Add base types for path ops

Paths contain lines, quads, and cubics, which are
collectively curves.

To work with path intersections, intermediary curves
are constructed. For now, those intermediates use
doubles to guarantee sufficient precision.

The DVector, DPoint, DLine, DQuad, and DCubic
structs encapsulate these intermediate curves.

The DRect and DTriangle structs are created to
describe intersectable areas of interest.

The Bounds struct inherits from SkRect to create
a SkScalar-based rectangle that intersects shared
edges.

This also includes common math equalities and
debugging that the remainder of path ops builds on,
as well as a temporary top-level interface in
include/pathops/SkPathOps.h.
Review URL: https://codereview.chromium.org/12827020

git-svn-id: http://skia.googlecode.com/svn/trunk@8551 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/src/pathops/SkDCubicIntersection.cpp b/src/pathops/SkDCubicIntersection.cpp
new file mode 100644
index 0000000..a31b1a4
--- /dev/null
+++ b/src/pathops/SkDCubicIntersection.cpp
@@ -0,0 +1,451 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkIntersections.h"
+#include "SkPathOpsCubic.h"
+#include "SkPathOpsLine.h"
+#include "SkPathOpsPoint.h"
+#include "SkPathOpsQuad.h"
+#include "SkPathOpsRect.h"
+#include "SkReduceOrder.h"
+#include "SkTDArray.h"
+#include "TSearch.h"
+
+#if ONE_OFF_DEBUG
+static const double tLimits1[2][2] = {{0.36, 0.37}, {0.63, 0.64}};
+static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
+#endif
+
+#define DEBUG_QUAD_PART 0
+#define SWAP_TOP_DEBUG 0
+
+static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
+    SkDCubic part = cubic.subDivide(tStart, tEnd);
+    SkDQuad quad = part.toQuad();
+    // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
+    // extremely shallow quadratic?
+    int order = reducer->reduce(quad, SkReduceOrder::kFill_Style);
+#if DEBUG_QUAD_PART
+    SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
+            " t=(%1.17g,%1.17g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
+            cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
+            cubic[3].fX, cubic[3].fY, tStart, tEnd);
+    SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
+            " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__,
+            part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
+            part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
+            quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
+    SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
+    if (order > 1) {
+        SkDebugf(" %1.17g,%1.17g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
+    }
+    if (order > 2) {
+        SkDebugf(" %1.17g,%1.17g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
+    }
+    SkDebugf(")\n");
+    SkASSERT(order < 4 && order > 0);
+#endif
+    return order;
+}
+
+static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
+        int order2, SkIntersections& i) {
+    if (order1 == 3 && order2 == 3) {
+        i.intersect(simple1, simple2);
+    } else if (order1 <= 2 && order2 <= 2) {
+        i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
+    } else if (order1 == 3 && order2 <= 2) {
+        i.intersect(simple1, (const SkDLine&) simple2);
+    } else {
+        SkASSERT(order1 <= 2 && order2 == 3);
+        i.intersect(simple2, (const SkDLine&) simple1);
+        i.swapPts();
+    }
+}
+
+// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
+// chase intersections near quadratic ends, requiring odd hacks to find them.
+static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
+        double t2s, double t2e, double precisionScale, SkIntersections& i) {
+    i.upDepth();
+    SkDCubic c1 = cubic1.subDivide(t1s, t1e);
+    SkDCubic c2 = cubic2.subDivide(t2s, t2e);
+    SkTDArray<double> ts1;
+    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
+    c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
+    SkTDArray<double> ts2;
+    c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
+    double t1Start = t1s;
+    int ts1Count = ts1.count();
+    for (int i1 = 0; i1 <= ts1Count; ++i1) {
+        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
+        const double t1 = t1s + (t1e - t1s) * tEnd1;
+        SkReduceOrder s1;
+        int o1 = quadPart(cubic1, t1Start, t1, &s1);
+        double t2Start = t2s;
+        int ts2Count = ts2.count();
+        for (int i2 = 0; i2 <= ts2Count; ++i2) {
+            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
+            const double t2 = t2s + (t2e - t2s) * tEnd2;
+            if (&cubic1 == &cubic2 && t1Start >= t2Start) {
+                t2Start = t2;
+                continue;
+            }
+            SkReduceOrder s2;
+            int o2 = quadPart(cubic2, t2Start, t2, &s2);
+        #if ONE_OFF_DEBUG
+            char tab[] = "                  ";
+            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
+                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
+                SkDCubic cSub1 = cubic1.subDivide(t1Start, t1);
+                SkDCubic cSub2 = cubic2.subDivide(t2Start, t2);
+                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
+                        __FUNCTION__, t1Start, t1, t2Start, t2);
+                SkIntersections xlocals;
+                intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
+                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
+            }
+        #endif
+            SkIntersections locals;
+            intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
+            double coStart[2] = { -1 };
+            SkDPoint coPoint;
+            int tCount = locals.used();
+            for (int tIdx = 0; tIdx < tCount; ++tIdx) {
+                double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
+                double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
+    // if the computed t is not sufficiently precise, iterate
+                SkDPoint p1 = cubic1.xyAtT(to1);
+                SkDPoint p2 = cubic2.xyAtT(to2);
+                if (p1.approximatelyEqual(p2)) {
+                    if (locals.isCoincident(tIdx)) {
+                        if (coStart[0] < 0) {
+                            coStart[0] = to1;
+                            coStart[1] = to2;
+                            coPoint = p1;
+                        } else {
+                            i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
+                            coStart[0] = -1;
+                        }
+                    } else if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
+                        if (i.swapped()) {  //  FIXME: insert should respect swap
+                            i.insert(to2, to1, p1);
+                        } else {
+                            i.insert(to1, to2, p1);
+                        }
+                    }
+                } else {
+                    double offset = precisionScale / 16;  // FIME: const is arbitrary: test, refine
+#if 1
+                    double c1Bottom = tIdx == 0 ? 0 :
+                            (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
+                    double c1Min = SkTMax<double>(c1Bottom, to1 - offset);
+                    double c1Top = tIdx == tCount - 1 ? 1 :
+                            (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
+                    double c1Max = SkTMin<double>(c1Top, to1 + offset);
+                    double c2Min = SkTMax<double>(0., to2 - offset);
+                    double c2Max = SkTMin<double>(1., to2 + offset);
+                #if ONE_OFF_DEBUG
+                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
+                            __FUNCTION__,
+                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
+                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
+                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
+                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
+                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
+                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
+                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
+                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
+                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
+                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
+                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
+                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
+                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
+                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
+                            c1Max, c2Min, c2Max);
+                #endif
+                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
+                #if ONE_OFF_DEBUG
+                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
+                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
+                #endif
+                    if (tCount > 1) {
+                        c1Min = SkTMax<double>(0., to1 - offset);
+                        c1Max = SkTMin<double>(1., to1 + offset);
+                        double c2Bottom = tIdx == 0 ? to2 :
+                                (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
+                        double c2Top = tIdx == tCount - 1 ? to2 :
+                                (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
+                        if (c2Bottom > c2Top) {
+                            SkTSwap(c2Bottom, c2Top);
+                        }
+                        if (c2Bottom == to2) {
+                            c2Bottom = 0;
+                        }
+                        if (c2Top == to2) {
+                            c2Top = 1;
+                        }
+                        c2Min = SkTMax<double>(c2Bottom, to2 - offset);
+                        c2Max = SkTMin<double>(c2Top, to2 + offset);
+                    #if ONE_OFF_DEBUG
+                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
+                            __FUNCTION__,
+                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
+                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
+                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
+                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
+                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
+                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
+                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
+                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
+                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
+                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
+                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
+                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
+                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
+                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
+                                c1Max, c2Min, c2Max);
+                    #endif
+                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
+                #if ONE_OFF_DEBUG
+                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
+                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
+                #endif
+                        c1Min = SkTMax<double>(c1Bottom, to1 - offset);
+                        c1Max = SkTMin<double>(c1Top, to1 + offset);
+                    #if ONE_OFF_DEBUG
+                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
+                        __FUNCTION__,
+                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
+                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
+                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
+                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
+                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
+                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
+                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
+                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
+                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
+                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
+                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
+                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
+                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
+                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
+                                c1Max, c2Min, c2Max);
+                    #endif
+                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
+                #if ONE_OFF_DEBUG
+                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
+                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
+                #endif
+                    }
+#else
+                    double c1Bottom = tIdx == 0 ? 0 :
+                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
+                    double c1Min = SkTMax<double>(c1Bottom, to1 - offset);
+                    double c1Top = tIdx == tCount - 1 ? 1 :
+                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
+                    double c1Max = SkTMin<double>(c1Top, to1 + offset);
+                    double c2Bottom = tIdx == 0 ? to2 :
+                            (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
+                    double c2Top = tIdx == tCount - 1 ? to2 :
+                            (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
+                    if (c2Bottom > c2Top) {
+                        SkTSwap(c2Bottom, c2Top);
+                    }
+                    if (c2Bottom == to2) {
+                        c2Bottom = 0;
+                    }
+                    if (c2Top == to2) {
+                        c2Top = 1;
+                    }
+                    double c2Min = SkTMax<double>(c2Bottom, to2 - offset);
+                    double c2Max = SkTMin<double>(c2Top, to2 + offset);
+                #if ONE_OFF_DEBUG
+                    SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
+                            c1Min <= 0.210357794 && 0.210357794 <= c1Max
+                         && c2Min <= 0.223476406 && 0.223476406 <= c2Max,
+                            to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
+                         && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
+                            c1Min <= 0.211324707 && 0.211324707 <= c1Max
+                         && c2Min <= 0.211327209 && 0.211327209 <= c2Max,
+                            to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
+                         && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
+                    SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
+                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
+                            __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
+                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
+                    SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
+                            " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
+                #endif
+#endif
+                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
+                    // FIXME: if no intersection is found, either quadratics intersected where
+                    // cubics did not, or the intersection was missed. In the former case, expect
+                    // the quadratics to be nearly parallel at the point of intersection, and check
+                    // for that.
+                }
+            }
+            SkASSERT(coStart[0] == -1);
+            t2Start = t2;
+        }
+        t1Start = t1;
+    }
+    i.downDepth();
+}
+
+#define LINE_FRACTION 0.1
+
+// intersect the end of the cubic with the other. Try lines from the end to control and opposite
+// end to determine range of t on opposite cubic.
+static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
+                         const SkDRect& bounds2, SkIntersections& i) {
+    SkDLine line;
+    int t1Index = start ? 0 : 3;
+    line[0] = cubic1[t1Index];
+    // don't bother if the two cubics are connnected
+    SkTDArray<double> tVals;  // OPTIMIZE: replace with hard-sized array
+    for (int index = 0; index < 4; ++index) {
+        if (index == t1Index) {
+            continue;
+        }
+        SkDVector dxy1 = cubic1[index] - line[0];
+        dxy1 /= SkDCubic::gPrecisionUnit;
+        line[1] = line[0] + dxy1;
+        SkDRect lineBounds;
+        lineBounds.setBounds(line);
+        if (!bounds2.intersects(&lineBounds)) {
+            continue;
+        }
+        SkIntersections local;
+        if (!local.intersect(cubic2, line)) {
+            continue;
+        }
+        for (int idx2 = 0; idx2 < local.used(); ++idx2) {
+            double foundT = local[0][idx2];
+            if (approximately_less_than_zero(foundT)
+                    || approximately_greater_than_one(foundT)) {
+                continue;
+            }
+            if (local.pt(idx2).approximatelyEqual(line[0])) {
+                if (i.swapped()) {  // FIXME: insert should respect swap
+                    i.insert(foundT, start ? 0 : 1, line[0]);
+                } else {
+                    i.insert(start ? 0 : 1, foundT, line[0]);
+                }
+            } else {
+                *tVals.append() = local[0][idx2];
+            }
+        }
+    }
+    if (tVals.count() == 0) {
+        return;
+    }
+    QSort<double>(tVals.begin(), tVals.end() - 1);
+    double tMin1 = start ? 0 : 1 - LINE_FRACTION;
+    double tMax1 = start ? LINE_FRACTION : 1;
+    int tIdx = 0;
+    do {
+        int tLast = tIdx;
+        while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
+            ++tLast;
+        }
+        double tMin2 = SkTMax<double>(tVals[tIdx] - LINE_FRACTION, 0.0);
+        double tMax2 = SkTMin<double>(tVals[tLast] + LINE_FRACTION, 1.0);
+        int lastUsed = i.used();
+        intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
+        if (lastUsed == i.used()) {
+            tMin2 = SkTMax<double>(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
+            tMax2 = SkTMin<double>(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
+            intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
+        }
+        tIdx = tLast + 1;
+    } while (tIdx < tVals.count());
+    return;
+}
+
+const double CLOSE_ENOUGH = 0.001;
+
+static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
+    if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
+        return false;
+    }
+    pt = cubic.xyAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
+    return true;
+}
+
+static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
+    int last = i.used() - 1;
+    if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
+        return false;
+    }
+    pt = cubic.xyAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
+    return true;
+}
+
+int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
+    ::intersect(c1, 0, 1, c2, 0, 1, 1, *this);
+    // FIXME: pass in cached bounds from caller
+    SkDRect c1Bounds, c2Bounds;
+    c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
+    c2Bounds.setBounds(c2);
+    intersectEnd(c1, false, c2, c2Bounds, *this);
+    intersectEnd(c1, true, c2, c2Bounds, *this);
+    bool selfIntersect = &c1 == &c2;
+    if (!selfIntersect) {
+        swap();
+        intersectEnd(c2, false, c1, c1Bounds, *this);
+        intersectEnd(c2, true, c1, c1Bounds, *this);
+        swap();
+    }
+    // If an end point and a second point very close to the end is returned, the second
+    // point may have been detected because the approximate quads
+    // intersected at the end and close to it. Verify that the second point is valid.
+    if (fUsed <= 1 || coincidentUsed()) {
+        return fUsed;
+    }
+    SkDPoint pt[2];
+    if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
+            && pt[0].approximatelyEqual(pt[1])) {
+        removeOne(1);
+    }
+    if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
+            && pt[0].approximatelyEqual(pt[1])) {
+        removeOne(used() - 2);
+    }
+    return fUsed;
+}
+
+// Up promote the quad to a cubic.
+// OPTIMIZATION If this is a common use case, optimize by duplicating
+// the intersect 3 loop to avoid the promotion  / demotion code
+int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
+    SkDCubic up = quad.toCubic();
+    (void) intersect(cubic, up);
+    return used();
+}
+
+/* http://www.ag.jku.at/compass/compasssample.pdf
+( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
+Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
+SINTEF Applied Mathematics http://www.sintef.no )
+describes a method to find the self intersection of a cubic by taking the gradient of the implicit
+form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
+
+int SkIntersections::intersect(const SkDCubic& c) {
+    // check to see if x or y end points are the extrema. Are other quick rejects possible?
+    if (c.endsAreExtremaInXOrY()) {
+        return false;
+    }
+    (void) intersect(c, c);
+    if (used() > 0) {
+        SkASSERT(used() == 1);
+        if (fT[0][0] > fT[1][0]) {
+            swapPts();
+        }
+    }
+    return used();
+}