blob: a8ec39b04275d14645eb3f2567dd2415a2190785 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCullPoints.h"
#include "Sk64.h"
static bool cross_product_is_neg(const SkIPoint& v, int dx, int dy) {
#if 0
return v.fX * dy - v.fY * dx < 0;
#else
Sk64 tmp0, tmp1;
tmp0.setMul(v.fX, dy);
tmp1.setMul(dx, v.fY);
tmp0.sub(tmp1);
return tmp0.isNeg() != 0;
#endif
}
bool SkCullPoints::sect_test(int x0, int y0, int x1, int y1) const {
const SkIRect& r = fR;
if ((x0 < r.fLeft && x1 < r.fLeft) ||
(x0 > r.fRight && x1 > r.fRight) ||
(y0 < r.fTop && y1 < r.fTop) ||
(y0 > r.fBottom && y1 > r.fBottom)) {
return false;
}
// since the crossprod test is a little expensive, check for easy-in cases first
if (r.contains(x0, y0) || r.contains(x1, y1)) {
return true;
}
// At this point we're not sure, so we do a crossprod test
SkIPoint vec;
const SkIPoint* rAsQuad = fAsQuad;
vec.set(x1 - x0, y1 - y0);
bool isNeg = cross_product_is_neg(vec, x0 - rAsQuad[0].fX, y0 - rAsQuad[0].fY);
for (int i = 1; i < 4; i++) {
if (cross_product_is_neg(vec, x0 - rAsQuad[i].fX, y0 - rAsQuad[i].fY) != isNeg) {
return true;
}
}
return false; // we didn't intersect
}
static void toQuad(const SkIRect& r, SkIPoint quad[4]) {
SkASSERT(quad);
quad[0].set(r.fLeft, r.fTop);
quad[1].set(r.fRight, r.fTop);
quad[2].set(r.fRight, r.fBottom);
quad[3].set(r.fLeft, r.fBottom);
}
SkCullPoints::SkCullPoints() {
SkIRect r;
r.setEmpty();
this->reset(r);
}
SkCullPoints::SkCullPoints(const SkIRect& r) {
this->reset(r);
}
void SkCullPoints::reset(const SkIRect& r) {
fR = r;
toQuad(fR, fAsQuad);
fPrevPt.set(0, 0);
fPrevResult = kNo_Result;
}
void SkCullPoints::moveTo(int x, int y) {
fPrevPt.set(x, y);
fPrevResult = kNo_Result; // so we trigger a movetolineto later
}
SkCullPoints::LineToResult SkCullPoints::lineTo(int x, int y, SkIPoint line[]) {
SkASSERT(line != NULL);
LineToResult result = kNo_Result;
int x0 = fPrevPt.fX;
int y0 = fPrevPt.fY;
// need to upgrade sect_test to chop the result
// and to correctly return kLineTo_Result when the result is connected
// to the previous call-out
if (this->sect_test(x0, y0, x, y)) {
line[0].set(x0, y0);
line[1].set(x, y);
if (fPrevResult != kNo_Result && fPrevPt.equals(x0, y0)) {
result = kLineTo_Result;
} else {
result = kMoveToLineTo_Result;
}
}
fPrevPt.set(x, y);
fPrevResult = result;
return result;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkPath.h"
SkCullPointsPath::SkCullPointsPath()
: fCP(), fPath(NULL) {
}
SkCullPointsPath::SkCullPointsPath(const SkIRect& r, SkPath* dst)
: fCP(r), fPath(dst) {
}
void SkCullPointsPath::reset(const SkIRect& r, SkPath* dst) {
fCP.reset(r);
fPath = dst;
}
void SkCullPointsPath::moveTo(int x, int y) {
fCP.moveTo(x, y);
}
void SkCullPointsPath::lineTo(int x, int y) {
SkIPoint pts[2];
switch (fCP.lineTo(x, y, pts)) {
case SkCullPoints::kMoveToLineTo_Result:
fPath->moveTo(SkIntToScalar(pts[0].fX), SkIntToScalar(pts[0].fY));
// fall through to the lineto case
case SkCullPoints::kLineTo_Result:
fPath->lineTo(SkIntToScalar(pts[1].fX), SkIntToScalar(pts[1].fY));
break;
default:
break;
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkMatrix.h"
#include "SkRegion.h"
bool SkHitTestPath(const SkPath& path, SkRect& target, bool hires) {
if (target.isEmpty()) {
return false;
}
bool isInverse = path.isInverseFillType();
if (path.isEmpty()) {
return isInverse;
}
SkRect bounds = path.getBounds();
bool sects = SkRect::Intersects(target, bounds);
if (isInverse) {
if (!sects) {
return true;
}
} else {
if (!sects) {
return false;
}
if (target.contains(bounds)) {
return true;
}
}
SkPath devPath;
const SkPath* pathPtr;
SkRect devTarget;
if (hires) {
const SkScalar coordLimit = SkIntToScalar(16384);
const SkRect limit = { 0, 0, coordLimit, coordLimit };
SkMatrix matrix;
matrix.setRectToRect(bounds, limit, SkMatrix::kFill_ScaleToFit);
path.transform(matrix, &devPath);
matrix.mapRect(&devTarget, target);
pathPtr = &devPath;
} else {
devTarget = target;
pathPtr = &path;
}
SkIRect iTarget;
devTarget.round(&iTarget);
if (iTarget.isEmpty()) {
iTarget.fLeft = SkScalarFloorToInt(devTarget.fLeft);
iTarget.fTop = SkScalarFloorToInt(devTarget.fTop);
iTarget.fRight = iTarget.fLeft + 1;
iTarget.fBottom = iTarget.fTop + 1;
}
SkRegion clip(iTarget);
SkRegion rgn;
return rgn.setPath(*pathPtr, clip) ^ isInverse;
}
bool SkHitTestPath(const SkPath& path, SkScalar x, SkScalar y, bool hires) {
const SkScalar half = SK_ScalarHalf;
const SkScalar one = SK_Scalar1;
SkRect r = SkRect::MakeXYWH(x - half, y - half, one, one);
return SkHitTestPath(path, r, hires);
}
///////////////////////////////////////////////////////////////////////////////
#include "SkGeometry.h"
static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
SkScalar D, SkScalar t) {
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
}
static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
SkScalar t) {
SkScalar A = c3 + 3*(c1 - c2) - c0;
SkScalar B = 3*(c2 - c1 - c1 + c0);
SkScalar C = 3*(c1 - c0);
SkScalar D = c0;
return eval_cubic_coeff(A, B, C, D, t);
}
/* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
t value such that cubic(t) = target
*/
static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
SkScalar target, SkScalar* t) {
// SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
SkASSERT(c0 < target && target < c3);
SkScalar D = c0 - target;
SkScalar A = c3 + 3*(c1 - c2) - c0;
SkScalar B = 3*(c2 - c1 - c1 + c0);
SkScalar C = 3*(c1 - c0);
const SkScalar TOLERANCE = SK_Scalar1 / 4096;
SkScalar minT = 0;
SkScalar maxT = SK_Scalar1;
SkScalar mid;
int i;
for (i = 0; i < 16; i++) {
mid = SkScalarAve(minT, maxT);
SkScalar delta = eval_cubic_coeff(A, B, C, D, mid);
if (delta < 0) {
minT = mid;
delta = -delta;
} else {
maxT = mid;
}
if (delta < TOLERANCE) {
break;
}
}
*t = mid;
return true;
}
template <size_t N> static void find_minmax(const SkPoint pts[],
SkScalar* minPtr, SkScalar* maxPtr) {
SkScalar min, max;
min = max = pts[0].fX;
for (size_t i = 1; i < N; ++i) {
min = SkMinScalar(min, pts[i].fX);
max = SkMaxScalar(max, pts[i].fX);
}
*minPtr = min;
*maxPtr = max;
}
static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
SkPoint storage[4];
int dir = 1;
if (pts[0].fY > pts[3].fY) {
storage[0] = pts[3];
storage[1] = pts[2];
storage[2] = pts[1];
storage[3] = pts[0];
pts = storage;
dir = -1;
}
if (y < pts[0].fY || y >= pts[3].fY) {
return 0;
}
// quickreject or quickaccept
SkScalar min, max;
find_minmax<4>(pts, &min, &max);
if (x < min) {
return 0;
}
if (x > max) {
return dir;
}
// compute the actual x(t) value
SkScalar t, xt;
if (chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t)) {
xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t);
} else {
SkScalar mid = SkScalarAve(pts[0].fY, pts[3].fY);
xt = y < mid ? pts[0].fX : pts[3].fX;
}
return xt < x ? dir : 0;
}
static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
SkPoint dst[10];
int n = SkChopCubicAtYExtrema(pts, dst);
int w = 0;
for (int i = 0; i <= n; ++i) {
w += winding_mono_cubic(&dst[i * 3], x, y);
}
return w;
}
static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
SkScalar y0 = pts[0].fY;
SkScalar y2 = pts[2].fY;
int dir = 1;
if (y0 > y2) {
SkTSwap(y0, y2);
dir = -1;
}
if (y < y0 || y >= y2) {
return 0;
}
// bounds check on X (not required, but maybe faster)
#if 0
if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) {
return 0;
}
#endif
SkScalar roots[2];
int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY,
2 * (pts[1].fY - pts[0].fY),
pts[0].fY - y,
roots);
SkASSERT(n <= 1);
SkScalar xt;
if (0 == n) {
SkScalar mid = SkScalarAve(y0, y2);
// Need [0] and [2] if dir == 1
// and [2] and [0] if dir == -1
xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX;
} else {
SkScalar t = roots[0];
SkScalar C = pts[0].fX;
SkScalar A = pts[2].fX - 2 * pts[1].fX + C;
SkScalar B = 2 * (pts[1].fX - C);
xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
}
return xt < x ? dir : 0;
}
static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) {
// return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0;
if (y0 == y1) {
return true;
}
if (y0 < y1) {
return y1 <= y2;
} else {
return y1 >= y2;
}
}
static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
SkPoint dst[5];
int n = 0;
if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) {
n = SkChopQuadAtYExtrema(pts, dst);
pts = dst;
}
int w = winding_mono_quad(pts, x, y);
if (n > 0) {
w += winding_mono_quad(&pts[2], x, y);
}
return w;
}
static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) {
SkScalar x0 = pts[0].fX;
SkScalar y0 = pts[0].fY;
SkScalar x1 = pts[1].fX;
SkScalar y1 = pts[1].fY;
SkScalar dy = y1 - y0;
int dir = 1;
if (y0 > y1) {
SkTSwap(y0, y1);
dir = -1;
}
if (y < y0 || y >= y1) {
return 0;
}
SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) -
SkScalarMul(dy, x - pts[0].fX);
if (SkScalarSignAsInt(cross) == dir) {
dir = 0;
}
return dir;
}
bool SkHitTestPathEx(const SkPath& path, SkScalar x, SkScalar y) {
bool isInverse = path.isInverseFillType();
if (path.isEmpty()) {
return isInverse;
}
const SkRect& bounds = path.getBounds();
if (!bounds.contains(x, y)) {
return isInverse;
}
SkPath::Iter iter(path, true);
bool done = false;
int w = 0;
do {
SkPoint pts[4];
switch (iter.next(pts, false)) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
break;
case SkPath::kLine_Verb:
w += winding_line(pts, x, y);
break;
case SkPath::kQuad_Verb:
w += winding_quad(pts, x, y);
break;
case SkPath::kCubic_Verb:
w += winding_cubic(pts, x, y);
break;
case SkPath::kDone_Verb:
done = true;
break;
}
} while (!done);
switch (path.getFillType()) {
case SkPath::kEvenOdd_FillType:
case SkPath::kInverseEvenOdd_FillType:
w &= 1;
break;
}
return SkToBool(w);
}