Revert "Revert "Create new inset algorithm for spot shadows""
This reverts commit e7c85c45c4c0a97adc6711bb12ecacc36af4ba11.
Reason for revert: <INSERT REASONING HERE>
Original change's description:
> Revert "Create new inset algorithm for spot shadows"
>
> This reverts commit e5f5bf5175e426ebb6aa234f4387831c898f20ad.
>
> Reason for revert: Breaking a bunch of bots. e.g:
>
> https://luci-milo.appspot.com/swarming/task/3519cae0a03c7b10/steps/dm/0/stdout
>
> Original change's description:
> > Create new inset algorithm for spot shadows
> >
> > BUG=skia:
> >
> > Change-Id: If7c67c2a5b9beea28f86d13362a5156b46394d0e
> > Reviewed-on: https://skia-review.googlesource.com/9875
> > Commit-Queue: Ravi Mistry <rmistry@google.com>
> > Reviewed-by: Brian Salomon <bsalomon@google.com>
> > Reviewed-by: Robert Phillips <robertphillips@google.com>
> >
>
> TBR=jvanverth@google.com,bsalomon@google.com,rmistry@google.com,robertphillips@google.com,msarett@google.com,reviews@skia.org
> NOPRESUBMIT=true
> NOTREECHECKS=true
> NOTRY=true
> BUG=skia:
>
> Change-Id: I3d119ff631dbb1a41f873b9c8753d542ec91254e
> Reviewed-on: https://skia-review.googlesource.com/10112
> Reviewed-by: Brian Salomon <bsalomon@google.com>
> Commit-Queue: Brian Salomon <bsalomon@google.com>
>
TBR=jvanverth@google.com,bsalomon@google.com,rmistry@google.com,msarett@google.com,robertphillips@google.com,reviews@skia.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Change-Id: Ib3998300606d3a2e2fb3a14b2088cfad48363501
Reviewed-on: https://skia-review.googlesource.com/10113
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Brian Salomon <bsalomon@google.com>
diff --git a/gm/convex_all_line_paths.cpp b/gm/convex_all_line_paths.cpp
index 62e8835..a4bc6a6 100644
--- a/gm/convex_all_line_paths.cpp
+++ b/gm/convex_all_line_paths.cpp
@@ -6,6 +6,7 @@
*/
#include "gm.h"
+#include "SkInsetConvexPolygon.h"
#include "SkPathPriv.h"
static void create_ngon(int n, SkPoint* pts, SkScalar width, SkScalar height) {
@@ -22,6 +23,135 @@
}
}
+namespace ConvexLineOnlyData {
+// narrow rect
+const SkPoint gPoints0[] = {
+ { -1.5f, -50.0f },
+ { 1.5f, -50.0f },
+ { 1.5f, 50.0f },
+ { -1.5f, 50.0f }
+};
+// narrow rect on an angle
+const SkPoint gPoints1[] = {
+ { -50.0f, -49.0f },
+ { -49.0f, -50.0f },
+ { 50.0f, 49.0f },
+ { 49.0f, 50.0f }
+};
+// trap - narrow on top - wide on bottom
+const SkPoint gPoints2[] = {
+ { -10.0f, -50.0f },
+ { 10.0f, -50.0f },
+ { 50.0f, 50.0f },
+ { -50.0f, 50.0f }
+};
+// wide skewed rect
+const SkPoint gPoints3[] = {
+ { -50.0f, -50.0f },
+ { 0.0f, -50.0f },
+ { 50.0f, 50.0f },
+ { 0.0f, 50.0f }
+};
+// thin rect with colinear-ish lines
+const SkPoint gPoints4[] = {
+ { -6.0f, -50.0f },
+ { 4.0f, -50.0f },
+ { 5.0f, -25.0f },
+ { 6.0f, 0.0f },
+ { 5.0f, 25.0f },
+ { 4.0f, 50.0f },
+ { -4.0f, 50.0f }
+};
+// degenerate
+const SkPoint gPoints5[] = {
+ { -0.025f, -0.025f },
+ { 0.025f, -0.025f },
+ { 0.025f, 0.025f },
+ { -0.025f, 0.025f }
+};
+// Triangle in which the first point should fuse with last
+const SkPoint gPoints6[] = {
+ { -20.0f, -13.0f },
+ { -20.0f, -13.05f },
+ { 20.0f, -13.0f },
+ { 20.0f, 27.0f }
+};
+// thin rect with colinear lines
+const SkPoint gPoints7[] = {
+ { -10.0f, -50.0f },
+ { 10.0f, -50.0f },
+ { 10.0f, -25.0f },
+ { 10.0f, 0.0f },
+ { 10.0f, 25.0f },
+ { 10.0f, 50.0f },
+ { -10.0f, 50.0f }
+};
+// capped teardrop
+const SkPoint gPoints8[] = {
+ { 50.00f, 50.00f },
+ { 0.00f, 50.00f },
+ { -15.45f, 47.55f },
+ { -29.39f, 40.45f },
+ { -40.45f, 29.39f },
+ { -47.55f, 15.45f },
+ { -50.00f, 0.00f },
+ { -47.55f, -15.45f },
+ { -40.45f, -29.39f },
+ { -29.39f, -40.45f },
+ { -15.45f, -47.55f },
+ { 0.00f, -50.00f },
+ { 50.00f, -50.00f }
+};
+// teardrop
+const SkPoint gPoints9[] = {
+ { 4.39f, 40.45f },
+ { -9.55f, 47.55f },
+ { -25.00f, 50.00f },
+ { -40.45f, 47.55f },
+ { -54.39f, 40.45f },
+ { -65.45f, 29.39f },
+ { -72.55f, 15.45f },
+ { -75.00f, 0.00f },
+ { -72.55f, -15.45f },
+ { -65.45f, -29.39f },
+ { -54.39f, -40.45f },
+ { -40.45f, -47.55f },
+ { -25.0f, -50.0f },
+ { -9.55f, -47.55f },
+ { 4.39f, -40.45f },
+ { 75.00f, 0.00f }
+};
+// clipped triangle
+const SkPoint gPoints10[] = {
+ { -10.0f, -50.0f },
+ { 10.0f, -50.0f },
+ { 50.0f, 31.0f },
+ { 40.0f, 50.0f },
+ { -40.0f, 50.0f },
+ { -50.0f, 31.0f },
+};
+
+const SkPoint* gPoints[] = {
+ gPoints0, gPoints1, gPoints2, gPoints3, gPoints4, gPoints5, gPoints6,
+ gPoints7, gPoints8, gPoints9, gPoints10,
+};
+
+const size_t gSizes[] = {
+ SK_ARRAY_COUNT(gPoints0),
+ SK_ARRAY_COUNT(gPoints1),
+ SK_ARRAY_COUNT(gPoints2),
+ SK_ARRAY_COUNT(gPoints3),
+ SK_ARRAY_COUNT(gPoints4),
+ SK_ARRAY_COUNT(gPoints5),
+ SK_ARRAY_COUNT(gPoints6),
+ SK_ARRAY_COUNT(gPoints7),
+ SK_ARRAY_COUNT(gPoints8),
+ SK_ARRAY_COUNT(gPoints9),
+ SK_ARRAY_COUNT(gPoints10),
+};
+static_assert(SK_ARRAY_COUNT(gSizes) == SK_ARRAY_COUNT(gPoints), "array_mismatch");
+}
+
namespace skiagm {
// This GM is intended to exercise Ganesh's handling of convex line-only
@@ -42,146 +172,19 @@
SkISize onISize() override { return SkISize::Make(kGMWidth, kGMHeight); }
bool runAsBench() const override { return true; }
- static SkPath GetPath(int index, int offset, SkPath::Direction dir) {
- // narrow rect
- const SkPoint gPoints0[] = {
- { -1.5f, -50.0f },
- { 1.5f, -50.0f },
- { 1.5f, 50.0f },
- { -1.5f, 50.0f }
- };
- // narrow rect on an angle
- const SkPoint gPoints1[] = {
- { -50.0f, -49.0f },
- { -49.0f, -50.0f },
- { 50.0f, 49.0f },
- { 49.0f, 50.0f }
- };
- // trap - narrow on top - wide on bottom
- const SkPoint gPoints2[] = {
- { -10.0f, -50.0f },
- { 10.0f, -50.0f },
- { 50.0f, 50.0f },
- { -50.0f, 50.0f }
- };
- // wide skewed rect
- const SkPoint gPoints3[] = {
- { -50.0f, -50.0f },
- { 0.0f, -50.0f },
- { 50.0f, 50.0f },
- { 0.0f, 50.0f }
- };
- // thin rect with colinear-ish lines
- const SkPoint gPoints4[] = {
- { -6.0f, -50.0f },
- { 4.0f, -50.0f },
- { 5.0f, -25.0f },
- { 6.0f, 0.0f },
- { 5.0f, 25.0f },
- { 4.0f, 50.0f },
- { -4.0f, 50.0f }
- };
- // degenerate
- const SkPoint gPoints5[] = {
- { -0.025f, -0.025f },
- { 0.025f, -0.025f },
- { 0.025f, 0.025f },
- { -0.025f, 0.025f }
- };
- // Triangle in which the first point should fuse with last
- const SkPoint gPoints6[] = {
- { -20.0f, -13.0f },
- { -20.0f, -13.05f },
- { 20.0f, -13.0f },
- { 20.0f, 27.0f }
- };
- // thin rect with colinear lines
- const SkPoint gPoints7[] = {
- { -10.0f, -50.0f },
- { 10.0f, -50.0f },
- { 10.0f, -25.0f },
- { 10.0f, 0.0f },
- { 10.0f, 25.0f },
- { 10.0f, 50.0f },
- { -10.0f, 50.0f }
- };
- // capped teardrop
- const SkPoint gPoints8[] = {
- { 50.00f, 50.00f },
- { 0.00f, 50.00f },
- { -15.45f, 47.55f },
- { -29.39f, 40.45f },
- { -40.45f, 29.39f },
- { -47.55f, 15.45f },
- { -50.00f, 0.00f },
- { -47.55f, -15.45f },
- { -40.45f, -29.39f },
- { -29.39f, -40.45f },
- { -15.45f, -47.55f },
- { 0.00f, -50.00f },
- { 50.00f, -50.00f }
- };
- // teardrop
- const SkPoint gPoints9[] = {
- { 4.39f, 40.45f },
- { -9.55f, 47.55f },
- { -25.00f, 50.00f },
- { -40.45f, 47.55f },
- { -54.39f, 40.45f },
- { -65.45f, 29.39f },
- { -72.55f, 15.45f },
- { -75.00f, 0.00f },
- { -72.55f, -15.45f },
- { -65.45f, -29.39f },
- { -54.39f, -40.45f },
- { -40.45f, -47.55f },
- { -25.0f, -50.0f },
- { -9.55f, -47.55f },
- { 4.39f, -40.45f },
- { 75.00f, 0.00f }
- };
- // clipped triangle
- const SkPoint gPoints10[] = {
- { -10.0f, -50.0f },
- { 10.0f, -50.0f },
- { 50.0f, 31.0f },
- { 40.0f, 50.0f },
- { -40.0f, 50.0f },
- { -50.0f, 31.0f },
- };
-
- const SkPoint* gPoints[] = {
- gPoints0, gPoints1, gPoints2, gPoints3, gPoints4, gPoints5, gPoints6,
- gPoints7, gPoints8, gPoints9, gPoints10,
- };
-
- const size_t gSizes[] = {
- SK_ARRAY_COUNT(gPoints0),
- SK_ARRAY_COUNT(gPoints1),
- SK_ARRAY_COUNT(gPoints2),
- SK_ARRAY_COUNT(gPoints3),
- SK_ARRAY_COUNT(gPoints4),
- SK_ARRAY_COUNT(gPoints5),
- SK_ARRAY_COUNT(gPoints6),
- SK_ARRAY_COUNT(gPoints7),
- SK_ARRAY_COUNT(gPoints8),
- SK_ARRAY_COUNT(gPoints9),
- SK_ARRAY_COUNT(gPoints10),
- };
- static_assert(SK_ARRAY_COUNT(gSizes) == SK_ARRAY_COUNT(gPoints), "array_mismatch");
-
+ static SkPath GetPath(int index, SkPath::Direction dir) {
std::unique_ptr<SkPoint[]> data(nullptr);
const SkPoint* points;
int numPts;
- if (index < (int) SK_ARRAY_COUNT(gPoints)) {
+ if (index < (int) SK_ARRAY_COUNT(ConvexLineOnlyData::gPoints)) {
// manually specified
- points = gPoints[index];
- numPts = (int) gSizes[index];
+ points = ConvexLineOnlyData::gPoints[index];
+ numPts = (int)ConvexLineOnlyData::gSizes[index];
} else {
// procedurally generated
SkScalar width = kMaxPathHeight/2;
SkScalar height = kMaxPathHeight/2;
- switch (index-SK_ARRAY_COUNT(gPoints)) {
+ switch (index-SK_ARRAY_COUNT(ConvexLineOnlyData::gPoints)) {
case 0:
numPts = 3;
break;
@@ -259,7 +262,7 @@
SkPoint center;
{
- SkPath path = GetPath(index, 0, SkPath::kCW_Direction);
+ SkPath path = GetPath(index, SkPath::kCW_Direction);
if (offset->fX+path.getBounds().width() > kGMWidth) {
offset->fX = 0;
offset->fY += kMaxPathHeight;
@@ -286,7 +289,7 @@
paint.setAntiAlias(true);
for (size_t i = 0; i < SK_ARRAY_COUNT(scales); ++i) {
- SkPath path = GetPath(index, (int) i, dirs[i%2]);
+ SkPath path = GetPath(index, dirs[i%2]);
if (fDoStrokeAndFill) {
paint.setStyle(SkPaint::kStrokeAndFill_Style);
paint.setStrokeJoin(joins[i%3]);
@@ -347,8 +350,173 @@
typedef GM INHERITED;
};
+// This GM is intended to exercise the insetting of convex polygons
+class ConvexPolygonInsetGM : public GM {
+public:
+ ConvexPolygonInsetGM() {
+ this->setBGColor(0xFFFFFFFF);
+ }
+
+protected:
+ SkString onShortName() override {
+ return SkString("convex-polygon-inset");
+ }
+ SkISize onISize() override { return SkISize::Make(kGMWidth, kGMHeight); }
+ bool runAsBench() const override { return true; }
+
+ static void GetPath(int index, SkPath::Direction dir,
+ std::unique_ptr<SkPoint[]>* data, int* numPts) {
+ if (index < (int)SK_ARRAY_COUNT(ConvexLineOnlyData::gPoints)) {
+ // manually specified
+ *numPts = (int)ConvexLineOnlyData::gSizes[index];
+ data->reset(new SkPoint[*numPts]);
+ if (SkPath::kCW_Direction == dir) {
+ for (int i = 0; i < *numPts; ++i) {
+ (*data)[i] = ConvexLineOnlyData::gPoints[index][i];
+ }
+ } else {
+ for (int i = 0; i < *numPts; ++i) {
+ (*data)[i] = ConvexLineOnlyData::gPoints[index][*numPts - i - 1];
+ }
+ }
+ } else {
+ // procedurally generated
+ SkScalar width = kMaxPathHeight / 2;
+ SkScalar height = kMaxPathHeight / 2;
+ switch (index - SK_ARRAY_COUNT(ConvexLineOnlyData::gPoints)) {
+ case 0:
+ *numPts = 3;
+ break;
+ case 1:
+ *numPts = 4;
+ break;
+ case 2:
+ *numPts = 5;
+ break;
+ case 3: // squashed pentagon
+ *numPts = 5;
+ width = kMaxPathHeight / 5;
+ break;
+ case 4:
+ *numPts = 6;
+ break;
+ case 5:
+ *numPts = 8;
+ break;
+ case 6: // squashed octogon
+ *numPts = 8;
+ width = kMaxPathHeight / 5;
+ break;
+ case 7:
+ *numPts = 20;
+ break;
+ case 8:
+ *numPts = 100;
+ break;
+ default:
+ *numPts = 3;
+ break;
+ }
+
+ data->reset(new SkPoint[*numPts]);
+
+ create_ngon(*numPts, data->get(), width, height);
+ if (SkPath::kCCW_Direction == dir) {
+ // reverse it
+ for (int i = 0; i < *numPts/2; ++i) {
+ SkPoint tmp = (*data)[i];
+ (*data)[i] = (*data)[*numPts - i - 1];
+ (*data)[*numPts - i - 1] = tmp;
+ }
+ }
+ }
+ }
+
+ // Draw a single path several times, shrinking it, flipping its direction
+ // and changing its start vertex each time.
+ void drawPath(SkCanvas* canvas, int index, SkPoint* offset) {
+
+ SkPoint center;
+ {
+ std::unique_ptr<SkPoint[]> data(nullptr);
+ int numPts;
+ GetPath(index, SkPath::kCW_Direction, &data, &numPts);
+ SkRect bounds;
+ bounds.set(data.get(), numPts);
+ if (offset->fX + bounds.width() > kGMWidth) {
+ offset->fX = 0;
+ offset->fY += kMaxPathHeight;
+ }
+ center = { offset->fX + SkScalarHalf(bounds.width()), offset->fY };
+ offset->fX += bounds.width();
+ }
+
+ const SkPath::Direction dirs[2] = { SkPath::kCW_Direction, SkPath::kCCW_Direction };
+ const float insets[] = { 5, 10, 15, 20, 25, 30, 35, 40 };
+ const SkColor colors[] = { 0xFF901313, 0xFF8D6214, 0xFF698B14, 0xFF1C8914,
+ 0xFF148755, 0xFF146C84, 0xFF142482, 0xFF4A1480 };
+
+ SkPaint paint;
+ paint.setAntiAlias(true);
+ paint.setStyle(SkPaint::kStroke_Style);
+ paint.setStrokeWidth(1);
+
+ std::unique_ptr<SkPoint[]> data(nullptr);
+ int numPts;
+ GetPath(index, dirs[index % 2], &data, &numPts);
+ {
+ SkPath path;
+ path.moveTo(data.get()[0]);
+ for (int i = 1; i < numPts; ++i) {
+ path.lineTo(data.get()[i]);
+ }
+ path.close();
+ canvas->save();
+ canvas->translate(center.fX, center.fY);
+ canvas->drawPath(path, paint);
+ canvas->restore();
+ }
+
+ SkTDArray<SkPoint> insetPoly;
+ for (size_t i = 0; i < SK_ARRAY_COUNT(insets); ++i) {
+ if (SkInsetConvexPolygon(data.get(), numPts, insets[i], &insetPoly)) {
+ SkPath path;
+ path.moveTo(insetPoly[0]);
+ for (int i = 1; i < insetPoly.count(); ++i) {
+ path.lineTo(insetPoly[i]);
+ }
+ path.close();
+
+ paint.setColor(colors[i]);
+ canvas->save();
+ canvas->translate(center.fX, center.fY);
+ canvas->drawPath(path, paint);
+ canvas->restore();
+ }
+ }
+ }
+
+ void onDraw(SkCanvas* canvas) override {
+ // the right edge of the last drawn path
+ SkPoint offset = { 0, SkScalarHalf(kMaxPathHeight) };
+
+ for (int i = 0; i < kNumPaths; ++i) {
+ this->drawPath(canvas, i, &offset);
+ }
+ }
+
+private:
+ static constexpr int kNumPaths = 20;
+ static constexpr int kMaxPathHeight = 100;
+ static constexpr int kGMWidth = 512;
+ static constexpr int kGMHeight = 512;
+
+ typedef GM INHERITED;
+};
+
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new ConvexLineOnlyPathsGM(false);)
DEF_GM(return new ConvexLineOnlyPathsGM(true);)
+DEF_GM(return new ConvexPolygonInsetGM();)
}
diff --git a/gm/shadowutils.cpp b/gm/shadowutils.cpp
index 350a546..53d9b78 100644
--- a/gm/shadowutils.cpp
+++ b/gm/shadowutils.cpp
@@ -19,7 +19,7 @@
color, flags, cache);
}
-static constexpr int kW = 700;
+static constexpr int kW = 800;
static constexpr int kH = 800;
DEF_SIMPLE_GM(shadow_utils, canvas, kW, kH) {
@@ -38,6 +38,7 @@
paths.push_back().addRect(SkRect::MakeWH(50, 50));
paths.push_back().addCircle(25, 25, 25);
paths.push_back().cubicTo(100, 50, 20, 100, 0, 0);
+ paths.push_back().addOval(SkRect::MakeWH(20, 60));
static constexpr SkScalar kPad = 15.f;
static constexpr SkPoint3 kLightPos = {250, 400, 500};
diff --git a/gn/tests.gni b/gn/tests.gni
index 124be39..4435112 100644
--- a/gn/tests.gni
+++ b/gn/tests.gni
@@ -112,6 +112,7 @@
"$_tests/ImageTest.cpp",
"$_tests/IndexedPngOverflowTest.cpp",
"$_tests/InfRectTest.cpp",
+ "$_tests/InsetConvexPolyTest.cpp",
"$_tests/InterpolatorTest.cpp",
"$_tests/IntTextureTest.cpp",
"$_tests/InvalidIndexedPngTest.cpp",
diff --git a/gn/utils.gni b/gn/utils.gni
index 807ae58..bb0bd94 100644
--- a/gn/utils.gni
+++ b/gn/utils.gni
@@ -42,6 +42,8 @@
"$_src/utils/SkDumpCanvas.cpp",
"$_src/utils/SkEventTracer.cpp",
"$_src/utils/SkFloatUtils.h",
+ "$_src/utils/SkInsetConvexPolygon.cpp",
+ "$_src/utils/SkInsetConvexPolygon.h",
"$_src/utils/SkInterpolator.cpp",
"$_src/utils/SkMatrix22.cpp",
"$_src/utils/SkMatrix22.h",
diff --git a/samplecode/SampleAndroidShadows.cpp b/samplecode/SampleAndroidShadows.cpp
index fa9cb50..271004e 100644
--- a/samplecode/SampleAndroidShadows.cpp
+++ b/samplecode/SampleAndroidShadows.cpp
@@ -500,8 +500,8 @@
paint.setColor(SK_ColorCYAN);
canvas->translate(250, 0);
lightPos.fX += 250;
- this->drawShadowedPath(canvas, fCubicPath, 16, paint, kAmbientAlpha,
- lightPos, kLightWidth, kSpotAlpha);
+ this->drawShadowedPath(canvas, fCubicPath, SkTMax(1.0f, 16 + fZDelta), paint,
+ kAmbientAlpha, lightPos, kLightWidth, kSpotAlpha);
// circular reveal
SkPath tmpPath;
@@ -513,7 +513,7 @@
canvas->translate(-125, 60);
lightPos.fX -= 125;
lightPos.fY += 60;
- this->drawShadowedPath(canvas, tmpPath, 32, paint, .1f,
+ this->drawShadowedPath(canvas, tmpPath, SkTMax(1.0f, 32 + fZDelta), paint, .1f,
lightPos, kLightWidth, .5f);
// perspective paths
@@ -532,7 +532,7 @@
lightPos = fLightPos;
lightPos.fX += pivot.fX + translate.fX;
lightPos.fY += pivot.fY + translate.fY;
- this->drawShadowedPath(canvas, fWideRectPath, 16, paint, .1f,
+ this->drawShadowedPath(canvas, fWideRectPath, SkTMax(1.0f, 16 + fZDelta), paint, .1f,
lightPos, kLightWidth, .5f);
pivot = SkPoint::Make(fWideOvalPath.getBounds().width() / 2,
@@ -547,12 +547,12 @@
lightPos = fLightPos;
lightPos.fX += pivot.fX + translate.fX;
lightPos.fY += pivot.fY + translate.fY;
- this->drawShadowedPath(canvas, fWideOvalPath, 32, paint, .1f,
+ this->drawShadowedPath(canvas, fWideOvalPath, SkTMax(1.0f, 32 + fZDelta), paint, .1f,
lightPos, kLightWidth, .5f);
}
bool onAnimate(const SkAnimTimer& timer) override {
- fAnimTranslate = timer.pingPong(10, 0, 200, -200);
+ fAnimTranslate = timer.pingPong(30, 0, 200, -200);
return true;
}
diff --git a/src/utils/SkInsetConvexPolygon.cpp b/src/utils/SkInsetConvexPolygon.cpp
new file mode 100755
index 0000000..8df7f0e
--- /dev/null
+++ b/src/utils/SkInsetConvexPolygon.cpp
@@ -0,0 +1,233 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkInsetConvexPolygon.h"
+
+#include "SkTemplates.h"
+
+struct InsetSegment {
+ SkPoint fP0;
+ SkPoint fP1;
+};
+
+// Computes perpDot for point compared to segment.
+// A positive value means the point is to the left of the segment,
+// negative is to the right, 0 is collinear.
+static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) {
+ SkVector v0 = s1 - s0;
+ SkVector v1 = p - s0;
+ SkScalar perpDot = v0.cross(v1);
+ if (!SkScalarNearlyZero(perpDot)) {
+ return ((perpDot > 0) ? 1 : -1);
+ }
+
+ return 0;
+}
+
+// returns 1 for ccw, -1 for cw and 0 if degenerate
+static int get_winding(const SkPoint* polygonVerts, int polygonSize) {
+ SkPoint p0 = polygonVerts[0];
+ SkPoint p1 = polygonVerts[1];
+
+ for (int i = 2; i < polygonSize; ++i) {
+ SkPoint p2 = polygonVerts[i];
+
+ // determine if cw or ccw
+ int side = compute_side(p0, p1, p2);
+ if (0 != side) {
+ return ((side > 0) ? 1 : -1);
+ }
+
+ // if nearly collinear, treat as straight line and continue
+ p1 = p2;
+ }
+
+ return 0;
+}
+
+// Perpendicularly offset line segment p0-p1 'distance' units in the direction specified by 'dir'
+static void inset_edge(const SkPoint& p0, const SkPoint& p1, SkScalar distance, int dir,
+ InsetSegment* inset) {
+ SkASSERT(dir == -1 || dir == 1);
+ // compute perpendicular
+ SkVector perp;
+ perp.fX = p0.fY - p1.fY;
+ perp.fY = p1.fX - p0.fX;
+ perp.setLength(distance*dir);
+ inset->fP0 = p0 + perp;
+ inset->fP1 = p1 + perp;
+}
+
+// Compute the intersection 'p' between segments s0 and s1, if any.
+// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
+// Returns false if there is no intersection.
+static bool compute_intersection(const InsetSegment& s0, const InsetSegment& s1,
+ SkPoint* p, SkScalar* s, SkScalar* t) {
+ SkVector v0 = s0.fP1 - s0.fP0;
+ SkVector v1 = s1.fP1 - s1.fP0;
+
+ SkScalar perpDot = v0.cross(v1);
+ if (SkScalarNearlyZero(perpDot)) {
+ // segments are parallel
+ // check if endpoints are touching
+ if (s0.fP1.equalsWithinTolerance(s1.fP0)) {
+ *p = s0.fP1;
+ *s = SK_Scalar1;
+ *t = 0;
+ return true;
+ }
+ if (s1.fP1.equalsWithinTolerance(s0.fP0)) {
+ *p = s1.fP1;
+ *s = 0;
+ *t = SK_Scalar1;
+ return true;
+ }
+
+ return false;
+ }
+
+ SkVector d = s1.fP0 - s0.fP0;
+ SkScalar localS = d.cross(v1) / perpDot;
+ if (localS < 0 || localS > SK_Scalar1) {
+ return false;
+ }
+ SkScalar localT = d.cross(v0) / perpDot;
+ if (localT < 0 || localT > SK_Scalar1) {
+ return false;
+ }
+
+ v0 *= localS;
+ *p = s0.fP0 + v0;
+ *s = localS;
+ *t = localT;
+
+ return true;
+}
+
+// The objective here is to inset all of the edges by the given distance, and then
+// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
+// we should only be making left-hand turns (for cw polygons, we use the winding
+// parameter to reverse this). We detect this by checking whether the second intersection
+// on an edge is closer to its tail than the first one.
+//
+// We might also have the case that there is no intersection between two neighboring inset edges.
+// In this case, one edge will lie to the right of the other and should be discarded along with
+// its previous intersection (if any).
+//
+// Note: the assumption is that inputPolygon is convex and has no coincident points.
+//
+bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
+ SkScalar insetDistance, SkTDArray<SkPoint>* insetPolygon) {
+ if (inputPolygonSize < 3) {
+ return false;
+ }
+
+ int winding = get_winding(inputPolygonVerts, inputPolygonSize);
+ if (0 == winding) {
+ return false;
+ }
+
+ // set up
+ struct EdgeData {
+ InsetSegment fInset;
+ SkPoint fIntersection;
+ SkScalar fTValue;
+ bool fValid;
+ };
+
+ SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
+ for (int i = 0; i < inputPolygonSize; ++i) {
+ edgeData[i].fValid = true;
+ int j = (i + 1) % inputPolygonSize;
+ inset_edge(inputPolygonVerts[i], inputPolygonVerts[j], insetDistance, winding,
+ &edgeData[i].fInset);
+ edgeData[i].fTValue = SK_ScalarMin;
+ }
+
+ int prevIndex = inputPolygonSize - 1;
+ int currIndex = 0;
+ int insetVertexCount = inputPolygonSize;
+ while (prevIndex != currIndex) {
+ if (!edgeData[prevIndex].fValid) {
+ prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
+ continue;
+ }
+
+ SkScalar s, t;
+ SkPoint intersection;
+ if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
+ &intersection, &s, &t)) {
+ // if new intersection is further back on previous inset from the prior intersection
+ if (s < edgeData[prevIndex].fTValue) {
+ // no point in considering this one again
+ edgeData[prevIndex].fValid = false;
+ --insetVertexCount;
+ // go back one segment
+ prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
+ // we've already considered this intersection, we're done
+ } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
+ intersection.equalsWithinTolerance(edgeData[currIndex].fIntersection,
+ 1.0e-6f)) {
+ break;
+ } else {
+ // add intersection
+ edgeData[currIndex].fIntersection = intersection;
+ edgeData[currIndex].fTValue = t;
+
+ // go to next segment
+ prevIndex = currIndex;
+ currIndex = (currIndex + 1) % inputPolygonSize;
+ }
+ } else {
+ // if prev to right side of curr
+ int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
+ edgeData[currIndex].fInset.fP1,
+ edgeData[prevIndex].fInset.fP1);
+ if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
+ edgeData[currIndex].fInset.fP1,
+ edgeData[prevIndex].fInset.fP0)) {
+ // no point in considering this one again
+ edgeData[prevIndex].fValid = false;
+ --insetVertexCount;
+ // go back one segment
+ prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
+ } else {
+ // move to next segment
+ edgeData[currIndex].fValid = false;
+ --insetVertexCount;
+ currIndex = (currIndex + 1) % inputPolygonSize;
+ }
+ }
+ }
+
+ // store all the valid intersections
+ insetPolygon->reset();
+ insetPolygon->setReserve(insetVertexCount);
+ for (int i = 0; i < inputPolygonSize; ++i) {
+ if (edgeData[i].fValid) {
+ *insetPolygon->push() = edgeData[i].fIntersection;
+ }
+ }
+
+#ifdef SK_DEBUG
+ bool convex = true;
+ for (int i = 0; i < insetPolygon->count(); ++i) {
+ int j = (i + 1) % insetPolygon->count();
+ int k = (i + 2) % insetPolygon->count();
+
+ int side = winding*compute_side((*insetPolygon)[i], (*insetPolygon)[j],
+ (*insetPolygon)[k]);
+ if (side < 0) {
+ convex = false;
+ break;
+ }
+ }
+ SkASSERT(convex);
+#endif
+
+ return (insetPolygon->count() >= 3);
+}
diff --git a/src/utils/SkInsetConvexPolygon.h b/src/utils/SkInsetConvexPolygon.h
new file mode 100755
index 0000000..3ab7558
--- /dev/null
+++ b/src/utils/SkInsetConvexPolygon.h
@@ -0,0 +1,27 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkInsetConvexPolygon_DEFINED
+#define SkInsetConvexPolygon_DEFINED
+
+#include "SkTDArray.h"
+#include "SkPoint.h"
+
+ /**
+ * Generates a polygon that is inset a given distance from the boundary of a given convex polygon.
+ *
+ * @param inputPolygonVerts Array of points representing the vertices of the original polygon.
+ * It should be convex and have no coincident points.
+ * @param inputPolygonSize Number of vertices in the original polygon.
+ * @param insetDistance How far we wish to inset the polygon. This should be a positive value.
+ * @param insetPolygon The resulting inset polygon, if any.
+ * @return true if an inset polygon exists, false otherwise.
+ */
+bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
+ SkScalar insetDistance, SkTDArray<SkPoint>* insetPolygon);
+
+#endif
diff --git a/src/utils/SkShadowTessellator.cpp b/src/utils/SkShadowTessellator.cpp
index ed9e62a..ef8ce32 100644
--- a/src/utils/SkShadowTessellator.cpp
+++ b/src/utils/SkShadowTessellator.cpp
@@ -8,6 +8,7 @@
#include "SkShadowTessellator.h"
#include "SkColorPriv.h"
#include "SkGeometry.h"
+#include "SkInsetConvexPolygon.h"
#include "SkPath.h"
#include "SkVertices.h"
@@ -439,22 +440,28 @@
bool transparent);
private:
- void computeClipBounds(const SkPath& path, const SkMatrix& ctm, SkPath* devPath);
- void checkUmbraAndTransformCentroid(SkScalar scale, const SkVector& xlate,
- bool useDistanceToPoint);
+ void computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
+ SkScalar scale, const SkVector& xlate);
+ void computeClipVectorsAndTestCentroid();
bool clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, SkPoint* clipPoint);
+ int getClosestUmbraPoint(const SkPoint& point);
void handleLine(const SkPoint& p) override;
+ void handlePolyPoint(const SkPoint& p);
void mapPoints(SkScalar scale, const SkVector& xlate, SkPoint* pts, int count);
- void addInnerPoint(const SkPoint& pathPoint);
+ bool addInnerPoint(const SkPoint& pathPoint);
void addEdge(const SkVector& nextPoint, const SkVector& nextNormal) override;
SkTDArray<SkPoint> fClipPolygon;
SkTDArray<SkVector> fClipVectors;
SkPoint fCentroid;
+ SkScalar fArea;
- int fCurrPolyPoint;
+ SkTDArray<SkPoint> fPathPolygon;
+ SkTDArray<SkPoint> fUmbraPolygon;
+ int fCurrClipPoint;
+ int fCurrUmbraPoint;
bool fPrevUmbraOutside;
bool fFirstUmbraOutside;
bool fValidUmbra;
@@ -467,11 +474,11 @@
SkScalar radius, SkColor umbraColor,
SkColor penumbraColor, bool transparent)
: INHERITED(radius, umbraColor, penumbraColor, transparent)
- , fCurrPolyPoint(0)
+ , fCurrClipPoint(0)
, fPrevUmbraOutside(false)
, fFirstUmbraOutside(false)
, fValidUmbra(true) {
- // TODO: calculate these better
+ // TODO: calculate these reserves better
// Penumbra ring: 3*numPts
// Umbra ring: numPts
// Inner ring: numPts
@@ -480,61 +487,65 @@
// Penumbra ring: 12*numPts
// Umbra ring: 3*numPts
fIndices.setReserve(15 * path.countPoints());
-
fClipPolygon.setReserve(path.countPoints());
- // compute rough clip bounds for umbra, plus centroid
- SkPath devPath;
- this->computeClipBounds(path, ctm, &devPath);
- if (fClipPolygon.count() < 3) {
+
+ // compute rough clip bounds for umbra, plus offset polygon, plus centroid
+ this->computeClipAndPathPolygons(path, ctm, scale, translate);
+ if (fClipPolygon.count() < 3 || fPathPolygon.count() < 3) {
return;
}
- // We are going to apply 'scale' and 'xlate' (in that order) to each computed path point. We
- // want the effect to be to scale the points relative to the path centroid and then translate
- // them by the 'translate' param we were passed.
- SkVector xlate = fCentroid * (1.f - scale) + translate;
- // check to see if we have a valid umbra at all
- bool usePointCheck = path.isRRect(nullptr) || path.isRect(nullptr) || path.isOval(nullptr);
- this->checkUmbraAndTransformCentroid(scale, translate, usePointCheck);
+ // check to see if umbra collapses
+ SkScalar minDistSq = fCentroid.distanceToLineSegmentBetweenSqd(fPathPolygon[0],
+ fPathPolygon[1]);
+ for (int i = 1; i < fPathPolygon.count(); ++i) {
+ int j = i + 1;
+ if (i == fPathPolygon.count() - 1) {
+ j = 0;
+ }
+ SkPoint currPoint = fPathPolygon[i];
+ SkPoint nextPoint = fPathPolygon[j];
+ SkScalar distSq = fCentroid.distanceToLineSegmentBetweenSqd(currPoint, nextPoint);
+ if (distSq < minDistSq) {
+ minDistSq = distSq;
+ }
+ }
+ static constexpr auto kTolerance = 1.0e-2f;
+ if (minDistSq < (radius + kTolerance)*(radius + kTolerance)) {
+ // if the umbra would collapse, we back off a bit on inner blur and adjust the alpha
+ SkScalar newRadius = SkScalarSqrt(minDistSq) - kTolerance;
+ SkScalar ratio = 256 * newRadius / radius;
+ // they aren't PMColors, but the interpolation algorithm is the same
+ fUmbraColor = SkPMLerp(fUmbraColor, fPenumbraColor, (unsigned)ratio);
+ radius = newRadius;
+ }
- // walk around the path, tessellate and generate inner and outer rings
- SkPath::Iter iter(devPath, true);
- SkPoint pts[4];
- SkPath::Verb verb;
+ // compute vectors for clip tests
+ this->computeClipVectorsAndTestCentroid();
+
+ // generate inner ring
+ if (!SkInsetConvexPolygon(&fPathPolygon[0], fPathPolygon.count(), radius, &fUmbraPolygon)) {
+ // this shouldn't happen, but just in case we'll inset using the centroid
+ fValidUmbra = false;
+ }
+
+ // walk around the path polygon, generate outer ring and connect to inner ring
if (fTransparent) {
*fPositions.push() = fCentroid;
*fColors.push() = fUmbraColor;
}
- SkMatrix shadowTransform;
- shadowTransform.setScaleTranslate(scale, scale, xlate.fX, xlate.fY);
- while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
- switch (verb) {
- case SkPath::kLine_Verb:
- this->INHERITED::handleLine(shadowTransform, &pts[1]);
- break;
- case SkPath::kQuad_Verb:
- this->handleQuad(shadowTransform, pts);
- break;
- case SkPath::kCubic_Verb:
- this->handleCubic(shadowTransform, pts);
- break;
- case SkPath::kConic_Verb:
- this->handleConic(shadowTransform, pts, iter.conicWeight());
- break;
- case SkPath::kMove_Verb:
- case SkPath::kClose_Verb:
- case SkPath::kDone_Verb:
- break;
- }
+ fCurrUmbraPoint = 0;
+ for (int i = 0; i < fPathPolygon.count(); ++i) {
+ this->handlePolyPoint(fPathPolygon[i]);
}
if (!this->indexCount()) {
return;
}
+ // finish up the final verts
SkVector normal;
- if (compute_normal(fPrevPoint, fFirstPoint, fRadius, fDirection,
- &normal)) {
+ if (compute_normal(fPrevPoint, fFirstPoint, fRadius, fDirection, &normal)) {
this->addArc(normal);
// close out previous arc
@@ -600,175 +611,138 @@
fSucceeded = true;
}
-void SkSpotShadowTessellator::computeClipBounds(const SkPath& path, const SkMatrix& ctm,
- SkPath* devPath) {
- // walk around the path and compute clip polygon
- // if original path is transparent, will accumulate sum of points for centroid
- // for Bezier curves, we compute additional interior points on curve
+void SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
+ SkScalar scale, const SkVector& xlate) {
+ // For the path polygon we are going to apply 'scale' and 'xlate' (in that order) to each
+ // computed path point. We want the effect to be to scale the points relative to the path
+ // bounds center and then translate them by the 'xlate' param we were passed.
+ SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
+ ctm.mapPoints(¢er, 1);
+ SkVector translate = center * (1.f - scale) + xlate;
+ SkMatrix shadowTransform;
+ shadowTransform.setScaleTranslate(scale, scale, translate.fX, translate.fY);
+
+ fPathPolygon.setReserve(path.countPoints());
+
+ // Walk around the path and compute clip polygon and path polygon.
+ // Will also accumulate sum of areas for centroid.
+ // For Bezier curves, we compute additional interior points on curve.
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
- fCentroid = SkPoint::Make(0, 0);
- int centroidCount = 0;
fClipPolygon.reset();
+ // init centroid
+ fCentroid = SkPoint::Make(0, 0);
+ fArea = 0;
+
// coefficients to compute cubic Bezier at t = 5/16
- const SkScalar kA = 0.32495117187f;
- const SkScalar kB = 0.44311523437f;
- const SkScalar kC = 0.20141601562f;
- const SkScalar kD = 0.03051757812f;
+ static constexpr SkScalar kA = 0.32495117187f;
+ static constexpr SkScalar kB = 0.44311523437f;
+ static constexpr SkScalar kC = 0.20141601562f;
+ static constexpr SkScalar kD = 0.03051757812f;
SkPoint curvePoint;
SkScalar w;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
- case SkPath::kMove_Verb:
- ctm.mapPoints(&pts[0], 1);
- devPath->moveTo(pts[0]);
- break;
case SkPath::kLine_Verb:
ctm.mapPoints(&pts[1], 1);
- devPath->lineTo(pts[1]);
- fCentroid += pts[1];
- centroidCount++;
*fClipPolygon.push() = pts[1];
+ this->INHERITED::handleLine(shadowTransform, &pts[1]);
break;
case SkPath::kQuad_Verb:
ctm.mapPoints(pts, 3);
- devPath->quadTo(pts[1], pts[2]);
// point at t = 1/2
curvePoint.fX = 0.25f*pts[0].fX + 0.5f*pts[1].fX + 0.25f*pts[2].fX;
curvePoint.fY = 0.25f*pts[0].fY + 0.5f*pts[1].fY + 0.25f*pts[2].fY;
*fClipPolygon.push() = curvePoint;
- fCentroid += curvePoint;
*fClipPolygon.push() = pts[2];
- fCentroid += pts[2];
- centroidCount += 2;
+ this->handleQuad(shadowTransform, pts);
break;
case SkPath::kConic_Verb:
ctm.mapPoints(pts, 3);
w = iter.conicWeight();
- devPath->conicTo(pts[1], pts[2], w);
// point at t = 1/2
curvePoint.fX = 0.25f*pts[0].fX + w*0.5f*pts[1].fX + 0.25f*pts[2].fX;
curvePoint.fY = 0.25f*pts[0].fY + w*0.5f*pts[1].fY + 0.25f*pts[2].fY;
curvePoint *= SkScalarInvert(0.5f + 0.5f*w);
*fClipPolygon.push() = curvePoint;
- fCentroid += curvePoint;
*fClipPolygon.push() = pts[2];
- fCentroid += pts[2];
- centroidCount += 2;
+ this->handleConic(shadowTransform, pts, w);
break;
case SkPath::kCubic_Verb:
ctm.mapPoints(pts, 4);
- devPath->cubicTo(pts[1], pts[2], pts[3]);
// point at t = 5/16
curvePoint.fX = kA*pts[0].fX + kB*pts[1].fX + kC*pts[2].fX + kD*pts[3].fX;
curvePoint.fY = kA*pts[0].fY + kB*pts[1].fY + kC*pts[2].fY + kD*pts[3].fY;
*fClipPolygon.push() = curvePoint;
- fCentroid += curvePoint;
// point at t = 11/16
curvePoint.fX = kD*pts[0].fX + kC*pts[1].fX + kB*pts[2].fX + kA*pts[3].fX;
curvePoint.fY = kD*pts[0].fY + kC*pts[1].fY + kB*pts[2].fY + kA*pts[3].fY;
*fClipPolygon.push() = curvePoint;
- fCentroid += curvePoint;
*fClipPolygon.push() = pts[3];
- fCentroid += pts[3];
- centroidCount += 3;
+ this->handleCubic(shadowTransform, pts);
break;
+ case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
- devPath->close();
+ case SkPath::kDone_Verb:
break;
default:
SkDEBUGFAIL("unknown verb");
}
}
- fCentroid *= SkScalarInvert(centroidCount);
- fCurrPolyPoint = fClipPolygon.count() - 1;
+ // finish centroid
+ if (fPathPolygon.count() > 0) {
+ SkPoint currPoint = fPathPolygon[fPathPolygon.count() - 1];
+ SkPoint nextPoint = fPathPolygon[0];
+ SkScalar quadArea = currPoint.cross(nextPoint);
+ fCentroid.fX += (currPoint.fX + nextPoint.fX) * quadArea;
+ fCentroid.fY += (currPoint.fY + nextPoint.fY) * quadArea;
+ fArea += quadArea;
+ fCentroid *= SK_Scalar1 / (3 * fArea);
+ }
+
+ fCurrClipPoint = fClipPolygon.count() - 1;
}
-void SkSpotShadowTessellator::checkUmbraAndTransformCentroid(SkScalar scale,
- const SkVector& xlate,
- bool useDistanceToPoint) {
+void SkSpotShadowTessellator::computeClipVectorsAndTestCentroid() {
SkASSERT(fClipPolygon.count() >= 3);
- SkPoint transformedCentroid = fCentroid;
- transformedCentroid += xlate;
- SkScalar localRadius = fRadius / scale;
- localRadius *= localRadius;
-
- // init umbra check
- SkVector w = fCentroid - fClipPolygon[0];
+ // init clip vectors
SkVector v0 = fClipPolygon[1] - fClipPolygon[0];
*fClipVectors.push() = v0;
- bool validUmbra;
- SkScalar minDistance;
- // check distance against line segment
- if (useDistanceToPoint) {
- minDistance = w.lengthSqd();
- } else {
- SkScalar vSq = v0.dot(v0);
- SkScalar wDotV = w.dot(v0);
- minDistance = w.dot(w) - wDotV*wDotV/vSq;
- }
- validUmbra = (minDistance >= localRadius);
// init centroid check
bool hiddenCentroid = true;
- SkVector v1 = transformedCentroid - fClipPolygon[0];
+ SkVector v1 = fCentroid - fClipPolygon[0];
SkScalar initCross = v0.cross(v1);
for (int p = 1; p < fClipPolygon.count(); ++p) {
- // Determine whether we have a real umbra by insetting clipPolygon by radius/scale
- // and see if it extends past centroid.
- // TODO: adjust this later for more accurate umbra calcs
- w = fCentroid - fClipPolygon[p];
+ // add to clip vectors
v0 = fClipPolygon[(p + 1) % fClipPolygon.count()] - fClipPolygon[p];
*fClipVectors.push() = v0;
- // check distance against line segment
- SkScalar distance;
- if (useDistanceToPoint) {
- distance = w.lengthSqd();
- } else {
- SkScalar vSq = v0.dot(v0);
- SkScalar wDotV = w.dot(v0);
- distance = w.dot(w) - wDotV*wDotV/vSq;
- }
- if (distance < localRadius) {
- validUmbra = false;
- }
- if (distance < minDistance) {
- minDistance = distance;
- }
// Determine if transformed centroid is inside clipPolygon.
- v1 = transformedCentroid - fClipPolygon[p];
+ v1 = fCentroid - fClipPolygon[p];
if (initCross*v0.cross(v1) <= 0) {
hiddenCentroid = false;
}
}
SkASSERT(fClipVectors.count() == fClipPolygon.count());
- if (!validUmbra) {
- SkScalar ratio = 256 * SkScalarSqrt(minDistance / localRadius);
- // they aren't PMColors, but the interpolation algorithm is the same
- fUmbraColor = SkPMLerp(fUmbraColor, fPenumbraColor, (unsigned)ratio);
- }
-
- fTransparent = fTransparent || !hiddenCentroid || !validUmbra;
- fValidUmbra = validUmbra;
- fCentroid = transformedCentroid;
+ fTransparent = fTransparent || !hiddenCentroid;
}
bool SkSpotShadowTessellator::clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid,
SkPoint* clipPoint) {
SkVector segmentVector = centroid - umbraPoint;
- int startPolyPoint = fCurrPolyPoint;
+ int startClipPoint = fCurrClipPoint;
do {
- SkVector dp = umbraPoint - fClipPolygon[fCurrPolyPoint];
- SkScalar denom = fClipVectors[fCurrPolyPoint].cross(segmentVector);
+ SkVector dp = umbraPoint - fClipPolygon[fCurrClipPoint];
+ SkScalar denom = fClipVectors[fCurrClipPoint].cross(segmentVector);
SkScalar t_num = dp.cross(segmentVector);
// if line segments are nearly parallel
if (SkScalarNearlyZero(denom)) {
@@ -779,7 +753,7 @@
// otherwise are separate, will try the next poly segment
// else if crossing lies within poly segment
} else if (t_num >= 0 && t_num <= denom) {
- SkScalar s_num = dp.cross(fClipVectors[fCurrPolyPoint]);
+ SkScalar s_num = dp.cross(fClipVectors[fCurrClipPoint]);
// if umbra point is inside the clip polygon
if (s_num < 0) {
return false;
@@ -789,12 +763,41 @@
return true;
}
}
- fCurrPolyPoint = (fCurrPolyPoint + 1) % fClipPolygon.count();
- } while (fCurrPolyPoint != startPolyPoint);
+ fCurrClipPoint = (fCurrClipPoint + 1) % fClipPolygon.count();
+ } while (fCurrClipPoint != startClipPoint);
return false;
}
+int SkSpotShadowTessellator::getClosestUmbraPoint(const SkPoint& p) {
+ SkScalar minDistance = p.distanceToSqd(fUmbraPolygon[fCurrUmbraPoint]);
+ int index = fCurrUmbraPoint;
+ int dir = 1;
+ int next = (index + dir) % fUmbraPolygon.count();
+
+ // init travel direction
+ SkScalar distance = p.distanceToSqd(fUmbraPolygon[next]);
+ if (distance < minDistance) {
+ index = next;
+ minDistance = distance;
+ } else {
+ dir = fUmbraPolygon.count()-1;
+ }
+
+ // iterate until we find a point that increases the distance
+ next = (index + dir) % fUmbraPolygon.count();
+ distance = p.distanceToSqd(fUmbraPolygon[next]);
+ while (distance < minDistance) {
+ index = next;
+ minDistance = distance;
+ next = (index + dir) % fUmbraPolygon.count();
+ distance = p.distanceToSqd(fUmbraPolygon[next]);
+ }
+
+ fCurrUmbraPoint = index;
+ return index;
+}
+
void SkSpotShadowTessellator::mapPoints(SkScalar scale, const SkVector& xlate,
SkPoint* pts, int count) {
// TODO: vectorize
@@ -804,7 +807,44 @@
}
}
+static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
+ static constexpr SkScalar kClose = (SK_Scalar1 / 16);
+ static constexpr SkScalar kCloseSqd = kClose*kClose;
+
+ SkScalar distSq = p0.distanceToSqd(p1);
+ return distSq < kCloseSqd;
+}
+
+static bool is_collinear(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
+ SkVector v0 = p1 - p0;
+ SkVector v1 = p2 - p0;
+ return (SkScalarNearlyZero(v0.cross(v1)));
+}
+
void SkSpotShadowTessellator::handleLine(const SkPoint& p) {
+ // remove coincident points and add to centroid
+ if (fPathPolygon.count() > 0) {
+ const SkPoint& lastPoint = fPathPolygon[fPathPolygon.count() - 1];
+ if (duplicate_pt(p, lastPoint)) {
+ return;
+ }
+ SkScalar quadArea = lastPoint.cross(p);
+ fCentroid.fX += (p.fX + lastPoint.fX) * quadArea;
+ fCentroid.fY += (p.fY + lastPoint.fY) * quadArea;
+ fArea += quadArea;
+ }
+
+ // try to remove collinear points
+ if (fPathPolygon.count() > 1 && is_collinear(fPathPolygon[fPathPolygon.count()-2],
+ fPathPolygon[fPathPolygon.count()-1],
+ p)) {
+ fPathPolygon[fPathPolygon.count() - 1] = p;
+ } else {
+ *fPathPolygon.push() = p;
+ }
+}
+
+void SkSpotShadowTessellator::handlePolyPoint(const SkPoint& p) {
if (fInitPoints.count() < 2) {
*fInitPoints.push() = p;
return;
@@ -814,7 +854,7 @@
// determine if cw or ccw
SkVector v0 = fInitPoints[1] - fInitPoints[0];
SkVector v1 = p - fInitPoints[0];
- SkScalar perpDot = v0.fX*v1.fY - v0.fY*v1.fX;
+ SkScalar perpDot = v0.cross(v1);
if (SkScalarNearlyZero(perpDot)) {
// nearly parallel, just treat as straight line and continue
fInitPoints[1] = p;
@@ -867,40 +907,47 @@
}
}
-void SkSpotShadowTessellator::addInnerPoint(const SkPoint& pathPoint) {
- SkVector v = fCentroid - pathPoint;
- SkScalar distance = v.length();
- SkScalar t;
- if (fValidUmbra) {
- SkASSERT(distance >= fRadius);
- t = fRadius / distance;
+bool SkSpotShadowTessellator::addInnerPoint(const SkPoint& pathPoint) {
+ SkPoint umbraPoint;
+ if (!fValidUmbra) {
+ SkVector v = fCentroid - pathPoint;
+ v *= 0.95f;
+ umbraPoint = pathPoint + v;
} else {
- t = 0.95f;
+ umbraPoint = fUmbraPolygon[this->getClosestUmbraPoint(pathPoint)];
}
- v *= t;
- SkPoint umbraPoint = pathPoint + v;
- *fPositions.push() = umbraPoint;
- *fColors.push() = fUmbraColor;
fPrevPoint = pathPoint;
+
+ // merge "close" points
+ if (fPrevUmbraIndex == fFirstVertex ||
+ !duplicate_pt(umbraPoint, fPositions[fPrevUmbraIndex])) {
+ *fPositions.push() = umbraPoint;
+ *fColors.push() = fUmbraColor;
+
+ return false;
+ } else {
+ return true;
+ }
}
void SkSpotShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal) {
// add next umbra point
- this->addInnerPoint(nextPoint);
- int prevPenumbraIndex = fPositions.count() - 2;
- int currUmbraIndex = fPositions.count() - 1;
+ bool duplicate = this->addInnerPoint(nextPoint);
+ int prevPenumbraIndex = duplicate ? fPositions.count()-1 : fPositions.count()-2;
+ int currUmbraIndex = duplicate ? fPrevUmbraIndex : fPositions.count()-1;
- // add to center fan if transparent or centroid showing
- if (fTransparent) {
- *fIndices.push() = 0;
- *fIndices.push() = fPrevUmbraIndex;
- *fIndices.push() = currUmbraIndex;
- // otherwise add to clip ring
- } else {
- if (!fTransparent) {
+ if (!duplicate) {
+ // add to center fan if transparent or centroid showing
+ if (fTransparent) {
+ *fIndices.push() = 0;
+ *fIndices.push() = fPrevUmbraIndex;
+ *fIndices.push() = currUmbraIndex;
+ // otherwise add to clip ring
+ } else {
SkPoint clipPoint;
- bool isOutside = clipUmbraPoint(fPositions[currUmbraIndex], fCentroid, &clipPoint);
+ bool isOutside = this->clipUmbraPoint(fPositions[currUmbraIndex], fCentroid,
+ &clipPoint);
if (isOutside) {
*fPositions.push() = clipPoint;
*fColors.push() = fUmbraColor;
@@ -929,9 +976,11 @@
*fPositions.push() = newPoint;
*fColors.push() = fPenumbraColor;
- *fIndices.push() = fPrevUmbraIndex;
- *fIndices.push() = prevPenumbraIndex;
- *fIndices.push() = currUmbraIndex;
+ if (!duplicate) {
+ *fIndices.push() = fPrevUmbraIndex;
+ *fIndices.push() = prevPenumbraIndex;
+ *fIndices.push() = currUmbraIndex;
+ }
*fIndices.push() = prevPenumbraIndex;
*fIndices.push() = fPositions.count() - 1;
diff --git a/tests/InsetConvexPolyTest.cpp b/tests/InsetConvexPolyTest.cpp
new file mode 100644
index 0000000..e13a25a
--- /dev/null
+++ b/tests/InsetConvexPolyTest.cpp
@@ -0,0 +1,132 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "Test.h"
+#include "SkInsetConvexPolygon.h"
+
+static bool is_convex(const SkTDArray<SkPoint>& poly) {
+ if (poly.count() < 3) {
+ return false;
+ }
+
+ SkVector v0 = poly[0] - poly[poly.count() - 1];
+ SkVector v1 = poly[1] - poly[poly.count() - 1];
+ SkScalar winding = v0.cross(v1);
+
+ for (int i = 0; i < poly.count()-1; ++i) {
+ int j = i + 1;
+ int k = (i + 2) % poly.count();
+
+ SkVector v0 = poly[j] - poly[i];
+ SkVector v1 = poly[k] - poly[i];
+ SkScalar perpDot = v0.cross(v1);
+ int side = winding*perpDot;
+ if (side < 0) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+DEF_TEST(InsetConvexPoly, reporter) {
+ SkTDArray<SkPoint> rrectPoly;
+
+ // round rect
+ *rrectPoly.push() = SkPoint::Make(-100, 55);
+ *rrectPoly.push() = SkPoint::Make(100, 55);
+ *rrectPoly.push() = SkPoint::Make(100 + 2.5f, 50 + 4.330127f);
+ *rrectPoly.push() = SkPoint::Make(100 + 3.535534f, 50 + 3.535534f);
+ *rrectPoly.push() = SkPoint::Make(100 + 4.330127f, 50 + 2.5f);
+ *rrectPoly.push() = SkPoint::Make(105, 50);
+ *rrectPoly.push() = SkPoint::Make(105, -50);
+ *rrectPoly.push() = SkPoint::Make(100 + 4.330127f, -50 - 2.5f);
+ *rrectPoly.push() = SkPoint::Make(100 + 3.535534f, -50 - 3.535534f);
+ *rrectPoly.push() = SkPoint::Make(100 + 2.5f, -50 - 4.330127f);
+ *rrectPoly.push() = SkPoint::Make(100, -55);
+ *rrectPoly.push() = SkPoint::Make(-100, -55);
+ *rrectPoly.push() = SkPoint::Make(-100 - 2.5f, -50 - 4.330127f);
+ *rrectPoly.push() = SkPoint::Make(-100 - 3.535534f, -50 - 3.535534f);
+ *rrectPoly.push() = SkPoint::Make(-100 - 4.330127f, -50 - 2.5f);
+ *rrectPoly.push() = SkPoint::Make(-105, -50);
+ *rrectPoly.push() = SkPoint::Make(-105, 50);
+ *rrectPoly.push() = SkPoint::Make(-100 - 4.330127f, 50 + 2.5f);
+ *rrectPoly.push() = SkPoint::Make(-100 - 3.535534f, 50 + 3.535534f);
+ *rrectPoly.push() = SkPoint::Make(-100 - 2.5f, 50 + 4.330127f);
+ REPORTER_ASSERT(reporter, is_convex(rrectPoly));
+
+ // inset a little
+ SkTDArray<SkPoint> insetPoly;
+ bool result = SkInsetConvexPolygon(&rrectPoly[0], rrectPoly.count(), 3, &insetPoly);
+ REPORTER_ASSERT(reporter, result);
+ REPORTER_ASSERT(reporter, is_convex(insetPoly));
+
+ // inset to rect
+ result = SkInsetConvexPolygon(&rrectPoly[0], rrectPoly.count(), 10, &insetPoly);
+ REPORTER_ASSERT(reporter, result);
+ REPORTER_ASSERT(reporter, is_convex(insetPoly));
+ REPORTER_ASSERT(reporter, insetPoly.count() == 4);
+ if (insetPoly.count() == 4) {
+ REPORTER_ASSERT(reporter, insetPoly[0].equals(-95, 45));
+ REPORTER_ASSERT(reporter, insetPoly[1].equals(95, 45));
+ REPORTER_ASSERT(reporter, insetPoly[2].equals(95, -45));
+ REPORTER_ASSERT(reporter, insetPoly[3].equals(-95, -45));
+ }
+
+ // just to full inset
+ // for shadows having a flat poly here is fine
+ // may want to revisit for strokes
+ result = SkInsetConvexPolygon(&rrectPoly[0], rrectPoly.count(), 55, &insetPoly);
+ REPORTER_ASSERT(reporter, result);
+ REPORTER_ASSERT(reporter, is_convex(insetPoly));
+ REPORTER_ASSERT(reporter, insetPoly.count() == 4);
+ if (insetPoly.count() == 4) {
+ REPORTER_ASSERT(reporter, insetPoly[0].equals(-50, 0));
+ REPORTER_ASSERT(reporter, insetPoly[1].equals(50, 0));
+ REPORTER_ASSERT(reporter, insetPoly[2].equals(50, 0));
+ REPORTER_ASSERT(reporter, insetPoly[3].equals(-50, 0));
+ }
+
+ // past full inset
+ result = SkInsetConvexPolygon(&rrectPoly[0], rrectPoly.count(), 75, &insetPoly);
+ REPORTER_ASSERT(reporter, !result);
+
+ // troublesome case
+ SkTDArray<SkPoint> clippedRRectPoly;
+ *clippedRRectPoly.push() = SkPoint::Make(335.928101f, 428.219055f);
+ *clippedRRectPoly.push() = SkPoint::Make(330.414459f, 423.034912f);
+ *clippedRRectPoly.push() = SkPoint::Make(325.749084f, 417.395508f);
+ *clippedRRectPoly.push() = SkPoint::Make(321.931946f, 411.300842f);
+ *clippedRRectPoly.push() = SkPoint::Make(318.963074f, 404.750977f);
+ *clippedRRectPoly.push() = SkPoint::Make(316.842468f, 397.745850f);
+ *clippedRRectPoly.push() = SkPoint::Make(315.570068f, 390.285522f);
+ *clippedRRectPoly.push() = SkPoint::Make(315.145966f, 382.369965f);
+ *clippedRRectPoly.push() = SkPoint::Make(315.570068f, 374.454346f);
+ *clippedRRectPoly.push() = SkPoint::Make(316.842468f, 366.994019f);
+ *clippedRRectPoly.push() = SkPoint::Make(318.963074f, 359.988892f);
+ *clippedRRectPoly.push() = SkPoint::Make(321.931946f, 353.439056f);
+ *clippedRRectPoly.push() = SkPoint::Make(325.749084f, 347.344421f);
+ *clippedRRectPoly.push() = SkPoint::Make(330.414459f, 341.705017f);
+ *clippedRRectPoly.push() = SkPoint::Make(335.928101f, 336.520813f);
+ *clippedRRectPoly.push() = SkPoint::Make(342.289948f, 331.791901f);
+ *clippedRRectPoly.push() = SkPoint::Make(377.312134f, 331.791901f);
+ *clippedRRectPoly.push() = SkPoint::Make(381.195313f, 332.532593f);
+ *clippedRRectPoly.push() = SkPoint::Make(384.464935f, 334.754700f);
+ *clippedRRectPoly.push() = SkPoint::Make(386.687042f, 338.024292f);
+ *clippedRRectPoly.push() = SkPoint::Make(387.427765f, 341.907532f);
+ *clippedRRectPoly.push() = SkPoint::Make(387.427765f, 422.832367f);
+ *clippedRRectPoly.push() = SkPoint::Make(386.687042f, 426.715576f);
+ *clippedRRectPoly.push() = SkPoint::Make(384.464935f, 429.985168f);
+ *clippedRRectPoly.push() = SkPoint::Make(381.195313f, 432.207275f);
+ *clippedRRectPoly.push() = SkPoint::Make(377.312134f, 432.947998f);
+ *clippedRRectPoly.push() = SkPoint::Make(342.289948f, 432.947998f);
+ REPORTER_ASSERT(reporter, is_convex(clippedRRectPoly));
+
+ result = SkInsetConvexPolygon(&clippedRRectPoly[0], clippedRRectPoly.count(), 32.3699417f,
+ &insetPoly);
+ REPORTER_ASSERT(reporter, result);
+ REPORTER_ASSERT(reporter, is_convex(insetPoly));
+}