| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkMatrix44.h" |
| #include "Test.h" |
| |
| static bool nearly_equal_double(double a, double b) { |
| const double tolerance = 1e-7; |
| double diff = a - b; |
| if (diff < 0) |
| diff = -diff; |
| return diff <= tolerance; |
| } |
| |
| static bool nearly_equal_mscalar(SkMScalar a, SkMScalar b) { |
| const SkMScalar tolerance = SK_MScalar1 / 200000; |
| |
| return SkTAbs<SkMScalar>(a - b) <= tolerance; |
| } |
| |
| static bool nearly_equal_scalar(SkScalar a, SkScalar b) { |
| const SkScalar tolerance = SK_Scalar1 / 200000; |
| return SkScalarAbs(a - b) <= tolerance; |
| } |
| |
| template <typename T> void assert16(skiatest::Reporter* reporter, const T data[], |
| T m0, T m1, T m2, T m3, |
| T m4, T m5, T m6, T m7, |
| T m8, T m9, T m10, T m11, |
| T m12, T m13, T m14, T m15) { |
| REPORTER_ASSERT(reporter, data[0] == m0); |
| REPORTER_ASSERT(reporter, data[1] == m1); |
| REPORTER_ASSERT(reporter, data[2] == m2); |
| REPORTER_ASSERT(reporter, data[3] == m3); |
| |
| REPORTER_ASSERT(reporter, data[4] == m4); |
| REPORTER_ASSERT(reporter, data[5] == m5); |
| REPORTER_ASSERT(reporter, data[6] == m6); |
| REPORTER_ASSERT(reporter, data[7] == m7); |
| |
| REPORTER_ASSERT(reporter, data[8] == m8); |
| REPORTER_ASSERT(reporter, data[9] == m9); |
| REPORTER_ASSERT(reporter, data[10] == m10); |
| REPORTER_ASSERT(reporter, data[11] == m11); |
| |
| REPORTER_ASSERT(reporter, data[12] == m12); |
| REPORTER_ASSERT(reporter, data[13] == m13); |
| REPORTER_ASSERT(reporter, data[14] == m14); |
| REPORTER_ASSERT(reporter, data[15] == m15); |
| } |
| |
| static bool nearly_equal(const SkMatrix44& a, const SkMatrix44& b) { |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| if (!nearly_equal_mscalar(a.get(i, j), b.get(i, j))) { |
| SkDebugf("not equal %g %g\n", a.get(i, j), b.get(i, j)); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static bool is_identity(const SkMatrix44& m) { |
| SkMatrix44 identity(SkMatrix44::kIdentity_Constructor); |
| return nearly_equal(m, identity); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| static bool bits_isonly(int value, int mask) { |
| return 0 == (value & ~mask); |
| } |
| |
| static void test_constructor(skiatest::Reporter* reporter) { |
| // Allocate a matrix on the heap |
| SkMatrix44* placeholderMatrix = new SkMatrix44(SkMatrix44::kUninitialized_Constructor); |
| SkAutoTDelete<SkMatrix44> deleteMe(placeholderMatrix); |
| |
| for (int row = 0; row < 4; ++row) { |
| for (int col = 0; col < 4; ++col) { |
| placeholderMatrix->setDouble(row, col, row * col); |
| } |
| } |
| |
| // Use placement-new syntax to trigger the constructor on top of the heap |
| // address we already initialized. This allows us to check that the |
| // constructor did avoid initializing the matrix contents. |
| SkMatrix44* testMatrix = new(placeholderMatrix) SkMatrix44(SkMatrix44::kUninitialized_Constructor); |
| REPORTER_ASSERT(reporter, testMatrix == placeholderMatrix); |
| REPORTER_ASSERT(reporter, !testMatrix->isIdentity()); |
| for (int row = 0; row < 4; ++row) { |
| for (int col = 0; col < 4; ++col) { |
| REPORTER_ASSERT(reporter, nearly_equal_double(row * col, testMatrix->getDouble(row, col))); |
| } |
| } |
| |
| // Verify that kIdentity_Constructor really does initialize to an identity matrix. |
| testMatrix = 0; |
| testMatrix = new(placeholderMatrix) SkMatrix44(SkMatrix44::kIdentity_Constructor); |
| REPORTER_ASSERT(reporter, testMatrix == placeholderMatrix); |
| REPORTER_ASSERT(reporter, testMatrix->isIdentity()); |
| REPORTER_ASSERT(reporter, *testMatrix == SkMatrix44::I()); |
| |
| // Verify that that constructing from an SkMatrix initializes everything. |
| SkMatrix44 scaleMatrix(SkMatrix44::kUninitialized_Constructor); |
| scaleMatrix.setScale(3, 4, 5); |
| REPORTER_ASSERT(reporter, scaleMatrix.isScale()); |
| testMatrix = new(&scaleMatrix) SkMatrix44(SkMatrix::I()); |
| REPORTER_ASSERT(reporter, testMatrix->isIdentity()); |
| REPORTER_ASSERT(reporter, *testMatrix == SkMatrix44::I()); |
| } |
| |
| static void test_translate(skiatest::Reporter* reporter) { |
| SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| |
| mat.setTranslate(0, 0, 0); |
| REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kIdentity_Mask)); |
| mat.setTranslate(1, 2, 3); |
| REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kTranslate_Mask)); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| REPORTER_ASSERT(reporter, bits_isonly(inverse.getType(), SkMatrix44::kTranslate_Mask)); |
| |
| SkMatrix44 a(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 b(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 c(SkMatrix44::kUninitialized_Constructor); |
| a.set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9); |
| b.setTranslate(10, 11, 12); |
| |
| c.setConcat(a, b); |
| mat = a; |
| mat.preTranslate(10, 11, 12); |
| REPORTER_ASSERT(reporter, mat == c); |
| |
| c.setConcat(b, a); |
| mat = a; |
| mat.postTranslate(10, 11, 12); |
| REPORTER_ASSERT(reporter, mat == c); |
| } |
| |
| static void test_scale(skiatest::Reporter* reporter) { |
| SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| |
| mat.setScale(1, 1, 1); |
| REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kIdentity_Mask)); |
| mat.setScale(1, 2, 3); |
| REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kScale_Mask)); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| REPORTER_ASSERT(reporter, bits_isonly(inverse.getType(), SkMatrix44::kScale_Mask)); |
| |
| SkMatrix44 a(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 b(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 c(SkMatrix44::kUninitialized_Constructor); |
| a.set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9); |
| b.setScale(10, 11, 12); |
| |
| c.setConcat(a, b); |
| mat = a; |
| mat.preScale(10, 11, 12); |
| REPORTER_ASSERT(reporter, mat == c); |
| |
| c.setConcat(b, a); |
| mat = a; |
| mat.postScale(10, 11, 12); |
| REPORTER_ASSERT(reporter, mat == c); |
| } |
| |
| static void make_i(SkMatrix44* mat) { mat->setIdentity(); } |
| static void make_t(SkMatrix44* mat) { mat->setTranslate(1, 2, 3); } |
| static void make_s(SkMatrix44* mat) { mat->setScale(1, 2, 3); } |
| static void make_st(SkMatrix44* mat) { |
| mat->setScale(1, 2, 3); |
| mat->postTranslate(1, 2, 3); |
| } |
| static void make_a(SkMatrix44* mat) { |
| mat->setRotateDegreesAbout(1, 2, 3, 45); |
| } |
| static void make_p(SkMatrix44* mat) { |
| SkMScalar data[] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, |
| 1, 2, 3, 4, 5, 6, 7, 8, |
| }; |
| mat->setRowMajor(data); |
| } |
| |
| typedef void (*Make44Proc)(SkMatrix44*); |
| |
| static const Make44Proc gMakeProcs[] = { |
| make_i, make_t, make_s, make_st, make_a, make_p |
| }; |
| |
| static void test_map2(skiatest::Reporter* reporter, const SkMatrix44& mat) { |
| SkMScalar src2[] = { 1, 2 }; |
| SkMScalar src4[] = { src2[0], src2[1], 0, 1 }; |
| SkMScalar dstA[4], dstB[4]; |
| |
| for (int i = 0; i < 4; ++i) { |
| dstA[i] = 123456789; |
| dstB[i] = 987654321; |
| } |
| |
| mat.map2(src2, 1, dstA); |
| mat.mapMScalars(src4, dstB); |
| |
| for (int i = 0; i < 4; ++i) { |
| REPORTER_ASSERT(reporter, dstA[i] == dstB[i]); |
| } |
| } |
| |
| static void test_map2(skiatest::Reporter* reporter) { |
| SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gMakeProcs); ++i) { |
| gMakeProcs[i](&mat); |
| test_map2(reporter, mat); |
| } |
| } |
| |
| static void test_gettype(skiatest::Reporter* reporter) { |
| SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor); |
| |
| REPORTER_ASSERT(reporter, matrix.isIdentity()); |
| REPORTER_ASSERT(reporter, SkMatrix44::kIdentity_Mask == matrix.getType()); |
| |
| int expectedMask; |
| |
| matrix.set(1, 1, 0); |
| expectedMask = SkMatrix44::kScale_Mask; |
| REPORTER_ASSERT(reporter, matrix.getType() == expectedMask); |
| |
| matrix.set(0, 3, 1); // translate-x |
| expectedMask |= SkMatrix44::kTranslate_Mask; |
| REPORTER_ASSERT(reporter, matrix.getType() == expectedMask); |
| |
| matrix.set(2, 0, 1); |
| expectedMask |= SkMatrix44::kAffine_Mask; |
| REPORTER_ASSERT(reporter, matrix.getType() == expectedMask); |
| |
| matrix.set(3, 2, 1); |
| REPORTER_ASSERT(reporter, matrix.getType() & SkMatrix44::kPerspective_Mask); |
| |
| // ensure that negative zero is treated as zero |
| SkMScalar dx = 0; |
| SkMScalar dy = 0; |
| SkMScalar dz = 0; |
| matrix.setTranslate(-dx, -dy, -dz); |
| REPORTER_ASSERT(reporter, matrix.isIdentity()); |
| matrix.preTranslate(-dx, -dy, -dz); |
| REPORTER_ASSERT(reporter, matrix.isIdentity()); |
| matrix.postTranslate(-dx, -dy, -dz); |
| REPORTER_ASSERT(reporter, matrix.isIdentity()); |
| } |
| |
| static void test_common_angles(skiatest::Reporter* reporter) { |
| SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor); |
| // Test precision of rotation in common cases |
| int common_angles[] = { 0, 90, -90, 180, -180, 270, -270, 360, -360 }; |
| for (int i = 0; i < 9; ++i) { |
| rot.setRotateDegreesAbout(0, 0, -1, SkIntToScalar(common_angles[i])); |
| |
| SkMatrix rot3x3 = rot; |
| REPORTER_ASSERT(reporter, rot3x3.rectStaysRect()); |
| } |
| } |
| |
| static void test_concat(skiatest::Reporter* reporter) { |
| int i; |
| SkMatrix44 a(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 b(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 c(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 d(SkMatrix44::kUninitialized_Constructor); |
| |
| a.setTranslate(10, 10, 10); |
| b.setScale(2, 2, 2); |
| |
| SkScalar src[8] = { |
| 0, 0, 0, 1, |
| 1, 1, 1, 1 |
| }; |
| SkScalar dst[8]; |
| |
| c.setConcat(a, b); |
| |
| d = a; |
| d.preConcat(b); |
| REPORTER_ASSERT(reporter, d == c); |
| |
| c.mapScalars(src, dst); c.mapScalars(src + 4, dst + 4); |
| for (i = 0; i < 3; ++i) { |
| REPORTER_ASSERT(reporter, 10 == dst[i]); |
| REPORTER_ASSERT(reporter, 12 == dst[i + 4]); |
| } |
| |
| c.setConcat(b, a); |
| |
| d = a; |
| d.postConcat(b); |
| REPORTER_ASSERT(reporter, d == c); |
| |
| c.mapScalars(src, dst); c.mapScalars(src + 4, dst + 4); |
| for (i = 0; i < 3; ++i) { |
| REPORTER_ASSERT(reporter, 20 == dst[i]); |
| REPORTER_ASSERT(reporter, 22 == dst[i + 4]); |
| } |
| } |
| |
| static void test_determinant(skiatest::Reporter* reporter) { |
| SkMatrix44 a(SkMatrix44::kIdentity_Constructor); |
| REPORTER_ASSERT(reporter, nearly_equal_double(1, a.determinant())); |
| a.set(1, 1, 2); |
| REPORTER_ASSERT(reporter, nearly_equal_double(2, a.determinant())); |
| SkMatrix44 b(SkMatrix44::kUninitialized_Constructor); |
| REPORTER_ASSERT(reporter, a.invert(&b)); |
| REPORTER_ASSERT(reporter, nearly_equal_double(0.5, b.determinant())); |
| SkMatrix44 c = b = a; |
| c.set(0, 1, 4); |
| b.set(1, 0, 4); |
| REPORTER_ASSERT(reporter, |
| nearly_equal_double(a.determinant(), |
| b.determinant())); |
| SkMatrix44 d = a; |
| d.set(0, 0, 8); |
| REPORTER_ASSERT(reporter, nearly_equal_double(16, d.determinant())); |
| |
| SkMatrix44 e = a; |
| e.postConcat(d); |
| REPORTER_ASSERT(reporter, nearly_equal_double(32, e.determinant())); |
| e.set(0, 0, 0); |
| REPORTER_ASSERT(reporter, nearly_equal_double(0, e.determinant())); |
| } |
| |
| static void test_invert(skiatest::Reporter* reporter) { |
| SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| double inverseData[16]; |
| |
| SkMatrix44 identity(SkMatrix44::kIdentity_Constructor); |
| identity.invert(&inverse); |
| inverse.asRowMajord(inverseData); |
| assert16<double>(reporter, inverseData, |
| 1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, 0, 1); |
| |
| SkMatrix44 translation(SkMatrix44::kUninitialized_Constructor); |
| translation.setTranslate(2, 3, 4); |
| translation.invert(&inverse); |
| inverse.asRowMajord(inverseData); |
| assert16<double>(reporter, inverseData, |
| 1, 0, 0, -2, |
| 0, 1, 0, -3, |
| 0, 0, 1, -4, |
| 0, 0, 0, 1); |
| |
| SkMatrix44 scale(SkMatrix44::kUninitialized_Constructor); |
| scale.setScale(2, 4, 8); |
| scale.invert(&inverse); |
| inverse.asRowMajord(inverseData); |
| assert16<double>(reporter, inverseData, |
| 0.5, 0, 0, 0, |
| 0, 0.25, 0, 0, |
| 0, 0, 0.125, 0, |
| 0, 0, 0, 1); |
| |
| SkMatrix44 scaleTranslation(SkMatrix44::kUninitialized_Constructor); |
| scaleTranslation.setScale(10, 100, 1000); |
| scaleTranslation.preTranslate(2, 3, 4); |
| scaleTranslation.invert(&inverse); |
| inverse.asRowMajord(inverseData); |
| assert16<double>(reporter, inverseData, |
| 0.1, 0, 0, -2, |
| 0, 0.01, 0, -3, |
| 0, 0, 0.001, -4, |
| 0, 0, 0, 1); |
| |
| SkMatrix44 rotation(SkMatrix44::kUninitialized_Constructor); |
| rotation.setRotateDegreesAbout(0, 0, 1, 90); |
| rotation.invert(&inverse); |
| SkMatrix44 expected(SkMatrix44::kUninitialized_Constructor); |
| double expectedInverseRotation[16] = |
| {0, 1, 0, 0, |
| -1, 0, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, 0, 1}; |
| expected.setRowMajord(expectedInverseRotation); |
| REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); |
| |
| SkMatrix44 affine(SkMatrix44::kUninitialized_Constructor); |
| affine.setRotateDegreesAbout(0, 0, 1, 90); |
| affine.preScale(10, 20, 100); |
| affine.preTranslate(2, 3, 4); |
| affine.invert(&inverse); |
| double expectedInverseAffine[16] = |
| {0, 0.1, 0, -2, |
| -0.05, 0, 0, -3, |
| 0, 0, 0.01, -4, |
| 0, 0, 0, 1}; |
| expected.setRowMajord(expectedInverseAffine); |
| REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); |
| |
| SkMatrix44 perspective(SkMatrix44::kIdentity_Constructor); |
| perspective.setDouble(3, 2, 1.0); |
| perspective.invert(&inverse); |
| double expectedInversePerspective[16] = |
| {1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, -1, 1}; |
| expected.setRowMajord(expectedInversePerspective); |
| REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); |
| |
| SkMatrix44 affineAndPerspective(SkMatrix44::kIdentity_Constructor); |
| affineAndPerspective.setDouble(3, 2, 1.0); |
| affineAndPerspective.preScale(10, 20, 100); |
| affineAndPerspective.preTranslate(2, 3, 4); |
| affineAndPerspective.invert(&inverse); |
| double expectedInverseAffineAndPerspective[16] = |
| {0.1, 0, 2, -2, |
| 0, 0.05, 3, -3, |
| 0, 0, 4.01, -4, |
| 0, 0, -1, 1}; |
| expected.setRowMajord(expectedInverseAffineAndPerspective); |
| REPORTER_ASSERT(reporter, nearly_equal(expected, inverse)); |
| } |
| |
| static void test_transpose(skiatest::Reporter* reporter) { |
| SkMatrix44 a(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 b(SkMatrix44::kUninitialized_Constructor); |
| |
| int i = 0; |
| for (int row = 0; row < 4; ++row) { |
| for (int col = 0; col < 4; ++col) { |
| a.setDouble(row, col, i); |
| b.setDouble(col, row, i++); |
| } |
| } |
| |
| a.transpose(); |
| REPORTER_ASSERT(reporter, nearly_equal(a, b)); |
| } |
| |
| static void test_get_set_double(skiatest::Reporter* reporter) { |
| SkMatrix44 a(SkMatrix44::kUninitialized_Constructor); |
| for (int row = 0; row < 4; ++row) { |
| for (int col = 0; col < 4; ++col) { |
| a.setDouble(row, col, 3.141592653589793); |
| REPORTER_ASSERT(reporter, |
| nearly_equal_double(3.141592653589793, |
| a.getDouble(row, col))); |
| a.setDouble(row, col, 0); |
| REPORTER_ASSERT(reporter, |
| nearly_equal_double(0, a.getDouble(row, col))); |
| } |
| } |
| } |
| |
| static void test_set_row_col_major(skiatest::Reporter* reporter) { |
| SkMatrix44 a(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 b(SkMatrix44::kUninitialized_Constructor); |
| |
| for (int row = 0; row < 4; ++row) { |
| for (int col = 0; col < 4; ++col) { |
| a.setDouble(row, col, row * 4 + col); |
| } |
| } |
| |
| double bufferd[16]; |
| float bufferf[16]; |
| a.asColMajord(bufferd); |
| b.setColMajord(bufferd); |
| REPORTER_ASSERT(reporter, nearly_equal(a, b)); |
| b.setRowMajord(bufferd); |
| b.transpose(); |
| REPORTER_ASSERT(reporter, nearly_equal(a, b)); |
| a.asColMajorf(bufferf); |
| b.setColMajorf(bufferf); |
| REPORTER_ASSERT(reporter, nearly_equal(a, b)); |
| b.setRowMajorf(bufferf); |
| b.transpose(); |
| REPORTER_ASSERT(reporter, nearly_equal(a, b)); |
| } |
| |
| static void test_3x3_conversion(skiatest::Reporter* reporter) { |
| SkMScalar values4x4[16] = { 1, 2, 3, 4, |
| 5, 6, 7, 8, |
| 9, 10, 11, 12, |
| 13, 14, 15, 16 }; |
| SkScalar values3x3[9] = { 1, 2, 4, |
| 5, 6, 8, |
| 13, 14, 16 }; |
| SkMScalar values4x4flattened[16] = { 1, 2, 0, 4, |
| 5, 6, 0, 8, |
| 0, 0, 1, 0, |
| 13, 14, 0, 16 }; |
| SkMatrix44 a44(SkMatrix44::kUninitialized_Constructor); |
| a44.setRowMajor(values4x4); |
| |
| SkMatrix a33 = a44; |
| SkMatrix expected33; |
| for (int i = 0; i < 9; i++) expected33[i] = values3x3[i]; |
| REPORTER_ASSERT(reporter, expected33 == a33); |
| |
| SkMatrix44 a44flattened = a33; |
| SkMatrix44 expected44flattened(SkMatrix44::kUninitialized_Constructor); |
| expected44flattened.setRowMajor(values4x4flattened); |
| REPORTER_ASSERT(reporter, nearly_equal(a44flattened, expected44flattened)); |
| |
| // Test that a point with a Z value of 0 is transformed the same way. |
| SkScalar vec4[4] = { 2, 4, 0, 8 }; |
| SkScalar vec3[3] = { 2, 4, 8 }; |
| |
| SkScalar vec4transformed[4]; |
| SkScalar vec3transformed[3]; |
| SkScalar vec4transformed2[4]; |
| a44.mapScalars(vec4, vec4transformed); |
| a33.mapHomogeneousPoints(vec3transformed, vec3, 1); |
| a44flattened.mapScalars(vec4, vec4transformed2); |
| REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[0], vec3transformed[0])); |
| REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[1], vec3transformed[1])); |
| REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[3], vec3transformed[2])); |
| REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[0], vec4transformed2[0])); |
| REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[1], vec4transformed2[1])); |
| REPORTER_ASSERT(reporter, !nearly_equal_scalar(vec4transformed[2], vec4transformed2[2])); |
| REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[3], vec4transformed2[3])); |
| } |
| |
| static void test_has_perspective(skiatest::Reporter* reporter) { |
| SkMatrix44 transform(SkMatrix44::kIdentity_Constructor); |
| |
| transform.set(3, 2, -0.1); |
| REPORTER_ASSERT(reporter, transform.hasPerspective()); |
| |
| transform.reset(); |
| REPORTER_ASSERT(reporter, !transform.hasPerspective()); |
| |
| transform.set(3, 0, -1.0); |
| REPORTER_ASSERT(reporter, transform.hasPerspective()); |
| |
| transform.reset(); |
| transform.set(3, 1, -1.0); |
| REPORTER_ASSERT(reporter, transform.hasPerspective()); |
| |
| transform.reset(); |
| transform.set(3, 2, -0.3); |
| REPORTER_ASSERT(reporter, transform.hasPerspective()); |
| |
| transform.reset(); |
| transform.set(3, 3, 0.5); |
| REPORTER_ASSERT(reporter, transform.hasPerspective()); |
| |
| transform.reset(); |
| transform.set(3, 3, 0.0); |
| REPORTER_ASSERT(reporter, transform.hasPerspective()); |
| } |
| |
| static bool is_rectilinear (SkVector4& p1, SkVector4& p2, SkVector4& p3, SkVector4& p4) { |
| return (SkScalarNearlyEqual(p1.fData[0], p2.fData[0]) && |
| SkScalarNearlyEqual(p2.fData[1], p3.fData[1]) && |
| SkScalarNearlyEqual(p3.fData[0], p4.fData[0]) && |
| SkScalarNearlyEqual(p4.fData[1], p1.fData[1])) || |
| (SkScalarNearlyEqual(p1.fData[1], p2.fData[1]) && |
| SkScalarNearlyEqual(p2.fData[0], p3.fData[0]) && |
| SkScalarNearlyEqual(p3.fData[1], p4.fData[1]) && |
| SkScalarNearlyEqual(p4.fData[0], p1.fData[0])); |
| } |
| |
| static SkVector4 mul_with_persp_divide(const SkMatrix44& transform, const SkVector4& target) { |
| SkVector4 result = transform * target; |
| if (result.fData[3] != 0.0f && result.fData[3] != SK_Scalar1) { |
| float wInverse = SK_Scalar1 / result.fData[3]; |
| result.set(result.fData[0] * wInverse, |
| result.fData[1] * wInverse, |
| result.fData[2] * wInverse, |
| SK_Scalar1); |
| } |
| return result; |
| } |
| |
| static bool empirically_preserves_2d_axis_alignment(skiatest::Reporter* reporter, |
| const SkMatrix44& transform) { |
| SkVector4 p1(5.0f, 5.0f, 0.0f); |
| SkVector4 p2(10.0f, 5.0f, 0.0f); |
| SkVector4 p3(10.0f, 20.0f, 0.0f); |
| SkVector4 p4(5.0f, 20.0f, 0.0f); |
| |
| REPORTER_ASSERT(reporter, is_rectilinear(p1, p2, p3, p4)); |
| |
| p1 = mul_with_persp_divide(transform, p1); |
| p2 = mul_with_persp_divide(transform, p2); |
| p3 = mul_with_persp_divide(transform, p3); |
| p4 = mul_with_persp_divide(transform, p4); |
| |
| return is_rectilinear(p1, p2, p3, p4); |
| } |
| |
| static void test(bool expected, skiatest::Reporter* reporter, const SkMatrix44& transform) { |
| if (expected) { |
| REPORTER_ASSERT(reporter, empirically_preserves_2d_axis_alignment(reporter, transform)); |
| REPORTER_ASSERT(reporter, transform.preserves2dAxisAlignment()); |
| } else { |
| REPORTER_ASSERT(reporter, !empirically_preserves_2d_axis_alignment(reporter, transform)); |
| REPORTER_ASSERT(reporter, !transform.preserves2dAxisAlignment()); |
| } |
| } |
| |
| static void test_preserves_2d_axis_alignment(skiatest::Reporter* reporter) { |
| SkMatrix44 transform(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 transform2(SkMatrix44::kUninitialized_Constructor); |
| |
| static const struct TestCase { |
| SkMScalar a; // row 1, column 1 |
| SkMScalar b; // row 1, column 2 |
| SkMScalar c; // row 2, column 1 |
| SkMScalar d; // row 2, column 2 |
| bool expected; |
| } test_cases[] = { |
| { 3.f, 0.f, |
| 0.f, 4.f, true }, // basic case |
| { 0.f, 4.f, |
| 3.f, 0.f, true }, // rotate by 90 |
| { 0.f, 0.f, |
| 0.f, 4.f, true }, // degenerate x |
| { 3.f, 0.f, |
| 0.f, 0.f, true }, // degenerate y |
| { 0.f, 0.f, |
| 3.f, 0.f, true }, // degenerate x + rotate by 90 |
| { 0.f, 4.f, |
| 0.f, 0.f, true }, // degenerate y + rotate by 90 |
| { 3.f, 4.f, |
| 0.f, 0.f, false }, |
| { 0.f, 0.f, |
| 3.f, 4.f, false }, |
| { 0.f, 3.f, |
| 0.f, 4.f, false }, |
| { 3.f, 0.f, |
| 4.f, 0.f, false }, |
| { 3.f, 4.f, |
| 5.f, 0.f, false }, |
| { 3.f, 4.f, |
| 0.f, 5.f, false }, |
| { 3.f, 0.f, |
| 4.f, 5.f, false }, |
| { 0.f, 3.f, |
| 4.f, 5.f, false }, |
| { 2.f, 3.f, |
| 4.f, 5.f, false }, |
| }; |
| |
| for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) { |
| const TestCase& value = test_cases[i]; |
| transform.setIdentity(); |
| transform.set(0, 0, value.a); |
| transform.set(0, 1, value.b); |
| transform.set(1, 0, value.c); |
| transform.set(1, 1, value.d); |
| |
| test(value.expected, reporter, transform); |
| } |
| |
| // Try the same test cases again, but this time make sure that other matrix |
| // elements (except perspective) have entries, to test that they are ignored. |
| for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) { |
| const TestCase& value = test_cases[i]; |
| transform.setIdentity(); |
| transform.set(0, 0, value.a); |
| transform.set(0, 1, value.b); |
| transform.set(1, 0, value.c); |
| transform.set(1, 1, value.d); |
| |
| transform.set(0, 2, 1.f); |
| transform.set(0, 3, 2.f); |
| transform.set(1, 2, 3.f); |
| transform.set(1, 3, 4.f); |
| transform.set(2, 0, 5.f); |
| transform.set(2, 1, 6.f); |
| transform.set(2, 2, 7.f); |
| transform.set(2, 3, 8.f); |
| |
| test(value.expected, reporter, transform); |
| } |
| |
| // Try the same test cases again, but this time add perspective which is |
| // always assumed to not-preserve axis alignment. |
| for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) { |
| const TestCase& value = test_cases[i]; |
| transform.setIdentity(); |
| transform.set(0, 0, value.a); |
| transform.set(0, 1, value.b); |
| transform.set(1, 0, value.c); |
| transform.set(1, 1, value.d); |
| |
| transform.set(0, 2, 1.f); |
| transform.set(0, 3, 2.f); |
| transform.set(1, 2, 3.f); |
| transform.set(1, 3, 4.f); |
| transform.set(2, 0, 5.f); |
| transform.set(2, 1, 6.f); |
| transform.set(2, 2, 7.f); |
| transform.set(2, 3, 8.f); |
| transform.set(3, 0, 9.f); |
| transform.set(3, 1, 10.f); |
| transform.set(3, 2, 11.f); |
| transform.set(3, 3, 12.f); |
| |
| test(false, reporter, transform); |
| } |
| |
| // Try a few more practical situations to check precision |
| // Reuse TestCase (a, b, c, d) as (x, y, z, degrees) axis to rotate about. |
| TestCase rotation_tests[] = { |
| { 0.0, 0.0, 1.0, 90.0, true }, |
| { 0.0, 0.0, 1.0, 180.0, true }, |
| { 0.0, 0.0, 1.0, 270.0, true }, |
| { 0.0, 1.0, 0.0, 90.0, true }, |
| { 1.0, 0.0, 0.0, 90.0, true }, |
| { 0.0, 0.0, 1.0, 45.0, false }, |
| // In 3d these next two are non-preserving, but we're testing in 2d after |
| // orthographic projection, where they are. |
| { 0.0, 1.0, 0.0, 45.0, true }, |
| { 1.0, 0.0, 0.0, 45.0, true }, |
| }; |
| |
| for (size_t i = 0; i < sizeof(rotation_tests)/sizeof(TestCase); ++i) { |
| const TestCase& value = rotation_tests[i]; |
| transform.setRotateDegreesAbout(value.a, value.b, value.c, value.d); |
| test(value.expected, reporter, transform); |
| } |
| |
| static const struct DoubleRotationCase { |
| SkMScalar x1; |
| SkMScalar y1; |
| SkMScalar z1; |
| SkMScalar degrees1; |
| SkMScalar x2; |
| SkMScalar y2; |
| SkMScalar z2; |
| SkMScalar degrees2; |
| bool expected; |
| } double_rotation_tests[] = { |
| { 0.0, 0.0, 1.0, 90.0, 0.0, 1.0, 0.0, 90.0, true }, |
| { 0.0, 0.0, 1.0, 90.0, 1.0, 0.0, 0.0, 90.0, true }, |
| { 0.0, 1.0, 0.0, 90.0, 0.0, 0.0, 1.0, 90.0, true }, |
| }; |
| |
| for (size_t i = 0; i < sizeof(double_rotation_tests)/sizeof(DoubleRotationCase); ++i) { |
| const DoubleRotationCase& value = double_rotation_tests[i]; |
| transform.setRotateDegreesAbout(value.x1, value.y1, value.z1, value.degrees1); |
| transform2.setRotateDegreesAbout(value.x2, value.y2, value.z2, value.degrees2); |
| transform.postConcat(transform2); |
| test(value.expected, reporter, transform); |
| } |
| |
| // Perspective cases. |
| transform.setIdentity(); |
| transform.set(3, 2, -0.1); // Perspective depth 10 |
| transform2.setRotateDegreesAbout(0.0, 1.0, 0.0, 45.0); |
| transform.preConcat(transform2); |
| test(false, reporter, transform); |
| |
| transform.setIdentity(); |
| transform.set(3, 2, -0.1); // Perspective depth 10 |
| transform2.setRotateDegreesAbout(0.0, 0.0, 1.0, 90.0); |
| transform.preConcat(transform2); |
| test(true, reporter, transform); |
| } |
| |
| // just want to exercise the various converters for MScalar |
| static void test_toint(skiatest::Reporter* reporter) { |
| SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); |
| mat.setScale(3, 3, 3); |
| |
| SkMScalar sum = SkMScalarFloor(mat.get(0, 0)) + |
| SkMScalarRound(mat.get(1, 0)) + |
| SkMScalarCeil(mat.get(2, 0)); |
| int isum = SkMScalarFloorToInt(mat.get(0, 1)) + |
| SkMScalarRoundToInt(mat.get(1, 2)) + |
| SkMScalarCeilToInt(mat.get(2, 3)); |
| REPORTER_ASSERT(reporter, sum >= 0); |
| REPORTER_ASSERT(reporter, isum >= 0); |
| REPORTER_ASSERT(reporter, static_cast<SkMScalar>(isum) == SkIntToMScalar(isum)); |
| } |
| |
| DEF_TEST(Matrix44, reporter) { |
| SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 iden1(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 iden2(SkMatrix44::kUninitialized_Constructor); |
| SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor); |
| |
| mat.setTranslate(1, 1, 1); |
| mat.invert(&inverse); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| mat.setScale(2, 2, 2); |
| mat.invert(&inverse); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| mat.setScale(SK_MScalar1/2, SK_MScalar1/2, SK_MScalar1/2); |
| mat.invert(&inverse); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| mat.setScale(3, 3, 3); |
| rot.setRotateDegreesAbout(0, 0, -1, 90); |
| mat.postConcat(rot); |
| REPORTER_ASSERT(reporter, mat.invert(NULL)); |
| mat.invert(&inverse); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| iden2.setConcat(inverse, mat); |
| REPORTER_ASSERT(reporter, is_identity(iden2)); |
| |
| // test tiny-valued matrix inverse |
| mat.reset(); |
| mat.setScale(1.0e-12, 1.0e-12, 1.0e-12); |
| rot.setRotateDegreesAbout(0, 0, -1, 90); |
| mat.postConcat(rot); |
| mat.postTranslate(1.0e-12, 1.0e-12, 1.0e-12); |
| REPORTER_ASSERT(reporter, mat.invert(NULL)); |
| mat.invert(&inverse); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| // test mixed-valued matrix inverse |
| mat.reset(); |
| mat.setScale(1.0e-10, 3.0, 1.0e+10); |
| rot.setRotateDegreesAbout(0, 0, -1, 90); |
| mat.postConcat(rot); |
| mat.postTranslate(1.0e+10, 3.0, 1.0e-10); |
| REPORTER_ASSERT(reporter, mat.invert(NULL)); |
| mat.invert(&inverse); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| // test degenerate matrix |
| mat.reset(); |
| mat.set3x3(1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0); |
| REPORTER_ASSERT(reporter, !mat.invert(NULL)); |
| |
| // test rol/col Major getters |
| { |
| mat.setTranslate(2, 3, 4); |
| float dataf[16]; |
| double datad[16]; |
| |
| mat.asColMajorf(dataf); |
| assert16<float>(reporter, dataf, |
| 1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 2, 3, 4, 1); |
| mat.asColMajord(datad); |
| assert16<double>(reporter, datad, 1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 2, 3, 4, 1); |
| mat.asRowMajorf(dataf); |
| assert16<float>(reporter, dataf, 1, 0, 0, 2, |
| 0, 1, 0, 3, |
| 0, 0, 1, 4, |
| 0, 0, 0, 1); |
| mat.asRowMajord(datad); |
| assert16<double>(reporter, datad, 1, 0, 0, 2, |
| 0, 1, 0, 3, |
| 0, 0, 1, 4, |
| 0, 0, 0, 1); |
| } |
| |
| test_concat(reporter); |
| |
| if (false) { // avoid bit rot, suppress warning (working on making this pass) |
| test_common_angles(reporter); |
| } |
| |
| test_constructor(reporter); |
| test_gettype(reporter); |
| test_determinant(reporter); |
| test_invert(reporter); |
| test_transpose(reporter); |
| test_get_set_double(reporter); |
| test_set_row_col_major(reporter); |
| test_translate(reporter); |
| test_scale(reporter); |
| test_map2(reporter); |
| test_3x3_conversion(reporter); |
| test_has_perspective(reporter); |
| test_preserves_2d_axis_alignment(reporter); |
| test_toint(reporter); |
| } |