commit-bot@chromium.org | 85facf7 | 2014-01-07 17:03:31 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkBenchmark.h" |
| 9 | #include "SkRandom.h" |
| 10 | |
| 11 | #include "SkChunkAlloc.h" |
| 12 | #include "SkDeque.h" |
| 13 | #include "SkTArray.h" |
| 14 | #include "SkTDArray.h" |
| 15 | |
| 16 | // This file has several benchmarks using various data structures to do stack-like things: |
| 17 | // - push |
| 18 | // - push, immediately pop |
| 19 | // - push many, pop all of them |
| 20 | // - serial access |
| 21 | // - random access |
| 22 | // When a data structure doesn't suppport an operation efficiently, we leave that combination out. |
| 23 | // Where possible we hint to the data structure to allocate in 4K pages. |
| 24 | // |
| 25 | // These benchmarks may help you decide which data structure to use for a dynamically allocated |
| 26 | // ordered list of allocations that grows on one end. |
| 27 | // |
| 28 | // Current overall winner (01/2014): SkTDArray. |
| 29 | // It wins every benchmark on every machine I tried (Desktop, Nexus S, Laptop). |
| 30 | |
| 31 | template <typename Impl> |
| 32 | struct StackBench : public SkBenchmark { |
| 33 | virtual bool isSuitableFor(Backend b) SK_OVERRIDE { return b == kNonRendering_Backend; } |
| 34 | virtual const char* onGetName() SK_OVERRIDE { return Impl::kName; } |
| 35 | virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE { Impl::bench(loops); } |
| 36 | }; |
| 37 | |
| 38 | #define BENCH(name) \ |
| 39 | struct name { static const char* const kName; static void bench(int); }; \ |
| 40 | const char* const name::kName = #name; \ |
| 41 | DEF_BENCH(return new StackBench<name>();) \ |
| 42 | void name::bench(int loops) |
| 43 | |
| 44 | static const int K = 2049; |
| 45 | |
| 46 | // Add K items, then iterate through them serially many times. |
| 47 | |
| 48 | BENCH(Deque_Serial) { |
| 49 | SkDeque s(sizeof(int), 1024); |
| 50 | for (int i = 0; i < K; i++) *(int*)s.push_back() = i; |
| 51 | |
| 52 | volatile int junk = 0; |
| 53 | for (int j = 0; j < loops; j++) { |
| 54 | SkDeque::Iter it(s, SkDeque::Iter::kFront_IterStart); |
| 55 | while(void* p = it.next()) { |
| 56 | junk += *(int*)p; |
| 57 | } |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | BENCH(TArray_Serial) { |
| 62 | SkTArray<int, true> s; |
| 63 | for (int i = 0; i < K; i++) s.push_back(i); |
| 64 | |
| 65 | volatile int junk = 0; |
| 66 | for (int j = 0; j < loops; j++) { |
| 67 | for (int i = 0; i < s.count(); i++) junk += s[i]; |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | BENCH(TDArray_Serial) { |
| 72 | SkTDArray<int> s; |
| 73 | for (int i = 0; i < K; i++) s.push(i); |
| 74 | |
| 75 | volatile int junk = 0; |
| 76 | for (int j = 0; j < loops; j++) { |
| 77 | for (int i = 0; i < s.count(); i++) junk += s[i]; |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | // Add K items, then randomly access them many times. |
| 82 | |
| 83 | BENCH(TArray_RandomAccess) { |
| 84 | SkTArray<int, true> s; |
| 85 | for (int i = 0; i < K; i++) s.push_back(i); |
| 86 | |
| 87 | SkRandom rand; |
| 88 | volatile int junk = 0; |
| 89 | for (int i = 0; i < K*loops; i++) { |
| 90 | junk += s[rand.nextULessThan(K)]; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | BENCH(TDArray_RandomAccess) { |
| 95 | SkTDArray<int> s; |
| 96 | for (int i = 0; i < K; i++) s.push(i); |
| 97 | |
| 98 | SkRandom rand; |
| 99 | volatile int junk = 0; |
| 100 | for (int i = 0; i < K*loops; i++) { |
| 101 | junk += s[rand.nextULessThan(K)]; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | // Push many times. |
| 106 | |
| 107 | BENCH(ChunkAlloc_Push) { |
| 108 | SkChunkAlloc s(4096); |
| 109 | for (int i = 0; i < K*loops; i++) s.allocThrow(sizeof(int)); |
| 110 | } |
| 111 | |
| 112 | BENCH(Deque_Push) { |
| 113 | SkDeque s(sizeof(int), 1024); |
| 114 | for (int i = 0; i < K*loops; i++) *(int*)s.push_back() = i; |
| 115 | } |
| 116 | |
| 117 | BENCH(TArray_Push) { |
| 118 | SkTArray<int, true> s; |
| 119 | for (int i = 0; i < K*loops; i++) s.push_back(i); |
| 120 | } |
| 121 | |
| 122 | BENCH(TDArray_Push) { |
| 123 | SkTDArray<int> s; |
| 124 | for (int i = 0; i < K*loops; i++) s.push(i); |
| 125 | } |
| 126 | |
| 127 | // Push then immediately pop many times. |
| 128 | |
| 129 | BENCH(ChunkAlloc_PushPop) { |
| 130 | SkChunkAlloc s(4096); |
| 131 | for (int i = 0; i < K*loops; i++) { |
| 132 | void* p = s.allocThrow(sizeof(int)); |
| 133 | s.unalloc(p); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | BENCH(Deque_PushPop) { |
| 138 | SkDeque s(sizeof(int), 1024); |
| 139 | for (int i = 0; i < K*loops; i++) { |
| 140 | *(int*)s.push_back() = i; |
| 141 | s.pop_back(); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | BENCH(TArray_PushPop) { |
| 146 | SkTArray<int, true> s; |
| 147 | for (int i = 0; i < K*loops; i++) { |
| 148 | s.push_back(i); |
| 149 | s.pop_back(); |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | BENCH(TDArray_PushPop) { |
| 154 | SkTDArray<int> s; |
| 155 | for (int i = 0; i < K*loops; i++) { |
| 156 | s.push(i); |
| 157 | s.pop(); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // Push many items, then pop them all. |
| 162 | |
| 163 | BENCH(Deque_PushAllPopAll) { |
| 164 | SkDeque s(sizeof(int), 1024); |
| 165 | for (int i = 0; i < K*loops; i++) *(int*)s.push_back() = i; |
| 166 | for (int i = 0; i < K*loops; i++) s.pop_back(); |
| 167 | } |
| 168 | |
| 169 | BENCH(TArray_PushAllPopAll) { |
| 170 | SkTArray<int, true> s; |
| 171 | for (int i = 0; i < K*loops; i++) s.push_back(i); |
| 172 | for (int i = 0; i < K*loops; i++) s.pop_back(); |
| 173 | } |
| 174 | |
| 175 | BENCH(TDArray_PushAllPopAll) { |
| 176 | SkTDArray<int> s; |
| 177 | for (int i = 0; i < K*loops; i++) s.push(i); |
| 178 | for (int i = 0; i < K*loops; i++) s.pop(); |
| 179 | } |