commit | 0b54f13d27456c4e2085dbf24ec65290b54e9bf6 | [log] [tgz] |
---|---|---|
author | Ben Clayton <bclayton@google.com> | Mon Jan 06 13:38:54 2020 +0000 |
committer | Ben Clayton <bclayton@google.com> | Mon Jan 06 13:38:54 2020 +0000 |
tree | 363d9aaffc4754b43c4a10cb46b47c701b56204f | |
parent | d552f632f96490d04f1955f5106a716eb71556f2 [diff] |
Squashed 'third_party/SPIRV-Tools/' changes from c3f22f7cb..8aa423930 8aa423930 Avoid pessimizing std::move (#3124) fad92f1e7 Fix typo in validation message (#3122) 578c5ac13 Change default version for CreatInstBindlessCheckPass to 2 (#3119) 9215c1b7d Fix convert-relax-to-half invalid code (#3099) (#3106) 64f36ea52 Support OpenCL.DebugInfo.100 extended instruction set (#3080) e01bc6d4e spirv-fuzz: Always add new globals to entry point interfaces (#3113) dcb7169bb spirv-fuzz: Transformation to add a new function to a module (#3114) 2e41d5ece spirv-fuzz: Avoid passing access chains as parameters (#3112) e70b009b0 Add support for SPV_KHR_non_semantic_info (#3110) 38d7fbaad spirv-fuzz: Transformations to add types, constants and variables (#3101) fccbc00ac Make Instrumentation format version 2 the default (Step 1) (#3096) 96354f504 spirv-fuzz: Fuzzer pass to merge blocks (#3097) 5c019b592 Start SPIRV-Tools v2020.1 c413b982c Finalize SPIRV-Tools v2019.5 2afbe9051 Update CHANGES 00ca4e5bd Don't crash when folding construct of empty struct (#3092) 0a2b38d08 spirv-fuzz: function outlining fuzzer pass (#3078) 983b5b4fc spirv-fuzz: Use validator to check break/continue dominance conditions (#3089) e82a42860 WebGPU: Array size at most max signed int + 1 (#3077) 0a5d99d02 Permit the debug instructions in WebGPU SPIR-V - remove from the optimizer (#3083) af7410597 graphics robust access: use signed clamp (#3073) 3ed458604 Folding: perform add and sub on mismatched integer types (#3084) 47f3eb426 spirv-fuzz: Fix invalid tests (#3079) b334829a9 Validate nested constructs (#3068) 52e9cc930 spirv-fuzz: Improve debugging facilities (#3074) 54385458c Handle unreachable block when computing register pressure (#3070) 868ca3954 Improve RegisterSizePasses (#3059) f31f26f73 utils/vscode: Add install.bat (#3071) 03957e8a9 build: cmake: Add support for Fuchsia. (#3062) a62012ced Add test with explicit example of stripping reflection info (#3064) 8312c523e Permit the debug instructions in WebGPU SPIR-V (#3063) 85f3e93d1 Respect CMAKE_INSTALL_LIBDIR in installed CMake files (#3054) 45dde9ad6 Add missing dealloc (#3061) 2ee9aaa28 Initialize binary for use as guard later (#3058) 0391d0823 Handle OpPhi with no in operands in value numbering (#3056) ca703c887 Kill the id-to-func map after wrap-opkill (#3055) 57b4cb40b Convert stderr and stdout in status to strings on assignment (#3049) git-subtree-dir: third_party/SPIRV-Tools git-subtree-split: 8aa423930db37e37086665efcc55944d577c06e5
The SPIR-V Tools project provides an API and commands for processing SPIR-V modules.
The project includes an assembler, binary module parser, disassembler, validator, and optimizer for SPIR-V. Except for the optimizer, all are based on a common static library. The library contains all of the implementation details, and is used in the standalone tools whilst also enabling integration into other code bases directly. The optimizer implementation resides in its own library, which depends on the core library.
The interfaces have stabilized: We don't anticipate making a breaking change for existing features.
SPIR-V is defined by the Khronos Group Inc. See the SPIR-V Registry for the SPIR-V specification, headers, and XML registry.
See CHANGES
for a high level summary of recent changes, by version.
SPIRV-Tools project version numbers are of the form v
year.
index and with an optional -dev
suffix to indicate work in progress. For example, the following versions are ordered from oldest to newest:
v2016.0
v2016.1-dev
v2016.1
v2016.2-dev
v2016.2
Use the --version
option on each command line tool to see the software version. An API call reports the software version as a C-style string.
OpConstant
, OpSpecConstant
, and OpSwitch
.See docs/syntax.md
for the assembly language syntax.
The validator checks validation rules described by the SPIR-V specification.
Khronos recommends that tools that create or transform SPIR-V modules use the validator to ensure their outputs are valid, and that tools that consume SPIR-V modules optionally use the validator to protect themselves from bad inputs. This is especially encouraged for debug and development scenarios.
The validator has one-sided error: it will only return an error when it has implemented a rule check and the module violates that rule.
The validator is incomplete. See the CHANGES file for reports on completed work, and the Validator sub-project for planned and in-progress work.
Note: The validator checks some Universal Limits, from section 2.17 of the SPIR-V spec. The validator will fail on a module that exceeds those minimum upper bound limits. It is future work to parameterize the validator to allow larger limits accepted by a more than minimally capable SPIR-V consumer.
The optimizer is a collection of code transforms, or "passes". Transforms are written for a diverse set of reasons:
As of this writing, there are 67 transforms including examples such as:
OpSpecConstantOp
and OpSpecConstantComposite
Additionally, certain sets of transformations have been packaged into higher-level recipes. These include:
spirv-opt -Os
)spirv-opt -O
)For the latest list with detailed documentation, please refer to include/spirv-tools/optimizer.hpp
.
For suggestions on using the code reduction options, please refer to this white paper.
Note: The linker is still under development.
Current features:
See the CHANGES file for reports on completed work, and the General sub-project for planned and in-progress work.
Note: The reducer is still under development.
The reducer simplifies and shrinks a SPIR-V module with respect to a user-supplied interestingness function. For example, given a large SPIR-V module that cause some SPIR-V compiler to fail with a given fatal error message, the reducer could be used to look for a smaller version of the module that causes the compiler to fail with the same fatal error message.
To suggest an additional capability for the reducer, file an issue with "Reducer:" as the start of its title.
Note: The fuzzer is still under development.
The fuzzer applies semantics-preserving transformations to a SPIR-V binary module, to produce an equivalent module. The original and transformed modules should produce essentially identical results when executed on identical inputs: their results should differ only due to floating-point round-off, if at all. Significant differences in results can pinpoint bugs in tools that process SPIR-V binaries, such as miscompilations. This metamorphic testing approach is similar to the method used by the GraphicsFuzz project for fuzzing of GLSL shaders.
To suggest an additional capability for the fuzzer, file an issue with "Fuzzer:" as the start of its title.
spirv-tools-vimsyntax
generates file spvasm.vim
. Copy that file into your $HOME/.vim/syntax
directory to get SPIR-V assembly syntax highlighting in Vim. This build target is not built by default.The SPIR-V Tools project is maintained by members of the The Khronos Group Inc., and is hosted at https://github.com/KhronosGroup/SPIRV-Tools.
Consider joining the public_spirv_tools_dev@khronos.org
mailing list, via https://www.khronos.org/spir/spirv-tools-mailing-list/. The mailing list is used to discuss development plans for the SPIRV-Tools as an open source project. Once discussion is resolved, specific work is tracked via issues and sometimes in one of the projects.
(To provide feedback on the SPIR-V specification, file an issue on the SPIRV-Headers GitHub repository.)
See docs/projects.md
to see how we use the GitHub Project feature to organize planned and in-progress work.
Contributions via merge request are welcome. Changes should:
clang-format
. kokoro/check-format/build.sh shows how to download it. Note that we currently use clang-format version 5.0.0
for SPIRV-Tools. Settings are defined by the included .clang-format file.We intend to maintain a linear history on the GitHub master
branch.
example
: demo code of using SPIRV-Tools APIsexternal/googletest
: Intended location for the googletest sources, not providedexternal/effcee
: Location of Effcee sources, if the effcee
library is not already configured by an enclosing project.external/re2
: Location of RE2 sources, if the re2
library is not already configured by an enclosing project. (The Effcee project already requires RE2.)include/
: API clients should add this directory to the include search pathexternal/spirv-headers
: Intended location for SPIR-V headers, not providedinclude/spirv-tools/libspirv.h
: C API public interfacesource/
: API implementationtest/
: Tests, using the googletest frameworktools/
: Command line executablesExample of getting sources, assuming SPIRV-Tools is configured as a standalone project:
git clone https://github.com/KhronosGroup/SPIRV-Tools.git spirv-tools git clone https://github.com/KhronosGroup/SPIRV-Headers.git spirv-tools/external/spirv-headers git clone https://github.com/google/googletest.git spirv-tools/external/googletest git clone https://github.com/google/effcee.git spirv-tools/external/effcee git clone https://github.com/google/re2.git spirv-tools/external/re2
The project contains a number of tests, used to drive development and ensure correctness. The tests are written using the googletest framework. The googletest
source is not provided with this project. There are two ways to enable tests:
googletest
before configuring SPIR-V Tools.googletest
source into the <spirv-dir>/external/googletest
directory before configuring and building the project.Note: You must use a version of googletest that includes a fix for googletest issue 610. The fix is included on the googletest master branch any time after 2015-11-10. In particular, googletest must be newer than version 1.7.0.
Some tests depend on the Effcee library for stateful matching. Effcee itself depends on RE2.
external/effcee
and RE2 sources to appear in external/re2
.Instead of building manually, you can also download the binaries for your platform directly from the master-tot release on GitHub. Those binaries are automatically uploaded by the buildbots after successful testing and they always reflect the current top of the tree of the master branch.
In order to build the code, you first need to sync the external repositories that it depends on. Assume that <spirv-dir>
is the root directory of the checked out code:
cd <spirv-dir> git clone https://github.com/KhronosGroup/SPIRV-Headers.git external/spirv-headers git clone https://github.com/google/effcee.git external/effcee git clone https://github.com/google/re2.git external/re2 git clone https://github.com/google/googletest.git external/googletest # optional
Note: The script utils/git-sync-deps
can be used to checkout and/or update the contents of the repos under external/
instead of manually maintaining them.
You can build The project using CMake to generate platform-specific build configurations.
cd <spirv-dir> mkdir build && cd build cmake [-G <platform-generator>] <spirv-dir>
Once the build files have been generated, build using your preferred development environment.
You can also use Bazel to build the project.
cd <spirv-dir> bazel build :all
For building and testing SPIRV-Tools, the following tools should be installed regardless of your OS:
SPIRV-Tools is regularly tested with the following compilers:
On Linux
On MacOS
On Windows
Other compilers or later versions may work, but they are not tested.
The following CMake options are supported:
SPIRV_BUILD_FUZZER={ON|OFF}
, default OFF
- Build the spirv-fuzz tool.SPIRV_COLOR_TERMINAL={ON|OFF}
, default ON
- Enables color console output.SPIRV_SKIP_TESTS={ON|OFF}
, default OFF
- Build only the library and the command line tools. This will prevent the tests from being built.SPIRV_SKIP_EXECUTABLES={ON|OFF}
, default OFF
- Build only the library, not the command line tools and tests.SPIRV_USE_SANITIZER=<sanitizer>
, default is no sanitizing - On UNIX platforms with an appropriate version of clang
this option enables the use of the sanitizers documented here. This should only be used with a debug build.SPIRV_WARN_EVERYTHING={ON|OFF}
, default OFF
- On UNIX platforms enable more strict warnings. The code might not compile with this option enabled. For Clang, enables -Weverything
. For GCC, enables -Wpedantic
. See CMakeLists.txt
for details.SPIRV_WERROR={ON|OFF}
, default ON
- Forces a compilation error on any warnings encountered by enabling the compiler-specific compiler front-end option. No compiler front-end options are enabled when this option is OFF.Additionally, you can pass additional C preprocessor definitions to SPIRV-Tools via setting SPIRV_TOOLS_EXTRA_DEFINITIONS
. For example, by setting it to /D_ITERATOR_DEBUG_LEVEL=0
on Windows, you can disable checked iterators and iterator debugging.
SPIR-V Tools supports building static libraries libSPIRV-Tools.a
and libSPIRV-Tools-opt.a
for Android:
cd <spirv-dir> export ANDROID_NDK=/path/to/your/ndk mkdir build && cd build mkdir libs mkdir app $ANDROID_NDK/ndk-build -C ../android_test \ NDK_PROJECT_PATH=. \ NDK_LIBS_OUT=`pwd`/libs \ NDK_APP_OUT=`pwd`/app
Occasionally the entries in DEPS will need to be updated. This is done on demand when there is a request to do this, often due to downstream breakages. There is a script utils/roll_deps.sh
provided, which will generate a patch with the updated DEPS values. This will still need to be tested in your checkout to confirm that there are no integration issues that need to be resolved.
The internals of the library use C++11 features, and are exposed via both a C and C++ API.
In order to use the library from an application, the include path should point to <spirv-dir>/include
, which will enable the application to include the header <spirv-dir>/include/spirv-tools/libspirv.h{|pp}
then linking against the static library in <spirv-build-dir>/source/libSPIRV-Tools.a
or <spirv-build-dir>/source/SPIRV-Tools.lib
. For optimization, the header file is <spirv-dir>/include/spirv-tools/optimizer.hpp
, and the static library is <spirv-build-dir>/source/libSPIRV-Tools-opt.a
or <spirv-build-dir>/source/SPIRV-Tools-opt.lib
.
SPIRV-Tools
CMake target: Creates the static library:<spirv-build-dir>/source/libSPIRV-Tools.a
on Linux and OS X.<spirv-build-dir>/source/libSPIRV-Tools.lib
on Windows.SPIRV-Tools-opt
CMake target: Creates the static library:<spirv-build-dir>/source/libSPIRV-Tools-opt.a
on Linux and OS X.<spirv-build-dir>/source/libSPIRV-Tools-opt.lib
on Windows.The interfaces are still under development, and are expected to change.
There are five main entry points into the library in the C interface:
spvTextToBinary
: An assembler, translating text to a binary SPIR-V module.spvBinaryToText
: A disassembler, translating a binary SPIR-V module to text.spvBinaryParse
: The entry point to a binary parser API. It issues callbacks for the header and each parsed instruction. The disassembler is implemented as a client of spvBinaryParse
.spvValidate
implements the validator functionality. IncompletespvValidateBinary
implements the validator functionality. IncompleteThe C++ interface is comprised of three classes, SpirvTools
, Optimizer
and Linker
, all in the spvtools
namespace.
SpirvTools
provides Assemble
, Disassemble
, and Validate
methods.Optimizer
provides methods for registering and running optimization passes.Linker
provides methods for combining together multiple binaries.Command line tools, which wrap the above library functions, are provided to assemble or disassemble shader files. It's a convention to name SPIR-V assembly and binary files with suffix .spvasm
and .spv
, respectively.
The assembler reads the assembly language text, and emits the binary form.
The standalone assembler is the exectuable called spirv-as
, and is located in <spirv-build-dir>/tools/spirv-as
. The functionality of the assembler is implemented by the spvTextToBinary
library function.
spirv-as
- the standalone assembler<spirv-dir>/tools/as
Use option -h
to print help.
The disassembler reads the binary form, and emits assembly language text.
The standalone disassembler is the executable called spirv-dis
, and is located in <spirv-build-dir>/tools/spirv-dis
. The functionality of the disassembler is implemented by the spvBinaryToText
library function.
spirv-dis
- the standalone disassembler<spirv-dir>/tools/dis
Use option -h
to print help.
The output includes syntax colouring when printing to the standard output stream, on Linux, Windows, and OS X.
The linker combines multiple SPIR-V binary modules together, resulting in a single binary module as output.
This is a work in progress. The linker does not support OpenCL program linking options related to math flags. (See section 5.6.5.2 in OpenCL 1.2)
spirv-link
- the standalone linker<spirv-dir>/tools/link
The optimizer processes a SPIR-V binary module, applying transformations in the specified order.
This is a work in progress, with initially only few available transformations.
spirv-opt
- the standalone optimizer<spirv-dir>/tools/opt
Warning: This functionality is under development, and is incomplete.
The standalone validator is the executable called spirv-val
, and is located in <spirv-build-dir>/tools/spirv-val
. The functionality of the validator is implemented by the spvValidate
library function.
The validator operates on the binary form.
spirv-val
- the standalone validator<spirv-dir>/tools/val
The reducer shrinks a SPIR-V binary module, guided by a user-supplied interestingness test.
This is a work in progress, with initially only shrinks a module in a few ways.
spirv-reduce
- the standalone reducer<spirv-dir>/tools/reduce
Run spirv-reduce --help
to see how to specify interestingness.
The fuzzer transforms a SPIR-V binary module into a semantically-equivalent SPIR-V binary module by applying transformations in a randomized fashion.
This is a work in progress, with initially only a few semantics-preserving transformations.
spirv-fuzz
- the standalone fuzzer<spirv-dir>/tools/fuzz
Run spirv-fuzz --help
for a detailed list of options.
The control flow dumper prints the control flow graph for a SPIR-V module as a GraphViz graph.
This is experimental.
spirv-cfg
- the control flow graph dumper<spirv-dir>/tools/cfg
spirv-lesspipe.sh
- Automatically disassembles .spv
binary files for the less
program, on compatible systems. For example, set the LESSOPEN
environment variable as follows, assuming both spirv-lesspipe.sh
and spirv-dis
are on your executable search path:
export LESSOPEN='| spirv-lesspipe.sh "%s"'
Then you page through a disassembled module as follows:
less foo.spv
spirv-lesspipe.sh
script will pass through any extra arguments to spirv-dis
. So, for example, you can turn off colours and friendly ID naming as follows:export LESSOPEN='| spirv-lesspipe.sh "%s" --no-color --raw-id'
vim-spirv - A vim plugin which supports automatic disassembly of .spv
files using the :edit
command and assembly using the :write
command. The plugin also provides additional features which include; syntax highlighting; highlighting of all ID's matching the ID under the cursor; and highlighting errors where the Instruction
operand of OpExtInst
is used without an appropriate OpExtInstImport
.
50spirv-tools.el
- Automatically disassembles '.spv' binary files when loaded into the emacs text editor, and re-assembles them when saved, provided any modifications to the file are valid. This functionality must be explicitly requested by defining the symbol SPIRV_TOOLS_INSTALL_EMACS_HELPERS as follows:
cmake -DSPIRV_TOOLS_INSTALL_EMACS_HELPERS=true ...
In addition, this helper is only installed if the directory /etc/emacs/site-start.d exists, which is typically true if emacs is installed on the system.
Note that symbol IDs are not currently preserved through a load/edit/save operation. This may change if the ability is added to spirv-as.
Tests are only built when googletest is found. Use ctest
to run all the tests.
See the projects pages for more information.
OpLabel
instructions with that basic block's predecessors.This is a work in progress.
Full license terms are in LICENSE
Copyright (c) 2015-2016 The Khronos Group Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.