| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkCodec.h" |
| #include "SkJpegCodec.h" |
| #include "SkJpegDecoderMgr.h" |
| #include "SkCodecPriv.h" |
| #include "SkColorPriv.h" |
| #include "SkColorSpace_Base.h" |
| #include "SkStream.h" |
| #include "SkTemplates.h" |
| #include "SkTypes.h" |
| |
| // stdio is needed for libjpeg-turbo |
| #include <stdio.h> |
| #include "SkJpegUtility.h" |
| |
| // This warning triggers false postives way too often in here. |
| #if defined(__GNUC__) && !defined(__clang__) |
| #pragma GCC diagnostic ignored "-Wclobbered" |
| #endif |
| |
| extern "C" { |
| #include "jerror.h" |
| #include "jpeglib.h" |
| } |
| |
| bool SkJpegCodec::IsJpeg(const void* buffer, size_t bytesRead) { |
| static const uint8_t jpegSig[] = { 0xFF, 0xD8, 0xFF }; |
| return bytesRead >= 3 && !memcmp(buffer, jpegSig, sizeof(jpegSig)); |
| } |
| |
| static uint32_t get_endian_int(const uint8_t* data, bool littleEndian) { |
| if (littleEndian) { |
| return (data[3] << 24) | (data[2] << 16) | (data[1] << 8) | (data[0]); |
| } |
| |
| return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | (data[3]); |
| } |
| |
| const uint32_t kExifHeaderSize = 14; |
| const uint32_t kExifMarker = JPEG_APP0 + 1; |
| |
| static bool is_orientation_marker(jpeg_marker_struct* marker, SkCodec::Origin* orientation) { |
| if (kExifMarker != marker->marker || marker->data_length < kExifHeaderSize) { |
| return false; |
| } |
| |
| const uint8_t* data = marker->data; |
| static const uint8_t kExifSig[] { 'E', 'x', 'i', 'f', '\0' }; |
| if (memcmp(data, kExifSig, sizeof(kExifSig))) { |
| return false; |
| } |
| |
| bool littleEndian; |
| if (!is_valid_endian_marker(data + 6, &littleEndian)) { |
| return false; |
| } |
| |
| // Get the offset from the start of the marker. |
| // Account for 'E', 'x', 'i', 'f', '\0', '<fill byte>'. |
| uint32_t offset = get_endian_int(data + 10, littleEndian); |
| offset += sizeof(kExifSig) + 1; |
| |
| // Require that the marker is at least large enough to contain the number of entries. |
| if (marker->data_length < offset + 2) { |
| return false; |
| } |
| uint32_t numEntries = get_endian_short(data + offset, littleEndian); |
| |
| // Tag (2 bytes), Datatype (2 bytes), Number of elements (4 bytes), Data (4 bytes) |
| const uint32_t kEntrySize = 12; |
| numEntries = SkTMin(numEntries, (marker->data_length - offset - 2) / kEntrySize); |
| |
| // Advance the data to the start of the entries. |
| data += offset + 2; |
| |
| const uint16_t kOriginTag = 0x112; |
| const uint16_t kOriginType = 3; |
| for (uint32_t i = 0; i < numEntries; i++, data += kEntrySize) { |
| uint16_t tag = get_endian_short(data, littleEndian); |
| uint16_t type = get_endian_short(data + 2, littleEndian); |
| uint32_t count = get_endian_int(data + 4, littleEndian); |
| if (kOriginTag == tag && kOriginType == type && 1 == count) { |
| uint16_t val = get_endian_short(data + 8, littleEndian); |
| if (0 < val && val <= SkCodec::kLast_Origin) { |
| *orientation = (SkCodec::Origin) val; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static SkCodec::Origin get_exif_orientation(jpeg_decompress_struct* dinfo) { |
| SkCodec::Origin orientation; |
| for (jpeg_marker_struct* marker = dinfo->marker_list; marker; marker = marker->next) { |
| if (is_orientation_marker(marker, &orientation)) { |
| return orientation; |
| } |
| } |
| |
| return SkCodec::kDefault_Origin; |
| } |
| |
| static bool is_icc_marker(jpeg_marker_struct* marker) { |
| if (kICCMarker != marker->marker || marker->data_length < kICCMarkerHeaderSize) { |
| return false; |
| } |
| |
| return !memcmp(marker->data, kICCSig, sizeof(kICCSig)); |
| } |
| |
| /* |
| * ICC profiles may be stored using a sequence of multiple markers. We obtain the ICC profile |
| * in two steps: |
| * (1) Discover all ICC profile markers and verify that they are numbered properly. |
| * (2) Copy the data from each marker into a contiguous ICC profile. |
| */ |
| static sk_sp<SkData> get_icc_profile(jpeg_decompress_struct* dinfo) { |
| // Note that 256 will be enough storage space since each markerIndex is stored in 8-bits. |
| jpeg_marker_struct* markerSequence[256]; |
| memset(markerSequence, 0, sizeof(markerSequence)); |
| uint8_t numMarkers = 0; |
| size_t totalBytes = 0; |
| |
| // Discover any ICC markers and verify that they are numbered properly. |
| for (jpeg_marker_struct* marker = dinfo->marker_list; marker; marker = marker->next) { |
| if (is_icc_marker(marker)) { |
| // Verify that numMarkers is valid and consistent. |
| if (0 == numMarkers) { |
| numMarkers = marker->data[13]; |
| if (0 == numMarkers) { |
| SkCodecPrintf("ICC Profile Error: numMarkers must be greater than zero.\n"); |
| return nullptr; |
| } |
| } else if (numMarkers != marker->data[13]) { |
| SkCodecPrintf("ICC Profile Error: numMarkers must be consistent.\n"); |
| return nullptr; |
| } |
| |
| // Verify that the markerIndex is valid and unique. Note that zero is not |
| // a valid index. |
| uint8_t markerIndex = marker->data[12]; |
| if (markerIndex == 0 || markerIndex > numMarkers) { |
| SkCodecPrintf("ICC Profile Error: markerIndex is invalid.\n"); |
| return nullptr; |
| } |
| if (markerSequence[markerIndex]) { |
| SkCodecPrintf("ICC Profile Error: Duplicate value of markerIndex.\n"); |
| return nullptr; |
| } |
| markerSequence[markerIndex] = marker; |
| SkASSERT(marker->data_length >= kICCMarkerHeaderSize); |
| totalBytes += marker->data_length - kICCMarkerHeaderSize; |
| } |
| } |
| |
| if (0 == totalBytes) { |
| // No non-empty ICC profile markers were found. |
| return nullptr; |
| } |
| |
| // Combine the ICC marker data into a contiguous profile. |
| sk_sp<SkData> iccData = SkData::MakeUninitialized(totalBytes); |
| void* dst = iccData->writable_data(); |
| for (uint32_t i = 1; i <= numMarkers; i++) { |
| jpeg_marker_struct* marker = markerSequence[i]; |
| if (!marker) { |
| SkCodecPrintf("ICC Profile Error: Missing marker %d of %d.\n", i, numMarkers); |
| return nullptr; |
| } |
| |
| void* src = SkTAddOffset<void>(marker->data, kICCMarkerHeaderSize); |
| size_t bytes = marker->data_length - kICCMarkerHeaderSize; |
| memcpy(dst, src, bytes); |
| dst = SkTAddOffset<void>(dst, bytes); |
| } |
| |
| return iccData; |
| } |
| |
| SkCodec::Result SkJpegCodec::ReadHeader(SkStream* stream, SkCodec** codecOut, |
| JpegDecoderMgr** decoderMgrOut, sk_sp<SkColorSpace> defaultColorSpace) { |
| |
| // Create a JpegDecoderMgr to own all of the decompress information |
| std::unique_ptr<JpegDecoderMgr> decoderMgr(new JpegDecoderMgr(stream)); |
| |
| // libjpeg errors will be caught and reported here |
| if (setjmp(decoderMgr->getJmpBuf())) { |
| return decoderMgr->returnFailure("ReadHeader", kInvalidInput); |
| } |
| |
| // Initialize the decompress info and the source manager |
| decoderMgr->init(); |
| |
| // Instruct jpeg library to save the markers that we care about. Since |
| // the orientation and color profile will not change, we can skip this |
| // step on rewinds. |
| if (codecOut) { |
| jpeg_save_markers(decoderMgr->dinfo(), kExifMarker, 0xFFFF); |
| jpeg_save_markers(decoderMgr->dinfo(), kICCMarker, 0xFFFF); |
| } |
| |
| // Read the jpeg header |
| switch (jpeg_read_header(decoderMgr->dinfo(), true)) { |
| case JPEG_HEADER_OK: |
| break; |
| case JPEG_SUSPENDED: |
| return decoderMgr->returnFailure("ReadHeader", kIncompleteInput); |
| default: |
| return decoderMgr->returnFailure("ReadHeader", kInvalidInput); |
| } |
| |
| if (codecOut) { |
| // Get the encoded color type |
| SkEncodedInfo::Color color; |
| if (!decoderMgr->getEncodedColor(&color)) { |
| return kInvalidInput; |
| } |
| |
| // Create image info object and the codec |
| SkEncodedInfo info = SkEncodedInfo::Make(color, SkEncodedInfo::kOpaque_Alpha, 8); |
| |
| Origin orientation = get_exif_orientation(decoderMgr->dinfo()); |
| sk_sp<SkData> iccData = get_icc_profile(decoderMgr->dinfo()); |
| sk_sp<SkColorSpace> colorSpace = nullptr; |
| if (iccData) { |
| SkColorSpace_Base::ICCTypeFlag iccType = SkColorSpace_Base::kRGB_ICCTypeFlag; |
| switch (decoderMgr->dinfo()->jpeg_color_space) { |
| case JCS_CMYK: |
| case JCS_YCCK: |
| iccType = SkColorSpace_Base::kCMYK_ICCTypeFlag; |
| break; |
| case JCS_GRAYSCALE: |
| // Note the "or equals". We will accept gray or rgb profiles for gray images. |
| iccType |= SkColorSpace_Base::kGray_ICCTypeFlag; |
| break; |
| default: |
| break; |
| } |
| colorSpace = SkColorSpace_Base::MakeICC(iccData->data(), iccData->size(), iccType); |
| } |
| if (!colorSpace) { |
| colorSpace = defaultColorSpace; |
| } |
| |
| const int width = decoderMgr->dinfo()->image_width; |
| const int height = decoderMgr->dinfo()->image_height; |
| SkJpegCodec* codec = new SkJpegCodec(width, height, info, std::unique_ptr<SkStream>(stream), |
| decoderMgr.release(), std::move(colorSpace), |
| orientation); |
| *codecOut = codec; |
| } else { |
| SkASSERT(nullptr != decoderMgrOut); |
| *decoderMgrOut = decoderMgr.release(); |
| } |
| return kSuccess; |
| } |
| |
| std::unique_ptr<SkCodec> SkJpegCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
| Result* result) { |
| return SkJpegCodec::MakeFromStream(std::move(stream), result, SkColorSpace::MakeSRGB()); |
| } |
| |
| std::unique_ptr<SkCodec> SkJpegCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
| Result* result, |
| sk_sp<SkColorSpace> defaultColorSpace) { |
| SkCodec* codec = nullptr; |
| *result = ReadHeader(stream.get(), &codec, nullptr, std::move(defaultColorSpace)); |
| if (kSuccess == *result) { |
| // Codec has taken ownership of the stream, we do not need to delete it |
| SkASSERT(codec); |
| stream.release(); |
| return std::unique_ptr<SkCodec>(codec); |
| } |
| return nullptr; |
| } |
| |
| SkJpegCodec::SkJpegCodec(int width, int height, const SkEncodedInfo& info, |
| std::unique_ptr<SkStream> stream, JpegDecoderMgr* decoderMgr, |
| sk_sp<SkColorSpace> colorSpace, Origin origin) |
| : INHERITED(width, height, info, SkColorSpaceXform::kRGBA_8888_ColorFormat, std::move(stream), |
| std::move(colorSpace), origin) |
| , fDecoderMgr(decoderMgr) |
| , fReadyState(decoderMgr->dinfo()->global_state) |
| , fSwizzleSrcRow(nullptr) |
| , fColorXformSrcRow(nullptr) |
| , fSwizzlerSubset(SkIRect::MakeEmpty()) |
| {} |
| |
| /* |
| * Return the row bytes of a particular image type and width |
| */ |
| static size_t get_row_bytes(const j_decompress_ptr dinfo) { |
| const size_t colorBytes = (dinfo->out_color_space == JCS_RGB565) ? 2 : |
| dinfo->out_color_components; |
| return dinfo->output_width * colorBytes; |
| |
| } |
| |
| /* |
| * Calculate output dimensions based on the provided factors. |
| * |
| * Not to be used on the actual jpeg_decompress_struct used for decoding, since it will |
| * incorrectly modify num_components. |
| */ |
| void calc_output_dimensions(jpeg_decompress_struct* dinfo, unsigned int num, unsigned int denom) { |
| dinfo->num_components = 0; |
| dinfo->scale_num = num; |
| dinfo->scale_denom = denom; |
| jpeg_calc_output_dimensions(dinfo); |
| } |
| |
| /* |
| * Return a valid set of output dimensions for this decoder, given an input scale |
| */ |
| SkISize SkJpegCodec::onGetScaledDimensions(float desiredScale) const { |
| // libjpeg-turbo supports scaling by 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1, so we will |
| // support these as well |
| unsigned int num; |
| unsigned int denom = 8; |
| if (desiredScale >= 0.9375) { |
| num = 8; |
| } else if (desiredScale >= 0.8125) { |
| num = 7; |
| } else if (desiredScale >= 0.6875f) { |
| num = 6; |
| } else if (desiredScale >= 0.5625f) { |
| num = 5; |
| } else if (desiredScale >= 0.4375f) { |
| num = 4; |
| } else if (desiredScale >= 0.3125f) { |
| num = 3; |
| } else if (desiredScale >= 0.1875f) { |
| num = 2; |
| } else { |
| num = 1; |
| } |
| |
| // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions |
| jpeg_decompress_struct dinfo; |
| sk_bzero(&dinfo, sizeof(dinfo)); |
| dinfo.image_width = this->getInfo().width(); |
| dinfo.image_height = this->getInfo().height(); |
| dinfo.global_state = fReadyState; |
| calc_output_dimensions(&dinfo, num, denom); |
| |
| // Return the calculated output dimensions for the given scale |
| return SkISize::Make(dinfo.output_width, dinfo.output_height); |
| } |
| |
| bool SkJpegCodec::onRewind() { |
| JpegDecoderMgr* decoderMgr = nullptr; |
| if (kSuccess != ReadHeader(this->stream(), nullptr, &decoderMgr, nullptr)) { |
| return fDecoderMgr->returnFalse("onRewind"); |
| } |
| SkASSERT(nullptr != decoderMgr); |
| fDecoderMgr.reset(decoderMgr); |
| |
| fSwizzler.reset(nullptr); |
| fSwizzleSrcRow = nullptr; |
| fColorXformSrcRow = nullptr; |
| fStorage.reset(); |
| |
| return true; |
| } |
| |
| /* |
| * Checks if the conversion between the input image and the requested output |
| * image has been implemented |
| * Sets the output color space |
| */ |
| bool SkJpegCodec::setOutputColorSpace(const SkImageInfo& dstInfo) { |
| if (kUnknown_SkAlphaType == dstInfo.alphaType()) { |
| return false; |
| } |
| |
| if (kOpaque_SkAlphaType != dstInfo.alphaType()) { |
| SkCodecPrintf("Warning: an opaque image should be decoded as opaque " |
| "- it is being decoded as non-opaque, which will draw slower\n"); |
| } |
| |
| // Check if we will decode to CMYK. libjpeg-turbo does not convert CMYK to RGBA, so |
| // we must do it ourselves. |
| J_COLOR_SPACE encodedColorType = fDecoderMgr->dinfo()->jpeg_color_space; |
| bool isCMYK = (JCS_CMYK == encodedColorType || JCS_YCCK == encodedColorType); |
| |
| // Check for valid color types and set the output color space |
| switch (dstInfo.colorType()) { |
| case kRGBA_8888_SkColorType: |
| if (isCMYK) { |
| fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; |
| } else { |
| fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
| } |
| return true; |
| case kBGRA_8888_SkColorType: |
| if (isCMYK) { |
| fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; |
| } else if (this->colorXform()) { |
| // Always using RGBA as the input format for color xforms makes the |
| // implementation a little simpler. |
| fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
| } else { |
| fDecoderMgr->dinfo()->out_color_space = JCS_EXT_BGRA; |
| } |
| return true; |
| case kRGB_565_SkColorType: |
| if (isCMYK) { |
| fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; |
| } else if (this->colorXform()) { |
| fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
| } else { |
| fDecoderMgr->dinfo()->dither_mode = JDITHER_NONE; |
| fDecoderMgr->dinfo()->out_color_space = JCS_RGB565; |
| } |
| return true; |
| case kGray_8_SkColorType: |
| if (this->colorXform() || JCS_GRAYSCALE != encodedColorType) { |
| return false; |
| } |
| |
| fDecoderMgr->dinfo()->out_color_space = JCS_GRAYSCALE; |
| return true; |
| case kRGBA_F16_SkColorType: |
| SkASSERT(this->colorXform()); |
| |
| if (!dstInfo.colorSpace()->gammaIsLinear()) { |
| return false; |
| } |
| |
| if (isCMYK) { |
| fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; |
| } else { |
| fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
| } |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * Checks if we can natively scale to the requested dimensions and natively scales the |
| * dimensions if possible |
| */ |
| bool SkJpegCodec::onDimensionsSupported(const SkISize& size) { |
| if (setjmp(fDecoderMgr->getJmpBuf())) { |
| return fDecoderMgr->returnFalse("onDimensionsSupported"); |
| } |
| |
| const unsigned int dstWidth = size.width(); |
| const unsigned int dstHeight = size.height(); |
| |
| // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions |
| // FIXME: Why is this necessary? |
| jpeg_decompress_struct dinfo; |
| sk_bzero(&dinfo, sizeof(dinfo)); |
| dinfo.image_width = this->getInfo().width(); |
| dinfo.image_height = this->getInfo().height(); |
| dinfo.global_state = fReadyState; |
| |
| // libjpeg-turbo can scale to 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1 |
| unsigned int num = 8; |
| const unsigned int denom = 8; |
| calc_output_dimensions(&dinfo, num, denom); |
| while (dinfo.output_width != dstWidth || dinfo.output_height != dstHeight) { |
| |
| // Return a failure if we have tried all of the possible scales |
| if (1 == num || dstWidth > dinfo.output_width || dstHeight > dinfo.output_height) { |
| return false; |
| } |
| |
| // Try the next scale |
| num -= 1; |
| calc_output_dimensions(&dinfo, num, denom); |
| } |
| |
| fDecoderMgr->dinfo()->scale_num = num; |
| fDecoderMgr->dinfo()->scale_denom = denom; |
| return true; |
| } |
| |
| int SkJpegCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count, |
| const Options& opts) { |
| // Set the jump location for libjpeg-turbo errors |
| if (setjmp(fDecoderMgr->getJmpBuf())) { |
| return 0; |
| } |
| |
| // When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case, |
| // we will always decode into fSwizzlerSrcRow before swizzling into the next buffer. |
| // We can never swizzle "in place" because the swizzler may perform sampling and/or |
| // subsetting. |
| // When fColorXformSrcRow is non-null, it means that we need to color xform and that |
| // we cannot color xform "in place" (many times we can, but not when the dst is F16). |
| // In this case, we will color xform from fColorXformSrcRow into the dst. |
| JSAMPLE* decodeDst = (JSAMPLE*) dst; |
| uint32_t* swizzleDst = (uint32_t*) dst; |
| size_t decodeDstRowBytes = rowBytes; |
| size_t swizzleDstRowBytes = rowBytes; |
| int dstWidth = opts.fSubset ? opts.fSubset->width() : dstInfo.width(); |
| if (fSwizzleSrcRow && fColorXformSrcRow) { |
| decodeDst = (JSAMPLE*) fSwizzleSrcRow; |
| swizzleDst = fColorXformSrcRow; |
| decodeDstRowBytes = 0; |
| swizzleDstRowBytes = 0; |
| dstWidth = fSwizzler->swizzleWidth(); |
| } else if (fColorXformSrcRow) { |
| decodeDst = (JSAMPLE*) fColorXformSrcRow; |
| swizzleDst = fColorXformSrcRow; |
| decodeDstRowBytes = 0; |
| swizzleDstRowBytes = 0; |
| } else if (fSwizzleSrcRow) { |
| decodeDst = (JSAMPLE*) fSwizzleSrcRow; |
| decodeDstRowBytes = 0; |
| dstWidth = fSwizzler->swizzleWidth(); |
| } |
| |
| for (int y = 0; y < count; y++) { |
| uint32_t lines = jpeg_read_scanlines(fDecoderMgr->dinfo(), &decodeDst, 1); |
| if (0 == lines) { |
| return y; |
| } |
| |
| if (fSwizzler) { |
| fSwizzler->swizzle(swizzleDst, decodeDst); |
| } |
| |
| if (this->colorXform()) { |
| this->applyColorXform(dst, swizzleDst, dstWidth, kOpaque_SkAlphaType); |
| dst = SkTAddOffset<void>(dst, rowBytes); |
| } |
| |
| decodeDst = SkTAddOffset<JSAMPLE>(decodeDst, decodeDstRowBytes); |
| swizzleDst = SkTAddOffset<uint32_t>(swizzleDst, swizzleDstRowBytes); |
| } |
| |
| return count; |
| } |
| |
| /* |
| * This is a bit tricky. We only need the swizzler to do format conversion if the jpeg is |
| * encoded as CMYK. |
| * And even then we still may not need it. If the jpeg has a CMYK color space and a color |
| * xform, the color xform will handle the CMYK->RGB conversion. |
| */ |
| static inline bool needs_swizzler_to_convert_from_cmyk(J_COLOR_SPACE jpegColorType, |
| const SkImageInfo& srcInfo, bool hasColorSpaceXform) { |
| if (JCS_CMYK != jpegColorType) { |
| return false; |
| } |
| |
| bool hasCMYKColorSpace = as_CSB(srcInfo.colorSpace())->onIsCMYK(); |
| return !hasCMYKColorSpace || !hasColorSpaceXform; |
| } |
| |
| /* |
| * Performs the jpeg decode |
| */ |
| SkCodec::Result SkJpegCodec::onGetPixels(const SkImageInfo& dstInfo, |
| void* dst, size_t dstRowBytes, |
| const Options& options, |
| int* rowsDecoded) { |
| if (options.fSubset) { |
| // Subsets are not supported. |
| return kUnimplemented; |
| } |
| |
| // Get a pointer to the decompress info since we will use it quite frequently |
| jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
| |
| // Set the jump location for libjpeg errors |
| if (setjmp(fDecoderMgr->getJmpBuf())) { |
| return fDecoderMgr->returnFailure("setjmp", kInvalidInput); |
| } |
| |
| // Check if we can decode to the requested destination and set the output color space |
| if (!this->setOutputColorSpace(dstInfo)) { |
| return fDecoderMgr->returnFailure("setOutputColorSpace", kInvalidConversion); |
| } |
| |
| if (!jpeg_start_decompress(dinfo)) { |
| return fDecoderMgr->returnFailure("startDecompress", kInvalidInput); |
| } |
| |
| // The recommended output buffer height should always be 1 in high quality modes. |
| // If it's not, we want to know because it means our strategy is not optimal. |
| SkASSERT(1 == dinfo->rec_outbuf_height); |
| |
| if (needs_swizzler_to_convert_from_cmyk(dinfo->out_color_space, this->getInfo(), |
| this->colorXform())) { |
| this->initializeSwizzler(dstInfo, options, true); |
| } |
| |
| this->allocateStorage(dstInfo); |
| |
| int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height(), options); |
| if (rows < dstInfo.height()) { |
| *rowsDecoded = rows; |
| return fDecoderMgr->returnFailure("Incomplete image data", kIncompleteInput); |
| } |
| |
| return kSuccess; |
| } |
| |
| void SkJpegCodec::allocateStorage(const SkImageInfo& dstInfo) { |
| int dstWidth = dstInfo.width(); |
| |
| size_t swizzleBytes = 0; |
| if (fSwizzler) { |
| swizzleBytes = get_row_bytes(fDecoderMgr->dinfo()); |
| dstWidth = fSwizzler->swizzleWidth(); |
| SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes)); |
| } |
| |
| size_t xformBytes = 0; |
| if (this->colorXform() && (kRGBA_F16_SkColorType == dstInfo.colorType() || |
| kRGB_565_SkColorType == dstInfo.colorType())) { |
| xformBytes = dstWidth * sizeof(uint32_t); |
| } |
| |
| size_t totalBytes = swizzleBytes + xformBytes; |
| if (totalBytes > 0) { |
| fStorage.reset(totalBytes); |
| fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr; |
| fColorXformSrcRow = (xformBytes > 0) ? |
| SkTAddOffset<uint32_t>(fStorage.get(), swizzleBytes) : nullptr; |
| } |
| } |
| |
| void SkJpegCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& options, |
| bool needsCMYKToRGB) { |
| SkEncodedInfo swizzlerInfo = this->getEncodedInfo(); |
| if (needsCMYKToRGB) { |
| swizzlerInfo = SkEncodedInfo::Make(SkEncodedInfo::kInvertedCMYK_Color, |
| swizzlerInfo.alpha(), |
| swizzlerInfo.bitsPerComponent()); |
| } |
| |
| Options swizzlerOptions = options; |
| if (options.fSubset) { |
| // Use fSwizzlerSubset if this is a subset decode. This is necessary in the case |
| // where libjpeg-turbo provides a subset and then we need to subset it further. |
| // Also, verify that fSwizzlerSubset is initialized and valid. |
| SkASSERT(!fSwizzlerSubset.isEmpty() && fSwizzlerSubset.x() <= options.fSubset->x() && |
| fSwizzlerSubset.width() == options.fSubset->width()); |
| swizzlerOptions.fSubset = &fSwizzlerSubset; |
| } |
| |
| SkImageInfo swizzlerDstInfo = dstInfo; |
| if (this->colorXform()) { |
| // The color xform will be expecting RGBA 8888 input. |
| swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_8888_SkColorType); |
| } |
| |
| fSwizzler.reset(SkSwizzler::CreateSwizzler(swizzlerInfo, nullptr, swizzlerDstInfo, |
| swizzlerOptions, nullptr, !needsCMYKToRGB)); |
| SkASSERT(fSwizzler); |
| } |
| |
| SkSampler* SkJpegCodec::getSampler(bool createIfNecessary) { |
| if (!createIfNecessary || fSwizzler) { |
| SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow)); |
| return fSwizzler.get(); |
| } |
| |
| bool needsCMYKToRGB = needs_swizzler_to_convert_from_cmyk( |
| fDecoderMgr->dinfo()->out_color_space, this->getInfo(), this->colorXform()); |
| this->initializeSwizzler(this->dstInfo(), this->options(), needsCMYKToRGB); |
| this->allocateStorage(this->dstInfo()); |
| return fSwizzler.get(); |
| } |
| |
| SkCodec::Result SkJpegCodec::onStartScanlineDecode(const SkImageInfo& dstInfo, |
| const Options& options) { |
| // Set the jump location for libjpeg errors |
| if (setjmp(fDecoderMgr->getJmpBuf())) { |
| SkCodecPrintf("setjmp: Error from libjpeg\n"); |
| return kInvalidInput; |
| } |
| |
| // Check if we can decode to the requested destination and set the output color space |
| if (!this->setOutputColorSpace(dstInfo)) { |
| return fDecoderMgr->returnFailure("setOutputColorSpace", kInvalidConversion); |
| } |
| |
| if (!jpeg_start_decompress(fDecoderMgr->dinfo())) { |
| SkCodecPrintf("start decompress failed\n"); |
| return kInvalidInput; |
| } |
| |
| bool needsCMYKToRGB = needs_swizzler_to_convert_from_cmyk( |
| fDecoderMgr->dinfo()->out_color_space, this->getInfo(), this->colorXform()); |
| if (options.fSubset) { |
| uint32_t startX = options.fSubset->x(); |
| uint32_t width = options.fSubset->width(); |
| |
| // libjpeg-turbo may need to align startX to a multiple of the IDCT |
| // block size. If this is the case, it will decrease the value of |
| // startX to the appropriate alignment and also increase the value |
| // of width so that the right edge of the requested subset remains |
| // the same. |
| jpeg_crop_scanline(fDecoderMgr->dinfo(), &startX, &width); |
| |
| SkASSERT(startX <= (uint32_t) options.fSubset->x()); |
| SkASSERT(width >= (uint32_t) options.fSubset->width()); |
| SkASSERT(startX + width >= (uint32_t) options.fSubset->right()); |
| |
| // Instruct the swizzler (if it is necessary) to further subset the |
| // output provided by libjpeg-turbo. |
| // |
| // We set this here (rather than in the if statement below), so that |
| // if (1) we don't need a swizzler for the subset, and (2) we need a |
| // swizzler for CMYK, the swizzler will still use the proper subset |
| // dimensions. |
| // |
| // Note that the swizzler will ignore the y and height parameters of |
| // the subset. Since the scanline decoder (and the swizzler) handle |
| // one row at a time, only the subsetting in the x-dimension matters. |
| fSwizzlerSubset.setXYWH(options.fSubset->x() - startX, 0, |
| options.fSubset->width(), options.fSubset->height()); |
| |
| // We will need a swizzler if libjpeg-turbo cannot provide the exact |
| // subset that we request. |
| if (startX != (uint32_t) options.fSubset->x() || |
| width != (uint32_t) options.fSubset->width()) { |
| this->initializeSwizzler(dstInfo, options, needsCMYKToRGB); |
| } |
| } |
| |
| // Make sure we have a swizzler if we are converting from CMYK. |
| if (!fSwizzler && needsCMYKToRGB) { |
| this->initializeSwizzler(dstInfo, options, true); |
| } |
| |
| this->allocateStorage(dstInfo); |
| |
| return kSuccess; |
| } |
| |
| int SkJpegCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) { |
| int rows = this->readRows(this->dstInfo(), dst, dstRowBytes, count, this->options()); |
| if (rows < count) { |
| // This allows us to skip calling jpeg_finish_decompress(). |
| fDecoderMgr->dinfo()->output_scanline = this->dstInfo().height(); |
| } |
| |
| return rows; |
| } |
| |
| bool SkJpegCodec::onSkipScanlines(int count) { |
| // Set the jump location for libjpeg errors |
| if (setjmp(fDecoderMgr->getJmpBuf())) { |
| return fDecoderMgr->returnFalse("onSkipScanlines"); |
| } |
| |
| return (uint32_t) count == jpeg_skip_scanlines(fDecoderMgr->dinfo(), count); |
| } |
| |
| static bool is_yuv_supported(jpeg_decompress_struct* dinfo) { |
| // Scaling is not supported in raw data mode. |
| SkASSERT(dinfo->scale_num == dinfo->scale_denom); |
| |
| // I can't imagine that this would ever change, but we do depend on it. |
| static_assert(8 == DCTSIZE, "DCTSIZE (defined in jpeg library) should always be 8."); |
| |
| if (JCS_YCbCr != dinfo->jpeg_color_space) { |
| return false; |
| } |
| |
| SkASSERT(3 == dinfo->num_components); |
| SkASSERT(dinfo->comp_info); |
| |
| // It is possible to perform a YUV decode for any combination of |
| // horizontal and vertical sampling that is supported by |
| // libjpeg/libjpeg-turbo. However, we will start by supporting only the |
| // common cases (where U and V have samp_factors of one). |
| // |
| // The definition of samp_factor is kind of the opposite of what SkCodec |
| // thinks of as a sampling factor. samp_factor is essentially a |
| // multiplier, and the larger the samp_factor is, the more samples that |
| // there will be. Ex: |
| // U_plane_width = image_width * (U_h_samp_factor / max_h_samp_factor) |
| // |
| // Supporting cases where the samp_factors for U or V were larger than |
| // that of Y would be an extremely difficult change, given that clients |
| // allocate memory as if the size of the Y plane is always the size of the |
| // image. However, this case is very, very rare. |
| if ((1 != dinfo->comp_info[1].h_samp_factor) || |
| (1 != dinfo->comp_info[1].v_samp_factor) || |
| (1 != dinfo->comp_info[2].h_samp_factor) || |
| (1 != dinfo->comp_info[2].v_samp_factor)) |
| { |
| return false; |
| } |
| |
| // Support all common cases of Y samp_factors. |
| // TODO (msarett): As mentioned above, it would be possible to support |
| // more combinations of samp_factors. The issues are: |
| // (1) Are there actually any images that are not covered |
| // by these cases? |
| // (2) How much complexity would be added to the |
| // implementation in order to support these rare |
| // cases? |
| int hSampY = dinfo->comp_info[0].h_samp_factor; |
| int vSampY = dinfo->comp_info[0].v_samp_factor; |
| return (1 == hSampY && 1 == vSampY) || |
| (2 == hSampY && 1 == vSampY) || |
| (2 == hSampY && 2 == vSampY) || |
| (1 == hSampY && 2 == vSampY) || |
| (4 == hSampY && 1 == vSampY) || |
| (4 == hSampY && 2 == vSampY); |
| } |
| |
| bool SkJpegCodec::onQueryYUV8(SkYUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const { |
| jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
| if (!is_yuv_supported(dinfo)) { |
| return false; |
| } |
| |
| jpeg_component_info * comp_info = dinfo->comp_info; |
| for (auto i : { SkYUVSizeInfo::kY, SkYUVSizeInfo::kU, SkYUVSizeInfo::kV }) { |
| sizeInfo->fSizes[i].set(comp_info[i].downsampled_width, comp_info[i].downsampled_height); |
| sizeInfo->fWidthBytes[i] = comp_info[i].width_in_blocks * DCTSIZE; |
| } |
| |
| if (colorSpace) { |
| *colorSpace = kJPEG_SkYUVColorSpace; |
| } |
| |
| return true; |
| } |
| |
| SkCodec::Result SkJpegCodec::onGetYUV8Planes(const SkYUVSizeInfo& sizeInfo, void* planes[3]) { |
| SkYUVSizeInfo defaultInfo; |
| |
| // This will check is_yuv_supported(), so we don't need to here. |
| bool supportsYUV = this->onQueryYUV8(&defaultInfo, nullptr); |
| if (!supportsYUV || |
| sizeInfo.fSizes[SkYUVSizeInfo::kY] != defaultInfo.fSizes[SkYUVSizeInfo::kY] || |
| sizeInfo.fSizes[SkYUVSizeInfo::kU] != defaultInfo.fSizes[SkYUVSizeInfo::kU] || |
| sizeInfo.fSizes[SkYUVSizeInfo::kV] != defaultInfo.fSizes[SkYUVSizeInfo::kV] || |
| sizeInfo.fWidthBytes[SkYUVSizeInfo::kY] < defaultInfo.fWidthBytes[SkYUVSizeInfo::kY] || |
| sizeInfo.fWidthBytes[SkYUVSizeInfo::kU] < defaultInfo.fWidthBytes[SkYUVSizeInfo::kU] || |
| sizeInfo.fWidthBytes[SkYUVSizeInfo::kV] < defaultInfo.fWidthBytes[SkYUVSizeInfo::kV]) { |
| return fDecoderMgr->returnFailure("onGetYUV8Planes", kInvalidInput); |
| } |
| |
| // Set the jump location for libjpeg errors |
| if (setjmp(fDecoderMgr->getJmpBuf())) { |
| return fDecoderMgr->returnFailure("setjmp", kInvalidInput); |
| } |
| |
| // Get a pointer to the decompress info since we will use it quite frequently |
| jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
| |
| dinfo->raw_data_out = TRUE; |
| if (!jpeg_start_decompress(dinfo)) { |
| return fDecoderMgr->returnFailure("startDecompress", kInvalidInput); |
| } |
| |
| // A previous implementation claims that the return value of is_yuv_supported() |
| // may change after calling jpeg_start_decompress(). It looks to me like this |
| // was caused by a bug in the old code, but we'll be safe and check here. |
| SkASSERT(is_yuv_supported(dinfo)); |
| |
| // Currently, we require that the Y plane dimensions match the image dimensions |
| // and that the U and V planes are the same dimensions. |
| SkASSERT(sizeInfo.fSizes[SkYUVSizeInfo::kU] == sizeInfo.fSizes[SkYUVSizeInfo::kV]); |
| SkASSERT((uint32_t) sizeInfo.fSizes[SkYUVSizeInfo::kY].width() == dinfo->output_width && |
| (uint32_t) sizeInfo.fSizes[SkYUVSizeInfo::kY].height() == dinfo->output_height); |
| |
| // Build a JSAMPIMAGE to handle output from libjpeg-turbo. A JSAMPIMAGE has |
| // a 2-D array of pixels for each of the components (Y, U, V) in the image. |
| // Cheat Sheet: |
| // JSAMPIMAGE == JSAMPLEARRAY* == JSAMPROW** == JSAMPLE*** |
| JSAMPARRAY yuv[3]; |
| |
| // Set aside enough space for pointers to rows of Y, U, and V. |
| JSAMPROW rowptrs[2 * DCTSIZE + DCTSIZE + DCTSIZE]; |
| yuv[0] = &rowptrs[0]; // Y rows (DCTSIZE or 2 * DCTSIZE) |
| yuv[1] = &rowptrs[2 * DCTSIZE]; // U rows (DCTSIZE) |
| yuv[2] = &rowptrs[3 * DCTSIZE]; // V rows (DCTSIZE) |
| |
| // Initialize rowptrs. |
| int numYRowsPerBlock = DCTSIZE * dinfo->comp_info[0].v_samp_factor; |
| for (int i = 0; i < numYRowsPerBlock; i++) { |
| rowptrs[i] = SkTAddOffset<JSAMPLE>(planes[SkYUVSizeInfo::kY], |
| i * sizeInfo.fWidthBytes[SkYUVSizeInfo::kY]); |
| } |
| for (int i = 0; i < DCTSIZE; i++) { |
| rowptrs[i + 2 * DCTSIZE] = SkTAddOffset<JSAMPLE>(planes[SkYUVSizeInfo::kU], |
| i * sizeInfo.fWidthBytes[SkYUVSizeInfo::kU]); |
| rowptrs[i + 3 * DCTSIZE] = SkTAddOffset<JSAMPLE>(planes[SkYUVSizeInfo::kV], |
| i * sizeInfo.fWidthBytes[SkYUVSizeInfo::kV]); |
| } |
| |
| // After each loop iteration, we will increment pointers to Y, U, and V. |
| size_t blockIncrementY = numYRowsPerBlock * sizeInfo.fWidthBytes[SkYUVSizeInfo::kY]; |
| size_t blockIncrementU = DCTSIZE * sizeInfo.fWidthBytes[SkYUVSizeInfo::kU]; |
| size_t blockIncrementV = DCTSIZE * sizeInfo.fWidthBytes[SkYUVSizeInfo::kV]; |
| |
| uint32_t numRowsPerBlock = numYRowsPerBlock; |
| |
| // We intentionally round down here, as this first loop will only handle |
| // full block rows. As a special case at the end, we will handle any |
| // remaining rows that do not make up a full block. |
| const int numIters = dinfo->output_height / numRowsPerBlock; |
| for (int i = 0; i < numIters; i++) { |
| JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); |
| if (linesRead < numRowsPerBlock) { |
| // FIXME: Handle incomplete YUV decodes without signalling an error. |
| return kInvalidInput; |
| } |
| |
| // Update rowptrs. |
| for (int i = 0; i < numYRowsPerBlock; i++) { |
| rowptrs[i] += blockIncrementY; |
| } |
| for (int i = 0; i < DCTSIZE; i++) { |
| rowptrs[i + 2 * DCTSIZE] += blockIncrementU; |
| rowptrs[i + 3 * DCTSIZE] += blockIncrementV; |
| } |
| } |
| |
| uint32_t remainingRows = dinfo->output_height - dinfo->output_scanline; |
| SkASSERT(remainingRows == dinfo->output_height % numRowsPerBlock); |
| SkASSERT(dinfo->output_scanline == numIters * numRowsPerBlock); |
| if (remainingRows > 0) { |
| // libjpeg-turbo needs memory to be padded by the block sizes. We will fulfill |
| // this requirement using a dummy row buffer. |
| // FIXME: Should SkCodec have an extra memory buffer that can be shared among |
| // all of the implementations that use temporary/garbage memory? |
| SkAutoTMalloc<JSAMPLE> dummyRow(sizeInfo.fWidthBytes[SkYUVSizeInfo::kY]); |
| for (int i = remainingRows; i < numYRowsPerBlock; i++) { |
| rowptrs[i] = dummyRow.get(); |
| } |
| int remainingUVRows = dinfo->comp_info[1].downsampled_height - DCTSIZE * numIters; |
| for (int i = remainingUVRows; i < DCTSIZE; i++) { |
| rowptrs[i + 2 * DCTSIZE] = dummyRow.get(); |
| rowptrs[i + 3 * DCTSIZE] = dummyRow.get(); |
| } |
| |
| JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); |
| if (linesRead < remainingRows) { |
| // FIXME: Handle incomplete YUV decodes without signalling an error. |
| return kInvalidInput; |
| } |
| } |
| |
| return kSuccess; |
| } |