Generate Signed Distance Field directly from vector path
Add SkGenerateDistanceFieldFromPath API to generate signed distance field directly from SkPath.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1643143002
Committed: https://skia.googlesource.com/skia/+/4de97a64e8829323a7070b623411d9f9ddb0cd0f
Committed: https://skia.googlesource.com/skia/+/e8f0a7b986f1e5583c9bc162efcdd92fd6430549
Committed: https://skia.googlesource.com/skia/+/67c7c81a82b6351e9fbbf235084d7120162d9268
Review-Url: https://codereview.chromium.org/1643143002
Committed: https://skia.googlesource.com/skia/+/64b70b096ac20833d9737758a4bd5f2a51078bc4
Review-Url: https://codereview.chromium.org/1643143002
Committed: https://skia.googlesource.com/skia/+/6d2f73c364d0d823f14d1ddebc88e0bcbc8f0634
Review-Url: https://codereview.chromium.org/1643143002
diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp
new file mode 100644
index 0000000..8179500
--- /dev/null
+++ b/src/gpu/GrDistanceFieldGenFromVector.cpp
@@ -0,0 +1,873 @@
+/*
+ * Copyright 2017 ARM Ltd.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkDistanceFieldGen.h"
+#include "GrDistanceFieldGenFromVector.h"
+#include "SkMatrix.h"
+#include "SkPoint.h"
+#include "SkGeometry.h"
+#include "SkPathOps.h"
+#include "GrPathUtils.h"
+#include "GrConfig.h"
+
+/**
+ * If a scanline (a row of texel) cross from the kRight_SegSide
+ * of a segment to the kLeft_SegSide, the winding score should
+ * add 1.
+ * And winding score should subtract 1 if the scanline cross
+ * from kLeft_SegSide to kRight_SegSide.
+ * Always return kNA_SegSide if the scanline does not cross over
+ * the segment. Winding score should be zero in this case.
+ * You can get the winding number for each texel of the scanline
+ * by adding the winding score from left to right.
+ * Assuming we always start from outside, so the winding number
+ * should always start from zero.
+ * ________ ________
+ * | | | |
+ * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
+ * |+1 |-1 |-1 |+1 <= Winding score
+ * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
+ * |________| |________|
+ *
+ * .......NA................NA..........
+ * 0 0
+ */
+enum SegSide {
+ kLeft_SegSide = -1,
+ kOn_SegSide = 0,
+ kRight_SegSide = 1,
+ kNA_SegSide = 2,
+};
+
+struct DFData {
+ float fDistSq; // distance squared to nearest (so far) edge
+ int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
+};
+
+///////////////////////////////////////////////////////////////////////////////
+
+/*
+ * Type definition for double precision DPoint and DAffineMatrix
+ */
+
+// Point with double precision
+struct DPoint {
+ double fX, fY;
+
+ static DPoint Make(double x, double y) {
+ DPoint pt;
+ pt.set(x, y);
+ return pt;
+ }
+
+ double x() const { return fX; }
+ double y() const { return fY; }
+
+ void set(double x, double y) { fX = x; fY = y; }
+
+ /** Returns the euclidian distance from (0,0) to (x,y)
+ */
+ static double Length(double x, double y) {
+ return sqrt(x * x + y * y);
+ }
+
+ /** Returns the euclidian distance between a and b
+ */
+ static double Distance(const DPoint& a, const DPoint& b) {
+ return Length(a.fX - b.fX, a.fY - b.fY);
+ }
+
+ double distanceToSqd(const DPoint& pt) const {
+ double dx = fX - pt.fX;
+ double dy = fY - pt.fY;
+ return dx * dx + dy * dy;
+ }
+};
+
+// Matrix with double precision for affine transformation.
+// We don't store row 3 because its always (0, 0, 1).
+class DAffineMatrix {
+public:
+ double operator[](int index) const {
+ SkASSERT((unsigned)index < 6);
+ return fMat[index];
+ }
+
+ double& operator[](int index) {
+ SkASSERT((unsigned)index < 6);
+ return fMat[index];
+ }
+
+ void setAffine(double m11, double m12, double m13,
+ double m21, double m22, double m23) {
+ fMat[0] = m11;
+ fMat[1] = m12;
+ fMat[2] = m13;
+ fMat[3] = m21;
+ fMat[4] = m22;
+ fMat[5] = m23;
+ }
+
+ /** Set the matrix to identity
+ */
+ void reset() {
+ fMat[0] = fMat[4] = 1.0;
+ fMat[1] = fMat[3] =
+ fMat[2] = fMat[5] = 0.0;
+ }
+
+ // alias for reset()
+ void setIdentity() { this->reset(); }
+
+ DPoint mapPoint(const SkPoint& src) const {
+ DPoint pt = DPoint::Make(src.x(), src.y());
+ return this->mapPoint(pt);
+ }
+
+ DPoint mapPoint(const DPoint& src) const {
+ return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
+ fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
+ }
+private:
+ double fMat[6];
+};
+
+///////////////////////////////////////////////////////////////////////////////
+
+static const double kClose = (SK_Scalar1 / 16.0);
+static const double kCloseSqd = SkScalarMul(kClose, kClose);
+static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
+static const double kTangentTolerance = (SK_Scalar1 / (1 << 11));
+static const float kConicTolerance = 0.25f;
+
+static inline bool between_closed_open(double a, double b, double c,
+ double tolerance = 0.0,
+ bool xformToleranceToX = false) {
+ SkASSERT(tolerance >= 0.0);
+ double tolB = tolerance;
+ double tolC = tolerance;
+
+ if (xformToleranceToX) {
+ // Canonical space is y = x^2 and the derivative of x^2 is 2x.
+ // So the slope of the tangent line at point (x, x^2) is 2x.
+ //
+ // /|
+ // sqrt(2x * 2x + 1 * 1) / | 2x
+ // /__|
+ // 1
+ tolB = tolerance / sqrt(4.0 * b * b + 1.0);
+ tolC = tolerance / sqrt(4.0 * c * c + 1.0);
+ }
+ return b < c ? (a >= b - tolB && a < c - tolC) :
+ (a >= c - tolC && a < b - tolB);
+}
+
+static inline bool between_closed(double a, double b, double c,
+ double tolerance = 0.0,
+ bool xformToleranceToX = false) {
+ SkASSERT(tolerance >= 0.0);
+ double tolB = tolerance;
+ double tolC = tolerance;
+
+ if (xformToleranceToX) {
+ tolB = tolerance / sqrt(4.0 * b * b + 1.0);
+ tolC = tolerance / sqrt(4.0 * c * c + 1.0);
+ }
+ return b < c ? (a >= b - tolB && a <= c + tolC) :
+ (a >= c - tolC && a <= b + tolB);
+}
+
+static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
+ SkASSERT(tolerance >= 0.0);
+ return fabs(x) <= tolerance;
+}
+
+static inline bool nearly_equal(double x, double y,
+ double tolerance = kNearlyZero,
+ bool xformToleranceToX = false) {
+ SkASSERT(tolerance >= 0.0);
+ if (xformToleranceToX) {
+ tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
+ }
+ return fabs(x - y) <= tolerance;
+}
+
+static inline double sign_of(const double &val) {
+ return (val < 0.0) ? -1.0 : 1.0;
+}
+
+static bool is_colinear(const SkPoint pts[3]) {
+ return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
+ (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd);
+}
+
+class PathSegment {
+public:
+ enum {
+ // These enum values are assumed in member functions below.
+ kLine = 0,
+ kQuad = 1,
+ } fType;
+
+ // line uses 2 pts, quad uses 3 pts
+ SkPoint fPts[3];
+
+ DPoint fP0T, fP2T;
+ DAffineMatrix fXformMatrix;
+ double fScalingFactor;
+ double fScalingFactorSqd;
+ double fNearlyZeroScaled;
+ double fTangentTolScaledSqd;
+ SkRect fBoundingBox;
+
+ void init();
+
+ int countPoints() {
+ GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
+ return fType + 2;
+ }
+
+ const SkPoint& endPt() const {
+ GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
+ return fPts[fType + 1];
+ }
+};
+
+typedef SkTArray<PathSegment, true> PathSegmentArray;
+
+void PathSegment::init() {
+ const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
+ const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
+ const double p0x = p0.x();
+ const double p0y = p0.y();
+ const double p2x = p2.x();
+ const double p2y = p2.y();
+
+ fBoundingBox.set(fPts[0], this->endPt());
+
+ if (fType == PathSegment::kLine) {
+ fScalingFactorSqd = fScalingFactor = 1.0;
+ double hypotenuse = DPoint::Distance(p0, p2);
+
+ const double cosTheta = (p2x - p0x) / hypotenuse;
+ const double sinTheta = (p2y - p0y) / hypotenuse;
+
+ fXformMatrix.setAffine(
+ cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
+ -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
+ );
+ } else {
+ SkASSERT(fType == PathSegment::kQuad);
+
+ // Calculate bounding box
+ const SkPoint _P1mP0 = fPts[1] - fPts[0];
+ SkPoint t = _P1mP0 - fPts[2] + fPts[1];
+ t.fX = _P1mP0.x() / t.x();
+ t.fY = _P1mP0.y() / t.y();
+ t.fX = SkScalarClampMax(t.x(), 1.0);
+ t.fY = SkScalarClampMax(t.y(), 1.0);
+ t.fX = _P1mP0.x() * t.x();
+ t.fY = _P1mP0.y() * t.y();
+ const SkPoint m = fPts[0] + t;
+ fBoundingBox.growToInclude(&m, 1);
+
+ const double p1x = fPts[1].x();
+ const double p1y = fPts[1].y();
+
+ const double p0xSqd = p0x * p0x;
+ const double p0ySqd = p0y * p0y;
+ const double p2xSqd = p2x * p2x;
+ const double p2ySqd = p2y * p2y;
+ const double p1xSqd = p1x * p1x;
+ const double p1ySqd = p1y * p1y;
+
+ const double p01xProd = p0x * p1x;
+ const double p02xProd = p0x * p2x;
+ const double b12xProd = p1x * p2x;
+ const double p01yProd = p0y * p1y;
+ const double p02yProd = p0y * p2y;
+ const double b12yProd = p1y * p2y;
+
+ const double sqrtA = p0y - (2.0 * p1y) + p2y;
+ const double a = sqrtA * sqrtA;
+ const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
+ const double sqrtB = p0x - (2.0 * p1x) + p2x;
+ const double b = sqrtB * sqrtB;
+ const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
+ - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
+ + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
+ + (p2xSqd * p0ySqd);
+ const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
+ + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
+ + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
+ + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
+ + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
+ - (2.0 * p2x * p1ySqd);
+ const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
+ - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
+ + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
+ + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
+ - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
+ + (p2xSqd * p0y));
+
+ const double cosTheta = sqrt(a / (a + b));
+ const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
+
+ const double gDef = cosTheta * g - sinTheta * f;
+ const double fDef = sinTheta * g + cosTheta * f;
+
+
+ const double x0 = gDef / (a + b);
+ const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
+
+
+ const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
+ fScalingFactor = fabs(1.0 / lambda);
+ fScalingFactorSqd = fScalingFactor * fScalingFactor;
+
+ const double lambda_cosTheta = lambda * cosTheta;
+ const double lambda_sinTheta = lambda * sinTheta;
+
+ fXformMatrix.setAffine(
+ lambda_cosTheta, -lambda_sinTheta, lambda * x0,
+ lambda_sinTheta, lambda_cosTheta, lambda * y0
+ );
+ }
+
+ fNearlyZeroScaled = kNearlyZero / fScalingFactor;
+ fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd;
+
+ fP0T = fXformMatrix.mapPoint(p0);
+ fP2T = fXformMatrix.mapPoint(p2);
+}
+
+static void init_distances(DFData* data, int size) {
+ DFData* currData = data;
+
+ for (int i = 0; i < size; ++i) {
+ // init distance to "far away"
+ currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
+ currData->fDeltaWindingScore = 0;
+ ++currData;
+ }
+}
+
+static inline void add_line_to_segment(const SkPoint pts[2],
+ PathSegmentArray* segments) {
+ segments->push_back();
+ segments->back().fType = PathSegment::kLine;
+ segments->back().fPts[0] = pts[0];
+ segments->back().fPts[1] = pts[1];
+
+ segments->back().init();
+}
+
+static inline void add_quad_segment(const SkPoint pts[3],
+ PathSegmentArray* segments) {
+ if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
+ pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
+ is_colinear(pts)) {
+ if (pts[0] != pts[2]) {
+ SkPoint line_pts[2];
+ line_pts[0] = pts[0];
+ line_pts[1] = pts[2];
+ add_line_to_segment(line_pts, segments);
+ }
+ } else {
+ segments->push_back();
+ segments->back().fType = PathSegment::kQuad;
+ segments->back().fPts[0] = pts[0];
+ segments->back().fPts[1] = pts[1];
+ segments->back().fPts[2] = pts[2];
+
+ segments->back().init();
+ }
+}
+
+static inline void add_cubic_segments(const SkPoint pts[4],
+ PathSegmentArray* segments) {
+ SkSTArray<15, SkPoint, true> quads;
+ GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
+ int count = quads.count();
+ for (int q = 0; q < count; q += 3) {
+ add_quad_segment(&quads[q], segments);
+ }
+}
+
+static float calculate_nearest_point_for_quad(
+ const PathSegment& segment,
+ const DPoint &xFormPt) {
+ static const float kThird = 0.33333333333f;
+ static const float kTwentySeventh = 0.037037037f;
+
+ const float a = 0.5f - (float)xFormPt.y();
+ const float b = -0.5f * (float)xFormPt.x();
+
+ const float a3 = a * a * a;
+ const float b2 = b * b;
+
+ const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
+
+ if (c >= 0.f) {
+ const float sqrtC = sqrt(c);
+ const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
+ return result;
+ } else {
+ const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
+ const float phi = (float)acos(cosPhi);
+ float result;
+ if (xFormPt.x() > 0.f) {
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
+ if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
+ }
+ } else {
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
+ if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
+ }
+ }
+ return result;
+ }
+}
+
+// This structure contains some intermediate values shared by the same row.
+// It is used to calculate segment side of a quadratic bezier.
+struct RowData {
+ // The intersection type of a scanline and y = x * x parabola in canonical space.
+ enum IntersectionType {
+ kNoIntersection,
+ kVerticalLine,
+ kTangentLine,
+ kTwoPointsIntersect
+ } fIntersectionType;
+
+ // The direction of the quadratic segment/scanline in the canonical space.
+ // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
+ // 0: The scanline is a vertical line in the canonical space.
+ // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
+ int fQuadXDirection;
+ int fScanlineXDirection;
+
+ // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
+ double fYAtIntersection;
+
+ // The x-value for two intersection points.
+ double fXAtIntersection1;
+ double fXAtIntersection2;
+};
+
+void precomputation_for_row(
+ RowData *rowData,
+ const PathSegment& segment,
+ const SkPoint& pointLeft,
+ const SkPoint& pointRight
+ ) {
+ if (segment.fType != PathSegment::kQuad) {
+ return;
+ }
+
+ const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
+ const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
+
+ rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x());
+ rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x());
+
+ const double x1 = xFormPtLeft.x();
+ const double y1 = xFormPtLeft.y();
+ const double x2 = xFormPtRight.x();
+ const double y2 = xFormPtRight.y();
+
+ if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) {
+ rowData->fIntersectionType = RowData::kVerticalLine;
+ rowData->fYAtIntersection = x1 * x1;
+ rowData->fScanlineXDirection = 0;
+ return;
+ }
+
+ // Line y = mx + b
+ const double m = (y2 - y1) / (x2 - x1);
+ const double b = -m * x1 + y1;
+
+ const double m2 = m * m;
+ const double c = m2 + 4.0 * b;
+
+ const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0);
+
+ // Check if the scanline is the tangent line of the curve,
+ // and the curve start or end at the same y-coordinate of the scanline
+ if ((rowData->fScanlineXDirection == 1 &&
+ (segment.fPts[0].y() == pointLeft.y() ||
+ segment.fPts[2].y() == pointLeft.y())) &&
+ nearly_zero(c, tol)) {
+ rowData->fIntersectionType = RowData::kTangentLine;
+ rowData->fXAtIntersection1 = m / 2.0;
+ rowData->fXAtIntersection2 = m / 2.0;
+ } else if (c <= 0.0) {
+ rowData->fIntersectionType = RowData::kNoIntersection;
+ return;
+ } else {
+ rowData->fIntersectionType = RowData::kTwoPointsIntersect;
+ const double d = sqrt(c);
+ rowData->fXAtIntersection1 = (m + d) / 2.0;
+ rowData->fXAtIntersection2 = (m - d) / 2.0;
+ }
+}
+
+SegSide calculate_side_of_quad(
+ const PathSegment& segment,
+ const SkPoint& point,
+ const DPoint& xFormPt,
+ const RowData& rowData) {
+ SegSide side = kNA_SegSide;
+
+ if (RowData::kVerticalLine == rowData.fIntersectionType) {
+ side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection);
+ }
+ else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
+ const double p1 = rowData.fXAtIntersection1;
+ const double p2 = rowData.fXAtIntersection2;
+
+ int signP1 = (int)sign_of(p1 - xFormPt.x());
+ bool includeP1 = true;
+ bool includeP2 = true;
+
+ if (rowData.fScanlineXDirection == 1) {
+ if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() &&
+ nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) ||
+ (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() &&
+ nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) {
+ includeP1 = false;
+ }
+ if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() &&
+ nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) ||
+ (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() &&
+ nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) {
+ includeP2 = false;
+ }
+ }
+
+ if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(),
+ segment.fNearlyZeroScaled, true)) {
+ side = (SegSide)(signP1 * rowData.fQuadXDirection);
+ }
+ if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(),
+ segment.fNearlyZeroScaled, true)) {
+ int signP2 = (int)sign_of(p2 - xFormPt.x());
+ if (side == kNA_SegSide || signP2 == 1) {
+ side = (SegSide)(-signP2 * rowData.fQuadXDirection);
+ }
+ }
+ } else if (RowData::kTangentLine == rowData.fIntersectionType) {
+ // The scanline is the tangent line of current quadratic segment.
+
+ const double p = rowData.fXAtIntersection1;
+ int signP = (int)sign_of(p - xFormPt.x());
+ if (rowData.fScanlineXDirection == 1) {
+ // The path start or end at the tangent point.
+ if (segment.fPts[0].y() == point.y()) {
+ side = (SegSide)(signP);
+ } else if (segment.fPts[2].y() == point.y()) {
+ side = (SegSide)(-signP);
+ }
+ }
+ }
+
+ return side;
+}
+
+static float distance_to_segment(const SkPoint& point,
+ const PathSegment& segment,
+ const RowData& rowData,
+ SegSide* side) {
+ SkASSERT(side);
+
+ const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
+
+ if (segment.fType == PathSegment::kLine) {
+ float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
+
+ if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
+ result = (float)(xformPt.y() * xformPt.y());
+ } else if (xformPt.x() < segment.fP0T.x()) {
+ result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
+ } else {
+ result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x())
+ + xformPt.y() * xformPt.y());
+ }
+
+ if (between_closed_open(point.y(), segment.fBoundingBox.top(),
+ segment.fBoundingBox.bottom())) {
+ *side = (SegSide)(int)sign_of(xformPt.y());
+ } else {
+ *side = kNA_SegSide;
+ }
+ return result;
+ } else {
+ SkASSERT(segment.fType == PathSegment::kQuad);
+
+ const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
+
+ float dist;
+
+ if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
+ DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
+ dist = (float)xformPt.distanceToSqd(x);
+ } else {
+ const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T);
+ const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T);
+
+ if (distToB0T < distToB2T) {
+ dist = distToB0T;
+ } else {
+ dist = distToB2T;
+ }
+ }
+
+ if (between_closed_open(point.y(), segment.fBoundingBox.top(),
+ segment.fBoundingBox.bottom())) {
+ *side = calculate_side_of_quad(segment, point, xformPt, rowData);
+ } else {
+ *side = kNA_SegSide;
+ }
+
+ return (float)(dist * segment.fScalingFactorSqd);
+ }
+}
+
+static void calculate_distance_field_data(PathSegmentArray* segments,
+ DFData* dataPtr,
+ int width, int height) {
+ int count = segments->count();
+ for (int a = 0; a < count; ++a) {
+ PathSegment& segment = (*segments)[a];
+ const SkRect& segBB = segment.fBoundingBox.makeOutset(
+ SK_DistanceFieldPad, SK_DistanceFieldPad);
+ int startColumn = (int)segBB.left();
+ int endColumn = SkScalarCeilToInt(segBB.right());
+
+ int startRow = (int)segBB.top();
+ int endRow = SkScalarCeilToInt(segBB.bottom());
+
+ SkASSERT((startColumn >= 0) && "StartColumn < 0!");
+ SkASSERT((endColumn <= width) && "endColumn > width!");
+ SkASSERT((startRow >= 0) && "StartRow < 0!");
+ SkASSERT((endRow <= height) && "EndRow > height!");
+
+ // Clip inside the distance field to avoid overflow
+ startColumn = SkTMax(startColumn, 0);
+ endColumn = SkTMin(endColumn, width);
+ startRow = SkTMax(startRow, 0);
+ endRow = SkTMin(endRow, height);
+
+ for (int row = startRow; row < endRow; ++row) {
+ SegSide prevSide = kNA_SegSide;
+ const float pY = row + 0.5f;
+ RowData rowData;
+
+ const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
+ const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
+
+ if (between_closed_open(pY, segment.fBoundingBox.top(),
+ segment.fBoundingBox.bottom())) {
+ precomputation_for_row(&rowData, segment, pointLeft, pointRight);
+ }
+
+ for (int col = startColumn; col < endColumn; ++col) {
+ int idx = (row * width) + col;
+
+ const float pX = col + 0.5f;
+ const SkPoint point = SkPoint::Make(pX, pY);
+
+ const float distSq = dataPtr[idx].fDistSq;
+ int dilation = distSq < 1.5 * 1.5 ? 1 :
+ distSq < 2.5 * 2.5 ? 2 :
+ distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
+ if (dilation > SK_DistanceFieldPad) {
+ dilation = SK_DistanceFieldPad;
+ }
+
+ // Optimisation for not calculating some points.
+ if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut()
+ .makeOutset(dilation, dilation).contains(col, row)) {
+ continue;
+ }
+
+ SegSide side = kNA_SegSide;
+ int deltaWindingScore = 0;
+ float currDistSq = distance_to_segment(point, segment, rowData, &side);
+ if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
+ deltaWindingScore = -1;
+ } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
+ deltaWindingScore = 1;
+ }
+
+ prevSide = side;
+
+ if (currDistSq < distSq) {
+ dataPtr[idx].fDistSq = currDistSq;
+ }
+
+ dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
+ }
+ }
+ }
+}
+
+template <int distanceMagnitude>
+static unsigned char pack_distance_field_val(float dist) {
+ // The distance field is constructed as unsigned char values, so that the zero value is at 128,
+ // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
+ // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
+ dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
+
+ // Scale into the positive range for unsigned distance.
+ dist += distanceMagnitude;
+
+ // Scale into unsigned char range.
+ // Round to place negative and positive values as equally as possible around 128
+ // (which represents zero).
+ return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
+}
+
+bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
+ const SkPath& path, const SkMatrix& drawMatrix,
+ int width, int height, size_t rowBytes) {
+ SkASSERT(distanceField);
+
+ SkDEBUGCODE(SkPath xformPath;);
+ SkDEBUGCODE(path.transform(drawMatrix, &xformPath));
+ SkDEBUGCODE(SkIRect pathBounds = xformPath.getBounds().roundOut());
+ SkDEBUGCODE(SkIRect expectPathBounds = SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad,
+ height - 2 * SK_DistanceFieldPad));
+ SkASSERT(expectPathBounds.isEmpty() ||
+ expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
+ SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
+ expectPathBounds.contains(pathBounds));
+
+ SkPath simplifiedPath;
+ SkPath workingPath;
+ if (Simplify(path, &simplifiedPath)) {
+ workingPath = simplifiedPath;
+ } else {
+ workingPath = path;
+ }
+
+ if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
+ return false;
+ }
+
+ workingPath.transform(drawMatrix);
+
+ SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut());
+ SkASSERT(expectPathBounds.isEmpty() ||
+ expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
+ SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
+ expectPathBounds.contains(pathBounds));
+
+ // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad)
+ SkMatrix dfMatrix;
+ dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
+ workingPath.transform(dfMatrix);
+
+ // create temp data
+ size_t dataSize = width * height * sizeof(DFData);
+ SkAutoSMalloc<1024> dfStorage(dataSize);
+ DFData* dataPtr = (DFData*) dfStorage.get();
+
+ // create initial distance data
+ init_distances(dataPtr, width * height);
+
+ SkPath::Iter iter(workingPath, true);
+ SkSTArray<15, PathSegment, true> segments;
+
+ for (;;) {
+ SkPoint pts[4];
+ SkPath::Verb verb = iter.next(pts);
+ switch (verb) {
+ case SkPath::kMove_Verb:
+ break;
+ case SkPath::kLine_Verb: {
+ add_line_to_segment(pts, &segments);
+ break;
+ }
+ case SkPath::kQuad_Verb:
+ add_quad_segment(pts, &segments);
+ break;
+ case SkPath::kConic_Verb: {
+ SkScalar weight = iter.conicWeight();
+ SkAutoConicToQuads converter;
+ const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance);
+ for (int i = 0; i < converter.countQuads(); ++i) {
+ add_quad_segment(quadPts + 2*i, &segments);
+ }
+ break;
+ }
+ case SkPath::kCubic_Verb: {
+ add_cubic_segments(pts, &segments);
+ break;
+ };
+ default:
+ break;
+ }
+ if (verb == SkPath::kDone_Verb) {
+ break;
+ }
+ }
+
+ calculate_distance_field_data(&segments, dataPtr, width, height);
+
+ for (int row = 0; row < height; ++row) {
+ int windingNumber = 0; // Winding number start from zero for each scanline
+ for (int col = 0; col < width; ++col) {
+ int idx = (row * width) + col;
+ windingNumber += dataPtr[idx].fDeltaWindingScore;
+
+ enum DFSign {
+ kInside = -1,
+ kOutside = 1
+ } dfSign;
+
+ if (workingPath.getFillType() == SkPath::kWinding_FillType) {
+ dfSign = windingNumber ? kInside : kOutside;
+ } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) {
+ dfSign = windingNumber ? kOutside : kInside;
+ } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) {
+ dfSign = (windingNumber % 2) ? kInside : kOutside;
+ } else {
+ SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType);
+ dfSign = (windingNumber % 2) ? kOutside : kInside;
+ }
+
+ // The winding number at the end of a scanline should be zero.
+ SkASSERT(((col != width - 1) || (windingNumber == 0)) &&
+ "Winding number should be zero at the end of a scan line.");
+ // Fallback to use SkPath::contains to determine the sign of pixel in release build.
+ if (col == width - 1 && windingNumber != 0) {
+ for (int col = 0; col < width; ++col) {
+ int idx = (row * width) + col;
+ dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
+ const float miniDist = sqrt(dataPtr[idx].fDistSq);
+ const float dist = dfSign * miniDist;
+
+ unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
+
+ distanceField[(row * rowBytes) + col] = pixelVal;
+ }
+ continue;
+ }
+
+ const float miniDist = sqrt(dataPtr[idx].fDistSq);
+ const float dist = dfSign * miniDist;
+
+ unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
+
+ distanceField[(row * rowBytes) + col] = pixelVal;
+ }
+ }
+ return true;
+}