Add base types for path ops

Paths contain lines, quads, and cubics, which are
collectively curves.

To work with path intersections, intermediary curves
are constructed. For now, those intermediates use
doubles to guarantee sufficient precision.

The DVector, DPoint, DLine, DQuad, and DCubic
structs encapsulate these intermediate curves.

The DRect and DTriangle structs are created to
describe intersectable areas of interest.

The Bounds struct inherits from SkRect to create
a SkScalar-based rectangle that intersects shared
edges.

This also includes common math equalities and
debugging that the remainder of path ops builds on,
as well as a temporary top-level interface in
include/pathops/SkPathOps.h.
Review URL: https://codereview.chromium.org/12827020

git-svn-id: http://skia.googlecode.com/svn/trunk@8551 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/src/pathops/SkOpContour.h b/src/pathops/SkOpContour.h
new file mode 100644
index 0000000..2f1c481
--- /dev/null
+++ b/src/pathops/SkOpContour.h
@@ -0,0 +1,241 @@
+/*
+ * Copyright 2013 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#ifndef SkOpContour_DEFINED
+#define SkOpContour_DEFINED
+
+#include "SkOpSegment.h"
+#include "SkTArray.h"
+
+class SkIntersections;
+class SkOpContour;
+class SkPathWriter;
+
+struct SkCoincidence {
+    SkOpContour* fContours[2];
+    int fSegments[2];
+    double fTs[2][2];
+    SkPoint fPts[2];
+};
+
+class SkOpContour {
+public:
+    SkOpContour() {
+        reset();
+#if DEBUG_DUMP
+        fID = ++gContourID;
+#endif
+    }
+
+    bool operator<(const SkOpContour& rh) const {
+        return fBounds.fTop == rh.fBounds.fTop
+                ? fBounds.fLeft < rh.fBounds.fLeft
+                : fBounds.fTop < rh.fBounds.fTop;
+    }
+
+    void addCoincident(int index, SkOpContour* other, int otherIndex,
+                       const SkIntersections& ts, bool swap);
+    void addCoincidentPoints();
+
+    void addCross(const SkOpContour* crosser) {
+#ifdef DEBUG_CROSS
+        for (int index = 0; index < fCrosses.count(); ++index) {
+            SkASSERT(fCrosses[index] != crosser);
+        }
+#endif
+        *fCrosses.append() = crosser;
+    }
+
+    void addCubic(const SkPoint pts[4]) {
+        fSegments.push_back().addCubic(pts, fOperand, fXor);
+        fContainsCurves = fContainsCubics = true;
+    }
+
+    int addLine(const SkPoint pts[2]) {
+        fSegments.push_back().addLine(pts, fOperand, fXor);
+        return fSegments.count();
+    }
+
+    void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
+        fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
+    }
+
+    int addQuad(const SkPoint pts[3]) {
+        fSegments.push_back().addQuad(pts, fOperand, fXor);
+        fContainsCurves = true;
+        return fSegments.count();
+    }
+
+    int addT(int segIndex, SkOpContour* other, int otherIndex, const SkPoint& pt, double newT) {
+        setContainsIntercepts();
+        return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT);
+    }
+
+    int addSelfT(int segIndex, SkOpContour* other, int otherIndex, const SkPoint& pt, double newT) {
+        setContainsIntercepts();
+        return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, newT);
+    }
+
+    int addUnsortableT(int segIndex, SkOpContour* other, int otherIndex, bool start,
+                       const SkPoint& pt, double newT) {
+        return fSegments[segIndex].addUnsortableT(&other->fSegments[otherIndex], start, pt, newT);
+    }
+
+    const SkPathOpsBounds& bounds() const {
+        return fBounds;
+    }
+
+    void calcCoincidentWinding();
+
+    void complete() {
+        setBounds();
+        fContainsIntercepts = false;
+    }
+
+    bool containsCubics() const {
+        return fContainsCubics;
+    }
+
+    bool crosses(const SkOpContour* crosser) const {
+        for (int index = 0; index < fCrosses.count(); ++index) {
+            if (fCrosses[index] == crosser) {
+                return true;
+            }
+        }
+        return false;
+    }
+
+    bool done() const {
+        return fDone;
+    }
+
+    const SkPoint& end() const {
+        const SkOpSegment& segment = fSegments.back();
+        return segment.pts()[segment.verb()];
+    }
+
+    void findTooCloseToCall() {
+        int segmentCount = fSegments.count();
+        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
+            fSegments[sIndex].findTooCloseToCall();
+        }
+    }
+
+    void fixOtherTIndex() {
+        int segmentCount = fSegments.count();
+        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
+            fSegments[sIndex].fixOtherTIndex();
+        }
+    }
+
+    SkOpSegment* nonVerticalSegment(int* start, int* end);
+    
+    bool operand() const {
+        return fOperand;
+    }
+
+    void reset() {
+        fSegments.reset();
+        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
+        fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false;
+    }
+
+    SkTArray<SkOpSegment>& segments() {
+        return fSegments;
+    }
+
+    void setContainsIntercepts() {
+        fContainsIntercepts = true;
+    }
+
+    void setOperand(bool isOp) {
+        fOperand = isOp;
+    }
+
+    void setOppXor(bool isOppXor) {
+        fOppXor = isOppXor;
+        int segmentCount = fSegments.count();
+        for (int test = 0; test < segmentCount; ++test) {
+            fSegments[test].setOppXor(isOppXor);
+        }
+    }
+
+    void setXor(bool isXor) {
+        fXor = isXor;
+    }
+
+    void sortSegments();
+    
+    const SkPoint& start() const {
+        return fSegments.front().pts()[0];
+    }
+    
+    void toPath(SkPathWriter* path) const;
+    
+    void toPartialBackward(SkPathWriter* path) const {
+        int segmentCount = fSegments.count();
+        for (int test = segmentCount - 1; test >= 0; --test) {
+            fSegments[test].addCurveTo(1, 0, path, true);
+        }
+    }
+
+    void toPartialForward(SkPathWriter* path) const {
+        int segmentCount = fSegments.count();
+        for (int test = 0; test < segmentCount; ++test) {
+            fSegments[test].addCurveTo(0, 1, path, true);
+        }
+    }
+
+    void topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, SkOpSegment** topStart);
+    SkOpSegment* undoneSegment(int* start, int* end);
+
+    int updateSegment(int index, const SkPoint* pts) {
+        SkOpSegment& segment = fSegments[index];
+        segment.updatePts(pts);
+        return segment.verb() + 1;
+    }
+
+#if DEBUG_TEST
+    SkTArray<SkOpSegment>& debugSegments() {
+        return fSegments;
+    }
+#endif
+
+#if DEBUG_ACTIVE_SPANS
+    void debugShowActiveSpans() {
+        for (int index = 0; index < fSegments.count(); ++index) {
+            fSegments[index].debugShowActiveSpans();
+        }
+    }
+#endif
+
+#if DEBUG_SHOW_WINDING
+    int debugShowWindingValues(int totalSegments, int ofInterest);
+    static void debugShowWindingValues(const SkTDArray<SkOpContour*>& contourList);
+#endif
+
+private:
+    void setBounds();
+
+    SkTArray<SkOpSegment> fSegments;
+    SkTDArray<SkOpSegment*> fSortedSegments;
+    int fFirstSorted;
+    SkTDArray<SkCoincidence> fCoincidences;
+    SkTDArray<const SkOpContour*> fCrosses;
+    SkPathOpsBounds fBounds;
+    bool fContainsIntercepts;  // FIXME: is this used by anybody?
+    bool fContainsCubics;
+    bool fContainsCurves;
+    bool fDone;
+    bool fOperand;  // true for the second argument to a binary operator
+    bool fXor;
+    bool fOppXor;
+#if DEBUG_DUMP
+    int fID;
+#endif
+};
+
+#endif