blob: 06e27fe17ad78c9e184cff3d81fdaaff170d47a4 [file] [log] [blame]
rileya@google.com589708b2012-07-26 20:04:23 +00001
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9 #include "SkTwoPointRadialGradient.h"
10
11/* Two-point radial gradients are specified by two circles, each with a center
12 point and radius. The gradient can be considered to be a series of
13 concentric circles, with the color interpolated from the start circle
14 (at t=0) to the end circle (at t=1).
15
16 For each point (x, y) in the span, we want to find the
17 interpolated circle that intersects that point. The center
18 of the desired circle (Cx, Cy) falls at some distance t
19 along the line segment between the start point (Sx, Sy) and
20 end point (Ex, Ey):
21
22 Cx = (1 - t) * Sx + t * Ex (0 <= t <= 1)
23 Cy = (1 - t) * Sy + t * Ey
24
25 The radius of the desired circle (r) is also a linear interpolation t
26 between the start and end radii (Sr and Er):
27
28 r = (1 - t) * Sr + t * Er
29
30 But
31
32 (x - Cx)^2 + (y - Cy)^2 = r^2
33
34 so
35
36 (x - ((1 - t) * Sx + t * Ex))^2
37 + (y - ((1 - t) * Sy + t * Ey))^2
38 = ((1 - t) * Sr + t * Er)^2
39
40 Solving for t yields
41
42 [(Sx - Ex)^2 + (Sy - Ey)^2 - (Er - Sr)^2)] * t^2
43 + [2 * (Sx - Ex)(x - Sx) + 2 * (Sy - Ey)(y - Sy) - 2 * (Er - Sr) * Sr] * t
44 + [(x - Sx)^2 + (y - Sy)^2 - Sr^2] = 0
45
46 To simplify, let Dx = Sx - Ex, Dy = Sy - Ey, Dr = Er - Sr, dx = x - Sx, dy = y - Sy
47
48 [Dx^2 + Dy^2 - Dr^2)] * t^2
49 + 2 * [Dx * dx + Dy * dy - Dr * Sr] * t
50 + [dx^2 + dy^2 - Sr^2] = 0
51
52 A quadratic in t. The two roots of the quadratic reflect the two
53 possible circles on which the point may fall. Solving for t yields
54 the gradient value to use.
55
56 If a<0, the start circle is entirely contained in the
57 end circle, and one of the roots will be <0 or >1 (off the line
58 segment). If a>0, the start circle falls at least partially
59 outside the end circle (or vice versa), and the gradient
60 defines a "tube" where a point may be on one circle (on the
61 inside of the tube) or the other (outside of the tube). We choose
62 one arbitrarily.
63
64 In order to keep the math to within the limits of fixed point,
65 we divide the entire quadratic by Dr^2, and replace
66 (x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving
67
68 [Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2
69 + 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t
70 + [x'^2 + y'^2 - Sr^2/Dr^2] = 0
71
72 (x' and y' are computed by appending the subtract and scale to the
73 fDstToIndex matrix in the constructor).
74
75 Since the 'A' component of the quadratic is independent of x' and y', it
76 is precomputed in the constructor. Since the 'B' component is linear in
77 x' and y', if x and y are linear in the span, 'B' can be computed
78 incrementally with a simple delta (db below). If it is not (e.g.,
79 a perspective projection), it must be computed in the loop.
80
81*/
82
83namespace {
84
85inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy,
86 SkScalar sr2d2, SkScalar foura,
87 SkScalar oneOverTwoA, bool posRoot) {
88 SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2;
89 if (0 == foura) {
90 return SkScalarToFixed(SkScalarDiv(-c, b));
91 }
92
93 SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c);
94 if (discrim < 0) {
95 discrim = -discrim;
96 }
97 SkScalar rootDiscrim = SkScalarSqrt(discrim);
98 SkScalar result;
99 if (posRoot) {
100 result = SkScalarMul(-b + rootDiscrim, oneOverTwoA);
101 } else {
102 result = SkScalarMul(-b - rootDiscrim, oneOverTwoA);
103 }
104 return SkScalarToFixed(result);
105}
106
107typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx,
108 SkScalar fy, SkScalar dy,
109 SkScalar b, SkScalar db,
110 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
111 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
112 int count);
113
114void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx,
115 SkScalar fy, SkScalar dy,
116 SkScalar b, SkScalar db,
117 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
118 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
119 int count) {
120 for (; count > 0; --count) {
121 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
122 fOneOverTwoA, posRoot);
123 SkFixed index = SkClampMax(t, 0xFFFF);
124 SkASSERT(index <= 0xFFFF);
125 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
126 fx += dx;
127 fy += dy;
128 b += db;
129 }
130}
131void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx,
132 SkScalar fy, SkScalar dy,
133 SkScalar b, SkScalar db,
134 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
135 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
136 int count) {
137 for (; count > 0; --count) {
138 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
139 fOneOverTwoA, posRoot);
140 SkFixed index = mirror_tileproc(t);
141 SkASSERT(index <= 0xFFFF);
142 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
143 fx += dx;
144 fy += dy;
145 b += db;
146 }
147}
148
149void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx,
150 SkScalar fy, SkScalar dy,
151 SkScalar b, SkScalar db,
152 SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
153 SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
154 int count) {
155 for (; count > 0; --count) {
156 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
157 fOneOverTwoA, posRoot);
158 SkFixed index = repeat_tileproc(t);
159 SkASSERT(index <= 0xFFFF);
160 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
161 fx += dx;
162 fy += dy;
163 b += db;
164 }
165}
166}
167
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000168/////////////////////////////////////////////////////////////////////
169
rileya@google.com589708b2012-07-26 20:04:23 +0000170SkTwoPointRadialGradient::SkTwoPointRadialGradient(
171 const SkPoint& start, SkScalar startRadius,
172 const SkPoint& end, SkScalar endRadius,
173 const SkColor colors[], const SkScalar pos[],
174 int colorCount, SkShader::TileMode mode,
175 SkUnitMapper* mapper)
176 : SkGradientShaderBase(colors, pos, colorCount, mode, mapper),
177 fCenter1(start),
178 fCenter2(end),
179 fRadius1(startRadius),
180 fRadius2(endRadius) {
181 init();
182}
183
184SkShader::BitmapType SkTwoPointRadialGradient::asABitmap(
185 SkBitmap* bitmap,
186 SkMatrix* matrix,
187 SkShader::TileMode* xy) const {
188 if (bitmap) {
rileya@google.com1c6d64b2012-07-27 15:49:05 +0000189 this->getGradientTableBitmap(bitmap);
rileya@google.com589708b2012-07-26 20:04:23 +0000190 }
191 SkScalar diffL = 0; // just to avoid gcc warning
192 if (matrix) {
193 diffL = SkScalarSqrt(SkScalarSquare(fDiff.fX) +
194 SkScalarSquare(fDiff.fY));
195 }
196 if (matrix) {
197 if (diffL) {
198 SkScalar invDiffL = SkScalarInvert(diffL);
199 matrix->setSinCos(-SkScalarMul(invDiffL, fDiff.fY),
200 SkScalarMul(invDiffL, fDiff.fX));
201 } else {
202 matrix->reset();
203 }
204 matrix->preConcat(fPtsToUnit);
205 }
206 if (xy) {
207 xy[0] = fTileMode;
208 xy[1] = kClamp_TileMode;
209 }
210 return kTwoPointRadial_BitmapType;
211}
212
213SkShader::GradientType SkTwoPointRadialGradient::asAGradient(
214 SkShader::GradientInfo* info) const {
215 if (info) {
216 commonAsAGradient(info);
217 info->fPoint[0] = fCenter1;
218 info->fPoint[1] = fCenter2;
219 info->fRadius[0] = fRadius1;
220 info->fRadius[1] = fRadius2;
221 }
222 return kRadial2_GradientType;
223}
224
rileya@google.com589708b2012-07-26 20:04:23 +0000225void SkTwoPointRadialGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
226 int count) {
227 SkASSERT(count > 0);
228
229 SkPMColor* SK_RESTRICT dstC = dstCParam;
230
231 // Zero difference between radii: fill with transparent black.
232 if (fDiffRadius == 0) {
233 sk_bzero(dstC, count * sizeof(*dstC));
234 return;
235 }
236 SkMatrix::MapXYProc dstProc = fDstToIndexProc;
237 TileProc proc = fTileProc;
238 const SkPMColor* SK_RESTRICT cache = this->getCache32();
239
240 SkScalar foura = fA * 4;
241 bool posRoot = fDiffRadius < 0;
242 if (fDstToIndexClass != kPerspective_MatrixClass) {
243 SkPoint srcPt;
244 dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
245 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
246 SkScalar dx, fx = srcPt.fX;
247 SkScalar dy, fy = srcPt.fY;
248
249 if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
250 SkFixed fixedX, fixedY;
251 (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
252 dx = SkFixedToScalar(fixedX);
253 dy = SkFixedToScalar(fixedY);
254 } else {
255 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
256 dx = fDstToIndex.getScaleX();
257 dy = fDstToIndex.getSkewY();
258 }
259 SkScalar b = (SkScalarMul(fDiff.fX, fx) +
260 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
261 SkScalar db = (SkScalarMul(fDiff.fX, dx) +
262 SkScalarMul(fDiff.fY, dy)) * 2;
263
264 TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat;
265 if (SkShader::kClamp_TileMode == fTileMode) {
266 shadeProc = shadeSpan_twopoint_clamp;
267 } else if (SkShader::kMirror_TileMode == fTileMode) {
268 shadeProc = shadeSpan_twopoint_mirror;
269 } else {
270 SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
271 }
272 (*shadeProc)(fx, dx, fy, dy, b, db,
273 fSr2D2, foura, fOneOverTwoA, posRoot,
274 dstC, cache, count);
275 } else { // perspective case
276 SkScalar dstX = SkIntToScalar(x);
277 SkScalar dstY = SkIntToScalar(y);
278 for (; count > 0; --count) {
279 SkPoint srcPt;
280 dstProc(fDstToIndex, dstX, dstY, &srcPt);
281 SkScalar fx = srcPt.fX;
282 SkScalar fy = srcPt.fY;
283 SkScalar b = (SkScalarMul(fDiff.fX, fx) +
284 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
285 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
286 fOneOverTwoA, posRoot);
287 SkFixed index = proc(t);
288 SkASSERT(index <= 0xFFFF);
289 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
290 dstX += SK_Scalar1;
291 }
292 }
293}
294
295bool SkTwoPointRadialGradient::setContext(
296 const SkBitmap& device,
297 const SkPaint& paint,
298 const SkMatrix& matrix){
299 if (!this->INHERITED::setContext(device, paint, matrix)) {
300 return false;
301 }
302
303 // For now, we might have divided by zero, so detect that
304 if (0 == fDiffRadius) {
305 return false;
306 }
307
308 // we don't have a span16 proc
309 fFlags &= ~kHasSpan16_Flag;
310 return true;
311}
312
313SkTwoPointRadialGradient::SkTwoPointRadialGradient(
314 SkFlattenableReadBuffer& buffer)
315 : INHERITED(buffer),
316 fCenter1(buffer.readPoint()),
317 fCenter2(buffer.readPoint()),
318 fRadius1(buffer.readScalar()),
319 fRadius2(buffer.readScalar()) {
320 init();
321};
322
323void SkTwoPointRadialGradient::flatten(
324 SkFlattenableWriteBuffer& buffer) const {
325 this->INHERITED::flatten(buffer);
326 buffer.writePoint(fCenter1);
327 buffer.writePoint(fCenter2);
328 buffer.writeScalar(fRadius1);
329 buffer.writeScalar(fRadius2);
330}
331
332void SkTwoPointRadialGradient::init() {
333 fDiff = fCenter1 - fCenter2;
334 fDiffRadius = fRadius2 - fRadius1;
335 // hack to avoid zero-divide for now
336 SkScalar inv = fDiffRadius ? SkScalarInvert(fDiffRadius) : 0;
337 fDiff.fX = SkScalarMul(fDiff.fX, inv);
338 fDiff.fY = SkScalarMul(fDiff.fY, inv);
339 fStartRadius = SkScalarMul(fRadius1, inv);
340 fSr2D2 = SkScalarSquare(fStartRadius);
341 fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1;
342 fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0;
343
344 fPtsToUnit.setTranslate(-fCenter1.fX, -fCenter1.fY);
345 fPtsToUnit.postScale(inv, inv);
346}
347
rileya@google.comd7cc6512012-07-27 14:00:39 +0000348/////////////////////////////////////////////////////////////////////
349
bsalomon@google.comcf8fb1f2012-08-02 14:03:32 +0000350#if SK_SUPPORT_GPU
351
rileya@google.comd7cc6512012-07-27 14:00:39 +0000352// For brevity
353typedef GrGLUniformManager::UniformHandle UniformHandle;
354static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
355
356class GrGLRadial2Gradient : public GrGLGradientStage {
357
358public:
359
360 GrGLRadial2Gradient(const GrProgramStageFactory& factory,
361 const GrCustomStage&);
362 virtual ~GrGLRadial2Gradient() { }
363
364 virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
365 virtual void emitVS(GrGLShaderBuilder* builder,
366 const char* vertexCoords) SK_OVERRIDE;
367 virtual void emitFS(GrGLShaderBuilder* builder,
368 const char* outputColor,
369 const char* inputColor,
370 const char* samplerName) SK_OVERRIDE;
371 virtual void setData(const GrGLUniformManager&,
372 const GrCustomStage&,
373 const GrRenderTarget*,
374 int stageNum) SK_OVERRIDE;
375
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000376 static StageKey GenKey(const GrCustomStage& s);
rileya@google.comd7cc6512012-07-27 14:00:39 +0000377
378protected:
379
380 UniformHandle fVSParamUni;
381 UniformHandle fFSParamUni;
382
383 const char* fVSVaryingName;
384 const char* fFSVaryingName;
385
386 bool fIsDegenerate;
387
388 // @{
389 /// Values last uploaded as uniforms
390
391 GrScalar fCachedCenter;
392 GrScalar fCachedRadius;
393 bool fCachedPosRoot;
394
395 // @}
396
397private:
398
399 typedef GrGLGradientStage INHERITED;
400
401};
402
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000403/////////////////////////////////////////////////////////////////////
404
405class GrRadial2Gradient : public GrGradientEffect {
406public:
407
408 GrRadial2Gradient(GrContext* ctx, const SkTwoPointRadialGradient& shader,
409 GrSamplerState* sampler)
410 : INHERITED(ctx, shader, sampler)
411 , fCenterX1(shader.getCenterX1())
412 , fRadius0(shader.getStartRadius())
413 , fPosRoot(shader.getDiffRadius() < 0) { }
414 virtual ~GrRadial2Gradient() { }
415
416 static const char* Name() { return "Two-Point Radial Gradient"; }
417 virtual const GrProgramStageFactory& getFactory() const SK_OVERRIDE {
418 return GrTProgramStageFactory<GrRadial2Gradient>::getInstance();
419 }
420 virtual bool isEqual(const GrCustomStage& sBase) const SK_OVERRIDE {
421 const GrRadial2Gradient& s = static_cast<const GrRadial2Gradient&>(sBase);
422 return (INHERITED::isEqual(sBase) &&
423 this->fCenterX1 == s.fCenterX1 &&
424 this->fRadius0 == s.fRadius0 &&
425 this->fPosRoot == s.fPosRoot);
426 }
427
428 // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
429 bool isDegenerate() const { return GR_Scalar1 == fCenterX1; }
430 GrScalar center() const { return fCenterX1; }
431 GrScalar radius() const { return fRadius0; }
432 bool isPosRoot() const { return SkToBool(fPosRoot); }
433
434 typedef GrGLRadial2Gradient GLProgramStage;
435
436private:
437
438 // @{
439 // Cache of values - these can change arbitrarily, EXCEPT
440 // we shouldn't change between degenerate and non-degenerate?!
441
442 GrScalar fCenterX1;
443 GrScalar fRadius0;
444 SkBool8 fPosRoot;
445
446 // @}
447
448 typedef GrGradientEffect INHERITED;
449};
450
451/////////////////////////////////////////////////////////////////////
452
rileya@google.comd7cc6512012-07-27 14:00:39 +0000453GrGLRadial2Gradient::GrGLRadial2Gradient(
454 const GrProgramStageFactory& factory,
455 const GrCustomStage& baseData)
456 : INHERITED(factory)
457 , fVSParamUni(kInvalidUniformHandle)
458 , fFSParamUni(kInvalidUniformHandle)
459 , fVSVaryingName(NULL)
460 , fFSVaryingName(NULL)
461 , fCachedCenter(GR_ScalarMax)
462 , fCachedRadius(-GR_ScalarMax)
463 , fCachedPosRoot(0) {
464
465 const GrRadial2Gradient& data =
466 static_cast<const GrRadial2Gradient&>(baseData);
467 fIsDegenerate = data.isDegenerate();
468}
469
470void GrGLRadial2Gradient::setupVariables(GrGLShaderBuilder* builder) {
471 // 2 copies of uniform array, 1 for each of vertex & fragment shader,
472 // to work around Xoom bug. Doesn't seem to cause performance decrease
473 // in test apps, but need to keep an eye on it.
474 fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
475 kFloat_GrSLType, "Radial2VSParams", 6);
476 fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
477 kFloat_GrSLType, "Radial2FSParams", 6);
478
479 // For radial gradients without perspective we can pass the linear
480 // part of the quadratic as a varying.
481 if (builder->fVaryingDims == builder->fCoordDims) {
482 builder->addVarying(kFloat_GrSLType, "Radial2BCoeff",
483 &fVSVaryingName, &fFSVaryingName);
484 }
485}
486
487void GrGLRadial2Gradient::emitVS(GrGLShaderBuilder* builder,
488 const char* vertexCoords) {
489 SkString* code = &builder->fVSCode;
490 SkString p2;
491 SkString p3;
492 builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
493 builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
494
495 // For radial gradients without perspective we can pass the linear
496 // part of the quadratic as a varying.
497 if (builder->fVaryingDims == builder->fCoordDims) {
498 // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
499 code->appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
500 fVSVaryingName, p2.c_str(),
501 vertexCoords, p3.c_str());
502 }
503}
504
505void GrGLRadial2Gradient::emitFS(GrGLShaderBuilder* builder,
506 const char* outputColor,
507 const char* inputColor,
508 const char* samplerName) {
509 SkString* code = &builder->fFSCode;
510 SkString cName("c");
511 SkString ac4Name("ac4");
512 SkString rootName("root");
513 SkString t;
514 SkString p0;
515 SkString p1;
516 SkString p2;
517 SkString p3;
518 SkString p4;
519 SkString p5;
520 builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
521 builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
522 builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
523 builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
524 builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
525 builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
526
527 // If we we're able to interpolate the linear component,
528 // bVar is the varying; otherwise compute it
529 SkString bVar;
530 if (builder->fCoordDims == builder->fVaryingDims) {
531 bVar = fFSVaryingName;
532 GrAssert(2 == builder->fVaryingDims);
533 } else {
534 GrAssert(3 == builder->fVaryingDims);
535 bVar = "b";
536 //bVar.appendS32(stageNum);
537 code->appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
538 bVar.c_str(), p2.c_str(),
539 builder->fSampleCoords.c_str(), p3.c_str());
540 }
541
542 // c = (x^2)+(y^2) - params[4]
543 code->appendf("\tfloat %s = dot(%s, %s) - %s;\n",
544 cName.c_str(), builder->fSampleCoords.c_str(),
545 builder->fSampleCoords.c_str(),
546 p4.c_str());
547
548 // If we aren't degenerate, emit some extra code, and accept a slightly
549 // more complex coord.
550 if (!fIsDegenerate) {
551
552 // ac4 = 4.0 * params[0] * c
553 code->appendf("\tfloat %s = %s * 4.0 * %s;\n",
554 ac4Name.c_str(), p0.c_str(),
555 cName.c_str());
556
557 // root = sqrt(b^2-4ac)
558 // (abs to avoid exception due to fp precision)
559 code->appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
560 rootName.c_str(), bVar.c_str(), bVar.c_str(),
561 ac4Name.c_str());
562
563 // t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
564 t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(),
565 rootName.c_str(), p1.c_str());
566 } else {
567 // t is: -c/b
568 t.printf("-%s / %s", cName.c_str(), bVar.c_str());
569 }
570
571 this->emitColorLookup(builder, t.c_str(), outputColor, samplerName);
572}
573
574void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman,
575 const GrCustomStage& baseData,
576 const GrRenderTarget*,
577 int stageNum) {
578 const GrRadial2Gradient& data =
579 static_cast<const GrRadial2Gradient&>(baseData);
580 GrAssert(data.isDegenerate() == fIsDegenerate);
581 GrScalar centerX1 = data.center();
582 GrScalar radius0 = data.radius();
583 if (fCachedCenter != centerX1 ||
584 fCachedRadius != radius0 ||
585 fCachedPosRoot != data.isPosRoot()) {
586
587 GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1;
588
589 // When we're in the degenerate (linear) case, the second
590 // value will be INF but the program doesn't read it. (We
591 // use the same 6 uniforms even though we don't need them
592 // all in the linear case just to keep the code complexity
593 // down).
594 float values[6] = {
595 GrScalarToFloat(a),
596 1 / (2.f * GrScalarToFloat(a)),
597 GrScalarToFloat(centerX1),
598 GrScalarToFloat(radius0),
599 GrScalarToFloat(GrMul(radius0, radius0)),
600 data.isPosRoot() ? 1.f : -1.f
601 };
602
603 uman.set1fv(fVSParamUni, 0, 6, values);
604 uman.set1fv(fFSParamUni, 0, 6, values);
605 fCachedCenter = centerX1;
606 fCachedRadius = radius0;
607 fCachedPosRoot = data.isPosRoot();
608 }
609}
610
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000611GrCustomStage::StageKey GrGLRadial2Gradient::GenKey(const GrCustomStage& s) {
612 return (static_cast<const GrRadial2Gradient&>(s).isDegenerate());
613}
rileya@google.comd7cc6512012-07-27 14:00:39 +0000614
615/////////////////////////////////////////////////////////////////////
616
rileya@google.com98e8b6d2012-07-31 20:38:06 +0000617GrCustomStage* SkTwoPointRadialGradient::asNewCustomStage(
618 GrContext* context, GrSamplerState* sampler) const {
619 SkASSERT(NULL != context && NULL != sampler);
620 SkScalar diffLen = fDiff.length();
621 if (0 != diffLen) {
622 SkScalar invDiffLen = SkScalarInvert(diffLen);
623 sampler->matrix()->setSinCos(-SkScalarMul(invDiffLen, fDiff.fY),
624 SkScalarMul(invDiffLen, fDiff.fX));
625 } else {
626 sampler->matrix()->reset();
627 }
628 sampler->matrix()->preConcat(fPtsToUnit);
629 sampler->textureParams()->setTileModeX(fTileMode);
630 sampler->textureParams()->setTileModeY(kClamp_TileMode);
631 sampler->textureParams()->setBilerp(true);
632 return SkNEW_ARGS(GrRadial2Gradient, (context, *this, sampler));
rileya@google.comd7cc6512012-07-27 14:00:39 +0000633}
634
bsalomon@google.comcf8fb1f2012-08-02 14:03:32 +0000635#else
636
637GrCustomStage* SkTwoPointRadialGradient::asNewCustomStage(
638 GrContext* context, GrSamplerState* sampler) const {
639 SkDEBUGFAIL("Should not call in GPU-less build");
640 return NULL;
641}
642
643#endif