blob: 98cae4e81624ea27a6badf906e3470f9564a95b7 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGr.h"
#include "SkColorFilter.h"
#include "SkConfig8888.h"
#include "SkData.h"
#include "SkMessageBus.h"
#include "SkPixelRef.h"
#include "SkTextureCompressor.h"
#include "GrResourceCache.h"
#include "GrGpu.h"
#include "effects/GrDitherEffect.h"
#include "GrDrawTargetCaps.h"
#include "effects/GrYUVtoRGBEffect.h"
#ifndef SK_IGNORE_ETC1_SUPPORT
# include "ktx.h"
# include "etc1.h"
#endif
/* Fill out buffer with the compressed format Ganesh expects from a colortable
based bitmap. [palette (colortable) + indices].
At the moment Ganesh only supports 8bit version. If Ganesh allowed we others
we could detect that the colortable.count is <= 16, and then repack the
indices as nibbles to save RAM, but it would take more time (i.e. a lot
slower than memcpy), so skipping that for now.
Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big
as the colortable.count says it is.
*/
static void build_index8_data(void* buffer, const SkBitmap& bitmap) {
SkASSERT(kIndex_8_SkColorType == bitmap.colorType());
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
SkDEBUGFAIL("bitmap not ready to draw!");
return;
}
SkColorTable* ctable = bitmap.getColorTable();
char* dst = (char*)buffer;
const int count = ctable->count();
SkDstPixelInfo dstPI;
dstPI.fColorType = kRGBA_8888_SkColorType;
dstPI.fAlphaType = kPremul_SkAlphaType;
dstPI.fPixels = buffer;
dstPI.fRowBytes = count * sizeof(SkPMColor);
SkSrcPixelInfo srcPI;
srcPI.fColorType = kN32_SkColorType;
srcPI.fAlphaType = kPremul_SkAlphaType;
srcPI.fPixels = ctable->lockColors();
srcPI.fRowBytes = count * sizeof(SkPMColor);
srcPI.convertPixelsTo(&dstPI, count, 1);
ctable->unlockColors();
// always skip a full 256 number of entries, even if we memcpy'd fewer
dst += 256 * sizeof(GrColor);
if ((unsigned)bitmap.width() == bitmap.rowBytes()) {
memcpy(dst, bitmap.getPixels(), bitmap.getSize());
} else {
// need to trim off the extra bytes per row
size_t width = bitmap.width();
size_t rowBytes = bitmap.rowBytes();
const char* src = (const char*)bitmap.getPixels();
for (int y = 0; y < bitmap.height(); y++) {
memcpy(dst, src, width);
src += rowBytes;
dst += width;
}
}
}
////////////////////////////////////////////////////////////////////////////////
static void generate_bitmap_cache_id(const SkBitmap& bitmap, GrCacheID* id) {
// Our id includes the offset, width, and height so that bitmaps created by extractSubset()
// are unique.
uint32_t genID = bitmap.getGenerationID();
SkIPoint origin = bitmap.pixelRefOrigin();
int16_t width = SkToS16(bitmap.width());
int16_t height = SkToS16(bitmap.height());
GrCacheID::Key key;
memcpy(key.fData8 + 0, &genID, 4);
memcpy(key.fData8 + 4, &origin.fX, 4);
memcpy(key.fData8 + 8, &origin.fY, 4);
memcpy(key.fData8 + 12, &width, 2);
memcpy(key.fData8 + 14, &height, 2);
static const size_t kKeyDataSize = 16;
memset(key.fData8 + kKeyDataSize, 0, sizeof(key) - kKeyDataSize);
GR_STATIC_ASSERT(sizeof(key) >= kKeyDataSize);
static const GrCacheID::Domain gBitmapTextureDomain = GrCacheID::GenerateDomain();
id->reset(gBitmapTextureDomain, key);
}
static void generate_bitmap_texture_desc(const SkBitmap& bitmap, GrSurfaceDesc* desc) {
desc->fFlags = kNone_GrSurfaceFlags;
desc->fWidth = bitmap.width();
desc->fHeight = bitmap.height();
desc->fConfig = SkImageInfo2GrPixelConfig(bitmap.info());
desc->fSampleCnt = 0;
}
namespace {
// When the SkPixelRef genID changes, invalidate a corresponding GrResource described by key.
class GrResourceInvalidator : public SkPixelRef::GenIDChangeListener {
public:
explicit GrResourceInvalidator(GrResourceKey key) : fKey(key) {}
private:
GrResourceKey fKey;
virtual void onChange() SK_OVERRIDE {
const GrResourceInvalidatedMessage message = { fKey };
SkMessageBus<GrResourceInvalidatedMessage>::Post(message);
}
};
} // namespace
static void add_genID_listener(GrResourceKey key, SkPixelRef* pixelRef) {
SkASSERT(pixelRef);
pixelRef->addGenIDChangeListener(SkNEW_ARGS(GrResourceInvalidator, (key)));
}
static GrTexture* sk_gr_allocate_texture(GrContext* ctx,
bool cache,
const GrTextureParams* params,
const SkBitmap& bm,
GrSurfaceDesc desc,
const void* pixels,
size_t rowBytes) {
GrTexture* result;
if (cache) {
// This texture is likely to be used again so leave it in the cache
GrCacheID cacheID;
generate_bitmap_cache_id(bm, &cacheID);
GrResourceKey key;
result = ctx->createTexture(params, desc, cacheID, pixels, rowBytes, &key);
if (result) {
add_genID_listener(key, bm.pixelRef());
}
} else {
// This texture is unlikely to be used again (in its present form) so
// just use a scratch texture. This will remove the texture from the
// cache so no one else can find it. Additionally, once unlocked, the
// scratch texture will go to the end of the list for purging so will
// likely be available for this volatile bitmap the next time around.
result = ctx->refScratchTexture(desc, GrContext::kExact_ScratchTexMatch);
if (pixels) {
result->writePixels(0, 0, bm.width(), bm.height(), desc.fConfig, pixels, rowBytes);
}
}
return result;
}
#ifndef SK_IGNORE_ETC1_SUPPORT
static GrTexture *load_etc1_texture(GrContext* ctx, bool cache,
const GrTextureParams* params,
const SkBitmap &bm, GrSurfaceDesc desc) {
SkAutoTUnref<SkData> data(bm.pixelRef()->refEncodedData());
// Is this even encoded data?
if (NULL == data) {
return NULL;
}
// Is this a valid PKM encoded data?
const uint8_t *bytes = data->bytes();
if (etc1_pkm_is_valid(bytes)) {
uint32_t encodedWidth = etc1_pkm_get_width(bytes);
uint32_t encodedHeight = etc1_pkm_get_height(bytes);
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (encodedWidth != static_cast<uint32_t>(bm.width()) ||
encodedHeight != static_cast<uint32_t>(bm.height())) {
return NULL;
}
// Everything seems good... skip ahead to the data.
bytes += ETC_PKM_HEADER_SIZE;
desc.fConfig = kETC1_GrPixelConfig;
} else if (SkKTXFile::is_ktx(bytes)) {
SkKTXFile ktx(data);
// Is it actually an ETC1 texture?
if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) {
return NULL;
}
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (ktx.width() != bm.width() || ktx.height() != bm.height()) {
return NULL;
}
bytes = ktx.pixelData();
desc.fConfig = kETC1_GrPixelConfig;
} else {
return NULL;
}
return sk_gr_allocate_texture(ctx, cache, params, bm, desc, bytes, 0);
}
#endif // SK_IGNORE_ETC1_SUPPORT
static GrTexture *load_yuv_texture(GrContext* ctx, bool cache, const GrTextureParams* params,
const SkBitmap& bm, const GrSurfaceDesc& desc) {
// Subsets are not supported, the whole pixelRef is loaded when using YUV decoding
if ((bm.pixelRef()->info().width() != bm.info().width()) ||
(bm.pixelRef()->info().height() != bm.info().height())) {
return NULL;
}
SkPixelRef* pixelRef = bm.pixelRef();
SkISize yuvSizes[3];
if ((NULL == pixelRef) || !pixelRef->getYUV8Planes(yuvSizes, NULL, NULL, NULL)) {
return NULL;
}
// Allocate the memory for YUV
size_t totalSize(0);
size_t sizes[3], rowBytes[3];
for (int i = 0; i < 3; ++i) {
rowBytes[i] = yuvSizes[i].fWidth;
totalSize += sizes[i] = rowBytes[i] * yuvSizes[i].fHeight;
}
SkAutoMalloc storage(totalSize);
void* planes[3];
planes[0] = storage.get();
planes[1] = (uint8_t*)planes[0] + sizes[0];
planes[2] = (uint8_t*)planes[1] + sizes[1];
SkYUVColorSpace colorSpace;
// Get the YUV planes
if (!pixelRef->getYUV8Planes(yuvSizes, planes, rowBytes, &colorSpace)) {
return NULL;
}
GrSurfaceDesc yuvDesc;
yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
SkAutoTUnref<GrTexture> yuvTextures[3];
for (int i = 0; i < 3; ++i) {
yuvDesc.fWidth = yuvSizes[i].fWidth;
yuvDesc.fHeight = yuvSizes[i].fHeight;
yuvTextures[i].reset(
ctx->refScratchTexture(yuvDesc, GrContext::kApprox_ScratchTexMatch));
if (!yuvTextures[i] ||
!yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight,
yuvDesc.fConfig, planes[i], rowBytes[i])) {
return NULL;
}
}
GrSurfaceDesc rtDesc = desc;
rtDesc.fFlags = rtDesc.fFlags |
kRenderTarget_GrSurfaceFlag |
kNoStencil_GrSurfaceFlag;
GrTexture* result = sk_gr_allocate_texture(ctx, cache, params, bm, rtDesc, NULL, 0);
GrRenderTarget* renderTarget = result ? result->asRenderTarget() : NULL;
if (renderTarget) {
SkAutoTUnref<GrFragmentProcessor> yuvToRgbProcessor(
GrYUVtoRGBEffect::Create(yuvTextures[0], yuvTextures[1], yuvTextures[2], colorSpace));
GrPaint paint;
paint.addColorProcessor(yuvToRgbProcessor);
SkRect r = SkRect::MakeWH(SkIntToScalar(yuvSizes[0].fWidth),
SkIntToScalar(yuvSizes[0].fHeight));
GrContext::AutoRenderTarget autoRT(ctx, renderTarget);
GrContext::AutoMatrix am;
am.setIdentity(ctx);
GrContext::AutoClip ac(ctx, GrContext::AutoClip::kWideOpen_InitialClip);
ctx->drawRect(paint, r);
} else {
SkSafeSetNull(result);
}
return result;
}
static GrTexture* sk_gr_create_bitmap_texture(GrContext* ctx,
bool cache,
const GrTextureParams* params,
const SkBitmap& origBitmap) {
SkBitmap tmpBitmap;
const SkBitmap* bitmap = &origBitmap;
GrSurfaceDesc desc;
generate_bitmap_texture_desc(*bitmap, &desc);
if (kIndex_8_SkColorType == bitmap->colorType()) {
// build_compressed_data doesn't do npot->pot expansion
// and paletted textures can't be sub-updated
if (cache && ctx->supportsIndex8PixelConfig(params, bitmap->width(), bitmap->height())) {
size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig,
bitmap->width(), bitmap->height());
SkAutoMalloc storage(imageSize);
build_index8_data(storage.get(), origBitmap);
// our compressed data will be trimmed, so pass width() for its
// "rowBytes", since they are the same now.
return sk_gr_allocate_texture(ctx, cache, params, origBitmap,
desc, storage.get(), bitmap->width());
} else {
origBitmap.copyTo(&tmpBitmap, kN32_SkColorType);
// now bitmap points to our temp, which has been promoted to 32bits
bitmap = &tmpBitmap;
desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info());
}
}
// Is this an ETC1 encoded texture?
#ifndef SK_IGNORE_ETC1_SUPPORT
else if (
// We do not support scratch ETC1 textures, hence they should all be at least
// trying to go to the cache.
cache
// Make sure that the underlying device supports ETC1 textures before we go ahead
// and check the data.
&& ctx->getGpu()->caps()->isConfigTexturable(kETC1_GrPixelConfig)
// If the bitmap had compressed data and was then uncompressed, it'll still return
// compressed data on 'refEncodedData' and upload it. Probably not good, since if
// the bitmap has available pixels, then they might not be what the decompressed
// data is.
&& !(bitmap->readyToDraw())) {
GrTexture *texture = load_etc1_texture(ctx, cache, params, *bitmap, desc);
if (texture) {
return texture;
}
}
#endif // SK_IGNORE_ETC1_SUPPORT
else {
GrTexture *texture = load_yuv_texture(ctx, cache, params, *bitmap, desc);
if (texture) {
return texture;
}
}
SkAutoLockPixels alp(*bitmap);
if (!bitmap->readyToDraw()) {
return NULL;
}
return sk_gr_allocate_texture(ctx, cache, params, origBitmap, desc,
bitmap->getPixels(), bitmap->rowBytes());
}
bool GrIsBitmapInCache(const GrContext* ctx,
const SkBitmap& bitmap,
const GrTextureParams* params) {
GrCacheID cacheID;
generate_bitmap_cache_id(bitmap, &cacheID);
GrSurfaceDesc desc;
generate_bitmap_texture_desc(bitmap, &desc);
return ctx->isTextureInCache(desc, cacheID, params);
}
GrTexture* GrRefCachedBitmapTexture(GrContext* ctx,
const SkBitmap& bitmap,
const GrTextureParams* params) {
GrTexture* result = NULL;
bool cache = !bitmap.isVolatile();
if (cache) {
// If the bitmap isn't changing try to find a cached copy first.
GrCacheID cacheID;
generate_bitmap_cache_id(bitmap, &cacheID);
GrSurfaceDesc desc;
generate_bitmap_texture_desc(bitmap, &desc);
result = ctx->findAndRefTexture(desc, cacheID, params);
}
if (NULL == result) {
result = sk_gr_create_bitmap_texture(ctx, cache, params, bitmap);
}
if (NULL == result) {
GrPrintf("---- failed to create texture for cache [%d %d]\n",
bitmap.width(), bitmap.height());
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// alphatype is ignore for now, but if GrPixelConfig is expanded to encompass
// alpha info, that will be considered.
GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType) {
switch (ct) {
case kUnknown_SkColorType:
return kUnknown_GrPixelConfig;
case kAlpha_8_SkColorType:
return kAlpha_8_GrPixelConfig;
case kRGB_565_SkColorType:
return kRGB_565_GrPixelConfig;
case kARGB_4444_SkColorType:
return kRGBA_4444_GrPixelConfig;
case kRGBA_8888_SkColorType:
return kRGBA_8888_GrPixelConfig;
case kBGRA_8888_SkColorType:
return kBGRA_8888_GrPixelConfig;
case kIndex_8_SkColorType:
return kIndex_8_GrPixelConfig;
}
SkASSERT(0); // shouldn't get here
return kUnknown_GrPixelConfig;
}
bool GrPixelConfig2ColorType(GrPixelConfig config, SkColorType* ctOut) {
SkColorType ct;
switch (config) {
case kAlpha_8_GrPixelConfig:
ct = kAlpha_8_SkColorType;
break;
case kIndex_8_GrPixelConfig:
ct = kIndex_8_SkColorType;
break;
case kRGB_565_GrPixelConfig:
ct = kRGB_565_SkColorType;
break;
case kRGBA_4444_GrPixelConfig:
ct = kARGB_4444_SkColorType;
break;
case kRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
default:
return false;
}
if (ctOut) {
*ctOut = ct;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
void SkPaint2GrPaintNoShader(GrContext* context, const SkPaint& skPaint, GrColor paintColor,
bool constantColor, GrPaint* grPaint) {
grPaint->setDither(skPaint.isDither());
grPaint->setAntiAlias(skPaint.isAntiAlias());
SkXfermode::Coeff sm;
SkXfermode::Coeff dm;
SkXfermode* mode = skPaint.getXfermode();
GrFragmentProcessor* xferProcessor = NULL;
if (SkXfermode::asFragmentProcessorOrCoeff(mode, &xferProcessor, &sm, &dm)) {
if (xferProcessor) {
grPaint->addColorProcessor(xferProcessor)->unref();
sm = SkXfermode::kOne_Coeff;
dm = SkXfermode::kZero_Coeff;
}
} else {
//SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");)
// Fall back to src-over
sm = SkXfermode::kOne_Coeff;
dm = SkXfermode::kISA_Coeff;
}
grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm));
//set the color of the paint to the one of the parameter
grPaint->setColor(paintColor);
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
// if the source color is a constant then apply the filter here once rather than per pixel
// in a shader.
if (constantColor) {
SkColor filtered = colorFilter->filterColor(skPaint.getColor());
grPaint->setColor(SkColor2GrColor(filtered));
} else {
SkAutoTUnref<GrFragmentProcessor> fp(colorFilter->asFragmentProcessor(context));
if (fp.get()) {
grPaint->addColorProcessor(fp);
}
}
}
#ifndef SK_IGNORE_GPU_DITHER
// If the dither flag is set, then we need to see if the underlying context
// supports it. If not, then install a dither effect.
if (skPaint.isDither() && grPaint->numColorStages() > 0) {
// What are we rendering into?
const GrRenderTarget *target = context->getRenderTarget();
SkASSERT(target);
// Suspect the dithering flag has no effect on these configs, otherwise
// fall back on setting the appropriate state.
if (target->config() == kRGBA_8888_GrPixelConfig ||
target->config() == kBGRA_8888_GrPixelConfig) {
// The dither flag is set and the target is likely
// not going to be dithered by the GPU.
SkAutoTUnref<GrFragmentProcessor> fp(GrDitherEffect::Create());
if (fp.get()) {
grPaint->addColorProcessor(fp);
grPaint->setDither(false);
}
}
}
#endif
}
/**
* Unlike GrContext::AutoMatrix, this doesn't require setting a new matrix. GrContext::AutoMatrix
* likes to set the new matrix in its constructor because it is usually necessary to simulataneously
* update a GrPaint. This AutoMatrix is used while initially setting up GrPaint, however.
*/
class AutoMatrix {
public:
AutoMatrix(GrContext* context) {
fMatrix = context->getMatrix();
fContext = context;
}
~AutoMatrix() {
SkASSERT(fContext);
fContext->setMatrix(fMatrix);
}
private:
GrContext* fContext;
SkMatrix fMatrix;
};
void SkPaint2GrPaintShader(GrContext* context, const SkPaint& skPaint,
bool constantColor, GrPaint* grPaint) {
SkShader* shader = skPaint.getShader();
if (NULL == shader) {
SkPaint2GrPaintNoShader(context, skPaint, SkColor2GrColor(skPaint.getColor()),
constantColor, grPaint);
return;
}
GrColor paintColor = SkColor2GrColor(skPaint.getColor());
// Start a new block here in order to preserve our context state after calling
// asFragmentProcessor(). Since these calls get passed back to the client, we don't really
// want them messing around with the context.
{
// SkShader::asFragmentProcessor() may do offscreen rendering. Save off the current RT,
// clip, and matrix. We don't reset the matrix on the context because
// SkShader::asFragmentProcessor may use GrContext::getMatrix() to know the transformation
// from local coords to device space.
GrContext::AutoRenderTarget art(context, NULL);
GrContext::AutoClip ac(context, GrContext::AutoClip::kWideOpen_InitialClip);
AutoMatrix am(context);
// Allow the shader to modify paintColor and also create an effect to be installed as
// the first color effect on the GrPaint.
GrFragmentProcessor* fp = NULL;
if (shader->asFragmentProcessor(context, skPaint, NULL, &paintColor, &fp) && fp) {
grPaint->addColorProcessor(fp)->unref();
constantColor = false;
}
}
// The grcolor is automatically set when calling asFragmentProcessor.
// If the shader can be seen as an effect it returns true and adds its effect to the grpaint.
SkPaint2GrPaintNoShader(context, skPaint, paintColor, constantColor, grPaint);
}