Result of running tools/sanitize_source_files.py (which was added in https://codereview.appspot.com/6465078/)

This CL is part II of IV (I broke down the 1280 files into 4 CLs).
Review URL: https://codereview.appspot.com/6474054

git-svn-id: http://skia.googlecode.com/svn/trunk@5263 2bbb7eff-a529-9590-31e7-b0007b416f81
diff --git a/experimental/Intersection/CubeRoot.cpp b/experimental/Intersection/CubeRoot.cpp
index 37c8844..4f602f7 100644
--- a/experimental/Intersection/CubeRoot.cpp
+++ b/experimental/Intersection/CubeRoot.cpp
@@ -1,4 +1,4 @@
-// http://metamerist.com/cbrt/CubeRoot.cpp 
+// http://metamerist.com/cbrt/CubeRoot.cpp
 //
 
 #include <math.h>
@@ -12,102 +12,102 @@
 // estimate bits of precision (32-bit float case)
 inline int bits_of_precision(float a, float b)
 {
-	const double kd = 1.0 / log(2.0);
+    const double kd = 1.0 / log(2.0);
 
-	if (a==b)
-		return 23;
+    if (a==b)
+        return 23;
 
-	const double kdmin = pow(2.0, -23.0);
+    const double kdmin = pow(2.0, -23.0);
 
-	double d = fabs(a-b);
-	if (d < kdmin)
-		return 23;
+    double d = fabs(a-b);
+    if (d < kdmin)
+        return 23;
 
-	return int(-log(d)*kd);
+    return int(-log(d)*kd);
 }
 
 // estiamte bits of precision (64-bit double case)
 inline int bits_of_precision(double a, double b)
 {
-	const double kd = 1.0 / log(2.0);
+    const double kd = 1.0 / log(2.0);
 
-	if (a==b)
-		return 52;
+    if (a==b)
+        return 52;
 
-	const double kdmin = pow(2.0, -52.0);
+    const double kdmin = pow(2.0, -52.0);
 
-	double d = fabs(a-b);
-	if (d < kdmin)
-		return 52;
+    double d = fabs(a-b);
+    if (d < kdmin)
+        return 52;
 
-	return int(-log(d)*kd);
+    return int(-log(d)*kd);
 }
 
 // cube root via x^(1/3)
 static float pow_cbrtf(float x)
 {
-	return (float) pow(x, 1.0f/3.0f);
+    return (float) pow(x, 1.0f/3.0f);
 }
 
 // cube root via x^(1/3)
 static double pow_cbrtd(double x)
 {
-	return pow(x, 1.0/3.0);
+    return pow(x, 1.0/3.0);
 }
 
 // cube root approximation using bit hack for 32-bit float
 static  float cbrt_5f(float f)
 {
-	unsigned int* p = (unsigned int *) &f;
-	*p = *p/3 + 709921077;
-	return f;
+    unsigned int* p = (unsigned int *) &f;
+    *p = *p/3 + 709921077;
+    return f;
 }
 #endif
 
-// cube root approximation using bit hack for 64-bit float 
+// cube root approximation using bit hack for 64-bit float
 // adapted from Kahan's cbrt
 static  double cbrt_5d(double d)
 {
-	const unsigned int B1 = 715094163;
-	double t = 0.0;
-	unsigned int* pt = (unsigned int*) &t;
-	unsigned int* px = (unsigned int*) &d;
-	pt[1]=px[1]/3+B1;
-	return t;
+    const unsigned int B1 = 715094163;
+    double t = 0.0;
+    unsigned int* pt = (unsigned int*) &t;
+    unsigned int* px = (unsigned int*) &d;
+    pt[1]=px[1]/3+B1;
+    return t;
 }
 
 #if TEST_ALTERNATIVES
-// cube root approximation using bit hack for 64-bit float 
+// cube root approximation using bit hack for 64-bit float
 // adapted from Kahan's cbrt
 #if 0
 static  double quint_5d(double d)
 {
-	return sqrt(sqrt(d));
+    return sqrt(sqrt(d));
 
-	const unsigned int B1 = 71509416*5/3;
-	double t = 0.0;
-	unsigned int* pt = (unsigned int*) &t;
-	unsigned int* px = (unsigned int*) &d;
-	pt[1]=px[1]/5+B1;
-	return t;
+    const unsigned int B1 = 71509416*5/3;
+    double t = 0.0;
+    unsigned int* pt = (unsigned int*) &t;
+    unsigned int* px = (unsigned int*) &d;
+    pt[1]=px[1]/5+B1;
+    return t;
 }
 #endif
 
 // iterative cube root approximation using Halley's method (float)
 static  float cbrta_halleyf(const float a, const float R)
 {
-	const float a3 = a*a*a;
+    const float a3 = a*a*a;
     const float b= a * (a3 + R + R) / (a3 + a3 + R);
-	return b;
+    return b;
 }
 #endif
 
 // iterative cube root approximation using Halley's method (double)
 static  double cbrta_halleyd(const double a, const double R)
 {
-	const double a3 = a*a*a;
+    const double a3 = a*a*a;
     const double b= a * (a3 + R + R) / (a3 + a3 + R);
-	return b;
+    return b;
 }
 
 #if TEST_ALTERNATIVES
@@ -115,255 +115,255 @@
 static  float cbrta_newtonf(const float a, const float x)
 {
 //    return (1.0 / 3.0) * ((a + a) + x / (a * a));
-	return a - (1.0f / 3.0f) * (a - x / (a*a));
+    return a - (1.0f / 3.0f) * (a - x / (a*a));
 }
 
 // iterative cube root approximation using Newton's method (double)
 static  double cbrta_newtond(const double a, const double x)
 {
-	return (1.0/3.0) * (x / (a*a) + 2*a);
+    return (1.0/3.0) * (x / (a*a) + 2*a);
 }
 
 // cube root approximation using 1 iteration of Halley's method (double)
 static double halley_cbrt1d(double d)
 {
-	double a = cbrt_5d(d);
-	return cbrta_halleyd(a, d);
+    double a = cbrt_5d(d);
+    return cbrta_halleyd(a, d);
 }
 
 // cube root approximation using 1 iteration of Halley's method (float)
 static float halley_cbrt1f(float d)
 {
-	float a = cbrt_5f(d);
-	return cbrta_halleyf(a, d);
+    float a = cbrt_5f(d);
+    return cbrta_halleyf(a, d);
 }
 
 // cube root approximation using 2 iterations of Halley's method (double)
 static double halley_cbrt2d(double d)
 {
-	double a = cbrt_5d(d);
-	a = cbrta_halleyd(a, d);
-	return cbrta_halleyd(a, d);
+    double a = cbrt_5d(d);
+    a = cbrta_halleyd(a, d);
+    return cbrta_halleyd(a, d);
 }
 #endif
 
 // cube root approximation using 3 iterations of Halley's method (double)
 static double halley_cbrt3d(double d)
 {
-	double a = cbrt_5d(d);
-	a = cbrta_halleyd(a, d);
-	a = cbrta_halleyd(a, d);
-	return cbrta_halleyd(a, d);
+    double a = cbrt_5d(d);
+    a = cbrta_halleyd(a, d);
+    a = cbrta_halleyd(a, d);
+    return cbrta_halleyd(a, d);
 }
 
 #if TEST_ALTERNATIVES
 // cube root approximation using 2 iterations of Halley's method (float)
 static float halley_cbrt2f(float d)
 {
-	float a = cbrt_5f(d);
-	a = cbrta_halleyf(a, d);
-	return cbrta_halleyf(a, d);
+    float a = cbrt_5f(d);
+    a = cbrta_halleyf(a, d);
+    return cbrta_halleyf(a, d);
 }
 
 // cube root approximation using 1 iteration of Newton's method (double)
 static double newton_cbrt1d(double d)
 {
-	double a = cbrt_5d(d);
-	return cbrta_newtond(a, d);
+    double a = cbrt_5d(d);
+    return cbrta_newtond(a, d);
 }
 
 // cube root approximation using 2 iterations of Newton's method (double)
 static double newton_cbrt2d(double d)
 {
-	double a = cbrt_5d(d);
-	a = cbrta_newtond(a, d);
-	return cbrta_newtond(a, d);
+    double a = cbrt_5d(d);
+    a = cbrta_newtond(a, d);
+    return cbrta_newtond(a, d);
 }
 
 // cube root approximation using 3 iterations of Newton's method (double)
 static double newton_cbrt3d(double d)
 {
-	double a = cbrt_5d(d);
-	a = cbrta_newtond(a, d);
-	a = cbrta_newtond(a, d);
-	return cbrta_newtond(a, d);
+    double a = cbrt_5d(d);
+    a = cbrta_newtond(a, d);
+    a = cbrta_newtond(a, d);
+    return cbrta_newtond(a, d);
 }
 
 // cube root approximation using 4 iterations of Newton's method (double)
 static double newton_cbrt4d(double d)
 {
-	double a = cbrt_5d(d);
-	a = cbrta_newtond(a, d);
-	a = cbrta_newtond(a, d);
-	a = cbrta_newtond(a, d);
-	return cbrta_newtond(a, d);
+    double a = cbrt_5d(d);
+    a = cbrta_newtond(a, d);
+    a = cbrta_newtond(a, d);
+    a = cbrta_newtond(a, d);
+    return cbrta_newtond(a, d);
 }
 
 // cube root approximation using 2 iterations of Newton's method (float)
 static float newton_cbrt1f(float d)
 {
-	float a = cbrt_5f(d);
-	return cbrta_newtonf(a, d);
+    float a = cbrt_5f(d);
+    return cbrta_newtonf(a, d);
 }
 
 // cube root approximation using 2 iterations of Newton's method (float)
 static float newton_cbrt2f(float d)
 {
-	float a = cbrt_5f(d);
-	a = cbrta_newtonf(a, d);
-	return cbrta_newtonf(a, d);
+    float a = cbrt_5f(d);
+    a = cbrta_newtonf(a, d);
+    return cbrta_newtonf(a, d);
 }
 
 // cube root approximation using 3 iterations of Newton's method (float)
 static float newton_cbrt3f(float d)
 {
-	float a = cbrt_5f(d);
-	a = cbrta_newtonf(a, d);
-	a = cbrta_newtonf(a, d);
-	return cbrta_newtonf(a, d);
+    float a = cbrt_5f(d);
+    a = cbrta_newtonf(a, d);
+    a = cbrta_newtonf(a, d);
+    return cbrta_newtonf(a, d);
 }
 
 // cube root approximation using 4 iterations of Newton's method (float)
 static float newton_cbrt4f(float d)
 {
-	float a = cbrt_5f(d);
-	a = cbrta_newtonf(a, d);
-	a = cbrta_newtonf(a, d);
-	a = cbrta_newtonf(a, d);
-	return cbrta_newtonf(a, d);
+    float a = cbrt_5f(d);
+    a = cbrta_newtonf(a, d);
+    a = cbrta_newtonf(a, d);
+    a = cbrta_newtonf(a, d);
+    return cbrta_newtonf(a, d);
 }
 
 static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN)
 {
-	const int N = rN;
- 	
-	float dd = float((rB-rA) / N);
+    const int N = rN;
 
-	// calculate 1M numbers
-	int i=0;
-	float d = (float) rA;
+    float dd = float((rB-rA) / N);
 
-	double s = 0.0;
+    // calculate 1M numbers
+    int i=0;
+    float d = (float) rA;
 
-	for(d=(float) rA, i=0; i<N; i++, d += dd)
-	{
-		s += cbrt(d);
-	}
+    double s = 0.0;
 
-	double bits = 0.0;
-	double worstx=0.0;
-	double worsty=0.0;
-	int minbits=64;
+    for(d=(float) rA, i=0; i<N; i++, d += dd)
+    {
+        s += cbrt(d);
+    }
 
-	for(d=(float) rA, i=0; i<N; i++, d += dd)
-	{
-		float a = cbrt((float) d);	
-		float b = (float) pow((double) d, 1.0/3.0);
+    double bits = 0.0;
+    double worstx=0.0;
+    double worsty=0.0;
+    int minbits=64;
 
-		int bc = bits_of_precision(a, b);
-		bits += bc;
+    for(d=(float) rA, i=0; i<N; i++, d += dd)
+    {
+        float a = cbrt((float) d);
+        float b = (float) pow((double) d, 1.0/3.0);
 
-		if (b > 1.0e-6)
-		{
-			if (bc < minbits)
-			{
-				minbits = bc;
-				worstx = d;
-				worsty = a;
-			}
-		}
-	}
+        int bc = bits_of_precision(a, b);
+        bits += bc;
 
-	bits /= N;
+        if (b > 1.0e-6)
+        {
+            if (bc < minbits)
+            {
+                minbits = bc;
+                worstx = d;
+                worsty = a;
+            }
+        }
+    }
+
+    bits /= N;
 
     printf(" %3d mbp  %6.3f abp\n", minbits, bits);
 
-	return s;
+    return s;
 }
 
 
 static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN)
 {
-	const int N = rN;
-	
-	double dd = (rB-rA) / N;
+    const int N = rN;
 
-	int i=0;
-	
-	double s = 0.0;
-	double d = 0.0;
+    double dd = (rB-rA) / N;
 
-	for(d=rA, i=0; i<N; i++, d += dd)
-	{
-		s += cbrt(d);
-	}
+    int i=0;
+
+    double s = 0.0;
+    double d = 0.0;
+
+    for(d=rA, i=0; i<N; i++, d += dd)
+    {
+        s += cbrt(d);
+    }
 
 
-	double bits = 0.0;
-	double worstx = 0.0;
-	double worsty = 0.0;
-	int minbits = 64;
-	for(d=rA, i=0; i<N; i++, d += dd)
-	{
-		double a = cbrt(d);	
-		double b = pow(d, 1.0/3.0);
+    double bits = 0.0;
+    double worstx = 0.0;
+    double worsty = 0.0;
+    int minbits = 64;
+    for(d=rA, i=0; i<N; i++, d += dd)
+    {
+        double a = cbrt(d);
+        double b = pow(d, 1.0/3.0);
 
-		int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12);
-		bits += bc;
+        int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12);
+        bits += bc;
 
-		if (b > 1.0e-6)
-		{
-			if (bc < minbits)
-			{
-				bits_of_precision(a, b);
-				minbits = bc; 
-				worstx = d;
-				worsty = a;
-			}
-		}
-	}
+        if (b > 1.0e-6)
+        {
+            if (bc < minbits)
+            {
+                bits_of_precision(a, b);
+                minbits = bc;
+                worstx = d;
+                worsty = a;
+            }
+        }
+    }
 
-	bits /= N;
+    bits /= N;
 
     printf(" %3d mbp  %6.3f abp\n", minbits, bits);
 
-	return s;
+    return s;
 }
 
 static int _tmain()
 {
-	// a million uniform steps through the range from 0.0 to 1.0
-	// (doing uniform steps in the log scale would be better)
-	double a = 0.0;
-	double b = 1.0;
-	int n = 1000000;
+    // a million uniform steps through the range from 0.0 to 1.0
+    // (doing uniform steps in the log scale would be better)
+    double a = 0.0;
+    double b = 1.0;
+    int n = 1000000;
 
-	printf("32-bit float tests\n");
-	printf("----------------------------------------\n");
-	TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n);
-	TestCubeRootf("pow", pow_cbrtf, a, b, n);
-	TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n);
-	TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n);
-	TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n);
-	TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n);
-	TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n);
-	TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n);
-	printf("\n\n");
+    printf("32-bit float tests\n");
+    printf("----------------------------------------\n");
+    TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n);
+    TestCubeRootf("pow", pow_cbrtf, a, b, n);
+    TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n);
+    TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n);
+    TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n);
+    TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n);
+    TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n);
+    TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n);
+    printf("\n\n");
 
-	printf("64-bit double tests\n");
-	printf("----------------------------------------\n");
-	TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n);
-	TestCubeRootd("pow", pow_cbrtd, a, b, n);
-	TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n);
-	TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n);
-	TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n);
-	TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n);
-	TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n);
-	TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n);
-	TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n);
-	printf("\n\n");
+    printf("64-bit double tests\n");
+    printf("----------------------------------------\n");
+    TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n);
+    TestCubeRootd("pow", pow_cbrtd, a, b, n);
+    TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n);
+    TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n);
+    TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n);
+    TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n);
+    TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n);
+    TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n);
+    TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n);
+    printf("\n\n");
 
-	return 0;
+    return 0;
 }
 #endif