caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 1 | #include "CubicIntersection.h" |
| 2 | #include "Intersections.h" |
| 3 | #include "IntersectionUtilities.h" |
| 4 | #include "LineIntersection.h" |
| 5 | |
| 6 | class QuadraticIntersections : public Intersections { |
| 7 | public: |
| 8 | |
| 9 | QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i) |
| 10 | : quad1(q1) |
| 11 | , quad2(q2) |
| 12 | , intersections(i) |
| 13 | , depth(0) |
| 14 | , splits(0) { |
| 15 | } |
| 16 | |
| 17 | bool intersect() { |
| 18 | double minT1, minT2, maxT1, maxT2; |
| 19 | if (!bezier_clip(quad2, quad1, minT1, maxT1)) { |
| 20 | return false; |
| 21 | } |
| 22 | if (!bezier_clip(quad1, quad2, minT2, maxT2)) { |
| 23 | return false; |
| 24 | } |
| 25 | int split; |
| 26 | if (maxT1 - minT1 < maxT2 - minT2) { |
| 27 | intersections.swap(); |
| 28 | minT2 = 0; |
| 29 | maxT2 = 1; |
| 30 | split = maxT1 - minT1 > tClipLimit; |
| 31 | } else { |
| 32 | minT1 = 0; |
| 33 | maxT1 = 1; |
| 34 | split = (maxT2 - minT2 > tClipLimit) << 1; |
| 35 | } |
| 36 | return chop(minT1, maxT1, minT2, maxT2, split); |
| 37 | } |
| 38 | |
| 39 | protected: |
| 40 | |
| 41 | bool intersect(double minT1, double maxT1, double minT2, double maxT2) { |
| 42 | Quadratic smaller, larger; |
| 43 | // FIXME: carry last subdivide and reduceOrder result with quad |
| 44 | sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller); |
| 45 | sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger); |
| 46 | Quadratic smallResult; |
| 47 | if (reduceOrder(smaller, smallResult) <= 2) { |
| 48 | Quadratic largeResult; |
| 49 | if (reduceOrder(larger, largeResult) <= 2) { |
| 50 | _Point pt; |
| 51 | const _Line& smallLine = (const _Line&) smallResult; |
| 52 | const _Line& largeLine = (const _Line&) largeResult; |
| 53 | if (!lineIntersect(smallLine, largeLine, &pt)) { |
| 54 | return false; |
| 55 | } |
| 56 | double smallT = t_at(smallLine, pt); |
| 57 | double largeT = t_at(largeLine, pt); |
| 58 | if (intersections.swapped()) { |
| 59 | smallT = interp(minT2, maxT2, smallT); |
| 60 | largeT = interp(minT1, maxT1, largeT); |
| 61 | } else { |
| 62 | smallT = interp(minT1, maxT1, smallT); |
| 63 | largeT = interp(minT2, maxT2, largeT); |
| 64 | } |
| 65 | intersections.add(smallT, largeT); |
| 66 | return true; |
| 67 | } |
| 68 | } |
| 69 | double minT, maxT; |
| 70 | if (!bezier_clip(smaller, larger, minT, maxT)) { |
| 71 | if (minT == maxT) { |
| 72 | if (intersections.swapped()) { |
| 73 | minT1 = (minT1 + maxT1) / 2; |
| 74 | minT2 = interp(minT2, maxT2, minT); |
| 75 | } else { |
| 76 | minT1 = interp(minT1, maxT1, minT); |
| 77 | minT2 = (minT2 + maxT2) / 2; |
| 78 | } |
| 79 | intersections.add(minT1, minT2); |
| 80 | return true; |
| 81 | } |
| 82 | return false; |
| 83 | } |
| 84 | |
| 85 | int split; |
| 86 | if (intersections.swapped()) { |
| 87 | double newMinT1 = interp(minT1, maxT1, minT); |
| 88 | double newMaxT1 = interp(minT1, maxT1, maxT); |
| 89 | split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1; |
| 90 | printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth, |
| 91 | splits, newMinT1, newMaxT1, minT1, maxT1, split); |
| 92 | minT1 = newMinT1; |
| 93 | maxT1 = newMaxT1; |
| 94 | } else { |
| 95 | double newMinT2 = interp(minT2, maxT2, minT); |
| 96 | double newMaxT2 = interp(minT2, maxT2, maxT); |
| 97 | split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit; |
| 98 | printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth, |
| 99 | splits, newMinT2, newMaxT2, minT2, maxT2, split); |
| 100 | minT2 = newMinT2; |
| 101 | maxT2 = newMaxT2; |
| 102 | } |
| 103 | return chop(minT1, maxT1, minT2, maxT2, split); |
| 104 | } |
| 105 | |
| 106 | bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) { |
| 107 | ++depth; |
| 108 | intersections.swap(); |
| 109 | if (split) { |
| 110 | ++splits; |
| 111 | if (split & 2) { |
| 112 | double middle1 = (maxT1 + minT1) / 2; |
| 113 | intersect(minT1, middle1, minT2, maxT2); |
| 114 | intersect(middle1, maxT1, minT2, maxT2); |
| 115 | } else { |
| 116 | double middle2 = (maxT2 + minT2) / 2; |
| 117 | intersect(minT1, maxT1, minT2, middle2); |
| 118 | intersect(minT1, maxT1, middle2, maxT2); |
| 119 | } |
| 120 | --splits; |
| 121 | intersections.swap(); |
| 122 | --depth; |
| 123 | return intersections.intersected(); |
| 124 | } |
| 125 | bool result = intersect(minT1, maxT1, minT2, maxT2); |
| 126 | intersections.swap(); |
| 127 | --depth; |
| 128 | return result; |
| 129 | } |
| 130 | |
| 131 | private: |
| 132 | |
| 133 | static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections |
| 134 | const Quadratic& quad1; |
| 135 | const Quadratic& quad2; |
| 136 | Intersections& intersections; |
| 137 | int depth; |
| 138 | int splits; |
| 139 | }; |
| 140 | |
| 141 | bool intersectStart(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
| 142 | QuadraticIntersections q(q1, q2, i); |
| 143 | return q.intersect(); |
| 144 | } |
| 145 | |
| 146 | |
| 147 | // Another approach is to start with the implicit form of one curve and solve |
| 148 | // by substituting in the parametric form of the other. |
| 149 | // The downside of this approach is that early rejects are difficult to come by. |
| 150 | // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
| 151 | /* |
| 152 | given x^4 + ax^3 + bx^2 + cx + d |
| 153 | the resolvent cubic is x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc) |
| 154 | use the cubic formula (CubicRoots.cpp) to find the radical expressions t1, t2, and t3. |
| 155 | |
| 156 | (x - r1 r2) (x - r3 r4) = x^2 - (t2 + t3 - t1) / 2 x + d |
| 157 | s = r1*r2 = ((t2 + t3 - t1) + sqrt((t2 + t3 - t1)^2 - 16*d)) / 4 |
| 158 | t = r3*r4 = ((t2 + t3 - t1) - sqrt((t2 + t3 - t1)^2 - 16*d)) / 4 |
| 159 | |
| 160 | u = r1+r2 = (-a + sqrt(a^2 - 4*t1)) / 2 |
| 161 | v = r3+r4 = (-a - sqrt(a^2 - 4*t1)) / 2 |
| 162 | |
| 163 | r1 = (u + sqrt(u^2 - 4*s)) / 2 |
| 164 | r2 = (u - sqrt(u^2 - 4*s)) / 2 |
| 165 | r3 = (v + sqrt(v^2 - 4*t)) / 2 |
| 166 | r4 = (v - sqrt(v^2 - 4*t)) / 2 |
| 167 | */ |
| 168 | |
| 169 | |
| 170 | /* square root of complex number |
| 171 | http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers |
| 172 | Algebraic formula |
| 173 | When the number is expressed using Cartesian coordinates the following formula |
| 174 | can be used for the principal square root:[5][6] |
| 175 | |
| 176 | sqrt(x + iy) = sqrt((r + x) / 2) +/- i*sqrt((r - x) / 2) |
| 177 | |
| 178 | where the sign of the imaginary part of the root is taken to be same as the sign |
| 179 | of the imaginary part of the original number, and |
| 180 | |
| 181 | r = abs(x + iy) = sqrt(x^2 + y^2) |
| 182 | |
| 183 | is the absolute value or modulus of the original number. The real part of the |
| 184 | principal value is always non-negative. |
| 185 | The other square root is simply –1 times the principal square root; in other |
| 186 | words, the two square roots of a number sum to 0. |
| 187 | */ |