| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkIntersections.h" |
| |
| void SkIntersections::append(const SkIntersections& i) { |
| for (int index = 0; index < i.fUsed; ++index) { |
| insert(i[0][index], i[1][index], i.pt(index)); |
| } |
| } |
| |
| int (SkIntersections::*CurveVertical[])(const SkPoint[], SkScalar, SkScalar, SkScalar, bool) = { |
| NULL, |
| &SkIntersections::verticalLine, |
| &SkIntersections::verticalQuad, |
| &SkIntersections::verticalCubic |
| }; |
| |
| int (SkIntersections::*CurveRay[])(const SkPoint[], const SkDLine&) = { |
| NULL, |
| &SkIntersections::lineRay, |
| &SkIntersections::quadRay, |
| &SkIntersections::cubicRay |
| }; |
| |
| int SkIntersections::coincidentUsed() const { |
| if (!fIsCoincident[0]) { |
| SkASSERT(!fIsCoincident[1]); |
| return 0; |
| } |
| int count = 0; |
| SkDEBUGCODE(int count2 = 0;) |
| for (int index = 0; index < fUsed; ++index) { |
| if (fIsCoincident[0] & (1 << index)) { |
| ++count; |
| } |
| #ifdef SK_DEBUG |
| if (fIsCoincident[1] & (1 << index)) { |
| ++count2; |
| } |
| #endif |
| } |
| SkASSERT(count == count2); |
| return count; |
| } |
| |
| int SkIntersections::cubicRay(const SkPoint pts[4], const SkDLine& line) { |
| SkDCubic cubic; |
| cubic.set(pts); |
| fMax = 3; |
| return intersectRay(cubic, line); |
| } |
| |
| void SkIntersections::flip() { |
| for (int index = 0; index < fUsed; ++index) { |
| fT[1][index] = 1 - fT[1][index]; |
| } |
| } |
| |
| int SkIntersections::insert(double one, double two, const SkDPoint& pt) { |
| if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) { |
| // For now, don't allow a mix of coincident and non-coincident intersections |
| return -1; |
| } |
| SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]); |
| int index; |
| for (index = 0; index < fUsed; ++index) { |
| double oldOne = fT[0][index]; |
| double oldTwo = fT[1][index]; |
| if (one == oldOne && two == oldTwo) { |
| return -1; |
| } |
| if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) { |
| if ((precisely_zero(one) && !precisely_zero(oldOne)) |
| || (precisely_equal(one, 1) && !precisely_equal(oldOne, 1)) |
| || (precisely_zero(two) && !precisely_zero(oldTwo)) |
| || (precisely_equal(two, 1) && !precisely_equal(oldTwo, 1))) { |
| fT[0][index] = one; |
| fT[1][index] = two; |
| fPt[index] = pt; |
| } |
| return -1; |
| } |
| #if ONE_OFF_DEBUG |
| if (pt.roughlyEqual(fPt[index])) { |
| SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one); |
| } |
| #endif |
| if (fT[0][index] > one) { |
| break; |
| } |
| } |
| if (fUsed >= fMax) { |
| SkASSERT(0); // FIXME : this error, if it is to be handled at runtime in release, must |
| // be propagated all the way back down to the caller, and return failure. |
| fUsed = 0; |
| return 0; |
| } |
| int remaining = fUsed - index; |
| if (remaining > 0) { |
| memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining); |
| memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining); |
| memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining); |
| int clearMask = ~((1 << index) - 1); |
| fIsCoincident[0] += fIsCoincident[0] & clearMask; |
| fIsCoincident[1] += fIsCoincident[1] & clearMask; |
| } |
| fPt[index] = pt; |
| fT[0][index] = one; |
| fT[1][index] = two; |
| ++fUsed; |
| return index; |
| } |
| |
| void SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) { |
| int index = insertSwap(one, two, pt); |
| int bit = 1 << index; |
| fIsCoincident[0] |= bit; |
| fIsCoincident[1] |= bit; |
| } |
| |
| int SkIntersections::lineRay(const SkPoint pts[2], const SkDLine& line) { |
| SkDLine l; |
| l.set(pts); |
| fMax = 2; |
| return intersectRay(l, line); |
| } |
| |
| void SkIntersections::offset(int base, double start, double end) { |
| for (int index = base; index < fUsed; ++index) { |
| double val = fT[fSwap][index]; |
| val *= end - start; |
| val += start; |
| fT[fSwap][index] = val; |
| } |
| } |
| |
| int SkIntersections::quadRay(const SkPoint pts[3], const SkDLine& line) { |
| SkDQuad quad; |
| quad.set(pts); |
| fMax = 2; |
| return intersectRay(quad, line); |
| } |
| |
| void SkIntersections::quickRemoveOne(int index, int replace) { |
| if (index < replace) { |
| fT[0][index] = fT[0][replace]; |
| } |
| } |
| |
| #if 0 |
| void SkIntersections::remove(double one, double two, const SkDPoint& startPt, |
| const SkDPoint& endPt) { |
| for (int index = fUsed - 1; index >= 0; --index) { |
| if (!(fIsCoincident[0] & (1 << index)) && (between(one, fT[fSwap][index], two) |
| || startPt.approximatelyEqual(fPt[index]) |
| || endPt.approximatelyEqual(fPt[index]))) { |
| SkASSERT(fUsed > 0); |
| removeOne(index); |
| } |
| } |
| } |
| #endif |
| |
| void SkIntersections::removeOne(int index) { |
| int remaining = --fUsed - index; |
| if (remaining <= 0) { |
| return; |
| } |
| memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining); |
| memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining); |
| memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining); |
| SkASSERT(fIsCoincident[0] == 0); |
| int coBit = fIsCoincident[0] & (1 << index); |
| fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit; |
| SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index)))); |
| fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit; |
| } |
| |
| void SkIntersections::swapPts() { |
| int index; |
| for (index = 0; index < fUsed; ++index) { |
| SkTSwap(fT[0][index], fT[1][index]); |
| } |
| } |
| |
| int SkIntersections::verticalLine(const SkPoint a[2], SkScalar top, SkScalar bottom, |
| SkScalar x, bool flipped) { |
| SkDLine line; |
| line.set(a); |
| return vertical(line, top, bottom, x, flipped); |
| } |
| |
| int SkIntersections::verticalQuad(const SkPoint a[3], SkScalar top, SkScalar bottom, |
| SkScalar x, bool flipped) { |
| SkDQuad quad; |
| quad.set(a); |
| return vertical(quad, top, bottom, x, flipped); |
| } |
| |
| int SkIntersections::verticalCubic(const SkPoint a[4], SkScalar top, SkScalar bottom, |
| SkScalar x, bool flipped) { |
| SkDCubic cubic; |
| cubic.set(a); |
| return vertical(cubic, top, bottom, x, flipped); |
| } |