| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGpuDevice.h" |
| |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrDashingEffect.h" |
| #include "effects/GrTextureDomain.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| |
| #include "GrContext.h" |
| #include "GrBitmapTextContext.h" |
| #include "GrDistanceFieldTextContext.h" |
| #include "GrLayerCache.h" |
| #include "GrPictureUtils.h" |
| #include "GrStrokeInfo.h" |
| #include "GrTracing.h" |
| |
| #include "SkGrTexturePixelRef.h" |
| |
| #include "SkDeviceImageFilterProxy.h" |
| #include "SkDrawProcs.h" |
| #include "SkGlyphCache.h" |
| #include "SkImageFilter.h" |
| #include "SkMaskFilter.h" |
| #include "SkPathEffect.h" |
| #include "SkPicture.h" |
| #include "SkPictureData.h" |
| #include "SkPictureRangePlayback.h" |
| #include "SkPictureReplacementPlayback.h" |
| #include "SkRRect.h" |
| #include "SkStroke.h" |
| #include "SkSurface.h" |
| #include "SkTLazy.h" |
| #include "SkUtils.h" |
| #include "SkVertState.h" |
| #include "SkXfermode.h" |
| #include "SkErrorInternals.h" |
| |
| enum { kDefaultImageFilterCacheSize = 32 * 1024 * 1024 }; |
| |
| #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 |
| |
| #if 0 |
| extern bool (*gShouldDrawProc)(); |
| #define CHECK_SHOULD_DRAW(draw, forceI) \ |
| do { \ |
| if (gShouldDrawProc && !gShouldDrawProc()) return; \ |
| this->prepareDraw(draw, forceI); \ |
| } while (0) |
| #else |
| #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) |
| #endif |
| |
| // This constant represents the screen alignment criterion in texels for |
| // requiring texture domain clamping to prevent color bleeding when drawing |
| // a sub region of a larger source image. |
| #define COLOR_BLEED_TOLERANCE 0.001f |
| |
| #define DO_DEFERRED_CLEAR() \ |
| do { \ |
| if (fNeedClear) { \ |
| this->clear(SK_ColorTRANSPARENT); \ |
| } \ |
| } while (false) \ |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define CHECK_FOR_ANNOTATION(paint) \ |
| do { if (paint.getAnnotation()) { return; } } while (0) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { |
| public: |
| SkAutoCachedTexture() |
| : fDevice(NULL) |
| , fTexture(NULL) { |
| } |
| |
| SkAutoCachedTexture(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrTextureParams* params, |
| GrTexture** texture) |
| : fDevice(NULL) |
| , fTexture(NULL) { |
| SkASSERT(NULL != texture); |
| *texture = this->set(device, bitmap, params); |
| } |
| |
| ~SkAutoCachedTexture() { |
| if (NULL != fTexture) { |
| GrUnlockAndUnrefCachedBitmapTexture(fTexture); |
| } |
| } |
| |
| GrTexture* set(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrTextureParams* params) { |
| if (NULL != fTexture) { |
| GrUnlockAndUnrefCachedBitmapTexture(fTexture); |
| fTexture = NULL; |
| } |
| fDevice = device; |
| GrTexture* result = (GrTexture*)bitmap.getTexture(); |
| if (NULL == result) { |
| // Cannot return the native texture so look it up in our cache |
| fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params); |
| result = fTexture; |
| } |
| return result; |
| } |
| |
| private: |
| SkGpuDevice* fDevice; |
| GrTexture* fTexture; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct GrSkDrawProcs : public SkDrawProcs { |
| public: |
| GrContext* fContext; |
| GrTextContext* fTextContext; |
| GrFontScaler* fFontScaler; // cached in the skia glyphcache |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkGpuDevice* SkGpuDevice::Create(GrSurface* surface, unsigned flags) { |
| SkASSERT(NULL != surface); |
| if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) { |
| return NULL; |
| } |
| if (surface->asTexture()) { |
| return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture(), flags)); |
| } else { |
| return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget(), flags)); |
| } |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture, unsigned flags) { |
| this->initFromRenderTarget(context, texture->asRenderTarget(), flags); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget, unsigned flags) { |
| this->initFromRenderTarget(context, renderTarget, flags); |
| } |
| |
| void SkGpuDevice::initFromRenderTarget(GrContext* context, |
| GrRenderTarget* renderTarget, |
| unsigned flags) { |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fRenderTarget = NULL; |
| fNeedClear = flags & kNeedClear_Flag; |
| |
| SkASSERT(NULL != renderTarget); |
| fRenderTarget = renderTarget; |
| fRenderTarget->ref(); |
| |
| // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref |
| // on the RT but not vice-versa. |
| // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without |
| // busting chrome (for a currently unknown reason). |
| GrSurface* surface = fRenderTarget->asTexture(); |
| if (NULL == surface) { |
| surface = fRenderTarget; |
| } |
| |
| SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, |
| (surface->info(), surface, SkToBool(flags & kCached_Flag))); |
| fLegacyBitmap.setInfo(surface->info()); |
| fLegacyBitmap.setPixelRef(pr)->unref(); |
| |
| bool useDFFonts = !!(flags & kDFFonts_Flag); |
| fMainTextContext = fContext->createTextContext(fRenderTarget, fLeakyProperties, useDFFonts); |
| fFallbackTextContext = SkNEW_ARGS(GrBitmapTextContext, (fContext, fLeakyProperties)); |
| } |
| |
| SkGpuDevice* SkGpuDevice::Create(GrContext* context, const SkImageInfo& origInfo, |
| int sampleCount) { |
| if (kUnknown_SkColorType == origInfo.colorType() || |
| origInfo.width() < 0 || origInfo.height() < 0) { |
| return NULL; |
| } |
| |
| SkImageInfo info = origInfo; |
| // TODO: perhas we can loosen this check now that colortype is more detailed |
| // e.g. can we support both RGBA and BGRA here? |
| if (kRGB_565_SkColorType == info.colorType()) { |
| info.fAlphaType = kOpaque_SkAlphaType; // force this setting |
| } else { |
| info.fColorType = kN32_SkColorType; |
| if (kOpaque_SkAlphaType != info.alphaType()) { |
| info.fAlphaType = kPremul_SkAlphaType; // force this setting |
| } |
| } |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = info.width(); |
| desc.fHeight = info.height(); |
| desc.fConfig = SkImageInfo2GrPixelConfig(info); |
| desc.fSampleCnt = sampleCount; |
| |
| SkAutoTUnref<GrTexture> texture(context->createUncachedTexture(desc, NULL, 0)); |
| if (!texture.get()) { |
| return NULL; |
| } |
| |
| return SkNEW_ARGS(SkGpuDevice, (context, texture.get())); |
| } |
| |
| SkGpuDevice::~SkGpuDevice() { |
| if (fDrawProcs) { |
| delete fDrawProcs; |
| } |
| |
| delete fMainTextContext; |
| delete fFallbackTextContext; |
| |
| // The GrContext takes a ref on the target. We don't want to cause the render |
| // target to be unnecessarily kept alive. |
| if (fContext->getRenderTarget() == fRenderTarget) { |
| fContext->setRenderTarget(NULL); |
| } |
| |
| if (fContext->getClip() == &fClipData) { |
| fContext->setClip(NULL); |
| } |
| |
| SkSafeUnref(fRenderTarget); |
| fContext->unref(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::makeRenderTargetCurrent() { |
| DO_DEFERRED_CLEAR(); |
| fContext->setRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, |
| int x, int y) { |
| DO_DEFERRED_CLEAR(); |
| |
| // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels |
| GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo); |
| if (kUnknown_GrPixelConfig == config) { |
| return false; |
| } |
| |
| uint32_t flags = 0; |
| if (kUnpremul_SkAlphaType == dstInfo.alphaType()) { |
| flags = GrContext::kUnpremul_PixelOpsFlag; |
| } |
| return fContext->readRenderTargetPixels(fRenderTarget, x, y, dstInfo.width(), dstInfo.height(), |
| config, dstPixels, dstRowBytes, flags); |
| } |
| |
| bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, |
| int x, int y) { |
| // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels |
| GrPixelConfig config = SkImageInfo2GrPixelConfig(info); |
| if (kUnknown_GrPixelConfig == config) { |
| return false; |
| } |
| uint32_t flags = 0; |
| if (kUnpremul_SkAlphaType == info.alphaType()) { |
| flags = GrContext::kUnpremul_PixelOpsFlag; |
| } |
| fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); |
| |
| // need to bump our genID for compatibility with clients that "know" we have a bitmap |
| fLegacyBitmap.notifyPixelsChanged(); |
| |
| return true; |
| } |
| |
| const SkBitmap& SkGpuDevice::onAccessBitmap() { |
| DO_DEFERRED_CLEAR(); |
| return fLegacyBitmap; |
| } |
| |
| void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { |
| INHERITED::onAttachToCanvas(canvas); |
| |
| // Canvas promises that this ptr is valid until onDetachFromCanvas is called |
| fClipData.fClipStack = canvas->getClipStack(); |
| } |
| |
| void SkGpuDevice::onDetachFromCanvas() { |
| INHERITED::onDetachFromCanvas(); |
| fClipData.fClipStack = NULL; |
| } |
| |
| // call this every draw call, to ensure that the context reflects our state, |
| // and not the state from some other canvas/device |
| void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { |
| SkASSERT(NULL != fClipData.fClipStack); |
| |
| fContext->setRenderTarget(fRenderTarget); |
| |
| SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); |
| |
| if (forceIdentity) { |
| fContext->setIdentityMatrix(); |
| } else { |
| fContext->setMatrix(*draw.fMatrix); |
| } |
| fClipData.fOrigin = this->getOrigin(); |
| |
| fContext->setClip(&fClipData); |
| |
| DO_DEFERRED_CLEAR(); |
| } |
| |
| GrRenderTarget* SkGpuDevice::accessRenderTarget() { |
| DO_DEFERRED_CLEAR(); |
| return fRenderTarget; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::clear(SkColor color) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::clear", fContext); |
| SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); |
| fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget); |
| fNeedClear = false; |
| } |
| |
| void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPaint", fContext); |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| fContext->drawPaint(grPaint); |
| } |
| |
| // must be in SkCanvas::PointMode order |
| static const GrPrimitiveType gPointMode2PrimtiveType[] = { |
| kPoints_GrPrimitiveType, |
| kLines_GrPrimitiveType, |
| kLineStrip_GrPrimitiveType |
| }; |
| |
| void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], const SkPaint& paint) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkScalar width = paint.getStrokeWidth(); |
| if (width < 0) { |
| return; |
| } |
| |
| if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { |
| GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style); |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.lineTo(pts[1]); |
| fContext->drawPath(grPaint, path, strokeInfo); |
| return; |
| } |
| |
| // we only handle hairlines and paints without path effects or mask filters, |
| // else we let the SkDraw call our drawPath() |
| if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { |
| draw.drawPoints(mode, count, pts, paint, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| fContext->drawVertices(grPaint, |
| gPointMode2PrimtiveType[mode], |
| SkToS32(count), |
| (SkPoint*)pts, |
| NULL, |
| NULL, |
| NULL, |
| 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext); |
| |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| bool doStroke = paint.getStyle() != SkPaint::kFill_Style; |
| SkScalar width = paint.getStrokeWidth(); |
| |
| /* |
| We have special code for hairline strokes, miter-strokes, bevel-stroke |
| and fills. Anything else we just call our path code. |
| */ |
| bool usePath = doStroke && width > 0 && |
| (paint.getStrokeJoin() == SkPaint::kRound_Join || |
| (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); |
| // another two reasons we might need to call drawPath... |
| |
| if (paint.getMaskFilter()) { |
| usePath = true; |
| } |
| |
| if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| if (doStroke) { |
| #endif |
| usePath = true; |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| } else { |
| usePath = !fContext->getMatrix().preservesRightAngles(); |
| } |
| #endif |
| } |
| // until we can both stroke and fill rectangles |
| if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { |
| usePath = true; |
| } |
| |
| GrStrokeInfo strokeInfo(paint); |
| |
| const SkPathEffect* pe = paint.getPathEffect(); |
| if (!usePath && NULL != pe && !strokeInfo.isDashed()) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addRect(rect); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| fContext->drawRect(grPaint, rect, &strokeInfo); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRRect", fContext); |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| GrStrokeInfo strokeInfo(paint); |
| if (paint.getMaskFilter()) { |
| // try to hit the fast path for drawing filtered round rects |
| |
| SkRRect devRRect; |
| if (rect.transform(fContext->getMatrix(), &devRRect)) { |
| if (devRRect.allCornersCircular()) { |
| SkRect maskRect; |
| if (paint.getMaskFilter()->canFilterMaskGPU(devRRect.rect(), |
| draw.fClip->getBounds(), |
| fContext->getMatrix(), |
| &maskRect)) { |
| SkIRect finalIRect; |
| maskRect.roundOut(&finalIRect); |
| if (draw.fClip->quickReject(finalIRect)) { |
| // clipped out |
| return; |
| } |
| if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext, &grPaint, |
| strokeInfo.getStrokeRec(), |
| devRRect)) { |
| return; |
| } |
| } |
| |
| } |
| } |
| |
| } |
| |
| bool usePath = false; |
| |
| if (paint.getMaskFilter()) { |
| usePath = true; |
| } else { |
| const SkPathEffect* pe = paint.getPathEffect(); |
| if (NULL != pe && !strokeInfo.isDashed()) { |
| usePath = true; |
| } |
| } |
| |
| |
| if (usePath) { |
| SkPath path; |
| path.addRRect(rect); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| fContext->drawRRect(grPaint, rect, strokeInfo); |
| } |
| |
| void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, |
| const SkRRect& inner, const SkPaint& paint) { |
| SkStrokeRec stroke(paint); |
| if (stroke.isFillStyle()) { |
| |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| if (NULL == paint.getMaskFilter() && NULL == paint.getPathEffect()) { |
| fContext->drawDRRect(grPaint, outer, inner); |
| return; |
| } |
| } |
| |
| SkPath path; |
| path.addRRect(outer); |
| path.addRRect(inner); |
| path.setFillType(SkPath::kEvenOdd_FillType); |
| |
| this->drawPath(draw, path, paint, NULL, true); |
| } |
| |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawOval", fContext); |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrStrokeInfo strokeInfo(paint); |
| |
| bool usePath = false; |
| // some basic reasons we might need to call drawPath... |
| if (paint.getMaskFilter()) { |
| usePath = true; |
| } else { |
| const SkPathEffect* pe = paint.getPathEffect(); |
| if (NULL != pe && !strokeInfo.isDashed()) { |
| usePath = true; |
| } |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addOval(oval); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| fContext->drawOval(grPaint, oval, strokeInfo); |
| } |
| |
| #include "SkMaskFilter.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // helpers for applying mask filters |
| namespace { |
| |
| // Draw a mask using the supplied paint. Since the coverage/geometry |
| // is already burnt into the mask this boils down to a rect draw. |
| // Return true if the mask was successfully drawn. |
| bool draw_mask(GrContext* context, const SkRect& maskRect, |
| GrPaint* grp, GrTexture* mask) { |
| GrContext::AutoMatrix am; |
| if (!am.setIdentity(context, grp)) { |
| return false; |
| } |
| |
| SkMatrix matrix; |
| matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop); |
| matrix.postIDiv(mask->width(), mask->height()); |
| |
| grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref(); |
| context->drawRect(*grp, maskRect); |
| return true; |
| } |
| |
| bool draw_with_mask_filter(GrContext* context, const SkPath& devPath, |
| SkMaskFilter* filter, const SkRegion& clip, |
| GrPaint* grp, SkPaint::Style style) { |
| SkMask srcM, dstM; |
| |
| if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, |
| SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { |
| return false; |
| } |
| SkAutoMaskFreeImage autoSrc(srcM.fImage); |
| |
| if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { |
| return false; |
| } |
| // this will free-up dstM when we're done (allocated in filterMask()) |
| SkAutoMaskFreeImage autoDst(dstM.fImage); |
| |
| if (clip.quickReject(dstM.fBounds)) { |
| return false; |
| } |
| |
| // we now have a device-aligned 8bit mask in dstM, ready to be drawn using |
| // the current clip (and identity matrix) and GrPaint settings |
| GrTextureDesc desc; |
| desc.fWidth = dstM.fBounds.width(); |
| desc.fHeight = dstM.fBounds.height(); |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| |
| GrAutoScratchTexture ast(context, desc); |
| GrTexture* texture = ast.texture(); |
| |
| if (NULL == texture) { |
| return false; |
| } |
| texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, |
| dstM.fImage, dstM.fRowBytes); |
| |
| SkRect maskRect = SkRect::Make(dstM.fBounds); |
| |
| return draw_mask(context, maskRect, grp, texture); |
| } |
| |
| // Create a mask of 'devPath' and place the result in 'mask'. Return true on |
| // success; false otherwise. |
| bool create_mask_GPU(GrContext* context, |
| const SkRect& maskRect, |
| const SkPath& devPath, |
| const GrStrokeInfo& strokeInfo, |
| bool doAA, |
| GrAutoScratchTexture* mask) { |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = SkScalarCeilToInt(maskRect.width()); |
| desc.fHeight = SkScalarCeilToInt(maskRect.height()); |
| // We actually only need A8, but it often isn't supported as a |
| // render target so default to RGBA_8888 |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| } |
| |
| mask->set(context, desc); |
| if (NULL == mask->texture()) { |
| return false; |
| } |
| |
| GrTexture* maskTexture = mask->texture(); |
| SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); |
| |
| GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget()); |
| GrContext::AutoClip ac(context, clipRect); |
| |
| context->clear(NULL, 0x0, true); |
| |
| GrPaint tempPaint; |
| if (doAA) { |
| tempPaint.setAntiAlias(true); |
| // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst |
| // blend coeff of zero requires dual source blending support in order |
| // to properly blend partially covered pixels. This means the AA |
| // code path may not be taken. So we use a dst blend coeff of ISA. We |
| // could special case AA draws to a dst surface with known alpha=0 to |
| // use a zero dst coeff when dual source blending isn't available. |
| tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); |
| } |
| |
| GrContext::AutoMatrix am; |
| |
| // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint. |
| SkMatrix translate; |
| translate.setTranslate(-maskRect.fLeft, -maskRect.fTop); |
| am.set(context, translate); |
| context->drawPath(tempPaint, devPath, strokeInfo); |
| return true; |
| } |
| |
| SkBitmap wrap_texture(GrTexture* texture) { |
| SkBitmap result; |
| result.setInfo(texture->info()); |
| result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (result.info(), texture)))->unref(); |
| return result; |
| } |
| |
| }; |
| |
| void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, |
| const SkPaint& paint, const SkMatrix* prePathMatrix, |
| bool pathIsMutable) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPath", fContext); |
| |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| // If we have a prematrix, apply it to the path, optimizing for the case |
| // where the original path can in fact be modified in place (even though |
| // its parameter type is const). |
| SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); |
| SkTLazy<SkPath> tmpPath; |
| SkTLazy<SkPath> effectPath; |
| |
| if (prePathMatrix) { |
| SkPath* result = pathPtr; |
| |
| if (!pathIsMutable) { |
| result = tmpPath.init(); |
| pathIsMutable = true; |
| } |
| // should I push prePathMatrix on our MV stack temporarily, instead |
| // of applying it here? See SkDraw.cpp |
| pathPtr->transform(*prePathMatrix, result); |
| pathPtr = result; |
| } |
| // at this point we're done with prePathMatrix |
| SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) |
| |
| GrStrokeInfo strokeInfo(paint); |
| SkPathEffect* pathEffect = paint.getPathEffect(); |
| const SkRect* cullRect = NULL; // TODO: what is our bounds? |
| SkStrokeRec* strokePtr = strokeInfo.getStrokeRecPtr(); |
| if (pathEffect && pathEffect->filterPath(effectPath.init(), *pathPtr, strokePtr, |
| cullRect)) { |
| pathPtr = effectPath.get(); |
| pathIsMutable = true; |
| strokeInfo.removeDash(); |
| } |
| |
| const SkStrokeRec& stroke = strokeInfo.getStrokeRec(); |
| if (paint.getMaskFilter()) { |
| if (!stroke.isHairlineStyle()) { |
| SkPath* strokedPath = pathIsMutable ? pathPtr : tmpPath.init(); |
| if (stroke.applyToPath(strokedPath, *pathPtr)) { |
| pathPtr = strokedPath; |
| pathIsMutable = true; |
| strokeInfo.setFillStyle(); |
| } |
| } |
| |
| // avoid possibly allocating a new path in transform if we can |
| SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath.init(); |
| |
| // transform the path into device space |
| pathPtr->transform(fContext->getMatrix(), devPathPtr); |
| |
| SkRect maskRect; |
| if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(), |
| draw.fClip->getBounds(), |
| fContext->getMatrix(), |
| &maskRect)) { |
| // The context's matrix may change while creating the mask, so save the CTM here to |
| // pass to filterMaskGPU. |
| const SkMatrix ctm = fContext->getMatrix(); |
| |
| SkIRect finalIRect; |
| maskRect.roundOut(&finalIRect); |
| if (draw.fClip->quickReject(finalIRect)) { |
| // clipped out |
| return; |
| } |
| |
| if (paint.getMaskFilter()->directFilterMaskGPU(fContext, &grPaint, |
| stroke, *devPathPtr)) { |
| // the mask filter was able to draw itself directly, so there's nothing |
| // left to do. |
| return; |
| } |
| |
| GrAutoScratchTexture mask; |
| |
| if (create_mask_GPU(fContext, maskRect, *devPathPtr, strokeInfo, |
| grPaint.isAntiAlias(), &mask)) { |
| GrTexture* filtered; |
| |
| if (paint.getMaskFilter()->filterMaskGPU(mask.texture(), |
| ctm, maskRect, &filtered, true)) { |
| // filterMaskGPU gives us ownership of a ref to the result |
| SkAutoTUnref<GrTexture> atu(filtered); |
| |
| // If the scratch texture that we used as the filter src also holds the filter |
| // result then we must detach so that this texture isn't recycled for a later |
| // draw. |
| if (filtered == mask.texture()) { |
| mask.detach(); |
| filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us. |
| } |
| |
| if (draw_mask(fContext, maskRect, &grPaint, filtered)) { |
| // This path is completely drawn |
| return; |
| } |
| } |
| } |
| } |
| |
| // draw the mask on the CPU - this is a fallthrough path in case the |
| // GPU path fails |
| SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : |
| SkPaint::kFill_Style; |
| draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(), |
| *draw.fClip, &grPaint, style); |
| return; |
| } |
| |
| fContext->drawPath(grPaint, *pathPtr, strokeInfo); |
| } |
| |
| static const int kBmpSmallTileSize = 1 << 10; |
| |
| static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { |
| int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; |
| int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; |
| return tilesX * tilesY; |
| } |
| |
| static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) { |
| if (maxTileSize <= kBmpSmallTileSize) { |
| return maxTileSize; |
| } |
| |
| size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); |
| size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); |
| |
| maxTileTotalTileSize *= maxTileSize * maxTileSize; |
| smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| if (maxTileTotalTileSize > 2 * smallTotalTileSize) { |
| return kBmpSmallTileSize; |
| } else { |
| return maxTileSize; |
| } |
| } |
| |
| // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what |
| // pixels from the bitmap are necessary. |
| static void determine_clipped_src_rect(const GrContext* context, |
| const SkBitmap& bitmap, |
| const SkRect* srcRectPtr, |
| SkIRect* clippedSrcIRect) { |
| const GrClipData* clip = context->getClip(); |
| clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL); |
| SkMatrix inv; |
| if (!context->getMatrix().invert(&inv)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); |
| inv.mapRect(&clippedSrcRect); |
| if (NULL != srcRectPtr) { |
| // we've setup src space 0,0 to map to the top left of the src rect. |
| clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); |
| if (!clippedSrcRect.intersect(*srcRectPtr)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| } |
| clippedSrcRect.roundOut(clippedSrcIRect); |
| SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| if (!clippedSrcIRect->intersect(bmpBounds)) { |
| clippedSrcIRect->setEmpty(); |
| } |
| } |
| |
| bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, |
| const GrTextureParams& params, |
| const SkRect* srcRectPtr, |
| int maxTileSize, |
| int* tileSize, |
| SkIRect* clippedSrcRect) const { |
| // if bitmap is explictly texture backed then just use the texture |
| if (NULL != bitmap.getTexture()) { |
| return false; |
| } |
| |
| // if it's larger than the max tile size, then we have no choice but tiling. |
| if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) { |
| determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); |
| *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize); |
| return true; |
| } |
| |
| if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { |
| return false; |
| } |
| |
| // if the entire texture is already in our cache then no reason to tile it |
| if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { |
| return false; |
| } |
| |
| // At this point we know we could do the draw by uploading the entire bitmap |
| // as a texture. However, if the texture would be large compared to the |
| // cache size and we don't require most of it for this draw then tile to |
| // reduce the amount of upload and cache spill. |
| |
| // assumption here is that sw bitmap size is a good proxy for its size as |
| // a texture |
| size_t bmpSize = bitmap.getSize(); |
| size_t cacheSize; |
| fContext->getResourceCacheLimits(NULL, &cacheSize); |
| if (bmpSize < cacheSize / 2) { |
| return false; |
| } |
| |
| // Figure out how much of the src we will need based on the src rect and clipping. |
| determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); |
| *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. |
| size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) * |
| kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| return usedTileBytes < 2 * bmpSize; |
| } |
| |
| void SkGpuDevice::drawBitmap(const SkDraw& origDraw, |
| const SkBitmap& bitmap, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| SkMatrix concat; |
| SkTCopyOnFirstWrite<SkDraw> draw(origDraw); |
| if (!m.isIdentity()) { |
| concat.setConcat(*draw->fMatrix, m); |
| draw.writable()->fMatrix = &concat; |
| } |
| this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kNone_DrawBitmapRectFlag); |
| } |
| |
| // This method outsets 'iRect' by 'outset' all around and then clamps its extents to |
| // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner |
| // of 'iRect' for all possible outsets/clamps. |
| static inline void clamped_outset_with_offset(SkIRect* iRect, |
| int outset, |
| SkPoint* offset, |
| const SkIRect& clamp) { |
| iRect->outset(outset, outset); |
| |
| int leftClampDelta = clamp.fLeft - iRect->fLeft; |
| if (leftClampDelta > 0) { |
| offset->fX -= outset - leftClampDelta; |
| iRect->fLeft = clamp.fLeft; |
| } else { |
| offset->fX -= outset; |
| } |
| |
| int topClampDelta = clamp.fTop - iRect->fTop; |
| if (topClampDelta > 0) { |
| offset->fY -= outset - topClampDelta; |
| iRect->fTop = clamp.fTop; |
| } else { |
| offset->fY -= outset; |
| } |
| |
| if (iRect->fRight > clamp.fRight) { |
| iRect->fRight = clamp.fRight; |
| } |
| if (iRect->fBottom > clamp.fBottom) { |
| iRect->fBottom = clamp.fBottom; |
| } |
| } |
| |
| static bool has_aligned_samples(const SkRect& srcRect, |
| const SkRect& transformedRect) { |
| // detect pixel disalignment |
| if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - |
| transformedRect.left()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - |
| transformedRect.top()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.width() - srcRect.width()) < |
| COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.height() - srcRect.height()) < |
| COLOR_BLEED_TOLERANCE) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool may_color_bleed(const SkRect& srcRect, |
| const SkRect& transformedRect, |
| const SkMatrix& m) { |
| // Only gets called if has_aligned_samples returned false. |
| // So we can assume that sampling is axis aligned but not texel aligned. |
| SkASSERT(!has_aligned_samples(srcRect, transformedRect)); |
| SkRect innerSrcRect(srcRect), innerTransformedRect, |
| outerTransformedRect(transformedRect); |
| innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); |
| m.mapRect(&innerTransformedRect, innerSrcRect); |
| |
| // The gap between outerTransformedRect and innerTransformedRect |
| // represents the projection of the source border area, which is |
| // problematic for color bleeding. We must check whether any |
| // destination pixels sample the border area. |
| outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| SkIRect outer, inner; |
| outerTransformedRect.round(&outer); |
| innerTransformedRect.round(&inner); |
| // If the inner and outer rects round to the same result, it means the |
| // border does not overlap any pixel centers. Yay! |
| return inner != outer; |
| } |
| |
| static bool needs_texture_domain(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| GrTextureParams ¶ms, |
| const SkMatrix& contextMatrix, |
| bool bicubic) { |
| bool needsTextureDomain = false; |
| |
| if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) { |
| // Need texture domain if drawing a sub rect |
| needsTextureDomain = srcRect.width() < bitmap.width() || |
| srcRect.height() < bitmap.height(); |
| if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) { |
| // sampling is axis-aligned |
| SkRect transformedRect; |
| contextMatrix.mapRect(&transformedRect, srcRect); |
| |
| if (has_aligned_samples(srcRect, transformedRect)) { |
| params.setFilterMode(GrTextureParams::kNone_FilterMode); |
| needsTextureDomain = false; |
| } else { |
| needsTextureDomain = may_color_bleed(srcRect, transformedRect, contextMatrix); |
| } |
| } |
| } |
| return needsTextureDomain; |
| } |
| |
| void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkRect* srcRectPtr, |
| const SkSize* dstSizePtr, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkRect srcRect; |
| SkSize dstSize; |
| // If there is no src rect, or the src rect contains the entire bitmap then we're effectively |
| // in the (easier) bleed case, so update flags. |
| if (NULL == srcRectPtr) { |
| SkScalar w = SkIntToScalar(bitmap.width()); |
| SkScalar h = SkIntToScalar(bitmap.height()); |
| dstSize.fWidth = w; |
| dstSize.fHeight = h; |
| srcRect.set(0, 0, w, h); |
| flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); |
| } else { |
| SkASSERT(NULL != dstSizePtr); |
| srcRect = *srcRectPtr; |
| dstSize = *dstSizePtr; |
| if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 && |
| srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) { |
| flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); |
| } |
| } |
| |
| if (paint.getMaskFilter()){ |
| // Convert the bitmap to a shader so that the rect can be drawn |
| // through drawRect, which supports mask filters. |
| SkBitmap tmp; // subset of bitmap, if necessary |
| const SkBitmap* bitmapPtr = &bitmap; |
| SkMatrix localM; |
| if (NULL != srcRectPtr) { |
| localM.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); |
| localM.postScale(dstSize.fWidth / srcRectPtr->width(), |
| dstSize.fHeight / srcRectPtr->height()); |
| // In bleed mode we position and trim the bitmap based on the src rect which is |
| // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out |
| // the desired portion of the bitmap and then update 'm' and 'srcRect' to |
| // compensate. |
| if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) { |
| SkIRect iSrc; |
| srcRect.roundOut(&iSrc); |
| |
| SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), |
| SkIntToScalar(iSrc.fTop)); |
| |
| if (!bitmap.extractSubset(&tmp, iSrc)) { |
| return; // extraction failed |
| } |
| bitmapPtr = &tmp; |
| srcRect.offset(-offset.fX, -offset.fY); |
| |
| // The source rect has changed so update the matrix |
| localM.preTranslate(offset.fX, offset.fY); |
| } |
| } else { |
| localM.reset(); |
| } |
| |
| SkPaint paintWithShader(paint); |
| paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, |
| SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &localM))->unref(); |
| SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; |
| this->drawRect(draw, dstRect, paintWithShader); |
| |
| return; |
| } |
| |
| // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using |
| // the view matrix rather than a local matrix. |
| SkMatrix m; |
| m.setScale(dstSize.fWidth / srcRect.width(), |
| dstSize.fHeight / srcRect.height()); |
| fContext->concatMatrix(m); |
| |
| GrTextureParams params; |
| SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel(); |
| GrTextureParams::FilterMode textureFilterMode; |
| |
| bool doBicubic = false; |
| |
| switch(paintFilterLevel) { |
| case SkPaint::kNone_FilterLevel: |
| textureFilterMode = GrTextureParams::kNone_FilterMode; |
| break; |
| case SkPaint::kLow_FilterLevel: |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| break; |
| case SkPaint::kMedium_FilterLevel: |
| if (fContext->getMatrix().getMinScale() < SK_Scalar1) { |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| } else { |
| // Don't trigger MIP level generation unnecessarily. |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| break; |
| case SkPaint::kHigh_FilterLevel: |
| // Minification can look bad with the bicubic effect. |
| doBicubic = |
| GrBicubicEffect::ShouldUseBicubic(fContext->getMatrix(), &textureFilterMode); |
| break; |
| default: |
| SkErrorInternals::SetError( kInvalidPaint_SkError, |
| "Sorry, I don't understand the filtering " |
| "mode you asked for. Falling back to " |
| "MIPMaps."); |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| break; |
| } |
| |
| int tileFilterPad; |
| if (doBicubic) { |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { |
| tileFilterPad = 0; |
| } else { |
| tileFilterPad = 1; |
| } |
| params.setFilterMode(textureFilterMode); |
| |
| int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad; |
| int tileSize; |
| |
| SkIRect clippedSrcRect; |
| if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize, |
| &clippedSrcRect)) { |
| this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize, |
| doBicubic); |
| } else { |
| // take the simple case |
| bool needsTextureDomain = needs_texture_domain(bitmap, |
| srcRect, |
| params, |
| fContext->getMatrix(), |
| doBicubic); |
| this->internalDrawBitmap(bitmap, |
| srcRect, |
| params, |
| paint, |
| flags, |
| doBicubic, |
| needsTextureDomain); |
| } |
| } |
| |
| // Break 'bitmap' into several tiles to draw it since it has already |
| // been determined to be too large to fit in VRAM |
| void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| const SkIRect& clippedSrcIRect, |
| const GrTextureParams& params, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags, |
| int tileSize, |
| bool bicubic) { |
| // The following pixel lock is technically redundant, but it is desirable |
| // to lock outside of the tile loop to prevent redecoding the whole image |
| // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that |
| // is larger than the limit of the discardable memory pool. |
| SkAutoLockPixels alp(bitmap); |
| SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); |
| |
| int nx = bitmap.width() / tileSize; |
| int ny = bitmap.height() / tileSize; |
| for (int x = 0; x <= nx; x++) { |
| for (int y = 0; y <= ny; y++) { |
| SkRect tileR; |
| tileR.set(SkIntToScalar(x * tileSize), |
| SkIntToScalar(y * tileSize), |
| SkIntToScalar((x + 1) * tileSize), |
| SkIntToScalar((y + 1) * tileSize)); |
| |
| if (!SkRect::Intersects(tileR, clippedSrcRect)) { |
| continue; |
| } |
| |
| if (!tileR.intersect(srcRect)) { |
| continue; |
| } |
| |
| SkBitmap tmpB; |
| SkIRect iTileR; |
| tileR.roundOut(&iTileR); |
| SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), |
| SkIntToScalar(iTileR.fTop)); |
| |
| // Adjust the context matrix to draw at the right x,y in device space |
| SkMatrix tmpM; |
| GrContext::AutoMatrix am; |
| tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); |
| am.setPreConcat(fContext, tmpM); |
| |
| if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) { |
| SkIRect iClampRect; |
| |
| if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) { |
| // In bleed mode we want to always expand the tile on all edges |
| // but stay within the bitmap bounds |
| iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| } else { |
| // In texture-domain/clamp mode we only want to expand the |
| // tile on edges interior to "srcRect" (i.e., we want to |
| // not bleed across the original clamped edges) |
| srcRect.roundOut(&iClampRect); |
| } |
| int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; |
| clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); |
| } |
| |
| if (bitmap.extractSubset(&tmpB, iTileR)) { |
| // now offset it to make it "local" to our tmp bitmap |
| tileR.offset(-offset.fX, -offset.fY); |
| GrTextureParams paramsTemp = params; |
| bool needsTextureDomain = needs_texture_domain(bitmap, |
| srcRect, |
| paramsTemp, |
| fContext->getMatrix(), |
| bicubic); |
| this->internalDrawBitmap(tmpB, |
| tileR, |
| paramsTemp, |
| paint, |
| flags, |
| bicubic, |
| needsTextureDomain); |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * This is called by drawBitmap(), which has to handle images that may be too |
| * large to be represented by a single texture. |
| * |
| * internalDrawBitmap assumes that the specified bitmap will fit in a texture |
| * and that non-texture portion of the GrPaint has already been setup. |
| */ |
| void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| const GrTextureParams& params, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags, |
| bool bicubic, |
| bool needsTextureDomain) { |
| SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && |
| bitmap.height() <= fContext->getMaxTextureSize()); |
| |
| GrTexture* texture; |
| SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); |
| if (NULL == texture) { |
| return; |
| } |
| |
| SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; |
| SkRect paintRect; |
| SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); |
| SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); |
| paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), |
| SkScalarMul(srcRect.fTop, hInv), |
| SkScalarMul(srcRect.fRight, wInv), |
| SkScalarMul(srcRect.fBottom, hInv)); |
| |
| SkRect textureDomain = SkRect::MakeEmpty(); |
| SkAutoTUnref<GrEffect> effect; |
| if (needsTextureDomain && !(flags & SkCanvas::kBleed_DrawBitmapRectFlag)) { |
| // Use a constrained texture domain to avoid color bleeding |
| SkScalar left, top, right, bottom; |
| if (srcRect.width() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / texture->width(); |
| left = paintRect.left() + border; |
| right = paintRect.right() - border; |
| } else { |
| left = right = SkScalarHalf(paintRect.left() + paintRect.right()); |
| } |
| if (srcRect.height() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / texture->height(); |
| top = paintRect.top() + border; |
| bottom = paintRect.bottom() - border; |
| } else { |
| top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); |
| } |
| textureDomain.setLTRB(left, top, right, bottom); |
| if (bicubic) { |
| effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), textureDomain)); |
| } else { |
| effect.reset(GrTextureDomainEffect::Create(texture, |
| SkMatrix::I(), |
| textureDomain, |
| GrTextureDomain::kClamp_Mode, |
| params.filterMode())); |
| } |
| } else if (bicubic) { |
| SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); |
| SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; |
| effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes)); |
| } else { |
| effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); |
| } |
| |
| // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring |
| // the rest from the SkPaint. |
| GrPaint grPaint; |
| grPaint.addColorEffect(effect); |
| bool alphaOnly = !(kAlpha_8_SkColorType == bitmap.colorType()); |
| GrColor paintColor = (alphaOnly) ? SkColor2GrColorJustAlpha(paint.getColor()) : |
| SkColor2GrColor(paint.getColor()); |
| SkPaint2GrPaintNoShader(this->context(), paint, paintColor, false, &grPaint); |
| |
| fContext->drawRectToRect(grPaint, dstRect, paintRect); |
| } |
| |
| static bool filter_texture(SkBaseDevice* device, GrContext* context, |
| GrTexture* texture, const SkImageFilter* filter, |
| int w, int h, const SkImageFilter::Context& ctx, |
| SkBitmap* result, SkIPoint* offset) { |
| SkASSERT(filter); |
| SkDeviceImageFilterProxy proxy(device); |
| |
| if (filter->canFilterImageGPU()) { |
| // Save the render target and set it to NULL, so we don't accidentally draw to it in the |
| // filter. Also set the clip wide open and the matrix to identity. |
| GrContext::AutoWideOpenIdentityDraw awo(context, NULL); |
| return filter->filterImageGPU(&proxy, wrap_texture(texture), ctx, result, offset); |
| } else { |
| return false; |
| } |
| } |
| |
| void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, |
| int left, int top, const SkPaint& paint) { |
| // drawSprite is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw, true); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| return; |
| } |
| |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| |
| GrTexture* texture; |
| // draw sprite uses the default texture params |
| SkAutoCachedTexture act(this, bitmap, NULL, &texture); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| // This bitmap will own the filtered result as a texture. |
| SkBitmap filteredBitmap; |
| |
| if (NULL != filter) { |
| SkIPoint offset = SkIPoint::Make(0, 0); |
| SkMatrix matrix(*draw.fMatrix); |
| matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); |
| SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache()); |
| // This cache is transient, and is freed (along with all its contained |
| // textures) when it goes out of scope. |
| SkImageFilter::Context ctx(matrix, clipBounds, cache); |
| if (filter_texture(this, fContext, texture, filter, w, h, ctx, &filteredBitmap, |
| &offset)) { |
| texture = (GrTexture*) filteredBitmap.getTexture(); |
| w = filteredBitmap.width(); |
| h = filteredBitmap.height(); |
| left += offset.x(); |
| top += offset.y(); |
| } else { |
| return; |
| } |
| } |
| |
| GrPaint grPaint; |
| grPaint.addColorTextureEffect(texture, SkMatrix::I()); |
| |
| SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()), |
| false, &grPaint); |
| |
| fContext->drawRectToRect(grPaint, |
| SkRect::MakeXYWH(SkIntToScalar(left), |
| SkIntToScalar(top), |
| SkIntToScalar(w), |
| SkIntToScalar(h)), |
| SkRect::MakeXYWH(0, |
| 0, |
| SK_Scalar1 * w / texture->width(), |
| SK_Scalar1 * h / texture->height())); |
| } |
| |
| void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, |
| const SkRect* src, const SkRect& dst, |
| const SkPaint& paint, |
| SkCanvas::DrawBitmapRectFlags flags) { |
| SkMatrix matrix; |
| SkRect bitmapBounds, tmpSrc; |
| |
| bitmapBounds.set(0, 0, |
| SkIntToScalar(bitmap.width()), |
| SkIntToScalar(bitmap.height())); |
| |
| // Compute matrix from the two rectangles |
| if (NULL != src) { |
| tmpSrc = *src; |
| } else { |
| tmpSrc = bitmapBounds; |
| } |
| |
| matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); |
| |
| // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. |
| if (NULL != src) { |
| if (!bitmapBounds.contains(tmpSrc)) { |
| if (!tmpSrc.intersect(bitmapBounds)) { |
| return; // nothing to draw |
| } |
| } |
| } |
| |
| SkRect tmpDst; |
| matrix.mapRect(&tmpDst, tmpSrc); |
| |
| SkTCopyOnFirstWrite<SkDraw> draw(origDraw); |
| if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { |
| // Translate so that tempDst's top left is at the origin. |
| matrix = *origDraw.fMatrix; |
| matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); |
| draw.writable()->fMatrix = &matrix; |
| } |
| SkSize dstSize; |
| dstSize.fWidth = tmpDst.width(); |
| dstSize.fHeight = tmpDst.height(); |
| |
| this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, flags); |
| } |
| |
| void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, |
| int x, int y, const SkPaint& paint) { |
| // clear of the source device must occur before CHECK_SHOULD_DRAW |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawDevice", fContext); |
| SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); |
| if (dev->fNeedClear) { |
| // TODO: could check here whether we really need to draw at all |
| dev->clear(0x0); |
| } |
| |
| // drawDevice is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw, true); |
| |
| GrRenderTarget* devRT = dev->accessRenderTarget(); |
| GrTexture* devTex; |
| if (NULL == (devTex = devRT->asTexture())) { |
| return; |
| } |
| |
| const SkBitmap& bm = dev->accessBitmap(false); |
| int w = bm.width(); |
| int h = bm.height(); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| // This bitmap will own the filtered result as a texture. |
| SkBitmap filteredBitmap; |
| |
| if (NULL != filter) { |
| SkIPoint offset = SkIPoint::Make(0, 0); |
| SkMatrix matrix(*draw.fMatrix); |
| matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); |
| SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height()); |
| // This cache is transient, and is freed (along with all its contained |
| // textures) when it goes out of scope. |
| SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache()); |
| SkImageFilter::Context ctx(matrix, clipBounds, cache); |
| if (filter_texture(this, fContext, devTex, filter, w, h, ctx, &filteredBitmap, |
| &offset)) { |
| devTex = filteredBitmap.getTexture(); |
| w = filteredBitmap.width(); |
| h = filteredBitmap.height(); |
| x += offset.fX; |
| y += offset.fY; |
| } else { |
| return; |
| } |
| } |
| |
| GrPaint grPaint; |
| grPaint.addColorTextureEffect(devTex, SkMatrix::I()); |
| |
| SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()), |
| false, &grPaint); |
| |
| SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), |
| SkIntToScalar(y), |
| SkIntToScalar(w), |
| SkIntToScalar(h)); |
| |
| // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate |
| // scratch texture). |
| SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), |
| SK_Scalar1 * h / devTex->height()); |
| |
| fContext->drawRectToRect(grPaint, dstRect, srcRect); |
| } |
| |
| bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) { |
| return filter->canFilterImageGPU(); |
| } |
| |
| bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, |
| const SkImageFilter::Context& ctx, |
| SkBitmap* result, SkIPoint* offset) { |
| // want explicitly our impl, so guard against a subclass of us overriding it |
| if (!this->SkGpuDevice::canHandleImageFilter(filter)) { |
| return false; |
| } |
| |
| SkAutoLockPixels alp(src, !src.getTexture()); |
| if (!src.getTexture() && !src.readyToDraw()) { |
| return false; |
| } |
| |
| GrTexture* texture; |
| // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup |
| // must be pushed upstack. |
| SkAutoCachedTexture act(this, src, NULL, &texture); |
| |
| return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctx, |
| result, offset); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // must be in SkCanvas::VertexMode order |
| static const GrPrimitiveType gVertexMode2PrimitiveType[] = { |
| kTriangles_GrPrimitiveType, |
| kTriangleStrip_GrPrimitiveType, |
| kTriangleFan_GrPrimitiveType, |
| }; |
| |
| void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, |
| int vertexCount, const SkPoint vertices[], |
| const SkPoint texs[], const SkColor colors[], |
| SkXfermode* xmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawVertices", fContext); |
| |
| const uint16_t* outIndices; |
| SkAutoTDeleteArray<uint16_t> outAlloc(NULL); |
| GrPrimitiveType primType; |
| GrPaint grPaint; |
| |
| // If both textures and vertex-colors are NULL, strokes hairlines with the paint's color. |
| if ((NULL == texs || NULL == paint.getShader()) && NULL == colors) { |
| |
| texs = NULL; |
| |
| SkPaint copy(paint); |
| copy.setStyle(SkPaint::kStroke_Style); |
| copy.setStrokeWidth(0); |
| |
| // we ignore the shader if texs is null. |
| SkPaint2GrPaintNoShader(this->context(), copy, SkColor2GrColor(copy.getColor()), |
| NULL == colors, &grPaint); |
| |
| primType = kLines_GrPrimitiveType; |
| int triangleCount = 0; |
| int n = (NULL == indices) ? vertexCount : indexCount; |
| switch (vmode) { |
| case SkCanvas::kTriangles_VertexMode: |
| triangleCount = n / 3; |
| break; |
| case SkCanvas::kTriangleStrip_VertexMode: |
| case SkCanvas::kTriangleFan_VertexMode: |
| triangleCount = n - 2; |
| break; |
| } |
| |
| VertState state(vertexCount, indices, indexCount); |
| VertState::Proc vertProc = state.chooseProc(vmode); |
| |
| //number of indices for lines per triangle with kLines |
| indexCount = triangleCount * 6; |
| |
| outAlloc.reset(SkNEW_ARRAY(uint16_t, indexCount)); |
| outIndices = outAlloc.get(); |
| uint16_t* auxIndices = outAlloc.get(); |
| int i = 0; |
| while (vertProc(&state)) { |
| auxIndices[i] = state.f0; |
| auxIndices[i + 1] = state.f1; |
| auxIndices[i + 2] = state.f1; |
| auxIndices[i + 3] = state.f2; |
| auxIndices[i + 4] = state.f2; |
| auxIndices[i + 5] = state.f0; |
| i += 6; |
| } |
| } else { |
| outIndices = indices; |
| primType = gVertexMode2PrimitiveType[vmode]; |
| |
| if (NULL == texs || NULL == paint.getShader()) { |
| SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColor(paint.getColor()), |
| NULL == colors, &grPaint); |
| } else { |
| SkPaint2GrPaintShader(this->context(), paint, NULL == colors, &grPaint); |
| } |
| } |
| |
| #if 0 |
| if (NULL != xmode && NULL != texs && NULL != colors) { |
| if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) { |
| SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); |
| return; |
| } |
| } |
| #endif |
| |
| SkAutoSTMalloc<128, GrColor> convertedColors(0); |
| if (NULL != colors) { |
| // need to convert byte order and from non-PM to PM |
| convertedColors.reset(vertexCount); |
| SkColor color; |
| for (int i = 0; i < vertexCount; ++i) { |
| color = colors[i]; |
| if (paint.getAlpha() != 255) { |
| color = SkColorSetA(color, SkMulDiv255Round(SkColorGetA(color), paint.getAlpha())); |
| } |
| convertedColors[i] = SkColor2GrColor(color); |
| } |
| colors = convertedColors.get(); |
| } |
| fContext->drawVertices(grPaint, |
| primType, |
| vertexCount, |
| vertices, |
| texs, |
| colors, |
| outIndices, |
| indexCount); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawText(const SkDraw& draw, const void* text, |
| size_t byteLength, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext); |
| |
| if (fMainTextContext->canDraw(paint)) { |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fMainTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); |
| } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fFallbackTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); |
| } else { |
| // this guy will just call our drawPath() |
| draw.drawText_asPaths((const char*)text, byteLength, x, y, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, |
| size_t byteLength, const SkScalar pos[], |
| SkScalar constY, int scalarsPerPos, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| if (fMainTextContext->canDraw(paint)) { |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fMainTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, |
| constY, scalarsPerPos); |
| } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { |
| GrPaint grPaint; |
| SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fFallbackTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, |
| constY, scalarsPerPos); |
| } else { |
| draw.drawPosText_asPaths((const char*)text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, |
| size_t len, const SkPath& path, |
| const SkMatrix* m, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkASSERT(draw.fDevice == this); |
| draw.drawTextOnPath((const char*)text, len, path, m, paint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { |
| if (!paint.isLCDRenderText()) { |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| if (paint.getShader() || |
| paint.getXfermode() || // unless its srcover |
| paint.getMaskFilter() || |
| paint.getRasterizer() || |
| paint.getColorFilter() || |
| paint.getPathEffect() || |
| paint.isFakeBoldText() || |
| paint.getStyle() != SkPaint::kFill_Style) { |
| // turn off lcd |
| flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; |
| flags->fHinting = paint.getHinting(); |
| return true; |
| } |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| void SkGpuDevice::flush() { |
| DO_DEFERRED_CLEAR(); |
| fContext->resolveRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBaseDevice* SkGpuDevice::onCreateDevice(const SkImageInfo& info, Usage usage) { |
| GrTextureDesc desc; |
| desc.fConfig = fRenderTarget->config(); |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = info.width(); |
| desc.fHeight = info.height(); |
| desc.fSampleCnt = fRenderTarget->numSamples(); |
| |
| SkAutoTUnref<GrTexture> texture; |
| // Skia's convention is to only clear a device if it is non-opaque. |
| unsigned flags = info.isOpaque() ? 0 : kNeedClear_Flag; |
| |
| #if CACHE_COMPATIBLE_DEVICE_TEXTURES |
| // layers are never draw in repeat modes, so we can request an approx |
| // match and ignore any padding. |
| flags |= kCached_Flag; |
| const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? |
| GrContext::kApprox_ScratchTexMatch : |
| GrContext::kExact_ScratchTexMatch; |
| texture.reset(fContext->lockAndRefScratchTexture(desc, match)); |
| #else |
| texture.reset(fContext->createUncachedTexture(desc, NULL, 0)); |
| #endif |
| if (NULL != texture.get()) { |
| return SkGpuDevice::Create(texture, flags); |
| } else { |
| GrPrintf("---- failed to create compatible device texture [%d %d]\n", |
| info.width(), info.height()); |
| return NULL; |
| } |
| } |
| |
| SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info) { |
| return SkSurface::NewRenderTarget(fContext, info, fRenderTarget->numSamples()); |
| } |
| |
| void SkGpuDevice::EXPERIMENTAL_optimize(const SkPicture* picture) { |
| fContext->getLayerCache()->processDeletedPictures(); |
| |
| if (NULL != picture->fData.get() && !picture->fData->suitableForLayerOptimization()) { |
| return; |
| } |
| |
| SkPicture::AccelData::Key key = GrAccelData::ComputeAccelDataKey(); |
| |
| const SkPicture::AccelData* existing = picture->EXPERIMENTAL_getAccelData(key); |
| if (NULL != existing) { |
| return; |
| } |
| |
| SkAutoTUnref<GrAccelData> data(SkNEW_ARGS(GrAccelData, (key))); |
| |
| picture->EXPERIMENTAL_addAccelData(data); |
| |
| GatherGPUInfo(picture, data); |
| |
| fContext->getLayerCache()->trackPicture(picture); |
| } |
| |
| static void wrap_texture(GrTexture* texture, int width, int height, SkBitmap* result) { |
| SkImageInfo info = SkImageInfo::MakeN32Premul(width, height); |
| result->setInfo(info); |
| result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref(); |
| } |
| |
| // Return true if any layers are suitable for hoisting |
| bool SkGpuDevice::FindLayersToHoist(const GrAccelData *gpuData, |
| const SkPicture::OperationList* ops, |
| const SkIRect& query, |
| bool* pullForward) { |
| bool anyHoisted = false; |
| |
| // Layer hoisting pre-renders the entire layer since it will be cached and potentially |
| // reused with different clips (e.g., in different tiles). Because of this the |
| // clip will not be limiting the size of the pre-rendered layer. kSaveLayerMaxSize |
| // is used to limit which clips are pre-rendered. |
| static const int kSaveLayerMaxSize = 256; |
| |
| if (NULL != ops) { |
| // In this case the picture has been generated with a BBH so we use |
| // the BBH to limit the pre-rendering to just the layers needed to cover |
| // the region being drawn |
| for (int i = 0; i < ops->numOps(); ++i) { |
| uint32_t offset = ops->offset(i); |
| |
| // For now we're saving all the layers in the GrAccelData so they |
| // can be nested. Additionally, the nested layers appear before |
| // their parent in the list. |
| for (int j = 0; j < gpuData->numSaveLayers(); ++j) { |
| const GrAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j); |
| |
| if (pullForward[j]) { |
| continue; // already pulling forward |
| } |
| |
| if (offset < info.fSaveLayerOpID || offset > info.fRestoreOpID) { |
| continue; // the op isn't in this range |
| } |
| |
| // TODO: once this code is more stable unsuitable layers can |
| // just be omitted during the optimization stage |
| if (!info.fValid || |
| kSaveLayerMaxSize < info.fSize.fWidth || |
| kSaveLayerMaxSize < info.fSize.fHeight || |
| info.fIsNested) { |
| continue; // this layer is unsuitable |
| } |
| |
| pullForward[j] = true; |
| anyHoisted = true; |
| } |
| } |
| } else { |
| // In this case there is no BBH associated with the picture. Pre-render |
| // all the layers that intersect the drawn region |
| for (int j = 0; j < gpuData->numSaveLayers(); ++j) { |
| const GrAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j); |
| |
| SkIRect layerRect = SkIRect::MakeXYWH(info.fOffset.fX, |
| info.fOffset.fY, |
| info.fSize.fWidth, |
| info.fSize.fHeight); |
| |
| if (!SkIRect::Intersects(query, layerRect)) { |
| continue; |
| } |
| |
| // TODO: once this code is more stable unsuitable layers can |
| // just be omitted during the optimization stage |
| if (!info.fValid || |
| kSaveLayerMaxSize < info.fSize.fWidth || |
| kSaveLayerMaxSize < info.fSize.fHeight || |
| info.fIsNested) { |
| continue; |
| } |
| |
| pullForward[j] = true; |
| anyHoisted = true; |
| } |
| } |
| |
| return anyHoisted; |
| } |
| |
| bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* mainCanvas, const SkPicture* picture, |
| const SkMatrix* matrix, const SkPaint* paint) { |
| // todo: should handle these natively |
| if (matrix || paint) { |
| return false; |
| } |
| |
| fContext->getLayerCache()->processDeletedPictures(); |
| |
| SkPicture::AccelData::Key key = GrAccelData::ComputeAccelDataKey(); |
| |
| const SkPicture::AccelData* data = picture->EXPERIMENTAL_getAccelData(key); |
| if (NULL == data) { |
| return false; |
| } |
| |
| const GrAccelData *gpuData = static_cast<const GrAccelData*>(data); |
| |
| if (0 == gpuData->numSaveLayers()) { |
| return false; |
| } |
| |
| SkAutoTArray<bool> pullForward(gpuData->numSaveLayers()); |
| for (int i = 0; i < gpuData->numSaveLayers(); ++i) { |
| pullForward[i] = false; |
| } |
| |
| SkRect clipBounds; |
| if (!mainCanvas->getClipBounds(&clipBounds)) { |
| return true; |
| } |
| SkIRect query; |
| clipBounds.roundOut(&query); |
| |
| SkAutoTDelete<const SkPicture::OperationList> ops(picture->EXPERIMENTAL_getActiveOps(query)); |
| |
| if (!FindLayersToHoist(gpuData, ops.get(), query, pullForward.get())) { |
| return false; |
| } |
| |
| SkPictureReplacementPlayback::PlaybackReplacements replacements; |
| |
| SkTDArray<GrCachedLayer*> atlased, nonAtlased; |
| atlased.setReserve(gpuData->numSaveLayers()); |
| |
| // Generate the layer and/or ensure it is locked |
| for (int i = 0; i < gpuData->numSaveLayers(); ++i) { |
| if (pullForward[i]) { |
| const GrAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(i); |
| |
| GrCachedLayer* layer = fContext->getLayerCache()->findLayerOrCreate(picture->uniqueID(), |
| info.fSaveLayerOpID, |
| info.fRestoreOpID, |
| info.fCTM); |
| |
| SkPictureReplacementPlayback::PlaybackReplacements::ReplacementInfo* layerInfo = |
| replacements.push(); |
| layerInfo->fStart = info.fSaveLayerOpID; |
| layerInfo->fStop = info.fRestoreOpID; |
| layerInfo->fPos = info.fOffset; |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = info.fSize.fWidth; |
| desc.fHeight = info.fSize.fHeight; |
| desc.fConfig = kSkia8888_GrPixelConfig; |
| // TODO: need to deal with sample count |
| |
| bool needsRendering = fContext->getLayerCache()->lock(layer, desc, |
| info.fHasNestedLayers || info.fIsNested); |
| if (NULL == layer->texture()) { |
| continue; |
| } |
| |
| layerInfo->fBM = SkNEW(SkBitmap); // fBM is allocated so ReplacementInfo can be POD |
| wrap_texture(layer->texture(), |
| !layer->isAtlased() ? desc.fWidth : layer->texture()->width(), |
| !layer->isAtlased() ? desc.fHeight : layer->texture()->height(), |
| layerInfo->fBM); |
| |
| SkASSERT(info.fPaint); |
| layerInfo->fPaint = info.fPaint; |
| |
| layerInfo->fSrcRect = SkIRect::MakeXYWH(layer->rect().fLeft, |
| layer->rect().fTop, |
| layer->rect().width(), |
| layer->rect().height()); |
| |
| if (needsRendering) { |
| if (layer->isAtlased()) { |
| *atlased.append() = layer; |
| } else { |
| *nonAtlased.append() = layer; |
| } |
| } |
| } |
| } |
| |
| this->drawLayers(picture, atlased, nonAtlased); |
| |
| // Render the entire picture using new layers |
| SkPictureReplacementPlayback playback(picture, &replacements, ops.get()); |
| |
| playback.draw(mainCanvas, NULL); |
| |
| this->unlockLayers(picture); |
| |
| return true; |
| } |
| |
| void SkGpuDevice::drawLayers(const SkPicture* picture, |
| const SkTDArray<GrCachedLayer*>& atlased, |
| const SkTDArray<GrCachedLayer*>& nonAtlased) { |
| // Render the atlased layers that require it |
| if (atlased.count() > 0) { |
| // All the atlased layers are rendered into the same GrTexture |
| SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect( |
| atlased[0]->texture()->asRenderTarget(), |
| SkSurface::kStandard_TextRenderMode, |
| SkSurface::kDontClear_RenderTargetFlag)); |
| |
| SkCanvas* atlasCanvas = surface->getCanvas(); |
| |
| SkPaint paint; |
| paint.setColor(SK_ColorTRANSPARENT); |
| paint.setXfermode(SkXfermode::Create(SkXfermode::kSrc_Mode))->unref(); |
| |
| for (int i = 0; i < atlased.count(); ++i) { |
| GrCachedLayer* layer = atlased[i]; |
| |
| atlasCanvas->save(); |
| |
| // Add a rect clip to make sure the rendering doesn't |
| // extend beyond the boundaries of the atlased sub-rect |
| SkRect bound = SkRect::MakeXYWH(SkIntToScalar(layer->rect().fLeft), |
| SkIntToScalar(layer->rect().fTop), |
| SkIntToScalar(layer->rect().width()), |
| SkIntToScalar(layer->rect().height())); |
| atlasCanvas->clipRect(bound); |
| |
| // Since 'clear' doesn't respect the clip we need to draw a rect |
| // TODO: ensure none of the atlased layers contain a clear call! |
| atlasCanvas->drawRect(bound, paint); |
| |
| // info.fCTM maps the layer's top/left to the origin. |
| // Since this layer is atlased, the top/left corner needs |
| // to be offset to the correct location in the backing texture. |
| atlasCanvas->translate(bound.fLeft, bound.fTop); |
| atlasCanvas->concat(layer->ctm()); |
| |
| SkPictureRangePlayback rangePlayback(picture, |
| layer->start(), |
| layer->stop()); |
| rangePlayback.draw(atlasCanvas, NULL); |
| |
| atlasCanvas->restore(); |
| } |
| |
| atlasCanvas->flush(); |
| } |
| |
| // Render the non-atlased layers that require it |
| for (int i = 0; i < nonAtlased.count(); ++i) { |
| GrCachedLayer* layer = nonAtlased[i]; |
| |
| // Each non-atlased layer has its own GrTexture |
| SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect( |
| layer->texture()->asRenderTarget(), |
| SkSurface::kStandard_TextRenderMode, |
| SkSurface::kDontClear_RenderTargetFlag)); |
| |
| SkCanvas* layerCanvas = surface->getCanvas(); |
| |
| // Add a rect clip to make sure the rendering doesn't |
| // extend beyond the boundaries of the atlased sub-rect |
| SkRect bound = SkRect::MakeXYWH(SkIntToScalar(layer->rect().fLeft), |
| SkIntToScalar(layer->rect().fTop), |
| SkIntToScalar(layer->rect().width()), |
| SkIntToScalar(layer->rect().height())); |
| |
| layerCanvas->clipRect(bound); // TODO: still useful? |
| |
| layerCanvas->clear(SK_ColorTRANSPARENT); |
| |
| layerCanvas->concat(layer->ctm()); |
| |
| SkPictureRangePlayback rangePlayback(picture, |
| layer->start(), |
| layer->stop()); |
| rangePlayback.draw(layerCanvas, NULL); |
| |
| layerCanvas->flush(); |
| } |
| } |
| |
| void SkGpuDevice::unlockLayers(const SkPicture* picture) { |
| SkPicture::AccelData::Key key = GrAccelData::ComputeAccelDataKey(); |
| |
| const SkPicture::AccelData* data = picture->EXPERIMENTAL_getAccelData(key); |
| SkASSERT(NULL != data); |
| |
| const GrAccelData *gpuData = static_cast<const GrAccelData*>(data); |
| SkASSERT(0 != gpuData->numSaveLayers()); |
| |
| // unlock the layers |
| for (int i = 0; i < gpuData->numSaveLayers(); ++i) { |
| const GrAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(i); |
| |
| GrCachedLayer* layer = fContext->getLayerCache()->findLayer(picture->uniqueID(), |
| info.fSaveLayerOpID, |
| info.fRestoreOpID, |
| info.fCTM); |
| fContext->getLayerCache()->unlock(layer); |
| } |
| |
| #if DISABLE_CACHING |
| // This code completely clears out the atlas. It is required when |
| // caching is disabled so the atlas doesn't fill up and force more |
| // free floating layers |
| fContext->getLayerCache()->purge(picture->uniqueID()); |
| |
| fContext->getLayerCache()->purgeAll(); |
| #endif |
| } |
| |
| SkImageFilter::Cache* SkGpuDevice::getImageFilterCache() { |
| // We always return a transient cache, so it is freed after each |
| // filter traversal. |
| return SkImageFilter::Cache::Create(kDefaultImageFilterCacheSize); |
| } |