bungeman@google.com | cfcb1be | 2013-01-31 19:47:48 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | * |
| 7 | * The following code is based on the description in RFC 1321. |
| 8 | * http://www.ietf.org/rfc/rfc1321.txt |
| 9 | */ |
| 10 | |
| 11 | #include "SkTypes.h" |
| 12 | #include "SkMD5.h" |
| 13 | #include <string.h> |
| 14 | |
| 15 | /** MD5 basic transformation. Transforms state based on block. */ |
| 16 | static void transform(uint32_t state[4], const uint8_t block[64]); |
| 17 | |
| 18 | /** Encodes input into output (4 little endian 32 bit values). */ |
| 19 | static void encode(uint8_t output[16], const uint32_t input[4]); |
| 20 | |
| 21 | /** Encodes input into output (little endian 64 bit value). */ |
| 22 | static void encode(uint8_t output[8], const uint64_t input); |
| 23 | |
| 24 | /** Decodes input (4 little endian 32 bit values) into storage, if required. */ |
| 25 | static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); |
| 26 | |
| 27 | SkMD5::SkMD5() : byteCount(0) { |
| 28 | // These are magic numbers from the specification. |
| 29 | this->state[0] = 0x67452301; |
| 30 | this->state[1] = 0xefcdab89; |
| 31 | this->state[2] = 0x98badcfe; |
| 32 | this->state[3] = 0x10325476; |
| 33 | } |
| 34 | |
| 35 | void SkMD5::update(const uint8_t* input, size_t inputLength) { |
| 36 | unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
| 37 | unsigned int bufferAvailable = 64 - bufferIndex; |
| 38 | |
| 39 | unsigned int inputIndex; |
| 40 | if (inputLength >= bufferAvailable) { |
| 41 | if (bufferIndex) { |
| 42 | memcpy(&this->buffer[bufferIndex], input, bufferAvailable); |
| 43 | transform(this->state, this->buffer); |
| 44 | inputIndex = bufferAvailable; |
| 45 | } else { |
| 46 | inputIndex = 0; |
| 47 | } |
| 48 | |
| 49 | for (; inputIndex + 63 < inputLength; inputIndex += 64) { |
| 50 | transform(this->state, &input[inputIndex]); |
| 51 | } |
| 52 | |
| 53 | bufferIndex = 0; |
| 54 | } else { |
| 55 | inputIndex = 0; |
| 56 | } |
| 57 | |
| 58 | memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); |
| 59 | |
| 60 | this->byteCount += inputLength; |
| 61 | } |
| 62 | |
| 63 | void SkMD5::finish(Digest& digest) { |
| 64 | // Get the number of bits before padding. |
| 65 | uint8_t bits[8]; |
| 66 | encode(bits, this->byteCount << 3); |
| 67 | |
| 68 | // Pad out to 56 mod 64. |
| 69 | unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
| 70 | unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); |
| 71 | static uint8_t PADDING[64] = { |
| 72 | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 73 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 74 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 75 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 76 | }; |
| 77 | this->update(PADDING, paddingLength); |
| 78 | |
| 79 | // Append length (length before padding, will cause final update). |
| 80 | this->update(bits, 8); |
| 81 | |
| 82 | // Write out digest. |
| 83 | encode(digest.data, this->state); |
| 84 | |
| 85 | #if defined(SK_MD5_CLEAR_DATA) |
| 86 | // Clear state. |
| 87 | memset(this, 0, sizeof(*this)); |
| 88 | #endif |
| 89 | } |
| 90 | |
| 91 | struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
| 92 | //return (x & y) | ((~x) & z); |
| 93 | return ((y ^ z) & x) ^ z; //equivelent but faster |
| 94 | }}; |
| 95 | |
| 96 | struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
| 97 | return (x & z) | (y & (~z)); |
| 98 | //return ((x ^ y) & z) ^ y; //equivelent but slower |
| 99 | }}; |
| 100 | |
| 101 | struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
| 102 | return x ^ y ^ z; |
| 103 | }}; |
| 104 | |
| 105 | struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { |
| 106 | return y ^ (x | (~z)); |
| 107 | }}; |
| 108 | |
| 109 | /** Rotates x left n bits. */ |
| 110 | static inline uint32_t rotate_left(uint32_t x, uint8_t n) { |
| 111 | return (x << n) | (x >> (32 - n)); |
| 112 | } |
| 113 | |
| 114 | template <typename T> |
| 115 | static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, |
| 116 | uint32_t x, uint8_t s, uint32_t t) { |
| 117 | a = b + rotate_left(a + operation(b, c, d) + x + t, s); |
| 118 | } |
| 119 | |
| 120 | static void transform(uint32_t state[4], const uint8_t block[64]) { |
| 121 | uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; |
| 122 | |
| 123 | uint32_t storage[16]; |
| 124 | const uint32_t* X = decode(storage, block); |
| 125 | |
| 126 | // Round 1 |
| 127 | operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 |
| 128 | operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 |
| 129 | operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 |
| 130 | operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 |
| 131 | operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 |
| 132 | operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 |
| 133 | operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 |
| 134 | operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 |
| 135 | operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 |
| 136 | operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 |
| 137 | operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 |
| 138 | operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 |
| 139 | operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 |
| 140 | operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 |
| 141 | operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 |
| 142 | operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 |
| 143 | |
| 144 | // Round 2 |
| 145 | operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 |
| 146 | operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 |
| 147 | operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 |
| 148 | operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 |
| 149 | operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 |
| 150 | operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 |
| 151 | operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 |
| 152 | operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 |
| 153 | operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 |
| 154 | operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 |
| 155 | operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 |
| 156 | operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 |
| 157 | operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 |
| 158 | operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 |
| 159 | operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 |
| 160 | operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 |
| 161 | |
| 162 | // Round 3 |
| 163 | operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 |
| 164 | operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 |
| 165 | operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 |
| 166 | operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 |
| 167 | operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 |
| 168 | operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 |
| 169 | operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 |
| 170 | operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 |
| 171 | operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 |
| 172 | operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 |
| 173 | operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 |
| 174 | operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 |
| 175 | operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 |
| 176 | operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 |
| 177 | operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 |
| 178 | operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 |
| 179 | |
| 180 | // Round 4 |
| 181 | operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 |
| 182 | operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 |
| 183 | operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 |
| 184 | operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 |
| 185 | operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 |
| 186 | operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 |
| 187 | operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 |
| 188 | operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 |
| 189 | operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 |
| 190 | operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 |
| 191 | operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 |
| 192 | operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 |
| 193 | operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 |
| 194 | operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 |
| 195 | operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 |
| 196 | operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 |
| 197 | |
| 198 | state[0] += a; |
| 199 | state[1] += b; |
| 200 | state[2] += c; |
| 201 | state[3] += d; |
| 202 | |
| 203 | #if defined(SK_MD5_CLEAR_DATA) |
| 204 | // Clear sensitive information. |
| 205 | if (X == &storage) { |
| 206 | memset(storage, 0, sizeof(storage)); |
| 207 | } |
| 208 | #endif |
| 209 | } |
| 210 | |
| 211 | static void encode(uint8_t output[16], const uint32_t input[4]) { |
| 212 | for (size_t i = 0, j = 0; i < 4; i++, j += 4) { |
| 213 | output[j ] = (uint8_t) (input[i] & 0xff); |
| 214 | output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); |
| 215 | output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); |
| 216 | output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | static void encode(uint8_t output[8], const uint64_t input) { |
| 221 | output[0] = (uint8_t) (input & 0xff); |
| 222 | output[1] = (uint8_t)((input >> 8) & 0xff); |
| 223 | output[2] = (uint8_t)((input >> 16) & 0xff); |
| 224 | output[3] = (uint8_t)((input >> 24) & 0xff); |
| 225 | output[4] = (uint8_t)((input >> 32) & 0xff); |
| 226 | output[5] = (uint8_t)((input >> 40) & 0xff); |
| 227 | output[6] = (uint8_t)((input >> 48) & 0xff); |
| 228 | output[7] = (uint8_t)((input >> 56) & 0xff); |
| 229 | } |
| 230 | |
| 231 | static inline bool is_aligned(const void *pointer, size_t byte_count) { |
| 232 | return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; |
| 233 | } |
| 234 | |
| 235 | static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { |
| 236 | #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) |
| 237 | return reinterpret_cast<const uint32_t*>(input); |
| 238 | #else |
| 239 | #if defined(SK_CPU_LENDIAN) |
| 240 | if (is_aligned(input, 4)) { |
| 241 | return reinterpret_cast<const uint32_t*>(input); |
| 242 | } |
| 243 | #endif |
| 244 | for (size_t i = 0, j = 0; j < 64; i++, j += 4) { |
| 245 | storage[i] = ((uint32_t)input[j ]) | |
| 246 | (((uint32_t)input[j+1]) << 8) | |
| 247 | (((uint32_t)input[j+2]) << 16) | |
| 248 | (((uint32_t)input[j+3]) << 24); |
| 249 | } |
| 250 | return storage; |
| 251 | #endif |
| 252 | } |