb: |
| 103 | // Don't care about multiple contours currently |
| 104 | continue; |
| 105 | default: |
| 106 | SkDebugf("Unhandled path verb %d\n", segment.fVerb); |
| 107 | break; |
| 108 | } |
| 109 | |
| 110 | std::swap(segment, prevSegment); |
| 111 | firstSegment = false; |
| 112 | } |
| 113 | |
| 114 | // Open contour => endcap at the end |
| 115 | const bool isClosed = path.isLastContourClosed(); |
| 116 | if (isClosed) { |
| 117 | SkDebugf("Unhandled closed contour\n"); |
| 118 | } else { |
| 119 | endcap(CapLocation::End); |
| 120 | } |
| 121 | |
| 122 | // Walk inner path in reverse, appending to result |
| 123 | appendPathReversed(fInner, fOuter); |
| 124 | endcap(CapLocation::Start); |
| 125 | |
| 126 | return fOuterPath; |
| 127 | } |
| 128 | |
| 129 | void SkPathStroker2::strokeLine(const PathSegment& line, bool needsMove) { |
| 130 | const SkPoint tangent = line.fPoints[1] - line.fPoints[0]; |
| 131 | const SkPoint normal = rotate90(tangent); |
| 132 | const SkPoint offset = setLength(normal, fRadius); |
| 133 | if (needsMove) { |
| 134 | fOuter->moveTo(line.fPoints[0] + offset); |
| 135 | fInner->moveTo(line.fPoints[0] - offset); |
| 136 | } |
| 137 | fOuter->lineTo(line.fPoints[1] + offset); |
| 138 | fInner->lineTo(line.fPoints[1] - offset); |
| 139 | } |
| 140 | |
| 141 | void SkPathStroker2::endcap(CapLocation loc) { |
| 142 | const auto buttCap = [this](CapLocation loc) { |
| 143 | if (loc == CapLocation::Start) { |
| 144 | // Back at the start of the path: just close the stroked outline |
| 145 | fOuter->close(); |
| 146 | } else { |
| 147 | // Inner last pt == first pt when appending in reverse |
| 148 | SkPoint innerLastPt; |
| 149 | fInner->getLastPt(&innerLastPt); |
| 150 | fOuter->lineTo(innerLastPt); |
| 151 | } |
| 152 | }; |
| 153 | |
| 154 | switch (fCap) { |
| 155 | case SkPaint::kButt_Cap: |
| 156 | buttCap(loc); |
| 157 | break; |
| 158 | default: |
| 159 | SkDebugf("Unhandled endcap %d\n", fCap); |
| 160 | buttCap(loc); |
| 161 | break; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | void SkPathStroker2::join(const PathSegment& prev, const PathSegment& curr) { |
| 166 | const auto miterJoin = [this](const PathSegment& prev, const PathSegment& curr) { |
Tyler Denniston | f219aad | 2020-07-21 16:16:55 -0400 | [diff] [blame] | 167 | // Common path endpoint of the two segments is the midpoint of the miter line. |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 168 | const SkPoint miterMidpt = curr.fPoints[0]; |
Tyler Denniston | f219aad | 2020-07-21 16:16:55 -0400 | [diff] [blame] | 169 | |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 170 | SkPoint before = unitNormal(prev, 1); |
| 171 | SkPoint after = unitNormal(curr, 0); |
| 172 | |
| 173 | // Check who's inside and who's outside. |
| 174 | SkPath *outer = fOuter, *inner = fInner; |
| 175 | if (!isClockwise(before, after)) { |
| 176 | std::swap(inner, outer); |
| 177 | before = rotate180(before); |
| 178 | after = rotate180(after); |
| 179 | } |
| 180 | |
| 181 | const float cosTheta = before.dot(after); |
| 182 | if (SkScalarNearlyZero(1 - cosTheta)) { |
| 183 | // Nearly identical normals: don't bother. |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | // Before and after have the same origin and magnitude, so before+after is the diagonal of |
| 188 | // their rhombus. Origin of this vector is the midpoint of the miter line. |
| 189 | SkPoint miterVec = before + after; |
| 190 | |
| 191 | // Note the relationship (draw a right triangle with the miter line as its hypoteneuse): |
| 192 | // sin(theta/2) = strokeWidth / miterLength |
| 193 | // so miterLength = strokeWidth / sin(theta/2) |
| 194 | // where miterLength is the length of the miter from outer point to inner corner. |
| 195 | // miterVec's origin is the midpoint of the miter line, so we use strokeWidth/2. |
| 196 | // Sqrt is just an application of half-angle identities. |
| 197 | const float sinHalfTheta = sqrtf(0.5 * (1 + cosTheta)); |
| 198 | const float halfMiterLength = fRadius / sinHalfTheta; |
| 199 | miterVec.setLength(halfMiterLength); // TODO: miter length limit |
| 200 | |
Tyler Denniston | e9ced4f | 2020-07-22 09:29:42 -0400 | [diff] [blame] | 201 | // Outer: connect to the miter point, and then to t=0 (on outside stroke) of next segment. |
Tyler Denniston | f219aad | 2020-07-21 16:16:55 -0400 | [diff] [blame] | 202 | const SkPoint dest = setLength(after, fRadius); |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 203 | outer->lineTo(miterMidpt + miterVec); |
Tyler Denniston | f219aad | 2020-07-21 16:16:55 -0400 | [diff] [blame] | 204 | outer->lineTo(miterMidpt + dest); |
| 205 | |
Tyler Denniston | e9ced4f | 2020-07-22 09:29:42 -0400 | [diff] [blame] | 206 | // Inner miter is more involved. We're already at t=1 (on inside stroke) of 'prev'. |
| 207 | // Check 2 cases to see we can directly connect to the inner miter point |
| 208 | // (midpoint - miterVec), or if we need to add extra "loop" geometry. |
| 209 | const SkPoint prevUnitTangent = rotate90(before); |
| 210 | const float radiusSquared = fRadius * fRadius; |
| 211 | // 'alpha' is angle between prev tangent and the curr inwards normal |
| 212 | const float cosAlpha = prevUnitTangent.dot(-after); |
| 213 | // Solve triangle for len^2: radius^2 = len^2 + (radius * sin(alpha))^2 |
| 214 | // This is the point at which the inside "corner" of curr at t=0 will lie on a |
| 215 | // line connecting the inner and outer corners of prev at t=0. If len is below |
| 216 | // this threshold, the inside corner of curr will "poke through" the start of prev, |
| 217 | // and we'll need the inner loop geometry. |
| 218 | const float threshold1 = radiusSquared * cosAlpha * cosAlpha; |
| 219 | // Solve triangle for len^2: halfMiterLen^2 = radius^2 + len^2 |
| 220 | // This is the point at which the inner miter point will lie on the inner stroke |
| 221 | // boundary of the curr segment. If len is below this threshold, the miter point |
| 222 | // moves 'inside' of the stroked outline, and we'll need the inner loop geometry. |
| 223 | const float threshold2 = halfMiterLength * halfMiterLength - radiusSquared; |
| 224 | // If a segment length is smaller than the larger of the two thresholds, |
| 225 | // we'll have to add the inner loop geometry. |
| 226 | const float maxLenSqd = std::max(threshold1, threshold2); |
| 227 | const bool needsInnerLoop = |
| 228 | squaredLineLength(prev) < maxLenSqd || squaredLineLength(curr) < maxLenSqd; |
| 229 | if (needsInnerLoop) { |
| 230 | // Connect to the miter midpoint (common path endpoint of the two segments), |
| 231 | // and then to t=0 (on inside) of the next segment. This adds an interior "loop" of |
| 232 | // geometry that handles edge cases where segment lengths are shorter than the |
| 233 | // stroke width. |
| 234 | inner->lineTo(miterMidpt); |
| 235 | inner->lineTo(miterMidpt - dest); |
| 236 | } else { |
| 237 | // Directly connect to inner miter point. |
| 238 | inner->setLastPt(miterMidpt - miterVec); |
| 239 | } |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 240 | }; |
| 241 | |
| 242 | switch (fJoin) { |
| 243 | case SkPaint::kMiter_Join: |
| 244 | miterJoin(prev, curr); |
| 245 | break; |
| 246 | default: |
| 247 | SkDebugf("Unhandled join %d\n", fJoin); |
| 248 | miterJoin(prev, curr); |
| 249 | break; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | void SkPathStroker2::appendPathReversed(const SkPath* path, SkPath* result) { |
| 254 | const int numVerbs = path->countVerbs(); |
| 255 | const int numPoints = path->countPoints(); |
| 256 | std::unique_ptr<uint8_t[]> verbs = std::make_unique<uint8_t[]>(numVerbs); |
| 257 | std::unique_ptr<SkPoint[]> points = std::make_unique<SkPoint[]>(numPoints); |
| 258 | |
| 259 | path->getVerbs(verbs.get(), numVerbs); |
| 260 | path->getPoints(points.get(), numPoints); |
| 261 | |
| 262 | for (int i = numVerbs - 1, j = numPoints; i >= 0; i--) { |
| 263 | auto verb = static_cast<SkPath::Verb>(verbs[i]); |
| 264 | switch (verb) { |
| 265 | case SkPath::kLine_Verb: { |
| 266 | j -= 1; |
| 267 | SkASSERT(j >= 1); |
| 268 | result->lineTo(points[j - 1]); |
| 269 | break; |
| 270 | } |
| 271 | case SkPath::kMove_Verb: |
| 272 | // Ignore |
| 273 | break; |
| 274 | default: |
| 275 | SkASSERT(false); |
| 276 | break; |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | SkPoint SkPathStroker2::unitNormal(const PathSegment& seg, float t) { |
| 282 | if (seg.fVerb != SkPath::kLine_Verb) { |
| 283 | SkDebugf("Unhandled verb for unit normal %d\n", seg.fVerb); |
| 284 | } |
| 285 | |
| 286 | (void)t; // Not needed for lines |
| 287 | const SkPoint tangent = seg.fPoints[1] - seg.fPoints[0]; |
| 288 | const SkPoint normal = rotate90(tangent); |
| 289 | return setLength(normal, 1); |
| 290 | } |
| 291 | |
Tyler Denniston | e9ced4f | 2020-07-22 09:29:42 -0400 | [diff] [blame] | 292 | float SkPathStroker2::squaredLineLength(const PathSegment& lineSeg) { |
| 293 | SkASSERT(lineSeg.fVerb == SkPath::kLine_Verb); |
| 294 | const SkPoint diff = lineSeg.fPoints[1] - lineSeg.fPoints[0]; |
| 295 | return diff.dot(diff); |
| 296 | } |
| 297 | |
Tyler Denniston | 324578b | 2020-07-17 14:03:42 -0400 | [diff] [blame] | 298 | } // namespace |
| 299 | |
| 300 | ////////////////////////////////////////////////////////////////////////////// |
| 301 | |
| 302 | class SimpleStroker : public Sample { |
| 303 | bool fShowSkiaStroke, fShowHidden; |
| 304 | float fWidth = 175; |
| 305 | SkPaint fPtsPaint, fStrokePaint, fNewFillPaint, fHiddenPaint; |
| 306 | static constexpr int kN = 3; |
| 307 | |
| 308 | public: |
| 309 | SkPoint fPts[kN]; |
| 310 | |
| 311 | SimpleStroker() : fShowSkiaStroke(true), fShowHidden(false) { |
| 312 | fPts[0] = {500, 200}; |
| 313 | fPts[1] = {300, 200}; |
| 314 | fPts[2] = {100, 100}; |
| 315 | |
| 316 | fPtsPaint.setAntiAlias(true); |
| 317 | fPtsPaint.setStrokeWidth(10); |
| 318 | fPtsPaint.setStrokeCap(SkPaint::kRound_Cap); |
| 319 | |
| 320 | fStrokePaint.setAntiAlias(true); |
| 321 | fStrokePaint.setStyle(SkPaint::kStroke_Style); |
| 322 | fStrokePaint.setColor(0x80FF0000); |
| 323 | |
| 324 | fNewFillPaint.setAntiAlias(true); |
| 325 | fNewFillPaint.setColor(0x8000FF00); |
| 326 | |
| 327 | fHiddenPaint.setAntiAlias(true); |
| 328 | fHiddenPaint.setStyle(SkPaint::kStroke_Style); |
| 329 | fHiddenPaint.setColor(0xFF0000FF); |
| 330 | } |
| 331 | |
| 332 | void toggle(bool& value) { value = !value; } |
| 333 | |
| 334 | protected: |
| 335 | SkString name() override { return SkString("SimpleStroker"); } |
| 336 | |
| 337 | bool onChar(SkUnichar uni) override { |
| 338 | switch (uni) { |
| 339 | case '1': |
| 340 | this->toggle(fShowSkiaStroke); |
| 341 | return true; |
| 342 | case '2': |
| 343 | this->toggle(fShowHidden); |
| 344 | return true; |
| 345 | case '-': |
| 346 | fWidth -= 5; |
| 347 | return true; |
| 348 | case '=': |
| 349 | fWidth += 5; |
| 350 | return true; |
| 351 | default: |
| 352 | break; |
| 353 | } |
| 354 | return false; |
| 355 | } |
| 356 | |
| 357 | void makePath(SkPath* path) { |
| 358 | path->moveTo(fPts[0]); |
| 359 | for (int i = 1; i < kN; ++i) { |
| 360 | path->lineTo(fPts[i]); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | void onDrawContent(SkCanvas* canvas) override { |
| 365 | canvas->drawColor(0xFFEEEEEE); |
| 366 | |
| 367 | SkPath path; |
| 368 | this->makePath(&path); |
| 369 | |
| 370 | fStrokePaint.setStrokeWidth(fWidth); |
| 371 | |
| 372 | // The correct result |
| 373 | if (fShowSkiaStroke) { |
| 374 | canvas->drawPath(path, fStrokePaint); |
| 375 | } |
| 376 | |
| 377 | // Simple stroker result |
| 378 | SkPathStroker2 stroker; |
| 379 | SkPath fillPath = stroker.getFillPath(path, fStrokePaint); |
| 380 | canvas->drawPath(fillPath, fNewFillPaint); |
| 381 | |
| 382 | if (fShowHidden) { |
| 383 | canvas->drawPath(fillPath, fHiddenPaint); |
| 384 | } |
| 385 | |
| 386 | canvas->drawPoints(SkCanvas::kPoints_PointMode, kN, fPts, fPtsPaint); |
| 387 | } |
| 388 | |
| 389 | Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { |
| 390 | const SkScalar tol = 4; |
| 391 | const SkRect r = SkRect::MakeXYWH(x - tol, y - tol, tol * 2, tol * 2); |
| 392 | for (int i = 0; i < kN; ++i) { |
| 393 | if (r.intersects(SkRect::MakeXYWH(fPts[i].fX, fPts[i].fY, 1, 1))) { |
| 394 | return new Click([this, i](Click* c) { |
| 395 | fPts[i] = c->fCurr; |
| 396 | return true; |
| 397 | }); |
| 398 | } |
| 399 | } |
| 400 | return nullptr; |
| 401 | } |
| 402 | |
| 403 | private: |
| 404 | typedef Sample INHERITED; |
| 405 | }; |
| 406 | |
| 407 | DEF_SAMPLE(return new SimpleStroker;) |