caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 7 | #include "SkIntersections.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 8 | #include "SkLineParameters.h" |
| 9 | #include "SkPathOpsCubic.h" |
caryclark | 03b03ca | 2015-04-23 09:13:37 -0700 | [diff] [blame] | 10 | #include "SkPathOpsCurve.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 11 | #include "SkPathOpsQuad.h" |
Cary Clark | 0a67198 | 2018-10-11 12:16:49 -0400 | [diff] [blame] | 12 | #include "SkPathOpsRect.h" |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 13 | |
caryclark | e839e78 | 2016-09-15 07:48:18 -0700 | [diff] [blame] | 14 | // from blackpawn.com/texts/pointinpoly |
| 15 | static bool pointInTriangle(const SkDPoint fPts[3], const SkDPoint& test) { |
| 16 | SkDVector v0 = fPts[2] - fPts[0]; |
| 17 | SkDVector v1 = fPts[1] - fPts[0]; |
| 18 | SkDVector v2 = test - fPts[0]; |
| 19 | double dot00 = v0.dot(v0); |
| 20 | double dot01 = v0.dot(v1); |
| 21 | double dot02 = v0.dot(v2); |
| 22 | double dot11 = v1.dot(v1); |
| 23 | double dot12 = v1.dot(v2); |
| 24 | // Compute barycentric coordinates |
Cary Clark | 1c2c2e2 | 2018-02-27 08:48:32 -0500 | [diff] [blame] | 25 | double denom = dot00 * dot11 - dot01 * dot01; |
| 26 | double u = dot11 * dot02 - dot01 * dot12; |
| 27 | double v = dot00 * dot12 - dot01 * dot02; |
caryclark | e839e78 | 2016-09-15 07:48:18 -0700 | [diff] [blame] | 28 | // Check if point is in triangle |
Cary Clark | 1c2c2e2 | 2018-02-27 08:48:32 -0500 | [diff] [blame] | 29 | if (denom >= 0) { |
| 30 | return u >= 0 && v >= 0 && u + v < denom; |
| 31 | } |
| 32 | return u <= 0 && v <= 0 && u + v > denom; |
caryclark | e839e78 | 2016-09-15 07:48:18 -0700 | [diff] [blame] | 33 | } |
| 34 | |
| 35 | static bool matchesEnd(const SkDPoint fPts[3], const SkDPoint& test) { |
| 36 | return fPts[0] == test || fPts[2] == test; |
| 37 | } |
| 38 | |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 39 | /* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */ |
| 40 | // Do a quick reject by rotating all points relative to a line formed by |
| 41 | // a pair of one quad's points. If the 2nd quad's points |
| 42 | // are on the line or on the opposite side from the 1st quad's 'odd man', the |
| 43 | // curves at most intersect at the endpoints. |
| 44 | /* if returning true, check contains true if quad's hull collapsed, making the cubic linear |
| 45 | if returning false, check contains true if the the quad pair have only the end point in common |
| 46 | */ |
| 47 | bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const { |
| 48 | bool linear = true; |
| 49 | for (int oddMan = 0; oddMan < kPointCount; ++oddMan) { |
| 50 | const SkDPoint* endPt[2]; |
| 51 | this->otherPts(oddMan, endPt); |
| 52 | double origX = endPt[0]->fX; |
| 53 | double origY = endPt[0]->fY; |
| 54 | double adj = endPt[1]->fX - origX; |
| 55 | double opp = endPt[1]->fY - origY; |
| 56 | double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; |
| 57 | if (approximately_zero(sign)) { |
| 58 | continue; |
| 59 | } |
| 60 | linear = false; |
| 61 | bool foundOutlier = false; |
| 62 | for (int n = 0; n < kPointCount; ++n) { |
| 63 | double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
| 64 | if (test * sign > 0 && !precisely_zero(test)) { |
| 65 | foundOutlier = true; |
| 66 | break; |
| 67 | } |
| 68 | } |
| 69 | if (!foundOutlier) { |
| 70 | return false; |
| 71 | } |
| 72 | } |
caryclark | e839e78 | 2016-09-15 07:48:18 -0700 | [diff] [blame] | 73 | if (linear && !matchesEnd(fPts, q2.fPts[0]) && !matchesEnd(fPts, q2.fPts[2])) { |
| 74 | // if the end point of the opposite quad is inside the hull that is nearly a line, |
| 75 | // then representing the quad as a line may cause the intersection to be missed. |
| 76 | // Check to see if the endpoint is in the triangle. |
| 77 | if (pointInTriangle(fPts, q2.fPts[0]) || pointInTriangle(fPts, q2.fPts[2])) { |
| 78 | linear = false; |
| 79 | } |
| 80 | } |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 81 | *isLinear = linear; |
| 82 | return true; |
| 83 | } |
| 84 | |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 85 | bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
| 86 | return conic.hullIntersects(*this, isLinear); |
| 87 | } |
| 88 | |
| 89 | bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
| 90 | return cubic.hullIntersects(*this, isLinear); |
| 91 | } |
| 92 | |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 93 | /* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan) |
| 94 | oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m |
| 95 | 0 1 1 1 0 1 |
| 96 | 2 2 2 0 2 |
| 97 | 1 1 0 -1 -1 0 |
| 98 | 2 3 2 0 2 |
| 99 | 2 1 3 1 0 1 |
| 100 | 2 0 -2 -1 0 |
| 101 | */ |
| 102 | void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const { |
| 103 | for (int opp = 1; opp < kPointCount; ++opp) { |
| 104 | int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan |
| 105 | end &= ~(end >> 2); // if the value went negative, set it to zero |
| 106 | endPt[opp - 1] = &fPts[end]; |
| 107 | } |
| 108 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 109 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 110 | int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { |
| 111 | int foundRoots = 0; |
| 112 | for (int index = 0; index < realRoots; ++index) { |
| 113 | double tValue = s[index]; |
| 114 | if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { |
| 115 | if (approximately_less_than_zero(tValue)) { |
| 116 | tValue = 0; |
| 117 | } else if (approximately_greater_than_one(tValue)) { |
| 118 | tValue = 1; |
| 119 | } |
| 120 | for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
| 121 | if (approximately_equal(t[idx2], tValue)) { |
| 122 | goto nextRoot; |
| 123 | } |
| 124 | } |
| 125 | t[foundRoots++] = tValue; |
| 126 | } |
| 127 | nextRoot: |
| 128 | {} |
| 129 | } |
| 130 | return foundRoots; |
| 131 | } |
| 132 | |
| 133 | // note: caller expects multiple results to be sorted smaller first |
| 134 | // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
| 135 | // analysis of the quadratic equation, suggesting why the following looks at |
| 136 | // the sign of B -- and further suggesting that the greatest loss of precision |
| 137 | // is in b squared less two a c |
| 138 | int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { |
| 139 | double s[2]; |
| 140 | int realRoots = RootsReal(A, B, C, s); |
| 141 | int foundRoots = AddValidTs(s, realRoots, t); |
| 142 | return foundRoots; |
| 143 | } |
| 144 | |
Cary Clark | 65247e5 | 2018-03-13 10:39:30 -0400 | [diff] [blame] | 145 | static int handle_zero(const double B, const double C, double s[2]) { |
| 146 | if (approximately_zero(B)) { |
| 147 | s[0] = 0; |
| 148 | return C == 0; |
| 149 | } |
| 150 | s[0] = -C / B; |
| 151 | return 1; |
| 152 | } |
| 153 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 154 | /* |
| 155 | Numeric Solutions (5.6) suggests to solve the quadratic by computing |
| 156 | Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
| 157 | and using the roots |
| 158 | t1 = Q / A |
| 159 | t2 = C / Q |
| 160 | */ |
| 161 | // this does not discard real roots <= 0 or >= 1 |
| 162 | int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { |
Cary Clark | 65247e5 | 2018-03-13 10:39:30 -0400 | [diff] [blame] | 163 | if (!A) { |
| 164 | return handle_zero(B, C, s); |
| 165 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 166 | const double p = B / (2 * A); |
| 167 | const double q = C / A; |
Cary Clark | 65247e5 | 2018-03-13 10:39:30 -0400 | [diff] [blame] | 168 | if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { |
| 169 | return handle_zero(B, C, s); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 170 | } |
| 171 | /* normal form: x^2 + px + q = 0 */ |
| 172 | const double p2 = p * p; |
caryclark@google.com | 7eaa53d | 2013-10-02 14:49:34 +0000 | [diff] [blame] | 173 | if (!AlmostDequalUlps(p2, q) && p2 < q) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 174 | return 0; |
| 175 | } |
| 176 | double sqrt_D = 0; |
| 177 | if (p2 > q) { |
| 178 | sqrt_D = sqrt(p2 - q); |
| 179 | } |
| 180 | s[0] = sqrt_D - p; |
| 181 | s[1] = -sqrt_D - p; |
caryclark@google.com | 7eaa53d | 2013-10-02 14:49:34 +0000 | [diff] [blame] | 182 | return 1 + !AlmostDequalUlps(s[0], s[1]); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 183 | } |
| 184 | |
| 185 | bool SkDQuad::isLinear(int startIndex, int endIndex) const { |
| 186 | SkLineParameters lineParameters; |
| 187 | lineParameters.quadEndPoints(*this, startIndex, endIndex); |
| 188 | // FIXME: maybe it's possible to avoid this and compare non-normalized |
| 189 | lineParameters.normalize(); |
| 190 | double distance = lineParameters.controlPtDistance(*this); |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 191 | double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), |
| 192 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
| 193 | double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), |
| 194 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
| 195 | largest = SkTMax(largest, -tiniest); |
| 196 | return approximately_zero_when_compared_to(distance, largest); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 197 | } |
| 198 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 199 | SkDVector SkDQuad::dxdyAtT(double t) const { |
| 200 | double a = t - 1; |
| 201 | double b = 1 - 2 * t; |
| 202 | double c = t; |
| 203 | SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
| 204 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
caryclark | 94c902e | 2015-08-18 07:12:43 -0700 | [diff] [blame] | 205 | if (result.fX == 0 && result.fY == 0) { |
| 206 | if (zero_or_one(t)) { |
| 207 | result = fPts[2] - fPts[0]; |
| 208 | } else { |
| 209 | // incomplete |
| 210 | SkDebugf("!q"); |
| 211 | } |
| 212 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 213 | return result; |
| 214 | } |
| 215 | |
caryclark@google.com | fa2aeee | 2013-07-15 13:29:13 +0000 | [diff] [blame] | 216 | // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? |
caryclark@google.com | 4fdbb22 | 2013-07-23 15:27:41 +0000 | [diff] [blame] | 217 | SkDPoint SkDQuad::ptAtT(double t) const { |
| 218 | if (0 == t) { |
| 219 | return fPts[0]; |
| 220 | } |
| 221 | if (1 == t) { |
| 222 | return fPts[2]; |
| 223 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 224 | double one_t = 1 - t; |
| 225 | double a = one_t * one_t; |
| 226 | double b = 2 * one_t * t; |
| 227 | double c = t * t; |
| 228 | SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
| 229 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
| 230 | return result; |
| 231 | } |
| 232 | |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 233 | static double interp_quad_coords(const double* src, double t) { |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 234 | if (0 == t) { |
| 235 | return src[0]; |
| 236 | } |
| 237 | if (1 == t) { |
| 238 | return src[4]; |
| 239 | } |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 240 | double ab = SkDInterp(src[0], src[2], t); |
| 241 | double bc = SkDInterp(src[2], src[4], t); |
| 242 | double abc = SkDInterp(ab, bc, t); |
| 243 | return abc; |
| 244 | } |
| 245 | |
caryclark | aec2510 | 2015-04-29 08:28:30 -0700 | [diff] [blame] | 246 | bool SkDQuad::monotonicInX() const { |
| 247 | return between(fPts[0].fX, fPts[1].fX, fPts[2].fX); |
| 248 | } |
| 249 | |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 250 | bool SkDQuad::monotonicInY() const { |
| 251 | return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); |
| 252 | } |
| 253 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 254 | /* |
| 255 | Given a quadratic q, t1, and t2, find a small quadratic segment. |
| 256 | |
| 257 | The new quadratic is defined by A, B, and C, where |
| 258 | A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 |
| 259 | C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 |
| 260 | |
| 261 | To find B, compute the point halfway between t1 and t2: |
| 262 | |
| 263 | q(at (t1 + t2)/2) == D |
| 264 | |
| 265 | Next, compute where D must be if we know the value of B: |
| 266 | |
| 267 | _12 = A/2 + B/2 |
| 268 | 12_ = B/2 + C/2 |
| 269 | 123 = A/4 + B/2 + C/4 |
| 270 | = D |
| 271 | |
| 272 | Group the known values on one side: |
| 273 | |
| 274 | B = D*2 - A/2 - C/2 |
| 275 | */ |
| 276 | |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 277 | // OPTIMIZE? : special case t1 = 1 && t2 = 0 |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 278 | SkDQuad SkDQuad::subDivide(double t1, double t2) const { |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 279 | if (0 == t1 && 1 == t2) { |
| 280 | return *this; |
| 281 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 282 | SkDQuad dst; |
| 283 | double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); |
| 284 | double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); |
| 285 | double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); |
| 286 | double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); |
| 287 | double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); |
| 288 | double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 289 | /* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2; |
| 290 | /* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 291 | return dst; |
| 292 | } |
| 293 | |
skia.committer@gmail.com | 8f6ef40 | 2013-06-05 07:01:06 +0000 | [diff] [blame] | 294 | void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 295 | if (fPts[endIndex].fX == fPts[1].fX) { |
| 296 | dstPt->fX = fPts[endIndex].fX; |
| 297 | } |
| 298 | if (fPts[endIndex].fY == fPts[1].fY) { |
| 299 | dstPt->fY = fPts[endIndex].fY; |
| 300 | } |
| 301 | } |
| 302 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 303 | SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 304 | SkASSERT(t1 != t2); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 305 | SkDPoint b; |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 306 | SkDQuad sub = subDivide(t1, t2); |
| 307 | SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; |
| 308 | SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; |
| 309 | SkIntersections i; |
| 310 | i.intersectRay(b0, b1); |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 311 | if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 312 | b = i.pt(0); |
| 313 | } else { |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 314 | SkASSERT(i.used() <= 2); |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 315 | return SkDPoint::Mid(b0[1], b1[1]); |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 316 | } |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 317 | if (t1 == 0 || t2 == 0) { |
| 318 | align(0, &b); |
| 319 | } |
| 320 | if (t1 == 1 || t2 == 1) { |
| 321 | align(2, &b); |
| 322 | } |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 323 | if (AlmostBequalUlps(b.fX, a.fX)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 324 | b.fX = a.fX; |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 325 | } else if (AlmostBequalUlps(b.fX, c.fX)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 326 | b.fX = c.fX; |
| 327 | } |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 328 | if (AlmostBequalUlps(b.fY, a.fY)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 329 | b.fY = a.fY; |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 330 | } else if (AlmostBequalUlps(b.fY, c.fY)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 331 | b.fY = c.fY; |
| 332 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 333 | return b; |
| 334 | } |
| 335 | |
| 336 | /* classic one t subdivision */ |
| 337 | static void interp_quad_coords(const double* src, double* dst, double t) { |
| 338 | double ab = SkDInterp(src[0], src[2], t); |
| 339 | double bc = SkDInterp(src[2], src[4], t); |
| 340 | dst[0] = src[0]; |
| 341 | dst[2] = ab; |
| 342 | dst[4] = SkDInterp(ab, bc, t); |
| 343 | dst[6] = bc; |
| 344 | dst[8] = src[4]; |
| 345 | } |
| 346 | |
| 347 | SkDQuadPair SkDQuad::chopAt(double t) const |
| 348 | { |
| 349 | SkDQuadPair dst; |
| 350 | interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
| 351 | interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
| 352 | return dst; |
| 353 | } |
| 354 | |
| 355 | static int valid_unit_divide(double numer, double denom, double* ratio) |
| 356 | { |
| 357 | if (numer < 0) { |
| 358 | numer = -numer; |
| 359 | denom = -denom; |
| 360 | } |
| 361 | if (denom == 0 || numer == 0 || numer >= denom) { |
| 362 | return 0; |
| 363 | } |
| 364 | double r = numer / denom; |
| 365 | if (r == 0) { // catch underflow if numer <<<< denom |
| 366 | return 0; |
| 367 | } |
| 368 | *ratio = r; |
| 369 | return 1; |
| 370 | } |
| 371 | |
| 372 | /** Quad'(t) = At + B, where |
| 373 | A = 2(a - 2b + c) |
| 374 | B = 2(b - a) |
| 375 | Solve for t, only if it fits between 0 < t < 1 |
| 376 | */ |
caryclark | aec2510 | 2015-04-29 08:28:30 -0700 | [diff] [blame] | 377 | int SkDQuad::FindExtrema(const double src[], double tValue[1]) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 378 | /* At + B == 0 |
| 379 | t = -B / A |
| 380 | */ |
caryclark | aec2510 | 2015-04-29 08:28:30 -0700 | [diff] [blame] | 381 | double a = src[0]; |
| 382 | double b = src[2]; |
| 383 | double c = src[4]; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 384 | return valid_unit_divide(a - b, a - b - b + c, tValue); |
| 385 | } |
| 386 | |
| 387 | /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) |
| 388 | * |
| 389 | * a = A - 2*B + C |
| 390 | * b = 2*B - 2*C |
| 391 | * c = C |
| 392 | */ |
| 393 | void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { |
| 394 | *a = quad[0]; // a = A |
| 395 | *b = 2 * quad[2]; // b = 2*B |
| 396 | *c = quad[4]; // c = C |
| 397 | *b -= *c; // b = 2*B - C |
| 398 | *a -= *b; // a = A - 2*B + C |
| 399 | *b -= *c; // b = 2*B - 2*C |
| 400 | } |
Cary Clark | 0a67198 | 2018-10-11 12:16:49 -0400 | [diff] [blame] | 401 | |
Cary Clark | 8762fb6 | 2018-10-16 16:06:24 -0400 | [diff] [blame] | 402 | int SkTQuad::intersectRay(SkIntersections* i, const SkDLine& line) const { |
| 403 | return i->intersectRay(fQuad, line); |
| 404 | } |
Cary Clark | 0a67198 | 2018-10-11 12:16:49 -0400 | [diff] [blame] | 405 | |
Cary Clark | 8762fb6 | 2018-10-16 16:06:24 -0400 | [diff] [blame] | 406 | bool SkTQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
| 407 | return conic.hullIntersects(fQuad, isLinear); |
| 408 | } |
Cary Clark | 0a67198 | 2018-10-11 12:16:49 -0400 | [diff] [blame] | 409 | |
Cary Clark | 8762fb6 | 2018-10-16 16:06:24 -0400 | [diff] [blame] | 410 | bool SkTQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
| 411 | return cubic.hullIntersects(fQuad, isLinear); |
| 412 | } |
Cary Clark | 0a67198 | 2018-10-11 12:16:49 -0400 | [diff] [blame] | 413 | |
Cary Clark | 8762fb6 | 2018-10-16 16:06:24 -0400 | [diff] [blame] | 414 | void SkTQuad::setBounds(SkDRect* rect) const { |
| 415 | rect->setBounds(fQuad); |
| 416 | } |