Merge changes from github.
END_PUBLIC

---
Commit 9f81374c3 authored by raymondxyang<zihao.yang@microsoft.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Add option for build more python tests in Cmake (#11853)

* Ignore Windows built project

* Fix deprecated methods in tf.contrib.python

* Fix regex match for Windows build in contrib.keras

* Fix Regex match for Windows build in session_bundle

* * Fix deprecated methods
* Fix regex match for Windows
* Fix compatibility issue with Python 3.x

* Add missing ops into Windows build for test

* Enabled more testcases for Windows build

* Clean code and fix typo

* Add conditional cmake mode for enabling more unit testcase

* Add Cmake mode for major Contrib packages

* Add supplementary info in RAEDME for new cmake option

* * Update tf_tests after testing with TF 1.3
* Clean code and resolve conflicts

* Fix unsafe regex matches and format code

* Update exclude list after testing with latest master branch

* Fix missing module

---
Commit 98f0e1efe authored by Yong Tang<yong.tang.github@outlook.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Dynamic ksize and strides with MaxPool (#11875)

* Dynamic ksize with max_pool

This fix tries to fix the issue raised in 4746 where ksize
is static (attr) with max_pool.
This fix changes ksize to input tensor so that it is dynamic now.

This fix fixes 4746.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

* Add dynamic ksize to MaxPoolGrad and MaxPoolGradGrad

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

* Add test cases for max_pool_v2

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

* Fix GPU Jenkins issue.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

* Enable MaxPoolV2 in GPU

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

* Hide MaxPoolV2 and other fixes.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

---
Commit 02d6bc185 authored by Bairen Yi<byronyi@users.noreply.github.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
remove useless variable (#12212)

---
Commit ed6b0d905 authored by namrata-ibm<bhavenamrata@gmail.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Adding support for s390x in calculation of cpu_frequency (#12201)

---
Commit 627dfc9dd authored by Taehoon Lee<taehoonlee@snu.ac.kr>
Committed by Taehoon Lee<taehoonlee@snu.ac.kr>:
Fix typos

---
Commit c0f9b0a91 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
In fast-math mode emit a tanh that has a faster min/max.

PiperOrigin-RevId: 164943597

---
Commit 87605f3d6 authored by Kay Zhu<kayzhu@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
[TF:XLA] Use HloEvaluator for ComputeConstant, remove the need of a dedicated
compute constant backend.

PiperOrigin-RevId: 164940970

---
Commit 881de45c2 authored by Taehoon Lee<me@taehoonlee.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Add bool type supports for GPU kernels (#11927)

* Add bool type supports for GPU kernels

* Add bool type test codes for GPU kernels

---
Commit eeacdcdb1 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Add missing "CPU" suffix in registrations.

PiperOrigin-RevId: 164939527

---
Commit de01be952 authored by namrata-ibm<bhavenamrata@gmail.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Adding support for Big Endian in graph_constructor_test and wav_io (#12179)

---
Commit 26719d29f authored by QingYing Chen<pkudysj@126.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Implement CRF decode (Viterbi decode) for tensor (#12056)

* Implement CRF decoding for tensors

* add test code for tensor version's CRF decoding

* made modifications according to pylint

* add some comments for crf decode

* remove useless code

* add comments at the top comment of crf module and add more comments in crf_test

* capitalize first char of first word in comments

* replace crf_decode test code with a deterministic example

---
Commit f9a81ca2f authored by Pete Warden<pete@petewarden.com>
Committed by gunan<gunan@google.com>:
Create CI build script for Raspberry Pi (#12190)

* Create CI build script for Raspberry Pi

* Moved location of Pi build script

---
Commit e2a163a90 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Merge code from PR #11940 with internal changes from cl/164796436, and update Python tests to also run on GPU.

PiperOrigin-RevId: 164929133

---
Commit 08bbfa187 authored by Taehoon Lee<me@taehoonlee.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Fix typos (#12195)

---
Commit ab96f41fb authored by Luke Iwanski<luke@codeplay.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
[OpenCL] Extends matmul_benchmark.py to cover SYCL (#11697)

* [OpenCL] Extends matmul_benchmark.py to cover SYCL

* Fixed typo

* /gpu:0 -> /device:GPU:0

* Fixes control_flow_ops_py_test

* /gpu: -> /device:GPU:

* Fixes //tensorflow/python/profiler/internal:run_metadata_test

* gpu: -> GPU:

* Fixes tfprof_node

* [OpenCL] Fixes device path to name with many colons (#123)

The device path is constructed from a device name by replacing all
colons with underscores. Some device names contain more than one colon,
for example 'device:SYCL:0' which gives a path 'device_SYCL_0'. The
previous code would not convert this back to the original device name,
but rather to 'device:SYCL_0'.

An alternative fix would be to convert all underscores to colons in the
device name (i.e. remove the restriction inside `replace("_", ":", 1)`),
however I'm not sure if there are any device names which contain
underscores.

* If no gpu device aviable fake one

* gpu: -> device:GPU

* Fixes profiler test

* /gpu:x -> /device:GPU:x

* Fixes debug_io_utils_test.cc test

* Fixes device_name_utils_test.cc

---
Commit 35e7a3665 authored by Yong Tang<yong.tang.github@outlook.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
Remove unneeded casting of int64 for reverse_sequence (#12192)

This fix remove unneeded cast of int64 for reverse_sequence:
```
lengths = math_ops.to_int64(lengths)
```
as int32 has already been enabled for reverse_sequence.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
---
Commit 9fba8c185 authored by Anna R<annarev@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Add benchmark dashboard link to benchmarks doc. Also, I added a link and
description for Benchmarks page to Community index page.

PiperOrigin-RevId: 164924906

---
Commit bb6f32fa7 authored by Mark Heffernan<meheff@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Make HloAliasAnalysis updatable after changes to the HLO graph.
As part of this change make HloAliasAnalysis a thinner layer which
basically only holds a map from HloValue to HloBuffer and vice versa.

PiperOrigin-RevId: 164923041

---
Commit 9103096c1 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by Thomas K?ppe<tkoeppe@google.com>:
Merged commit includes the following changes:
164923041  by meheff:

    Make HloAliasAnalysis updatable after changes to the HLO graph.
    As part of this change make HloAliasAnalysis a thinner layer which
    basically only holds a map from HloValue to HloBuffer and vice versa.

--

PiperOrigin-RevId: 164923041

---
Commit 822603aed authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Merging sibling fusion instruction using multi_output_fusion

PiperOrigin-RevId: 164920220

---
Commit c035aa2a8 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Go: Update generated wrapper functions for TensorFlow ops.

PiperOrigin-RevId: 164917891

---
Commit e1e81d9ba authored by Luke Iwanski<luke@codeplay.com>
Committed by Rasmus Munk Larsen<rmlarsen@google.com>:
[OpenCL] Fixes double memcpy bug (#151) (#12173)

* [OpenCL] Fixes double memcpy bug (#151)

As the debg CopyOp is called on a Tensor without type, we need to use
the DataType enum to get type information, and use this to pass the type
on to Eigen. This is a workaround Eigen's need to have a type when
calling memcpy. If the Eigen memcpy can be provided without a type
requirement, then the memcpy in sycl_util is unnecessary.

* Acts on feedback from: #12173/files/32cb12a9001b672425867b5a3110fd98e737a20b#r132496277

---
Commit d9ca2d86d authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Internal change

PiperOrigin-RevId: 164916465

---
Commit b8d13d218 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Remove more parts of DCASGD missed in the first pass. (47949b)

PiperOrigin-RevId: 164914552

---
Commit 73b3d52c7 authored by Alexandre Passos<apassos@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
cmake fix

PiperOrigin-RevId: 164911656

---
Commit 2173b5b0a authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Allow TFE_TensorHandleCopyToDevice to have the same device as src and
destination. It will reuse the same underlying buffer in those cases.

PiperOrigin-RevId: 164909906

---
Commit 13eb3b90e authored by Alexandre Passos<apassos@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Experimental C and Python APIs to invoke TensorFlow kernels on concrete values.

PiperOrigin-RevId: 164902588

---
Commit 7dfabcc01 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Initialize ExecutionOptions in ComputeConstant to default values.

PiperOrigin-RevId: 164894867

---
Commit c8897e9bc authored by Benoit Steiner<bsteiner@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Static required time computation

PiperOrigin-RevId: 164894645

---
Commit 076158f9b authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Enable implicit->explicit conversion by default.

PiperOrigin-RevId: 164890915

---
Commit 58c4a4cb1 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Bugfix: number of input channels is not necessarily in the last dimension, after introduction of data_format param.

PiperOrigin-RevId: 164889729

---
Commit 8f9b1af8a authored by Igor Saprykin<isaprykin@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Recover MonitoredSession when the Coordinator is requested to stop with one of the _PREEMPTION_ERRORS.

When SyncReplicasOptimizer is used, a preemption in the Coordinator may result in two cases:
Case 1) the session gets silently marked as complete
Case 2) the session gets stuck

This CL aims to solve and verify solutions for both of these problems. Fix 1 changes the should_stop logic. Fix 2 changes the CoordinatedSession.run() logic.

SyncReplicasOptimizer runs a separate set of threads using a Coordinator instance. Those threads do FIFOQueue.enqueue; the main thread does a blocking FIFOQueue.dequeue.

`sync_token_q` FIFOQueue is on parameter-servers. When one of the PS instances gets preempted, an AbortedError causes the Coordinator to stop via request_stop(ex). That by itself changes the state of MonitoredSession.should_stop() to True (Fix 1).

Results of the blocking Dequeue operation are sent to the chief worker via Recv. What happens next depends on the amount of tokens in `sync_token_q`. If there are enough for the next call to Dequeue to return, then the low-level "tf session run() call" returns. The next iteration of the `while not MonitoredSession.should_stop()` loop decides that the training is complete (Case 1).

If there are not enough tokens in `sync_token_q`, then the blocking Dequeue is going to keep waiting for them. This results in the graph execution getting stuck and the whole session getting garbage collected after 10 minutes (Case 2).

We decided to fix that by re-creating a session after it gets garbage collected (Fix 2). An alternative was to try to cancel the pending Dequeue operation, but it's not clear that it is the right thing to do and it is also not easy.

PiperOrigin-RevId: 164888390

---
Commit 46e4de6e5 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Undo loop fusion changes for now as they seem to be altering a few results.
END_PUBLIC
RELNOTES: n/a

BEGIN_PUBLIC
BEGIN_PUBLIC
Automated g4 rollback of changelist 164825735

PiperOrigin-RevId: 165340331
diff --git a/.gitignore b/.gitignore
index fdc61ee..c227f50 100644
--- a/.gitignore
+++ b/.gitignore
@@ -13,3 +13,5 @@
 __pycache__
 *.swp
 .vscode/
+cmake_build/
+.idea/**
diff --git a/CODEOWNERS b/CODEOWNERS
index 1401951..0a12176 100644
--- a/CODEOWNERS
+++ b/CODEOWNERS
@@ -1,52 +1,53 @@
+# NOTE: Disabled temporarily because it's too noisy on pushes.
 # Where component owners are known, add them here.
 
-tensorflow/core/platform/windows/* @mrry
-tensorflow/java/* @asimshankar
-tensorflow/tensorboard/* @jart @dandelionmane
-tensorflow/tools/docs/* @markdaoust
+#tensorflow/core/platform/windows/* @mrry
+#tensorflow/java/* @asimshankar
+#tensorflow/tensorboard/* @jart @dandelionmane
+#tensorflow/tools/docs/* @markdaoust
 
 # contrib
 
 # NEED OWNER: tensorflow/contrib/avro/*
-tensorflow/contrib/batching/* @alextp @chrisolston
-tensorflow/contrib/bayesflow/* @ebrevdo @rsepassi @jvdillon
-tensorflow/contrib/cmake/* @mrry @benoitsteiner
-tensorflow/contrib/copy_graph/* @tucker @poxvoculi
-tensorflow/contrib/crf/* @kentonl
-tensorflow/contrib/data/* @mrry
-tensorflow/contrib/distributions/* @jvdillon @langmore @rsepassi
-tensorflow/contrib/factorization/* @agarwal-ashish @xavigonzalvo
-tensorflow/contrib/ffmpeg/* @fredbertsch
+#tensorflow/contrib/batching/* @alextp @chrisolston
+#tensorflow/contrib/bayesflow/* @ebrevdo @rsepassi @jvdillon
+#tensorflow/contrib/cmake/* @mrry @benoitsteiner
+#tensorflow/contrib/copy_graph/* @tucker @poxvoculi
+#tensorflow/contrib/crf/* @kentonl
+#tensorflow/contrib/data/* @mrry
+#tensorflow/contrib/distributions/* @jvdillon @langmore @rsepassi
+#tensorflow/contrib/factorization/* @agarwal-ashish @xavigonzalvo
+#tensorflow/contrib/ffmpeg/* @fredbertsch
 # NEED OWNER: tensorflow/contrib/framework/*
-tensorflow/contrib/graph_editor/* @purpledog
+#tensorflow/contrib/graph_editor/* @purpledog
 # NEED OWNER: tensorflow/contrib/grid_rnn/*
-tensorflow/contrib/hvx/* @satok16
-tensorflow/contrib/imperative/* @keveman
-tensorflow/contrib/integrate/* @shoyer
-tensorflow/contrib/kernel_methods/* @petrosmol
-tensorflow/contrib/ios_examples/* @petewarden
-tensorflow/contrib/labeled_tensor/* @shoyer
-tensorflow/contrib/layers/* @fchollet @martinwicke
-tensorflow/contrib/learn/* @martinwicke @ispirmustafa @alextp
-tensorflow/contrib/linalg/* @langmore
-tensorflow/contrib/linear_optimizer/* @petrosmol @andreasst @katsiapis
-tensorflow/contrib/lookup/* @ysuematsu @andreasst
-tensorflow/contrib/losses/* @alextp @ispirmustafa
-tensorflow/contrib/makefile/* @petewarden @satok16 @wolffg
-tensorflow/contrib/metrics/* @alextp @honkentuber @ispirmustafa
-tensorflow/contrib/nccl/* @cwhipkey @zheng-xq
-tensorflow/contrib/opt/* @strategist333
-tensorflow/contrib/pi_examples/* @maciekcc
-tensorflow/contrib/quantization/* @petewarden @cwhipkey @keveman
-tensorflow/contrib/rnn/* @ebrevdo
-tensorflow/contrib/saved_model/* @nfiedel @sukritiramesh
-tensorflow/contrib/seq2seq/* @lukaszkaiser
-tensorflow/contrib/session_bundle/* @nfiedel @sukritiramesh
-tensorflow/contrib/slim/* @sguada @thenbasilmanran
-tensorflow/contrib/stateless/* @girving
-tensorflow/contrib/tensor_forest/* @gilberthendry @thomascolthurst
-tensorflow/contrib/testing/* @dandelionmane
-tensorflow/contrib/timeseries/* @allenlavoie
-tensorflow/contrib/tpu/* @frankchn @saeta @jhseu
-tensorflow/contrib/training/* @joel-shor @ebrevdo
-tensorflow/contrib/util/* @sherrym
+#tensorflow/contrib/hvx/* @satok16
+#tensorflow/contrib/imperative/* @keveman
+#tensorflow/contrib/integrate/* @shoyer
+#tensorflow/contrib/kernel_methods/* @petrosmol
+#tensorflow/contrib/ios_examples/* @petewarden
+#tensorflow/contrib/labeled_tensor/* @shoyer
+#tensorflow/contrib/layers/* @fchollet @martinwicke
+#tensorflow/contrib/learn/* @martinwicke @ispirmustafa @alextp
+#tensorflow/contrib/linalg/* @langmore
+#tensorflow/contrib/linear_optimizer/* @petrosmol @andreasst @katsiapis
+#tensorflow/contrib/lookup/* @ysuematsu @andreasst
+#tensorflow/contrib/losses/* @alextp @ispirmustafa
+#tensorflow/contrib/makefile/* @petewarden @satok16 @wolffg
+#tensorflow/contrib/metrics/* @alextp @honkentuber @ispirmustafa
+#tensorflow/contrib/nccl/* @cwhipkey @zheng-xq
+#tensorflow/contrib/opt/* @strategist333
+#tensorflow/contrib/pi_examples/* @maciekcc
+#tensorflow/contrib/quantization/* @petewarden @cwhipkey @keveman
+#tensorflow/contrib/rnn/* @ebrevdo
+#tensorflow/contrib/saved_model/* @nfiedel @sukritiramesh
+#tensorflow/contrib/seq2seq/* @lukaszkaiser
+#tensorflow/contrib/session_bundle/* @nfiedel @sukritiramesh
+#tensorflow/contrib/slim/* @sguada @thenbasilmanran
+#tensorflow/contrib/stateless/* @girving
+#tensorflow/contrib/tensor_forest/* @gilberthendry @thomascolthurst
+#tensorflow/contrib/testing/* @dandelionmane
+#tensorflow/contrib/timeseries/* @allenlavoie
+#tensorflow/contrib/tpu/* @frankchn @saeta @jhseu
+#tensorflow/contrib/training/* @joel-shor @ebrevdo
+#tensorflow/contrib/util/* @sherrym
diff --git a/README.md b/README.md
index a1f9dad..d265949 100644
--- a/README.md
+++ b/README.md
@@ -30,16 +30,16 @@
 and discussion, and please direct specific questions to [Stack Overflow](https://stackoverflow.com/questions/tagged/tensorflow).**
 
 ## Installation
-*See [Installing TensorFlow](https://www.tensorflow.org/install) for instructions on how to install our release binaries or how to build from source.*
+*See [Installing TensorFlow](https://www.tensorflow.org/get_started/os_setup.html) for instructions on how to install our release binaries or how to build from source.*
 
 People who are a little more adventurous can also try our nightly binaries:
 
 
-* Linux CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc1-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc1-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc1-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/))
-* Linux GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.3.0rc1-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.3.0rc1-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.3.0rc1-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/))
-* Mac CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc1-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc1-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/))
-* Windows CPU-only: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.3.0rc1-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.3.0rc1-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/))
-* Windows GPU: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.3.0rc1-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.3.0rc1-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/))
+* Linux CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc2-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc2-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc2-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/))
+* Linux GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.3.0rc2-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.3.0rc2-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.3.0rc2-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/))
+* Mac CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc2-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.3.0rc2-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/))
+* Windows CPU-only: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.3.0rc2-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.3.0rc2-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/))
+* Windows GPU: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.3.0rc2-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.3.0rc2-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/))
 * Android: [demo APK](https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/tensorflow_demo.apk), [native libs](http://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/native/)
 ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-android/))
 
diff --git a/RELEASE.md b/RELEASE.md
index da297b2..ffe3800 100644
--- a/RELEASE.md
+++ b/RELEASE.md
@@ -9,6 +9,7 @@
   * `DNNLinearCombinedClassifier`
   * `DNNLinearCombinedRegressor`.
 * All our prebuilt binaries have been built with cuDNN 6.
+* `import tensorflow` now goes much faster.
 * Adds a file cache to the GCS filesystem with configurable max staleness for file contents. This permits caching of file contents across close/open boundaries.
 * Added an axis parameter to `tf.gather`.
 * Added a `constant_values` keyword argument to `tf.pad`.
@@ -31,6 +32,7 @@
 * GPU kernels and speed improvements for for unary `tf.where` and `tf.nn.top_k`.
 * Monotonic Attention wrappers added to `tf.contrib.seq2seq`.
 * Added `tf.contrib.signal`, a library for signal processing primitives.
+* Added `tf.contrib.resampler`, containing CPU and GPU ops for differentiable resampling of images.
 
 ## Breaking Changes to the API
 * `tf.RewriterConfig` was removed from the Python API after being available in 1.2 release candidates (it was never in an actual release). Graph rewriting is still available, just not as `tf.RewriterConfig`. Instead add an explicit import.
@@ -64,7 +66,7 @@
 * Exported model signatures using the 'predict' method will no longer have their input and output keys silently ignored and rewritten to 'inputs' and 'outputs'. If a model was exported with different names before 1.2, and is now served with tensorflow/serving, it will accept requests using 'inputs' and 'outputs'. Starting at 1.2, such a model will accept the keys specified during export. Therefore, inference requests using 'inputs' and 'outputs' may start to fail. To fix this, either update any inference clients to send requests with the actual input and output keys used by the trainer code, or conversely, update the trainer code to name the input and output Tensors 'inputs' and 'outputs', respectively. Signatures using the 'classify' and 'regress' methods are not affected by this change; they will continue to standardize their input and output keys as before.
 * Add in-memory caching to the Dataset API.
 * Set default end_of_sequence variable in datasets iterators to false.
-* [Performance] Increase performance of `tf.layers.con2d` when setting use_bias=True by 2x by using nn.bias_add.
+* [Performance] Increase performance of `tf.layers.conv2d` when setting use_bias=True by 2x by using nn.bias_add.
 * Update iOS examples to use CocoaPods, and moved to tensorflow/examples/ios.
 * Adds a family= attribute in `tf.summary` ops to allow controlling the tab name used in Tensorboard for organizing summaries.
 * When GPU is configured, do not require --config=cuda, instead, automatically build for GPU if this is requested in the configure script.
diff --git a/configure.py b/configure.py
index a783990..3646670 100644
--- a/configure.py
+++ b/configure.py
@@ -384,12 +384,16 @@
 def convert_version_to_int(version):
   """Convert a version number to a integer that can be used to compare.
 
+  Version strings of the form X.YZ and X.Y.Z-xxxxx are supported. The
+  'xxxxx' part, for instance 'homebrew' on OS/X, is ignored.
+
   Args:
-    version: a version to be covnerted
+    version: a version to be converted
 
   Returns:
     An integer if converted successfully, otherwise return None.
   """
+  version = version.split('-')[0]
   version_segments = version.split('.')
   for seg in version_segments:
     if not seg.isdigit():
@@ -428,6 +432,8 @@
     print('Make sure you are running at least bazel %s' % min_version)
     return curr_version
 
+  print("You have bazel %s installed." % curr_version)
+
   if curr_version_int < min_version_int:
     print('Please upgrade your bazel installation to version %s or higher to '
           'build TensorFlow!' % min_version)
@@ -938,6 +944,8 @@
                 'with_hdfs_support', False)
   set_build_var(environ_cp, 'TF_ENABLE_XLA', 'XLA JIT', 'with_xla_support',
                 False)
+  set_build_var(environ_cp, 'TF_NEED_GDR', 'GDR', 'with_gdr_support',
+                False)
   set_build_var(environ_cp, 'TF_NEED_VERBS', 'VERBS', 'with_verbs_support',
                 False)
 
diff --git a/tensorflow/BUILD b/tensorflow/BUILD
index 71f6d83..2296c6d 100644
--- a/tensorflow/BUILD
+++ b/tensorflow/BUILD
@@ -183,6 +183,12 @@
 )
 
 config_setting(
+    name = "with_gdr_support",
+    values = {"define": "with_gdr_support=true"},
+    visibility = ["//visibility:public"],
+)
+
+config_setting(
     name = "with_verbs_support",
     values = {"define": "with_verbs_support=true"},
     visibility = ["//visibility:public"],
diff --git a/tensorflow/c/c_api.cc b/tensorflow/c/c_api.cc
index e3c4bb0..77e0cf6 100644
--- a/tensorflow/c/c_api.cc
+++ b/tensorflow/c/c_api.cc
@@ -146,7 +146,7 @@
 void* allocate_tensor(const char* operation, size_t len) {
   void* data =
       tensorflow::cpu_allocator()->AllocateRaw(EIGEN_MAX_ALIGN_BYTES, len);
-  if (tensorflow::LogMemory::IsEnabled()) {
+  if (tensorflow::LogMemory::IsEnabled() && data != nullptr) {
     tensorflow::LogMemory::RecordRawAllocation(
         operation, tensorflow::LogMemory::EXTERNAL_TENSOR_ALLOCATION_STEP_ID,
         len, data, tensorflow::cpu_allocator());
@@ -155,7 +155,7 @@
 }
 
 void deallocate_buffer(void* data, size_t len, void* arg) {
-  if (tensorflow::LogMemory::IsEnabled()) {
+  if (tensorflow::LogMemory::IsEnabled() && data != nullptr) {
     tensorflow::LogMemory::RecordRawDeallocation(
         "TensorFlow C Api",
         tensorflow::LogMemory::EXTERNAL_TENSOR_ALLOCATION_STEP_ID, data,
diff --git a/tensorflow/cc/tutorials/example_trainer.cc b/tensorflow/cc/tutorials/example_trainer.cc
index 49d3cca..3675d72 100644
--- a/tensorflow/cc/tutorials/example_trainer.cc
+++ b/tensorflow/cc/tutorials/example_trainer.cc
@@ -101,7 +101,7 @@
   std::unique_ptr<Session> session(NewSession(options));
   GraphDef def = CreateGraphDef();
   if (options.target.empty()) {
-    graph::SetDefaultDevice(opts->use_gpu ? "/gpu:0" : "/cpu:0", &def);
+    graph::SetDefaultDevice(opts->use_gpu ? "/device:GPU:0" : "/cpu:0", &def);
   }
 
   TF_CHECK_OK(session->Create(def));
diff --git a/tensorflow/compiler/xla/service/gpu/while_transformer.cc b/tensorflow/compiler/xla/service/gpu/while_transformer.cc
index 3034ed0..cecbb01 100644
--- a/tensorflow/compiler/xla/service/gpu/while_transformer.cc
+++ b/tensorflow/compiler/xla/service/gpu/while_transformer.cc
@@ -222,7 +222,7 @@
   TF_DISALLOW_COPY_AND_ASSIGN(MatcherBase);
 };
 
-// WhileConditionComputationMatcher attempst to match a target computation
+// WhileConditionComputationMatcher attempts to match a target computation
 // pattern in the while condition sub-computation.
 // If the target pattern is matched, two pieces of information are extracted
 // from 'tagged' instructions returned by the matcher:
diff --git a/tensorflow/compiler/xla/service/hlo_instruction.cc b/tensorflow/compiler/xla/service/hlo_instruction.cc
index 0126f0b..83128a2 100644
--- a/tensorflow/compiler/xla/service/hlo_instruction.cc
+++ b/tensorflow/compiler/xla/service/hlo_instruction.cc
@@ -626,7 +626,7 @@
   CHECK_EQ(opcode_, HloOpcode::kFusion);
   CHECK(instruction_to_fuse->IsFusable());
   if (GetModule()) {
-    XLA_VLOG_LINES(1, GetModule()->ToString());
+    XLA_VLOG_LINES(3, GetModule()->ToString());
   }
   HloInstruction* clone = nullptr;
   if (called_computations_.empty()) {
@@ -1909,9 +1909,10 @@
     case HloOpcode::kRecv:
       return false;
     // Only fuse Rng if it is used once, otherwise the random numbers generated
-    // will be different in each fusion.
+    // will be different in each fusion. If it is the root (user count = 0)
+    // then it is the equivalent of having one user.
     case HloOpcode::kRng:
-      return users_.size() == 1;
+      return users_.size() <= 1;
     default:
       return true;
   }
diff --git a/tensorflow/compiler/xla/service/hlo_instruction_test.cc b/tensorflow/compiler/xla/service/hlo_instruction_test.cc
index f795a6e..ea57495 100644
--- a/tensorflow/compiler/xla/service/hlo_instruction_test.cc
+++ b/tensorflow/compiler/xla/service/hlo_instruction_test.cc
@@ -1077,6 +1077,48 @@
                                root2->operand(1)->operand(0)->shape()));
 }
 
+TEST_F(HloInstructionTest, IsRandomFusable) {
+  auto shape = ShapeUtil::MakeShape(F32, {2, 2});
+  {
+    auto builder = HloComputation::Builder(TestName());
+    auto hlo_module = CreateNewModule();
+    auto const0 = builder.AddInstruction(HloInstruction::CreateConstant(
+        Literal::CreateR0<float>(0.0)));
+    auto const1 = builder.AddInstruction(HloInstruction::CreateConstant(
+        Literal::CreateR0<float>(1.0)));
+    auto rng = builder.AddInstruction(HloInstruction::CreateRng(
+        shape, RandomDistribution::RNG_NORMAL, {const0, const1}));
+
+    auto* computation = hlo_module->AddEntryComputation(builder.Build());
+    computation->CreateFusionInstruction({rng, const0, const1},
+      HloInstruction::FusionKind::kLoop);
+
+    auto* root = computation->root_instruction();
+
+    EXPECT_EQ(HloOpcode::kFusion, root->opcode());
+  }
+  {
+    auto builder = HloComputation::Builder(TestName());
+    auto hlo_module = CreateNewModule();
+    auto const0 = builder.AddInstruction(HloInstruction::CreateConstant(
+        Literal::CreateR0<float>(0.0)));
+    auto const1 = builder.AddInstruction(HloInstruction::CreateConstant(
+        Literal::CreateR0<float>(1.0)));
+    auto rng = builder.AddInstruction(HloInstruction::CreateRng(
+        shape, RandomDistribution::RNG_NORMAL, {const0, const1}));
+    builder.AddInstruction(HloInstruction::CreateUnary(
+        shape, HloOpcode::kNegate, rng));
+    auto* computation = hlo_module->AddEntryComputation(builder.Build());
+    computation->CreateFusionInstruction({rng, const0, const1},
+      HloInstruction::FusionKind::kLoop);
+
+    auto* root = computation->root_instruction();
+
+    EXPECT_EQ(HloOpcode::kFusion, root->operand(0)->opcode());
+  }
+}
+
+
 TEST_F(HloInstructionTest, CloneSuffixNames) {
   // Test that the suffix string added to cloned instructions is not
   // duplicated. Rather a numeric incrementing value should be appended. That
diff --git a/tensorflow/compiler/xla/tests/array_elementwise_ops_test.cc b/tensorflow/compiler/xla/tests/array_elementwise_ops_test.cc
index 7dba4e5..1924775 100644
--- a/tensorflow/compiler/xla/tests/array_elementwise_ops_test.cc
+++ b/tensorflow/compiler/xla/tests/array_elementwise_ops_test.cc
@@ -57,7 +57,7 @@
   ComputeAndCompareR1<float>(&builder, {}, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, NegConstantF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, NegConstantF32) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<float>({-2.5f, 3.14f, 2.25f, -10.0f, 6.0f});
   auto result = builder.Neg(a);
@@ -66,7 +66,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, NegConstantS32) {
+XLA_TEST_F(ArrayElementwiseOpTest, NegConstantS32) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<int32>({-1, 0, 1, 324,
                                       std::numeric_limits<int32>::min(),
@@ -126,7 +126,7 @@
                             {});
 }
 
-TEST_F(ArrayElementwiseOpTest, AddTwoConstantF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddTwoConstantF32s) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<float>({-2.5f, 3.14f, 2.25f, -10.0f, 6.0f});
   auto b = builder.ConstantR1<float>({100.0f, 3.13f, 2.75f, 10.5f, -999.0f});
@@ -185,7 +185,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, SubTwoConstantF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, SubTwoConstantF32s) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<float>({-2.5f, 3.14f, 2.25f, -10.0f, 6.0f});
   auto b = builder.ConstantR1<float>({100.0f, 3.13f, 2.75f, 10.5f, -999.0f});
@@ -204,7 +204,7 @@
   ComputeAndCompareR1<float>(&builder, {}, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, SubTwoConstantS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, SubTwoConstantS32s) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<int32>({-1, 0, 2, 1000000000});
   auto b = builder.ConstantR1<int32>({-1, 2, 1, -1});
@@ -222,7 +222,7 @@
   ComputeAndCompareR1<int32>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, DivTwoConstantF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, DivTwoConstantF32s) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<float>({-2.5f, 25.5f, 2.25f, -10.0f, 6.0f});
   auto b = builder.ConstantR1<float>({10.0f, 5.1f, 1.0f, 10.0f, -6.0f});
@@ -241,7 +241,7 @@
   ComputeAndCompareR1<float>(&builder, {}, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, DivS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, DivS32s) {
   // clang-format off
   // Some interesting values to test.
   std::vector<int32> vals = {
@@ -316,7 +316,7 @@
   }
 }
 
-TEST_F(ArrayElementwiseOpTest, DivU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, DivU32s) {
   // clang-format off
   // Some interesting values to test.
   std::vector<uint32> vals = {
@@ -420,7 +420,7 @@
       error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, MulTwoConstantF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MulTwoConstantF32s) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<float>({-2.5f, 25.5f, 2.25f, -10.0f, 6.0f});
   auto b = builder.ConstantR1<float>({10.0f, 5.0f, 1.0f, 10.0f, -6.0f});
@@ -439,7 +439,7 @@
   ComputeAndCompareR1<float>(&builder, {}, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, MulTwoConstantS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MulTwoConstantS32s) {
   std::vector<int32> data = {0,
                              1,
                              -1,
@@ -474,7 +474,7 @@
   ComputeAndCompareR1<int32>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, MulTwoConstantU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MulTwoConstantU32s) {
   std::vector<uint32> data = {0,          1,          0xDEADBEEF, 1234,
                               0x1a243514, 0xFFFFFFFF, 0x80808080};
 
@@ -496,7 +496,7 @@
   ComputeAndCompareR1<uint32>(&builder, expected, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, LogicalAnd) {
+XLA_TEST_F(ArrayElementwiseOpTest, LogicalAnd) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<bool>({false, false, true, true});
   auto b = builder.ConstantR1<bool>({false, true, false, true});
@@ -514,7 +514,7 @@
   ComputeAndCompareR1<bool>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, LogicalOr) {
+XLA_TEST_F(ArrayElementwiseOpTest, LogicalOr) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<bool>({false, false, true, true});
   auto b = builder.ConstantR1<bool>({false, true, false, true});
@@ -532,7 +532,7 @@
   ComputeAndCompareR1<bool>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, LogicalNot) {
+XLA_TEST_F(ArrayElementwiseOpTest, LogicalNot) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<bool>({false, true, true, false});
   auto out = builder.LogicalNot(a);
@@ -548,7 +548,7 @@
   ComputeAndCompareR1<bool>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareEqF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareEqF32s) {
   SetFastMathDisabled(true);
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<float>({-2.5f, 25.5f, 2.25f, NAN, 6.0f});
@@ -567,7 +567,7 @@
   ComputeAndCompareR1<bool>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareGeF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareGeF32s) {
   SetFastMathDisabled(true);
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<float>({-2.5f, 25.5f, 2.25f, NAN, 6.0f});
@@ -577,7 +577,7 @@
   ComputeAndCompareR1<bool>(&builder, {false, true, true, false, false}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareGtF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareGtF32s) {
   SetFastMathDisabled(true);
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<float>({-2.5f, 25.5f, 2.25f, NAN, 6.0f});
@@ -587,7 +587,7 @@
   ComputeAndCompareR1<bool>(&builder, {false, true, true, false, false}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareLeF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareLeF32s) {
   SetFastMathDisabled(true);
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<float>({-2.5f, 5.0f, 2.25f, NAN, 6.0f});
@@ -597,7 +597,7 @@
   ComputeAndCompareR1<bool>(&builder, {true, true, false, false, false}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareLtF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareLtF32s) {
   SetFastMathDisabled(true);
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<float>({-2.5f, 25.5f, 2.25f, NAN, 6.0f});
@@ -607,7 +607,7 @@
   ComputeAndCompareR1<bool>(&builder, {true, false, false, false, false}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareEqS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareEqS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -629,7 +629,7 @@
   ComputeAndCompareR1<bool>(&builder, {}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareNeF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareNeF32s) {
   // Disable fast-math because we're operating on NaNs.
   SetFastMathDisabled(true);
 
@@ -641,7 +641,7 @@
   ComputeAndCompareR1<bool>(&builder, {true, false, true, true, true}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareNeS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareNeS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -653,7 +653,7 @@
       &builder, {false, true, true, true, false, true, true, true, false}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareGeS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareGeS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -665,7 +665,7 @@
       &builder, {true, false, false, true, true, false, true, true, true}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareGtS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareGtS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -678,7 +678,7 @@
       {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareLeS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareLeS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -690,7 +690,7 @@
       &builder, {true, true, true, false, true, true, false, false, true}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareLtS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareLtS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -703,7 +703,7 @@
       {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareEqU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareEqU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<uint32>({0, 0, 0, 5, 5, 5, max, max, max});
@@ -715,7 +715,7 @@
       {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareNeU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareNeU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<uint32>({0, 0, 0, 5, 5, 5, max, max, max});
@@ -726,7 +726,7 @@
       &builder, {false, true, true, true, false, true, true, true, false}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareGeU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareGeU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<uint32>({0, 0, 0, 5, 5, 5, max, max, max});
@@ -737,7 +737,7 @@
       &builder, {true, false, false, true, true, false, true, true, true}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareGtU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareGtU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<uint32>({0, 0, 0, 5, 5, 5, max, max, max});
@@ -749,7 +749,7 @@
       {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareLeU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareLeU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<uint32>({0, 0, 0, 5, 5, 5, max, max, max});
@@ -760,7 +760,7 @@
       &builder, {true, true, true, false, true, true, false, false, true}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, CompareLtU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, CompareLtU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto lhs = builder.ConstantR1<uint32>({0, 0, 0, 5, 5, 5, max, max, max});
@@ -772,7 +772,7 @@
       {});
 }
 
-TEST_F(ArrayElementwiseOpTest, PowF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, PowF32s) {
   SetFastMathDisabled(true);
   ComputationBuilder builder(client_, TestName());
   auto lhs =
@@ -795,7 +795,7 @@
 }
 
 // Some Pow cases that can be implemented more efficiently.
-TEST_F(ArrayElementwiseOpTest, PowSpecialF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, PowSpecialF32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values = {1.0f, 2.0f, 3.2f, -4.0f};
@@ -823,7 +823,7 @@
   ComputeAndCompareR1<float>(&b, expected, {param_data.get()}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, PowOfExpF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, PowOfExpF32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.0f, 5.7f};
@@ -848,7 +848,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, LogOfPowerF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, LogOfPowerF32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, 4.0f, 0.5f, 5.7f};
@@ -873,7 +873,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, MulOfExpF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, MulOfExpF32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.0f, 5.7f};
@@ -898,7 +898,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, DivOfExpF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, DivOfExpF32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.0f, 5.7f};
@@ -923,7 +923,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, Div3_lhs_F32) {
+XLA_TEST_F(ArrayElementwiseOpTest, Div3_lhs_F32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.45f, 5.7f};
@@ -955,7 +955,7 @@
       &b, expected, {data0.get(), data1.get(), data2.get()}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, Div3_rhs_F32) {
+XLA_TEST_F(ArrayElementwiseOpTest, Div3_rhs_F32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.45f, 5.7f};
@@ -988,7 +988,7 @@
       &b, expected, {data0.get(), data1.get(), data2.get()}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, DivOfPowerF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, DivOfPowerF32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.45f, 5.7f};
@@ -1021,7 +1021,7 @@
       &b, expected, {data0.get(), data1.get(), data2.get()}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, Div4F32) {
+XLA_TEST_F(ArrayElementwiseOpTest, Div4F32) {
   ComputationBuilder b(client_, TestName());
 
   std::vector<float> values0 = {1.0f, 2.0f, 3.2f, -4.0f, 0.45f, 5.7f};
@@ -1081,7 +1081,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, SquareIn4D) {
+XLA_TEST_F(ArrayElementwiseOpTest, SquareIn4D) {
   ComputationBuilder builder(client_, TestName());
   Array4D<float> values(2, 2, 2, 2);
 
@@ -1120,7 +1120,7 @@
 //
 // TODO(b/28180546): Make this compile in a way that is consistent
 // among backends.
-TEST_F(ArrayElementwiseOpTest, MinF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MinF32s) {
   ComputationBuilder builder(client_, TestName());
 #if !defined(XLA_TEST_BACKEND_CPU)
   auto lhs = builder.ConstantR1<float>({1.0f, 1.0f, 2.25f});
@@ -1174,7 +1174,7 @@
 
 // TODO(b/28180546): Make this compile in a way that is consistent
 // among backends. See comment on MinF32s test above.
-TEST_F(ArrayElementwiseOpTest, MaxF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MaxF32s) {
   ComputationBuilder builder(client_, TestName());
 #if !defined(XLA_TEST_BACKEND_CPU)
   auto lhs = builder.ConstantR1<float>({1.0f, 1.0f, 2.25f});
@@ -1226,7 +1226,7 @@
                               {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, MaxS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MaxS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -1241,7 +1241,7 @@
   ComputeAndCompareR1<int32>(&builder, expected, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, MinS32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MinS32s) {
   const int32 min = std::numeric_limits<int32>::min();
   const int32 max = std::numeric_limits<int32>::max();
   ComputationBuilder builder(client_, TestName());
@@ -1256,7 +1256,7 @@
   ComputeAndCompareR1<int32>(&builder, expected, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, MaxU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MaxU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<uint32>({0, 0, 1, 1, 1, max, max, max});
@@ -1267,7 +1267,7 @@
   ComputeAndCompareR1<uint32>(&builder, expected, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, MinU32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MinU32s) {
   const uint32 max = std::numeric_limits<uint32>::max();
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<uint32>({0, 0, 1, 1, 1, max, max, max});
@@ -1278,7 +1278,7 @@
   ComputeAndCompareR1<uint32>(&builder, expected, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, MaxTenF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, MaxTenF32s) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {-0.0, 1.0, 2.0, -3.0, -4.0, 5.0, 6.0, -7.0, -8.0, 9.0});
@@ -1311,7 +1311,7 @@
   }
 }
 
-TEST_F(ArrayElementwiseOpTest, Max1DAnd2DF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, Max1DAnd2DF32s) {
   ComputationBuilder builder(client_, TestName());
   auto v = builder.ConstantR1<float>({2.0f, 3.0f, 4.0f});
   auto m =
@@ -1354,7 +1354,7 @@
   ComputeAndCompareR3<int32>(&builder, expected, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, Min2DTo1DF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, Min2DTo1DF32s) {
   ComputationBuilder builder(client_, TestName());
   auto m =
       builder.ConstantR2<float>({{-10.4f, 64.0f, 6.0f}, {0.1f, 32.0f, 16.1f}});
@@ -1431,7 +1431,7 @@
   ComputeAndCompareR1<int32>(&builder, {-3, 1, 0, -1, 1}, {});
 }
 
-TEST_F(ArrayElementwiseOpTest, NonNanClampF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, NonNanClampF32) {
   ComputationBuilder builder(client_, TestName());
   auto minimum = builder.ConstantR1<float>({1.0f, -6.5f, 1.0f, 2.25f, 0.0f});
   auto argument = builder.ConstantR1<float>({2.0f, 10.0f, -5.0f, 1.0f, 10.0f});
@@ -1442,7 +1442,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, ClampF32Scalar) {
+XLA_TEST_F(ArrayElementwiseOpTest, ClampF32Scalar) {
   ComputationBuilder builder(client_, TestName());
   auto minimum = builder.ConstantR0<float>(0.0f);
   auto argument = builder.ConstantR1<float>({2.0f, 10.0f, -5.0f, 1.0f, 4.0f});
@@ -1453,7 +1453,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, ClampF32ScalarVector) {
+XLA_TEST_F(ArrayElementwiseOpTest, ClampF32ScalarVector) {
   ComputationBuilder builder(client_, TestName());
   auto min_scalar = builder.ConstantR0<float>(0.0f);
   auto min_vector = builder.ConstantR1<float>({1.0f, -6.5f, 1.0f, 2.25f, 0.0f});
@@ -1472,7 +1472,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, AddTwoParametersF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddTwoParametersF32s) {
   ComputationBuilder builder(client_, TestName());
 
   std::unique_ptr<Literal> param0_literal =
@@ -1516,7 +1516,7 @@
       &builder, expected, {param0_data.get(), param1_data.get()}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, AddParameterToConstantF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddParameterToConstantF32s) {
   ComputationBuilder builder(client_, TestName());
 
   std::unique_ptr<Literal> param0_literal =
@@ -1550,7 +1550,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, TanhF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, TanhF32s) {
   ComputationBuilder builder(client_, TestName());
   auto a = builder.ConstantR1<float>({-2.5f, 3.14f, 2.25f});
   auto result = builder.Tanh(a);
@@ -1559,7 +1559,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, TanhF32sVector) {
+XLA_TEST_F(ArrayElementwiseOpTest, TanhF32sVector) {
   // This is like the test ArrayElementwiseOpTest.TanhF32s above, except that
   // the input tensor is large enough to exercise the vectorized tanh
   // implementation.
@@ -1603,7 +1603,7 @@
       ErrorSpec(0.004, 0.004));
 }
 
-TEST_F(ArrayElementwiseOpTest, AddChainFoldLeft) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddChainFoldLeft) {
   // a ------ (add) --------- (add)
   //         /               /
   // b -----/               /
@@ -1621,7 +1621,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, AddChainFoldRight) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddChainFoldRight) {
   // b ------ (add) --------- (add)
   //         /               /
   // c -----/               /
@@ -1639,7 +1639,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, AddWithNeg) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddWithNeg) {
   // a ----- (neg) ----- (add)
   //                    /
   // b ----- (neg) ----/
@@ -1656,7 +1656,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, AddChainTwoSide) {
+XLA_TEST_F(ArrayElementwiseOpTest, AddChainTwoSide) {
   // a ------ (add) ------------\
   //         /                   \
   // b -----/                    (add)
@@ -1679,7 +1679,7 @@
                              error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, 2DBinaryOpF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, 2DBinaryOpF32s) {
   ComputationBuilder builder(client_, TestName());
   auto a =
       builder.ConstantR2<float>({{-2.5f, 3.14f, 1.0f}, {2.25f, -10.0f, 3.33f}});
@@ -1704,7 +1704,7 @@
   ComputeAndCompareR2<float>(&builder, expected_array, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, 2DPlusScalarF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, 2DPlusScalarF32) {
   // Add a matrix + scalar.
   ComputationBuilder builder(client_, TestName());
   auto a =
@@ -1820,7 +1820,7 @@
   EXPECT_EQ(expected, ExecuteToString(&builder, {}));
 }
 
-TEST_F(ArrayElementwiseOpTest, Mul2Dby1DF32) {
+XLA_TEST_F(ArrayElementwiseOpTest, Mul2Dby1DF32) {
   // Test simple broadcasting of a R1F32 over R2F32 when the order of binary op
   // arguments is reversed.
   ComputationBuilder builder(client_, TestName());
@@ -1831,7 +1831,7 @@
   ComputeAndCompareR2<float>(&builder, expected_array, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, Add2DTo2DWithDegenerateDim1) {
+XLA_TEST_F(ArrayElementwiseOpTest, Add2DTo2DWithDegenerateDim1) {
   // Tests broadcasting for arrays with degenerate (size == 1) dimensions.
   ComputationBuilder builder(client_, TestName());
   // m's shape in XLA notation is {3, 2}
@@ -1891,7 +1891,7 @@
   ComputeAndCompareR2<float>(&builder, expected_array, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, Add1DTo2DF32TwoWaysOver0) {
+XLA_TEST_F(ArrayElementwiseOpTest, Add1DTo2DF32TwoWaysOver0) {
   // Add together a (2,2) array and a (2) array, using dimension 1 for
   // broadcasting (though there are two ways to broadcast these shapes).
   ComputationBuilder builder(client_, TestName());
@@ -1902,7 +1902,7 @@
   ComputeAndCompareR2<float>(&builder, expected_array, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, 3DBinaryOpF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, 3DBinaryOpF32s) {
   // Binary add of two R3s together
   ComputationBuilder builder(client_, TestName());
   Array3D<float> a_3d({{{1.0f, 2.0f}, {3.0f, 4.0f}, {5.0f, 6.0f}},
@@ -2033,7 +2033,7 @@
   EXPECT_EQ(expected, ExecuteToString(&builder, {}));
 }
 
-TEST_F(ArrayElementwiseOpTest, 4DBinaryOpF32s) {
+XLA_TEST_F(ArrayElementwiseOpTest, 4DBinaryOpF32s) {
   ComputationBuilder builder(client_, TestName());
 
   std::unique_ptr<Array4D<float>> operand_a_4d(new Array4D<float>(2, 3, 4, 5));
@@ -2060,7 +2060,7 @@
   ComputeAndCompareR4<float>(&builder, *expected_4d, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, R4PlusR1InDim1) {
+XLA_TEST_F(ArrayElementwiseOpTest, R4PlusR1InDim1) {
   ComputationBuilder builder(client_, TestName());
 
   std::unique_ptr<Array4D<float>> operand_a_4d(new Array4D<float>(2, 3, 4, 5));
@@ -2088,7 +2088,7 @@
   ComputeAndCompareR4<float>(&builder, *expected_4d, {}, error_spec_);
 }
 
-TEST_F(ArrayElementwiseOpTest, R4_16x16x2x2_Plus_R1_16) {
+XLA_TEST_F(ArrayElementwiseOpTest, R4_16x16x2x2_Plus_R1_16) {
   constexpr int d0 = 16;
   constexpr int d1 = 16;
   constexpr int d2 = 2;
@@ -2119,7 +2119,7 @@
 }
 
 // Show that we can't add two opaques.
-TEST_F(ArrayElementwiseOpTest, CannotAddOpaques) {
+XLA_TEST_F(ArrayElementwiseOpTest, CannotAddOpaques) {
   ComputationBuilder builder(client_, TestName());
   auto shape = ShapeUtil::MakeOpaqueShape();
   auto x = builder.Parameter(0, shape, "x");
@@ -2133,7 +2133,7 @@
 
 // Regression test for b/31927799. "slice - y" is fused and requires implicit
 // broadcast.
-TEST_F(ArrayElementwiseOpTest, ImplictBroadcastInFusedExpressions) {
+XLA_TEST_F(ArrayElementwiseOpTest, ImplictBroadcastInFusedExpressions) {
   ComputationBuilder builder(client_, TestName());
   auto x_literal = Literal::CreateR1<float>({1, 2, 3});
   auto y_literal = Literal::CreateR1<float>({4, 5});
diff --git a/tensorflow/compiler/xla/tests/build_defs.bzl b/tensorflow/compiler/xla/tests/build_defs.bzl
index 7b707cd..8293515 100644
--- a/tensorflow/compiler/xla/tests/build_defs.bzl
+++ b/tensorflow/compiler/xla/tests/build_defs.bzl
@@ -31,6 +31,7 @@
              args=[],
              tags=[],
              copts=[],
+             data=[],
              backend_tags={},
              backend_args={},
              **kwargs):
@@ -114,6 +115,7 @@
     this_backend_tags = ["xla_%s" % backend]
     this_backend_copts = []
     this_backend_args = backend_args.get(backend, [])
+    this_backend_data = []
     if backend == "cpu":
       backend_deps = ["//tensorflow/compiler/xla/service:cpu_plugin"]
       backend_deps += ["//tensorflow/compiler/xla/tests:test_macros_cpu"]
@@ -130,6 +132,7 @@
       this_backend_copts += plugins[backend]["copts"]
       this_backend_tags += plugins[backend]["tags"]
       this_backend_args += plugins[backend]["args"]
+      this_backend_data += plugins[backend]["data"]
     else:
       fail("Unknown backend %s" % backend)
 
@@ -145,6 +148,7 @@
         this_backend_copts,
         args=args + this_backend_args,
         deps=deps + backend_deps,
+        data=data + this_backend_data,
         **kwargs)
 
     test_names.append(test_name)
@@ -227,14 +231,18 @@
   if not backends:
     backends = all_backends
   for backend in filter_backends(backends):
+    manifest = ""
+    if backend in plugins:
+      manifest = plugins[backend]["disabled_manifest"]
+
     native.cc_library(
         name="test_macros_%s" % backend,
         testonly = True,
         srcs = ["test_macros.cc"],
         hdrs = ["test_macros.h"],
         copts = [
-            "-DXLA_PLATFORM=\\\"%s\\\"" % backend.upper(),
-            "-DXLA_DISABLED_MANIFEST=\\\"\\\""
+          "-DXLA_PLATFORM=\\\"%s\\\"" % backend.upper(),
+          "-DXLA_DISABLED_MANIFEST=\\\"%s\\\"" % manifest,
         ],
         deps = [
             "//tensorflow/compiler/xla:types",
diff --git a/tensorflow/compiler/xla/tests/plugin.bzl b/tensorflow/compiler/xla/tests/plugin.bzl
index 1b10c77..8a5d913 100644
--- a/tensorflow/compiler/xla/tests/plugin.bzl
+++ b/tensorflow/compiler/xla/tests/plugin.bzl
@@ -22,9 +22,13 @@
 #       "//tensorflow/compiler/plugin/foo:foo_lib",
 #       "//tensorflow/compiler/plugin/foo:test_macros",
 #     ],
+#     "disabled_manifest": "tensorflow/compiler/plugin/foo/disabled_test_manifest.txt",
 #     "copts": [],
 #     "tags": [],
 #     "args": []
+#     "data": [
+#       "//tensorflow/compiler/plugin/foo:disabled_test_manifest.txt",
+#     ],
 #   },
 # }
 
diff --git a/tensorflow/compiler/xla/tests/scalar_computations_test.cc b/tensorflow/compiler/xla/tests/scalar_computations_test.cc
index 25ca035..f3cbc01 100644
--- a/tensorflow/compiler/xla/tests/scalar_computations_test.cc
+++ b/tensorflow/compiler/xla/tests/scalar_computations_test.cc
@@ -69,35 +69,35 @@
   }
 };
 
-TEST_F(ScalarComputationsTest, NegateScalarF32) {
+XLA_TEST_F(ScalarComputationsTest, NegateScalarF32) {
   ComputationBuilder builder(client_, TestName());
   builder.Neg(builder.ConstantR0<float>(2.1f));
 
   ComputeAndCompareR0<float>(&builder, -2.1f, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, NegateScalarS32) {
+XLA_TEST_F(ScalarComputationsTest, NegateScalarS32) {
   ComputationBuilder builder(client_, TestName());
   builder.Neg(builder.ConstantR0<int32>(2));
 
   ComputeAndCompareR0<int32>(&builder, -2, {});
 }
 
-TEST_F(ScalarComputationsTest, AddTwoScalarsF32) {
+XLA_TEST_F(ScalarComputationsTest, AddTwoScalarsF32) {
   ComputationBuilder builder(client_, TestName());
   builder.Add(builder.ConstantR0<float>(2.1f), builder.ConstantR0<float>(5.5f));
 
   ComputeAndCompareR0<float>(&builder, 7.6f, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, AddTwoScalarsS32) {
+XLA_TEST_F(ScalarComputationsTest, AddTwoScalarsS32) {
   ComputationBuilder builder(client_, TestName());
   builder.Add(builder.ConstantR0<int32>(2), builder.ConstantR0<int32>(5));
 
   ComputeAndCompareR0<int32>(&builder, 7, {});
 }
 
-TEST_F(ScalarComputationsTest, AddTwoScalarsU32) {
+XLA_TEST_F(ScalarComputationsTest, AddTwoScalarsU32) {
   ComputationBuilder builder(client_, TestName());
   builder.Add(builder.ConstantR0<uint32>(35), builder.ConstantR0<uint32>(57));
 
@@ -137,21 +137,21 @@
   ComputeAndCompareR0<double>(&builder, 3.75, {});
 }
 
-TEST_F(ScalarComputationsTest, SubtractTwoScalarsF32) {
+XLA_TEST_F(ScalarComputationsTest, SubtractTwoScalarsF32) {
   ComputationBuilder builder(client_, TestName());
   builder.Sub(builder.ConstantR0<float>(2.1f), builder.ConstantR0<float>(5.5f));
 
   ComputeAndCompareR0<float>(&builder, -3.4f, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, SubtractTwoScalarsS32) {
+XLA_TEST_F(ScalarComputationsTest, SubtractTwoScalarsS32) {
   ComputationBuilder builder(client_, TestName());
   builder.Sub(builder.ConstantR0<int32>(2), builder.ConstantR0<int32>(5));
 
   ComputeAndCompareR0<int32>(&builder, -3, {});
 }
 
-TEST_F(ScalarComputationsTest, MulThreeScalarsF32) {
+XLA_TEST_F(ScalarComputationsTest, MulThreeScalarsF32) {
   ComputationBuilder builder(client_, TestName());
   builder.Mul(builder.Mul(builder.ConstantR0<float>(2.1f),
                           builder.ConstantR0<float>(5.5f)),
@@ -160,7 +160,7 @@
   ComputeAndCompareR0<float>(&builder, 5.775f, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, MulTwoScalarsS32) {
+XLA_TEST_F(ScalarComputationsTest, MulTwoScalarsS32) {
   std::vector<int32> data = {0,
                              1,
                              -1,
@@ -184,7 +184,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, MulTwoScalarsU32) {
+XLA_TEST_F(ScalarComputationsTest, MulTwoScalarsU32) {
   std::vector<uint32> data = {0,          1,          0xDEADBEEF, 1234,
                               0x1a243514, 0xFFFFFFFF, 0x80808080};
 
@@ -199,7 +199,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, MulThreeScalarsS32) {
+XLA_TEST_F(ScalarComputationsTest, MulThreeScalarsS32) {
   ComputationBuilder builder(client_, TestName());
   builder.Mul(
       builder.Mul(builder.ConstantR0<int32>(2), builder.ConstantR0<int32>(5)),
@@ -208,7 +208,7 @@
   ComputeAndCompareR0<int32>(&builder, 10, {});
 }
 
-TEST_F(ScalarComputationsTest, MulThreeScalarsF32Params) {
+XLA_TEST_F(ScalarComputationsTest, MulThreeScalarsF32Params) {
   ComputationBuilder builder(client_, TestName());
   std::unique_ptr<Literal> a_literal = Literal::CreateR0<float>(2.1f);
   std::unique_ptr<Literal> b_literal = Literal::CreateR0<float>(5.5f);
@@ -231,7 +231,7 @@
                              error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, DivideTwoScalarsF32) {
+XLA_TEST_F(ScalarComputationsTest, DivideTwoScalarsF32) {
   ComputationBuilder builder(client_, TestName());
   builder.Div(builder.ConstantR0<float>(5.0f), builder.ConstantR0<float>(2.5f));
 
@@ -337,7 +337,7 @@
         DivS32Params{INT32_MIN, -0x40000000, 2, 0},                //
         DivS32Params{INT32_MIN + 1, -0x40000000, 1, -0x3fffffff}));
 
-TEST_F(ScalarComputationsTest, DivU32s) {
+XLA_TEST_F(ScalarComputationsTest, DivU32s) {
   // clang-format off
   // Some interesting values to test.
   std::vector<uint32> vals = {
@@ -378,7 +378,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, RemU32s) {
+XLA_TEST_F(ScalarComputationsTest, RemU32s) {
   // clang-format off
   // Some interesting values to test.
   std::vector<uint32> vals = {
@@ -419,7 +419,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, RemainderTwoScalarsNonConstDividendS32) {
+XLA_TEST_F(ScalarComputationsTest, RemainderTwoScalarsNonConstDividendS32) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.Parameter(0, ShapeUtil::MakeShape(S32, {}), "x");
   builder.Rem(x, builder.ConstantR0<int32>(80000));
@@ -446,7 +446,7 @@
   ComputeAndCompareR0<uint32>(&builder, 2, {});
 }
 
-TEST_F(ScalarComputationsTest, LogicalAnd) {
+XLA_TEST_F(ScalarComputationsTest, LogicalAnd) {
   for (bool x : {false, true}) {
     for (bool y : {false, true}) {
       ComputationBuilder builder(client_, TestName());
@@ -458,7 +458,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, LogicalOr) {
+XLA_TEST_F(ScalarComputationsTest, LogicalOr) {
   for (bool x : {false, true}) {
     for (bool y : {false, true}) {
       ComputationBuilder builder(client_, TestName());
@@ -470,7 +470,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, LogicalNot) {
+XLA_TEST_F(ScalarComputationsTest, LogicalNot) {
   for (bool x : {false, true}) {
     ComputationBuilder builder(client_, TestName());
     builder.LogicalNot(builder.ConstantR0<bool>(x));
@@ -479,7 +479,7 @@
   }
 }
 
-TEST_F(ScalarComputationsTest, SelectScalarTrue) {
+XLA_TEST_F(ScalarComputationsTest, SelectScalarTrue) {
   ComputationBuilder builder(client_, TestName());
   builder.Select(builder.ConstantR0<bool>(true),     // The predicate.
                  builder.ConstantR0<float>(123.0f),  // The value on true.
@@ -488,7 +488,7 @@
   ComputeAndCompareR0<float>(&builder, 123.0f, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, SelectScalarFalse) {
+XLA_TEST_F(ScalarComputationsTest, SelectScalarFalse) {
   ComputationBuilder builder(client_, TestName());
   builder.Select(builder.ConstantR0<bool>(false),    // The predicate.
                  builder.ConstantR0<float>(123.0f),  // The value on true.
@@ -499,7 +499,7 @@
 
 // This test is an explicit version of what is happening in the following
 // templatized comparison tests.
-TEST_F(ScalarComputationsTest, CompareGtScalar) {
+XLA_TEST_F(ScalarComputationsTest, CompareGtScalar) {
   ComputationBuilder builder(client_, TestName());
   builder.Gt(builder.ConstantR0<float>(2.0f), builder.ConstantR0<float>(1.0f));
 
@@ -507,30 +507,30 @@
 }
 
 // S32 comparisons.
-TEST_F(ScalarComputationsTest, CompareEqS32Greater) {
+XLA_TEST_F(ScalarComputationsTest, CompareEqS32Greater) {
   TestCompare<int32>(2, 1, false, &ComputationBuilder::Eq);
 }
-TEST_F(ScalarComputationsTest, CompareEqS32Equal) {
+XLA_TEST_F(ScalarComputationsTest, CompareEqS32Equal) {
   TestCompare<int32>(3, 3, true, &ComputationBuilder::Eq);
 }
 
-TEST_F(ScalarComputationsTest, CompareNeS32) {
+XLA_TEST_F(ScalarComputationsTest, CompareNeS32) {
   TestCompare<int32>(2, 1, true, &ComputationBuilder::Ne);
 }
 
-TEST_F(ScalarComputationsTest, CompareGeS32) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeS32) {
   TestCompare<int32>(2, 1, true, &ComputationBuilder::Ge);
 }
 
-TEST_F(ScalarComputationsTest, CompareGtS32) {
+XLA_TEST_F(ScalarComputationsTest, CompareGtS32) {
   TestCompare<int32>(1, 5, false, &ComputationBuilder::Gt);
 }
 
-TEST_F(ScalarComputationsTest, CompareLeS32) {
+XLA_TEST_F(ScalarComputationsTest, CompareLeS32) {
   TestCompare<int32>(2, 1, false, &ComputationBuilder::Le);
 }
 
-TEST_F(ScalarComputationsTest, CompareLtS32) {
+XLA_TEST_F(ScalarComputationsTest, CompareLtS32) {
   TestCompare<int32>(9, 7, false, &ComputationBuilder::Lt);
   TestCompare<int32>(std::numeric_limits<int32>::min(),
                      std::numeric_limits<int32>::max(), true,
@@ -538,105 +538,105 @@
 }
 
 // U32 comparisons.
-TEST_F(ScalarComputationsTest, CompareEqU32False) {
+XLA_TEST_F(ScalarComputationsTest, CompareEqU32False) {
   TestCompare<uint32>(2, 1, false, &ComputationBuilder::Eq);
 }
 
-TEST_F(ScalarComputationsTest, CompareNeU32) {
+XLA_TEST_F(ScalarComputationsTest, CompareNeU32) {
   TestCompare<uint32>(2, 1, true, &ComputationBuilder::Ne);
 }
 
-TEST_F(ScalarComputationsTest, CompareGeU32Greater) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeU32Greater) {
   TestCompare<uint32>(2, 1, true, &ComputationBuilder::Ge);
 }
 
-TEST_F(ScalarComputationsTest, CompareGeU32Equal) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeU32Equal) {
   TestCompare<uint32>(3, 3, true, &ComputationBuilder::Ge);
 }
 
-TEST_F(ScalarComputationsTest, CompareGtU32) {
+XLA_TEST_F(ScalarComputationsTest, CompareGtU32) {
   TestCompare<uint32>(1, 5, false, &ComputationBuilder::Gt);
   TestCompare<uint32>(5, 5, false, &ComputationBuilder::Gt);
   TestCompare<uint32>(5, 1, true, &ComputationBuilder::Gt);
 }
 
-TEST_F(ScalarComputationsTest, CompareLeU32) {
+XLA_TEST_F(ScalarComputationsTest, CompareLeU32) {
   TestCompare<uint32>(2, 1, false, &ComputationBuilder::Le);
 }
 
-TEST_F(ScalarComputationsTest, CompareLtU32) {
+XLA_TEST_F(ScalarComputationsTest, CompareLtU32) {
   TestCompare<uint32>(9, 7, false, &ComputationBuilder::Lt);
   TestCompare<uint32>(0, std::numeric_limits<uint32>::max(), true,
                       &ComputationBuilder::Lt);
 }
 
 // F32 comparisons.
-TEST_F(ScalarComputationsTest, CompareEqF32False) {
+XLA_TEST_F(ScalarComputationsTest, CompareEqF32False) {
   TestCompare<float>(2.0, 1.3, false, &ComputationBuilder::Eq);
 }
 
-TEST_F(ScalarComputationsTest, CompareNeF32) {
+XLA_TEST_F(ScalarComputationsTest, CompareNeF32) {
   TestCompare<float>(2.0, 1.3, true, &ComputationBuilder::Ne);
 }
 
-TEST_F(ScalarComputationsTest, CompareGeF32Greater) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeF32Greater) {
   TestCompare<float>(2.0, 1.9, true, &ComputationBuilder::Ge);
 }
-TEST_F(ScalarComputationsTest, CompareGeF32Equal) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeF32Equal) {
   TestCompare<float>(3.5, 3.5, true, &ComputationBuilder::Ge);
 }
 
-TEST_F(ScalarComputationsTest, CompareGtF32) {
+XLA_TEST_F(ScalarComputationsTest, CompareGtF32) {
   TestCompare<float>(1.0, 5.2, false, &ComputationBuilder::Gt);
 }
 
-TEST_F(ScalarComputationsTest, CompareLeF32) {
+XLA_TEST_F(ScalarComputationsTest, CompareLeF32) {
   TestCompare<float>(2.0, 1.2, false, &ComputationBuilder::Le);
 }
 
-TEST_F(ScalarComputationsTest, CompareLtF32) {
+XLA_TEST_F(ScalarComputationsTest, CompareLtF32) {
   TestCompare<float>(9.0, 7.2, false, &ComputationBuilder::Lt);
 }
 
 // F32 comparisons with exceptional values.  The test names encode the
 // left/right operands at the end, and use Minf and Mzero for -inf and -0.0.
-TEST_F(ScalarComputationsTest, CompareLtF32MinfMzero) {
+XLA_TEST_F(ScalarComputationsTest, CompareLtF32MinfMzero) {
   TestCompare<float>(-INFINITY, -0.0, true, &ComputationBuilder::Lt);
 }
-TEST_F(ScalarComputationsTest, CompareLtF32MzeroZero) {
+XLA_TEST_F(ScalarComputationsTest, CompareLtF32MzeroZero) {
   // Comparisons of 0.0 to -0.0 consider them equal in IEEE 754.
   TestCompare<float>(-0.0, 0.0, false, &ComputationBuilder::Lt);
 }
-TEST_F(ScalarComputationsTest, CompareLtF32ZeroInf) {
+XLA_TEST_F(ScalarComputationsTest, CompareLtF32ZeroInf) {
   TestCompare<float>(0.0, INFINITY, true, &ComputationBuilder::Lt);
 }
 
-TEST_F(ScalarComputationsTest, CompareGeF32MinfMzero) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeF32MinfMzero) {
   TestCompare<float>(-INFINITY, -0.0, false, &ComputationBuilder::Ge);
 }
-TEST_F(ScalarComputationsTest, CompareGeF32MzeroZero) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeF32MzeroZero) {
   // Comparisons of 0.0 to -0.0 consider them equal in IEEE 754.
   TestCompare<float>(-0.0, 0.0, true, &ComputationBuilder::Ge);
 }
-TEST_F(ScalarComputationsTest, CompareGeF32ZeroInf) {
+XLA_TEST_F(ScalarComputationsTest, CompareGeF32ZeroInf) {
   TestCompare<float>(0.0, INFINITY, false, &ComputationBuilder::Ge);
 }
 
-TEST_F(ScalarComputationsTest, ExpScalar) {
+XLA_TEST_F(ScalarComputationsTest, ExpScalar) {
   ComputationBuilder builder(client_, TestName());
   builder.Exp(builder.ConstantR0<float>(2.0f));
 
   ComputeAndCompareR0<float>(&builder, 7.3890562, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, LogScalar) {
+XLA_TEST_F(ScalarComputationsTest, LogScalar) {
   ComputationBuilder builder(client_, "log");
   builder.Log(builder.ConstantR0<float>(2.0f));
 
   ComputeAndCompareR0<float>(&builder, 0.6931471, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, TanhScalar) {
+XLA_TEST_F(ScalarComputationsTest, TanhScalar) {
   ComputationBuilder builder(client_, TestName());
   builder.Tanh(builder.ConstantR0<float>(2.0f));
 
@@ -650,14 +650,14 @@
   ComputeAndCompareR0<double>(&builder, 0.96402758, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, PowScalar) {
+XLA_TEST_F(ScalarComputationsTest, PowScalar) {
   ComputationBuilder builder(client_, TestName());
   builder.Pow(builder.ConstantR0<float>(2.0f), builder.ConstantR0<float>(3.0f));
 
   ComputeAndCompareR0<float>(&builder, 8.0, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, ClampScalarHigh) {
+XLA_TEST_F(ScalarComputationsTest, ClampScalarHigh) {
   ComputationBuilder builder(client_, TestName());
   builder.Clamp(builder.ConstantR0<float>(2.0f),   // The lower bound.
                 builder.ConstantR0<float>(5.0f),   // The operand to be clamped.
@@ -666,7 +666,7 @@
   ComputeAndCompareR0<float>(&builder, 3.0, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, ClampScalarMiddle) {
+XLA_TEST_F(ScalarComputationsTest, ClampScalarMiddle) {
   ComputationBuilder builder(client_, TestName());
   builder.Clamp(builder.ConstantR0<float>(2.0f),   // The lower bound.
                 builder.ConstantR0<float>(2.5f),   // The operand to be clamped.
@@ -675,7 +675,7 @@
   ComputeAndCompareR0<float>(&builder, 2.5, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, ClampScalarLow) {
+XLA_TEST_F(ScalarComputationsTest, ClampScalarLow) {
   ComputationBuilder builder(client_, TestName());
   builder.Clamp(builder.ConstantR0<float>(2.0f),   // The lower bound.
                 builder.ConstantR0<float>(-5.0f),  // The operand to be clamped.
@@ -684,57 +684,57 @@
   ComputeAndCompareR0<float>(&builder, 2.0, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, MinS32Above) {
+XLA_TEST_F(ScalarComputationsTest, MinS32Above) {
   TestMinMax<int32>(10, 3, 3, &ComputationBuilder::Min);
 }
 
-TEST_F(ScalarComputationsTest, MinS32Below) {
+XLA_TEST_F(ScalarComputationsTest, MinS32Below) {
   TestMinMax<int32>(-100, 3, -100, &ComputationBuilder::Min);
 }
 
-TEST_F(ScalarComputationsTest, MaxS32Above) {
+XLA_TEST_F(ScalarComputationsTest, MaxS32Above) {
   TestMinMax<int32>(10, 3, 10, &ComputationBuilder::Max);
 }
 
-TEST_F(ScalarComputationsTest, MaxS32Below) {
+XLA_TEST_F(ScalarComputationsTest, MaxS32Below) {
   TestMinMax<int32>(-100, 3, 3, &ComputationBuilder::Max);
 }
 
-TEST_F(ScalarComputationsTest, MinU32Above) {
+XLA_TEST_F(ScalarComputationsTest, MinU32Above) {
   const uint32 large = std::numeric_limits<int32>::max();
   TestMinMax<uint32>(large, 3, 3, &ComputationBuilder::Min);
 }
 
-TEST_F(ScalarComputationsTest, MinU32Below) {
+XLA_TEST_F(ScalarComputationsTest, MinU32Below) {
   TestMinMax<uint32>(0, 5, 0, &ComputationBuilder::Min);
 }
 
-TEST_F(ScalarComputationsTest, MaxU32Above) {
+XLA_TEST_F(ScalarComputationsTest, MaxU32Above) {
   const uint32 large = std::numeric_limits<int32>::max();
   TestMinMax<uint32>(large, 3, large, &ComputationBuilder::Max);
 }
 
-TEST_F(ScalarComputationsTest, MaxU32Below) {
+XLA_TEST_F(ScalarComputationsTest, MaxU32Below) {
   TestMinMax<uint32>(0, 5, 5, &ComputationBuilder::Max);
 }
 
-TEST_F(ScalarComputationsTest, MinF32Above) {
+XLA_TEST_F(ScalarComputationsTest, MinF32Above) {
   TestMinMax<float>(10.1f, 3.1f, 3.1f, &ComputationBuilder::Min);
 }
 
-TEST_F(ScalarComputationsTest, MinF32Below) {
+XLA_TEST_F(ScalarComputationsTest, MinF32Below) {
   TestMinMax<float>(-100.1f, 3.1f, -100.1f, &ComputationBuilder::Min);
 }
 
-TEST_F(ScalarComputationsTest, MaxF32Above) {
+XLA_TEST_F(ScalarComputationsTest, MaxF32Above) {
   TestMinMax<float>(10.1f, 3.1f, 10.1f, &ComputationBuilder::Max);
 }
 
-TEST_F(ScalarComputationsTest, MaxF32Below) {
+XLA_TEST_F(ScalarComputationsTest, MaxF32Below) {
   TestMinMax<float>(-100.1f, 3.1f, 3.1f, &ComputationBuilder::Max);
 }
 
-TEST_F(ScalarComputationsTest, ComplicatedArithmeticExpressionF32) {
+XLA_TEST_F(ScalarComputationsTest, ComplicatedArithmeticExpressionF32) {
   // Compute the expression (1 * (3 - 1) * (7 + 0) - 4) / 20.
   ComputationBuilder b(client_, TestName());
   b.Div(
@@ -747,7 +747,7 @@
   ComputeAndCompareR0<float>(&b, 0.5, {}, error_spec_);
 }
 
-TEST_F(ScalarComputationsTest, ComplicatedArithmeticExpressionS32) {
+XLA_TEST_F(ScalarComputationsTest, ComplicatedArithmeticExpressionS32) {
   // Compute the expression 1 * (3 - 1) * (7 + 0) - 4.
   ComputationBuilder b(client_, TestName());
   b.Sub(b.Mul(b.ConstantR0<int32>(1),
@@ -758,7 +758,7 @@
   ComputeAndCompareR0<int32>(&b, 10, {});
 }
 
-TEST_F(ScalarComputationsTest, SqrtF320) {
+XLA_TEST_F(ScalarComputationsTest, SqrtF320) {
   ComputationBuilder builder(client_, TestName());
   Literal zero_literal = Literal::Zero(PrimitiveType::F32);
 
diff --git a/tensorflow/compiler/xla/tests/unary_op_test.cc b/tensorflow/compiler/xla/tests/unary_op_test.cc
index 35a9fcb..efae13a 100644
--- a/tensorflow/compiler/xla/tests/unary_op_test.cc
+++ b/tensorflow/compiler/xla/tests/unary_op_test.cc
@@ -85,12 +85,12 @@
   AbsSize0TestHelper<float>();
 }
 
-TEST_F(UnaryOpTest, AbsTestR1) {
+XLA_TEST_F(UnaryOpTest, AbsTestR1) {
   AbsTestHelper<int>();
   AbsTestHelper<float>();
 }
 
-TEST_F(UnaryOpTest, AbsTestR0) {
+XLA_TEST_F(UnaryOpTest, AbsTestR0) {
   ComputationBuilder builder(client_, TestName());
   auto argi = builder.ConstantR0<int>(-5);
   auto absi = builder.Abs(argi);
@@ -104,7 +104,7 @@
   ComputeAndCompareR0<float>(&builder, 8.0f, {});
 }
 
-TEST_F(UnaryOpTest, SignTestR0) {
+XLA_TEST_F(UnaryOpTest, SignTestR0) {
   ComputationBuilder builder(client_, TestName());
   auto argi = builder.ConstantR0<int>(-5);
   auto absi = builder.Sign(argi);
@@ -118,17 +118,17 @@
   ComputeAndCompareR0<float>(&builder, -2.0f, {});
 }
 
-TEST_F(UnaryOpTest, SignTestR1) {
+XLA_TEST_F(UnaryOpTest, SignTestR1) {
   SignTestHelper<int>();
   SignTestHelper<float>();
 }
 
-TEST_F(UnaryOpTest, SignAbsTestR1) {
+XLA_TEST_F(UnaryOpTest, SignAbsTestR1) {
   SignAbsTestHelper<int>();
   SignAbsTestHelper<float>();
 }
 
-TEST_F(UnaryOpTest, UnsignedAbsTestR1) {
+XLA_TEST_F(UnaryOpTest, UnsignedAbsTestR1) {
   ComputationBuilder builder(client_, TestName());
   auto arg = builder.ConstantR1<unsigned int>(
       {2, 25, 0, 123, std::numeric_limits<unsigned int>::max()});
@@ -138,7 +138,7 @@
       &builder, {2, 25, 0, 123, std::numeric_limits<unsigned int>::max()}, {});
 }
 
-TEST_F(UnaryOpTest, UnsignedSignTestR1) {
+XLA_TEST_F(UnaryOpTest, UnsignedSignTestR1) {
   ComputationBuilder builder(client_, TestName());
   auto arg = builder.ConstantR1<unsigned int>(
       {2, 25, 0, 123, std::numeric_limits<unsigned int>::max()});
@@ -147,7 +147,7 @@
   ComputeAndCompareR1<unsigned int>(&builder, {1, 1, 0, 1, 1}, {});
 }
 
-TEST_F(UnaryOpTest, SignAbsTestR2) {
+XLA_TEST_F(UnaryOpTest, SignAbsTestR2) {
   ComputationBuilder builder(client_, TestName());
   auto arg = builder.ConstantR2<float>({{1.0, -2.0}, {-3.0, 4.0}});
   auto sign = builder.Sign(arg);
diff --git a/tensorflow/compiler/xla/tests/vector_ops_simple_test.cc b/tensorflow/compiler/xla/tests/vector_ops_simple_test.cc
index fbb9c25..48a85f1 100644
--- a/tensorflow/compiler/xla/tests/vector_ops_simple_test.cc
+++ b/tensorflow/compiler/xla/tests/vector_ops_simple_test.cc
@@ -48,7 +48,7 @@
   ErrorSpec error_spec_{0.0001};
 };
 
-TEST_F(VecOpsSimpleTest, ExpTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, ExpTenValues) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -61,7 +61,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, ExpManyValues) {
+XLA_TEST_F(VecOpsSimpleTest, ExpManyValues) {
   for (int count : {63, 64, 65, 127, 128, 129, 17 * 4096}) {
     ComputationBuilder builder(client_, TestName());
     std::vector<float> exponents;
@@ -83,7 +83,7 @@
   }
 }
 
-TEST_F(VecOpsSimpleTest, ExpIn4D) {
+XLA_TEST_F(VecOpsSimpleTest, ExpIn4D) {
   ComputationBuilder builder(client_, TestName());
   Array4D<float> exponents(2, 2, 2, 2);
 
@@ -105,7 +105,7 @@
                              ErrorSpec(/*aabs=*/1e-2, /*arel=*/1e-3));
 }
 
-TEST_F(VecOpsSimpleTest, NegateTenFloatValues) {
+XLA_TEST_F(VecOpsSimpleTest, NegateTenFloatValues) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -116,7 +116,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, NegateTenInt32Values) {
+XLA_TEST_F(VecOpsSimpleTest, NegateTenInt32Values) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<int32>({2, -2, 12, -4, 5, 20, -15, 0, -2, 1});
   builder.Neg(x);
@@ -125,7 +125,7 @@
   ComputeAndCompareR1<int32>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, NegateUint32Values) {
+XLA_TEST_F(VecOpsSimpleTest, NegateUint32Values) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<uint32>(
       {0, 1, 42, static_cast<uint32>(-1), static_cast<uint32>(-12)});
@@ -135,7 +135,7 @@
   ComputeAndCompareR1<uint32>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, SquareTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, SquareTenValues) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -146,7 +146,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, ReciprocalTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, ReciprocalTenValues) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -187,7 +187,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, AddTenValuesViaMap) {
+XLA_TEST_F(VecOpsSimpleTest, AddTenValuesViaMap) {
   ComputationBuilder builder(client_, TestName());
   auto add = CreateScalarAddComputation(F32, &builder);
 
@@ -202,7 +202,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {}, error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, MaxTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, MaxTenValues) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -215,7 +215,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, MaxTenValuesFromParams) {
+XLA_TEST_F(VecOpsSimpleTest, MaxTenValuesFromParams) {
   // Similar to MaxTenValues, except that the inputs come from params rather
   // than constants.
   ComputationBuilder builder(client_, TestName());
@@ -233,7 +233,7 @@
                              error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, Max15000ValuesFromParams) {
+XLA_TEST_F(VecOpsSimpleTest, Max15000ValuesFromParams) {
   // Similar to MaxTenValuesFromParams, except that the data size passed in and
   // out is large.
   ComputationBuilder builder(client_, TestName());
@@ -273,7 +273,7 @@
                              error_spec_);
 }
 
-TEST_F(VecOpsSimpleTest, MaxTenValuesWithScalar) {
+XLA_TEST_F(VecOpsSimpleTest, MaxTenValuesWithScalar) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -285,7 +285,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, MinTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, MinTenValues) {
   ComputationBuilder builder(client_, TestName());
   auto x = builder.ConstantR1<float>(
       {2.1, -2.6, 2.6, -4.0, 2.1, 2.3, -5.0, -0.9, -2.4, 1.6});
@@ -298,7 +298,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, MinMaxTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, MinMaxTenValues) {
   ComputationBuilder builder(client_, TestName());
   auto zero = builder.ConstantR0<float>(0);
   auto one = builder.ConstantR0<float>(1);
@@ -311,7 +311,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, ClampTenValuesConstant) {
+XLA_TEST_F(VecOpsSimpleTest, ClampTenValuesConstant) {
   ComputationBuilder builder(client_, TestName());
   auto zero = builder.ConstantR0<float>(0);
   auto one = builder.ConstantR0<float>(1);
@@ -324,7 +324,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, ClampTwoValuesConstant) {
+XLA_TEST_F(VecOpsSimpleTest, ClampTwoValuesConstant) {
   ComputationBuilder builder(client_, TestName());
   auto zero = builder.ConstantR1<float>({0.0f, 0.0f});
   auto one = builder.ConstantR1<float>({1.0f, 1.0f});
@@ -335,7 +335,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, ClampTenValuesConstantNonzeroLower) {
+XLA_TEST_F(VecOpsSimpleTest, ClampTenValuesConstantNonzeroLower) {
   ComputationBuilder builder(client_, TestName());
   auto one = builder.ConstantR0<float>(1);
   auto two = builder.ConstantR0<float>(2);
@@ -348,7 +348,7 @@
   ComputeAndCompareR1<float>(&builder, expected, {});
 }
 
-TEST_F(VecOpsSimpleTest, MapTenValues) {
+XLA_TEST_F(VecOpsSimpleTest, MapTenValues) {
   Computation add_half;
   {
     // add_half(x) = x + 0.5
diff --git a/tensorflow/contrib/batching/python/ops/batch_ops.py b/tensorflow/contrib/batching/python/ops/batch_ops.py
index bec4b98..cee4d7b 100644
--- a/tensorflow/contrib/batching/python/ops/batch_ops.py
+++ b/tensorflow/contrib/batching/python/ops/batch_ops.py
@@ -67,7 +67,7 @@
 
   So, for example, in the following code
 
-  ```
+  ```python
   @batch_function(1, 2, 3)
   def layer(a):
     return tf.matmul(a, a)
diff --git a/tensorflow/contrib/cmake/CMakeLists.txt b/tensorflow/contrib/cmake/CMakeLists.txt
index 83c82c7..3cbb430 100644
--- a/tensorflow/contrib/cmake/CMakeLists.txt
+++ b/tensorflow/contrib/cmake/CMakeLists.txt
@@ -29,6 +29,7 @@
 option(tensorflow_BUILD_CONTRIB_KERNELS "Build OpKernels from tensorflow/contrib/..." ON)
 option(tensorflow_BUILD_CC_TESTS "Build cc unit tests " OFF)
 option(tensorflow_BUILD_PYTHON_TESTS "Build python unit tests " OFF)
+option(tensorflow_BUILD_MORE_PYTHON_TESTS "Build more python unit tests for contrib packages" OFF)
 option(tensorflow_BUILD_SHARED_LIB "Build TensorFlow as a shared library" OFF)
 option(tensorflow_OPTIMIZE_FOR_NATIVE_ARCH "Enable compiler optimizations for the native processor architecture (if available)" ON)
 option(tensorflow_WIN_CPU_SIMD_OPTIONS "Enables CPU SIMD instructions")
diff --git a/tensorflow/contrib/cmake/README.md b/tensorflow/contrib/cmake/README.md
index 8ad8527..4ddfec5 100644
--- a/tensorflow/contrib/cmake/README.md
+++ b/tensorflow/contrib/cmake/README.md
@@ -241,6 +241,13 @@
      ```
      ctest -C RelWithDebInfo
      ```
+   * `-Dtensorflow_BUILD_MORE_PYTHON_TESTS=(ON|OFF)`. Defaults to `OFF`. This enables python tests on
+     serveral major packages. This option is only valid if this and tensorflow_BUILD_PYTHON_TESTS are both set as `ON`.
+     After building the python wheel, you need to install the new wheel before running the tests.
+     To execute the tests, use
+     ```
+     ctest -C RelWithDebInfo
+     ```
 
 4. Invoke MSBuild to build TensorFlow.
 
diff --git a/tensorflow/contrib/cmake/tf_core_kernels.cmake b/tensorflow/contrib/cmake/tf_core_kernels.cmake
index 4e5741d..335551d 100644
--- a/tensorflow/contrib/cmake/tf_core_kernels.cmake
+++ b/tensorflow/contrib/cmake/tf_core_kernels.cmake
@@ -76,7 +76,9 @@
       #"${tensorflow_source_dir}/tensorflow/contrib/ffmpeg/encode_audio_op.cc"
       "${tensorflow_source_dir}/tensorflow/contrib/framework/kernels/generate_vocab_remapping_op.cc"
       "${tensorflow_source_dir}/tensorflow/contrib/framework/kernels/load_and_remap_matrix_op.cc"
+      "${tensorflow_source_dir}/tensorflow/contrib/framework/kernels/zero_initializer_op.cc"
       "${tensorflow_source_dir}/tensorflow/contrib/framework/ops/checkpoint_ops.cc"
+      "${tensorflow_source_dir}/tensorflow/contrib/framework/ops/variable_ops.cc"
       "${tensorflow_source_dir}/tensorflow/contrib/layers/kernels/sparse_feature_cross_kernel.cc"
       "${tensorflow_source_dir}/tensorflow/contrib/layers/ops/sparse_feature_cross_op.cc"
       "${tensorflow_source_dir}/tensorflow/contrib/nccl/kernels/nccl_manager.cc"
diff --git a/tensorflow/contrib/cmake/tf_tests.cmake b/tensorflow/contrib/cmake/tf_tests.cmake
index a4ee010..6e8b480 100644
--- a/tensorflow/contrib/cmake/tf_tests.cmake
+++ b/tensorflow/contrib/cmake/tf_tests.cmake
@@ -156,6 +156,21 @@
     "${tensorflow_source_dir}/tensorflow/contrib/tensor_forest/python/*_test.py"
   )
 
+  if (tensorflow_BUILD_MORE_PYTHON_TESTS)
+    # Adding other major packages
+    file(GLOB_RECURSE tf_test_src_py
+      ${tf_test_src_py}
+      "${tensorflow_source_dir}/tensorflow/contrib/legacy_seq2seq/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/linalg/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/graph_editor/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/bayesflow/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/framework/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/keras/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/*_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/learn/*_test.py"
+    )
+  endif()
+
   # exclude the ones we don't want
   set(tf_test_src_py_exclude
     # Python source line inspection tests are flaky on Windows (b/36375074).
@@ -183,6 +198,9 @@
     # Loading resources in contrib doesn't seem to work on Windows
     "${tensorflow_source_dir}/tensorflow/contrib/tensor_forest/client/random_forest_test.py"
     "${tensorflow_source_dir}/tensorflow/contrib/tensor_forest/python/tensor_forest_test.py"
+    # dask need fix
+    "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/learn_io/generator_io_test.py"
+    "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/learn_io/graph_io_test.py"
     # Test is flaky on Windows GPU builds (b/38283730).
     "${tensorflow_source_dir}/tensorflow/contrib/factorization/python/ops/gmm_test.py"
   )
@@ -215,11 +233,8 @@
       "${tensorflow_source_dir}/tensorflow/python/kernel_tests/py_func_test.py"
       # training tests
       "${tensorflow_source_dir}/tensorflow/python/training/basic_session_run_hooks_test.py"  # Needs tf.contrib fix.
-      "${tensorflow_source_dir}/tensorflow/python/training/evaluation_test.py"  # Needs tf.contrib fix.
       "${tensorflow_source_dir}/tensorflow/python/training/localhost_cluster_performance_test.py"  # Needs portpicker.
-      "${tensorflow_source_dir}/tensorflow/python/training/monitored_session_test.py"  # Needs tf.contrib fix.
       "${tensorflow_source_dir}/tensorflow/python/training/quantize_training_test.py"  # Needs quantization ops to be included in windows.
-      "${tensorflow_source_dir}/tensorflow/python/training/saver_large_variable_test.py"  # Overflow error.
       "${tensorflow_source_dir}/tensorflow/python/training/supervisor_test.py"  # Flaky I/O error on rename.
       "${tensorflow_source_dir}/tensorflow/python/training/sync_replicas_optimizer_test.py"  # Needs portpicker.
       "${tensorflow_source_dir}/tensorflow/python/kernel_tests/array_ops_test.py"  # depends on python/framework/test_ops
@@ -233,6 +248,45 @@
       "${tensorflow_source_dir}/tensorflow/python/ops/cloud/bigquery_reader_ops_test.py"  # No libcurl support
       # Newly running on Windows since TensorBoard backend move. Fail on Windows and need debug.
       "${tensorflow_source_dir}/tensorflow/contrib/data/python/kernel_tests/dataset_constructor_op_test.py"  # Segfaults on Windows.
+      # Dask.Dataframe bugs on Window Build
+      "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/tests/dataframe/tensorflow_dataframe_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/learn_io/io_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/graph_actions_test.py"
+      # Need extra build
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/conditional_distribution_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/conditional_transformed_distribution_test.py"
+      # Windows Path
+      "${tensorflow_source_dir}/tensorflow/contrib/framework/python/ops/checkpoint_ops_test.py" #TODO: Fix path
+      "${tensorflow_source_dir}/tensorflow/contrib/keras/python/keras/models_test.py"
+      # Related to Windows Multiprocessing https://github.com/fchollet/keras/issues/5071
+      "${tensorflow_source_dir}/tensorflow/contrib/keras/python/keras/engine/training_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/keras/python/keras/utils/data_utils_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/keras/python/keras/callbacks_test.py"
+      # Scipy needed
+      "${tensorflow_source_dir}/tensorflow/contrib/keras/python/keras/preprocessing/image_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/bijectors/sigmoid_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/binomial_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/chi2_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/geometric_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/inverse_gamma_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/logistic_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/mixture_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/mvn_diag_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/mvn_full_covariance_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/mvn_tril_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/negative_binomial_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/poisson_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/quantized_distribution_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/relaxed_bernoulli_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/relaxed_onehot_categorical_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/transformed_distribution_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/vector_student_t_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/wishart_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py"
+      # Failing with TF 1.3 (TODO)
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/estimator_test.py"
+      "${tensorflow_source_dir}/tensorflow/contrib/distributions/python/kernel_tests/bijectors/sinh_arcsinh_test.py"
   )
   endif()
   list(REMOVE_ITEM tf_test_src_py ${tf_test_src_py_exclude})
diff --git a/tensorflow/contrib/crf/python/kernel_tests/crf_test.py b/tensorflow/contrib/crf/python/kernel_tests/crf_test.py
index 448bcaf..9174c5e 100644
--- a/tensorflow/contrib/crf/python/kernel_tests/crf_test.py
+++ b/tensorflow/contrib/crf/python/kernel_tests/crf_test.py
@@ -23,6 +23,7 @@
 import numpy as np
 
 from tensorflow.contrib.crf.python.ops import crf
+from tensorflow.python.framework import dtypes
 from tensorflow.python.framework import constant_op
 from tensorflow.python.ops import array_ops
 from tensorflow.python.ops import math_ops
@@ -199,6 +200,52 @@
       self.assertEqual(actual_max_sequence,
                        expected_max_sequence[:sequence_lengths])
 
+  def testCrfDecode(self):
+    inputs = np.array(
+        [[4, 5, -3], [3, -1, 3], [-1, 2, 1], [0, 0, 0]], dtype=np.float32)
+    transition_params = np.array(
+        [[-3, 5, -2], [3, 4, 1], [1, 2, 1]], dtype=np.float32)
+    sequence_lengths = np.array(3, dtype=np.int32)
+    num_words = inputs.shape[0]
+    num_tags = inputs.shape[1]
+
+    with self.test_session() as sess:
+      all_sequence_scores = []
+      all_sequences = []
+
+      # Compare the dynamic program with brute force computation.
+      for tag_indices in itertools.product(
+          range(num_tags), repeat=sequence_lengths):
+        tag_indices = list(tag_indices)
+        tag_indices.extend([0] * (num_words - sequence_lengths))
+        all_sequences.append(tag_indices)
+        sequence_score = crf.crf_sequence_score(
+            inputs=array_ops.expand_dims(inputs, 0),
+            tag_indices=array_ops.expand_dims(tag_indices, 0),
+            sequence_lengths=array_ops.expand_dims(sequence_lengths, 0),
+            transition_params=constant_op.constant(transition_params))
+        sequence_score = array_ops.squeeze(sequence_score, [0])
+        all_sequence_scores.append(sequence_score)
+
+      tf_all_sequence_scores = sess.run(all_sequence_scores)
+
+      expected_max_sequence_index = np.argmax(tf_all_sequence_scores)
+      expected_max_sequence = all_sequences[expected_max_sequence_index]
+      expected_max_score = tf_all_sequence_scores[expected_max_sequence_index]
+
+      actual_max_sequence, actual_max_score = crf.crf_decode(
+          array_ops.expand_dims(inputs, 0),
+          constant_op.constant(transition_params),
+          array_ops.expand_dims(sequence_lengths, 0))
+      actual_max_sequence = array_ops.squeeze(actual_max_sequence, [0])
+      actual_max_score = array_ops.squeeze(actual_max_score, [0])
+      tf_actual_max_sequence, tf_actual_max_score = sess.run(
+          [actual_max_sequence, actual_max_score])
+
+      self.assertAllClose(tf_actual_max_score, expected_max_score)
+      self.assertEqual(list(tf_actual_max_sequence[:sequence_lengths]),
+                       expected_max_sequence[:sequence_lengths])
+
 
 if __name__ == "__main__":
   test.main()
diff --git a/tensorflow/contrib/crf/python/ops/crf.py b/tensorflow/contrib/crf/python/ops/crf.py
index a19c707..7166e38b 100644
--- a/tensorflow/contrib/crf/python/ops/crf.py
+++ b/tensorflow/contrib/crf/python/ops/crf.py
@@ -16,13 +16,24 @@
 
 The following snippet is an example of a CRF layer on top of a batched sequence
 of unary scores (logits for every word). This example also decodes the most
-likely sequence at test time:
+likely sequence at test time. There are two ways to do decoding. One
+is using crf_decode to do decoding in Tensorflow , and the other one is using
+viterbi_decode in Numpy.
 
 log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(
     unary_scores, gold_tags, sequence_lengths)
+
 loss = tf.reduce_mean(-log_likelihood)
 train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
 
+# Decoding in Tensorflow.
+viterbi_sequence, viterbi_score = tf.contrib.crf.crf_decode(
+    unary_scores, transition_params, sequence_lengths)
+
+tf_viterbi_sequence, tf_viterbi_score, _ = session.run(
+    [viterbi_sequence, viterbi_score, train_op])
+
+# Decoding in Numpy.
 tf_unary_scores, tf_sequence_lengths, tf_transition_params, _ = session.run(
     [unary_scores, sequence_lengths, transition_params, train_op])
 for tf_unary_scores_, tf_sequence_length_ in zip(tf_unary_scores,
@@ -31,7 +42,7 @@
 tf_unary_scores_ = tf_unary_scores_[:tf_sequence_length_]
 
 # Compute the highest score and its tag sequence.
-viterbi_sequence, viterbi_score = tf.contrib.crf.viterbi_decode(
+tf_viterbi_sequence, tf_viterbi_score = tf.contrib.crf.viterbi_decode(
     tf_unary_scores_, tf_transition_params)
 """
 
@@ -43,6 +54,7 @@
 
 from tensorflow.python.framework import dtypes
 from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import gen_array_ops
 from tensorflow.python.ops import math_ops
 from tensorflow.python.ops import rnn
 from tensorflow.python.ops import rnn_cell
@@ -50,7 +62,9 @@
 
 __all__ = [
     "crf_sequence_score", "crf_log_norm", "crf_log_likelihood",
-    "crf_unary_score", "crf_binary_score", "CrfForwardRnnCell", "viterbi_decode"
+    "crf_unary_score", "crf_binary_score", "CrfForwardRnnCell",
+    "viterbi_decode", "crf_decode", "CrfDecodeForwardRnnCell",
+    "CrfDecodeBackwardRnnCell"
 ]
 
 
@@ -310,3 +324,154 @@
 
   viterbi_score = np.max(trellis[-1])
   return viterbi, viterbi_score
+
+
+class CrfDecodeForwardRnnCell(rnn_cell.RNNCell):
+  """Computes the forward decoding in a linear-chain CRF.
+  """
+
+  def __init__(self, transition_params):
+    """Initialize the CrfDecodeForwardRnnCell.
+
+    Args:
+      transition_params: A [num_tags, num_tags] matrix of binary
+        potentials. This matrix is expanded into a
+        [1, num_tags, num_tags] in preparation for the broadcast
+        summation occurring within the cell.
+    """
+    self._transition_params = array_ops.expand_dims(transition_params, 0)
+    self._num_tags = transition_params.get_shape()[0].value
+
+  @property
+  def state_size(self):
+    return self._num_tags
+
+  @property
+  def output_size(self):
+    return self._num_tags
+
+  def __call__(self, inputs, state, scope=None):
+    """Build the CrfDecodeForwardRnnCell.
+
+    Args:
+      inputs: A [batch_size, num_tags] matrix of unary potentials.
+      state: A [batch_size, num_tags] matrix containing the previous step's
+            score values.
+      scope: Unused variable scope of this cell.
+
+    Returns:
+      backpointers: [batch_size, num_tags], containing backpointers.
+      new_state: [batch_size, num_tags], containing new score values.
+    """
+    # For simplicity, in shape comments, denote:
+    # 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
+    state = array_ops.expand_dims(state, 2)                         # [B, O, 1]
+
+    # This addition op broadcasts self._transitions_params along the zeroth
+    # dimension and state along the second dimension.
+    # [B, O, 1] + [1, O, O] -> [B, O, O]
+    transition_scores = state + self._transition_params             # [B, O, O]
+    new_state = inputs + math_ops.reduce_max(transition_scores, [1])  # [B, O]
+    backpointers = math_ops.argmax(transition_scores, 1)
+    backpointers = math_ops.cast(backpointers, dtype=dtypes.int32)    # [B, O]
+    return backpointers, new_state
+
+
+class CrfDecodeBackwardRnnCell(rnn_cell.RNNCell):
+  """Computes backward decoding in a linear-chain CRF.
+  """
+
+  def __init__(self, num_tags):
+    """Initialize the CrfDecodeBackwardRnnCell.
+
+    Args:
+      num_tags
+    """
+    self._num_tags = num_tags
+
+  @property
+  def state_size(self):
+    return 1
+
+  @property
+  def output_size(self):
+    return 1
+
+  def __call__(self, inputs, state, scope=None):
+    """Build the CrfDecodeBackwardRnnCell.
+
+    Args:
+      inputs: [batch_size, num_tags], backpointer of next step (in time order).
+      state: [batch_size, 1], next position's tag index.
+      scope: Unused variable scope of this cell.
+
+    Returns:
+      new_tags, new_tags: A pair of [batch_size, num_tags]
+        tensors containing the new tag indices.
+    """
+    state = array_ops.squeeze(state, axis=[1])                # [B]
+    batch_size = array_ops.shape(inputs)[0]
+    b_indices = math_ops.range(batch_size)                    # [B]
+    indices = array_ops.stack([b_indices, state], axis=1)     # [B, 2]
+    new_tags = array_ops.expand_dims(
+        gen_array_ops.gather_nd(inputs, indices),             # [B]
+        axis=-1)                                              # [B, 1]
+
+    return new_tags, new_tags
+
+
+def crf_decode(potentials, transition_params, sequence_length):
+  """Decode the highest scoring sequence of tags in TensorFlow.
+
+  This is a function for tensor.
+
+  Args:
+    potentials: A [batch_size, max_seq_len, num_tags] tensor, matrix of
+              unary potentials.
+    transition_params: A [num_tags, num_tags] tensor, matrix of
+              binary potentials.
+    sequence_length: A [batch_size] tensor, containing sequence lengths.
+
+  Returns:
+    decode_tags: A [batch_size, max_seq_len] tensor, with dtype tf.int32.
+                Contains the highest scoring tag indicies.
+    best_score: A [batch_size] tensor, containing the score of decode_tags.
+  """
+  # For simplicity, in shape comments, denote:
+  # 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
+  num_tags = potentials.get_shape()[2].value
+
+  # Computes forward decoding. Get last score and backpointers.
+  crf_fwd_cell = CrfDecodeForwardRnnCell(transition_params)
+  initial_state = array_ops.slice(potentials, [0, 0, 0], [-1, 1, -1])
+  initial_state = array_ops.squeeze(initial_state, axis=[1])      # [B, O]
+  inputs = array_ops.slice(potentials, [0, 1, 0], [-1, -1, -1])   # [B, T-1, O]
+  backpointers, last_score = rnn.dynamic_rnn(
+      crf_fwd_cell,
+      inputs=inputs,
+      sequence_length=sequence_length - 1,
+      initial_state=initial_state,
+      time_major=False,
+      dtype=dtypes.int32)             # [B, T - 1, O], [B, O]
+  backpointers = gen_array_ops.reverse_sequence(
+      backpointers, sequence_length - 1, seq_dim=1)               # [B, T-1, O]
+
+  # Computes backward decoding. Extract tag indices from backpointers.
+  crf_bwd_cell = CrfDecodeBackwardRnnCell(num_tags)
+  initial_state = math_ops.cast(math_ops.argmax(last_score, axis=1),
+                                dtype=dtypes.int32)               # [B]
+  initial_state = array_ops.expand_dims(initial_state, axis=-1)   # [B, 1]
+  decode_tags, _ = rnn.dynamic_rnn(
+      crf_bwd_cell,
+      inputs=backpointers,
+      sequence_length=sequence_length - 1,
+      initial_state=initial_state,
+      time_major=False,
+      dtype=dtypes.int32)           # [B, T - 1, 1]
+  decode_tags = array_ops.squeeze(decode_tags, axis=[2])           # [B, T - 1]
+  decode_tags = array_ops.concat([initial_state, decode_tags], axis=1)  # [B, T]
+  decode_tags = gen_array_ops.reverse_sequence(
+      decode_tags, sequence_length, seq_dim=1)                     # [B, T]
+
+  best_score = math_ops.reduce_max(last_score, axis=1)             # [B]
+  return decode_tags, best_score
diff --git a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_benchmark.py b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_benchmark.py
index 6ca38c2..ff409ac 100644
--- a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_benchmark.py
+++ b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_benchmark.py
@@ -93,7 +93,7 @@
       batch_size = config["batch_size"]
       seq_length = config["seq_length"]
 
-      with ops.Graph().as_default(), ops.device("/gpu:0"):
+      with ops.Graph().as_default(), ops.device("/device:GPU:0"):
         model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units)
         params_size_t = model.params_size()
         input_data = variables.Variable(
@@ -125,7 +125,7 @@
       batch_size = config["batch_size"]
       seq_length = config["seq_length"]
 
-      with ops.Graph().as_default(), ops.device("/gpu:0"):
+      with ops.Graph().as_default(), ops.device("/device:GPU:0"):
         inputs = seq_length * [
             array_ops.zeros([batch_size, num_units], dtypes.float32)
         ]
@@ -153,7 +153,7 @@
       batch_size = config["batch_size"]
       seq_length = config["seq_length"]
 
-      with ops.Graph().as_default(), ops.device("/gpu:0"):
+      with ops.Graph().as_default(), ops.device("/device:GPU:0"):
         inputs = seq_length * [
             array_ops.zeros([batch_size, num_units], dtypes.float32)
         ]
diff --git a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py
index 2e70d2d..aebdcea 100644
--- a/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py
+++ b/tensorflow/contrib/cudnn_rnn/python/kernel_tests/cudnn_rnn_ops_test.py
@@ -286,14 +286,14 @@
       save_path = os.path.join(self.get_temp_dir(),
                                "save-restore-variable-test")
       saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V2)
-      # Passing graph explictly, otherwise an old sess would be reused.
+      # Passing graph explicitly, otherwise an old sess would be reused.
       with self.test_session(
           use_gpu=True, graph=ops.get_default_graph()) as sess:
         sess.run(variables.global_variables_initializer())
         params_v = sess.run(params)
         val = saver.save(sess, save_path)
         self.assertEqual(save_path, val)
-      # Passing graph explictly, otherwise an old sess would be reused.
+      # Passing graph explicitly, otherwise an old sess would be reused.
       with self.test_session(
           use_gpu=True, graph=ops.get_default_graph()) as sess:
         reset_params = state_ops.assign(
@@ -328,14 +328,14 @@
       save_path = os.path.join(self.get_temp_dir(),
                                "save-restore-variable-test")
       saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V2)
-      # Passing graph explictly, otherwise an old sess would be reused.
+      # Passing graph explicitly, otherwise an old sess would be reused.
       with self.test_session(
           use_gpu=True, graph=ops.get_default_graph()) as sess:
         sess.run(variables.global_variables_initializer())
         params_v = sess.run(param_vars)
         val = saver.save(sess, save_path)
         self.assertEqual(save_path, val)
-      # Passing graph explictly, otherwise an old sess would be reused.
+      # Passing graph explicitly, otherwise an old sess would be reused.
       with self.test_session(
           use_gpu=True, graph=ops.get_default_graph()) as sess:
         reset_params = [
@@ -398,14 +398,14 @@
             params=params,
             is_training=False)
       total_sum = sum(map(math_ops.reduce_sum, outputs))
-      # Passing graph explictly, otherwise an old sess would be reused.
+      # Passing graph explicitly, otherwise an old sess would be reused.
       with self.test_session(
           use_gpu=True, graph=ops.get_default_graph()) as sess:
         sess.run(variables.global_variables_initializer())
         total_sum_v = sess.run(total_sum)
         val = saver.save(sess, save_path)
         self.assertEqual(save_path, val)
-      # Passing graph explictly, otherwise an old sess would be reused.
+      # Passing graph explicitly, otherwise an old sess would be reused.
       with self.test_session(
           use_gpu=True, graph=ops.get_default_graph()) as sess:
         reset_params = state_ops.assign(
diff --git a/tensorflow/contrib/data/python/ops/dataset_ops.py b/tensorflow/contrib/data/python/ops/dataset_ops.py
index 949453b..6ef9600 100644
--- a/tensorflow/contrib/data/python/ops/dataset_ops.py
+++ b/tensorflow/contrib/data/python/ops/dataset_ops.py
@@ -258,11 +258,12 @@
       # initializers that simply reset their state to the beginning.
       raise ValueError("Iterator does not have an initializer.")
 
-  def make_initializer(self, dataset):
+  def make_initializer(self, dataset, name=None):
     """Returns a `tf.Operation` that initializes this iterator on `dataset`.
 
     Args:
       dataset: A `Dataset` with compatible structure to this iterator.
+      name: (Optional.) A name for the created operation.
 
     Returns:
       A `tf.Operation` that can be run to initialize this iterator on the given
@@ -272,22 +273,25 @@
       TypeError: If `dataset` and this iterator do not have a compatible
         element structure.
     """
-    nest.assert_same_structure(self._output_types, dataset.output_types)
-    nest.assert_same_structure(self._output_shapes, dataset.output_shapes)
-    for iterator_dtype, dataset_dtype in zip(
-        nest.flatten(self._output_types), nest.flatten(dataset.output_types)):
-      if iterator_dtype != dataset_dtype:
-        raise TypeError(
-            "Expected output types %r but got dataset with output types %r." %
-            (self._output_types, dataset.output_types))
-    for iterator_shape, dataset_shape in zip(
-        nest.flatten(self._output_shapes), nest.flatten(dataset.output_shapes)):
-      if not iterator_shape.is_compatible_with(dataset_shape):
-        raise TypeError("Expected output shapes compatible with %r but got "
-                        "dataset with output shapes %r." %
-                        (self._output_shapes, dataset.output_shapes))
-    return gen_dataset_ops.make_iterator(dataset.make_dataset_resource(),
-                                         self._iterator_resource)
+    with ops.name_scope(name, "make_initializer") as name:
+      nest.assert_same_structure(self._output_types, dataset.output_types)
+      nest.assert_same_structure(self._output_shapes, dataset.output_shapes)
+      for iterator_dtype, dataset_dtype in zip(
+          nest.flatten(self._output_types), nest.flatten(dataset.output_types)):
+        if iterator_dtype != dataset_dtype:
+          raise TypeError(
+              "Expected output types %r but got dataset with output types %r." %
+              (self._output_types, dataset.output_types))
+      for iterator_shape, dataset_shape in zip(
+          nest.flatten(self._output_shapes),
+          nest.flatten(dataset.output_shapes)):
+        if not iterator_shape.is_compatible_with(dataset_shape):
+          raise TypeError("Expected output shapes compatible with %r but got "
+                          "dataset with output shapes %r." %
+                          (self._output_shapes, dataset.output_shapes))
+      return gen_dataset_ops.make_iterator(dataset.make_dataset_resource(),
+                                           self._iterator_resource,
+                                           name=name)
 
   def get_next(self, name=None):
     """Returns a nested structure of `tf.Tensor`s containing the next element.
diff --git a/tensorflow/contrib/distributions/__init__.py b/tensorflow/contrib/distributions/__init__.py
index 3bbf1c2..dfded47 100644
--- a/tensorflow/contrib/distributions/__init__.py
+++ b/tensorflow/contrib/distributions/__init__.py
@@ -49,6 +49,7 @@
 from tensorflow.contrib.distributions.python.ops.relaxed_bernoulli import *
 from tensorflow.contrib.distributions.python.ops.relaxed_onehot_categorical import *
 from tensorflow.contrib.distributions.python.ops.sample_stats import *
+from tensorflow.contrib.distributions.python.ops.test_util import *
 from tensorflow.contrib.distributions.python.ops.vector_exponential_diag import *
 from tensorflow.contrib.distributions.python.ops.vector_laplace_diag import *
 from tensorflow.contrib.distributions.python.ops.wishart import *
diff --git a/tensorflow/contrib/distributions/python/kernel_tests/mixture_test.py b/tensorflow/contrib/distributions/python/kernel_tests/mixture_test.py
index aa523a9..2705b96 100644
--- a/tensorflow/contrib/distributions/python/kernel_tests/mixture_test.py
+++ b/tensorflow/contrib/distributions/python/kernel_tests/mixture_test.py
@@ -634,7 +634,7 @@
     np.random.seed(127)
     with session.Session(config=config, graph=ops.Graph()) as sess:
       random_seed.set_random_seed(0)
-      with ops.device("/gpu:0" if use_gpu else "/cpu:0"):
+      with ops.device("/device:GPU:0" if use_gpu else "/cpu:0"):
         mixture = create_distribution(
             num_components=num_components,
             batch_size=batch_size,
diff --git a/tensorflow/contrib/framework/python/framework/tensor_util.py b/tensorflow/contrib/framework/python/framework/tensor_util.py
index ec68d3b..8839da2 100644
--- a/tensorflow/contrib/framework/python/framework/tensor_util.py
+++ b/tensorflow/contrib/framework/python/framework/tensor_util.py
@@ -17,7 +17,9 @@
 from __future__ import absolute_import
 from __future__ import division
 from __future__ import print_function
+
 import numpy as np
+
 from tensorflow.python.framework import dtypes
 from tensorflow.python.framework import ops
 from tensorflow.python.framework import sparse_tensor
diff --git a/tensorflow/contrib/framework/python/framework/tensor_util_test.py b/tensorflow/contrib/framework/python/framework/tensor_util_test.py
index bc6bc95..2effe8e 100644
--- a/tensorflow/contrib/framework/python/framework/tensor_util_test.py
+++ b/tensorflow/contrib/framework/python/framework/tensor_util_test.py
@@ -20,7 +20,9 @@
 from __future__ import print_function
 
 import re
+
 import numpy as np
+
 from tensorflow.contrib.framework.python.framework import tensor_util
 from tensorflow.contrib.framework.python.ops import variables as variables_lib2
 from tensorflow.python.framework import constant_op
diff --git a/tensorflow/contrib/framework/python/ops/variables.py b/tensorflow/contrib/framework/python/ops/variables.py
index 411b4fa..1bd9a14 100644
--- a/tensorflow/contrib/framework/python/ops/variables.py
+++ b/tensorflow/contrib/framework/python/ops/variables.py
@@ -37,6 +37,7 @@
 from tensorflow.python.platform import resource_loader
 from tensorflow.python.training import saver as tf_saver
 from tensorflow.python.training import training_util
+from tensorflow.python.util.deprecation import deprecated
 
 
 __all__ = ['add_model_variable',
@@ -82,7 +83,7 @@
       resource_loader.get_path_to_datafile("_variable_ops.so"))
   return gen_variable_ops.zero_initializer(ref, name=name)
 
-
+@deprecated(None, "Please switch to tf.train.assert_global_step")
 def assert_global_step(global_step_tensor):
   training_util.assert_global_step(global_step_tensor)
 
@@ -110,11 +111,11 @@
     assert_global_step(global_step_tensor)
   return global_step_tensor
 
-
+@deprecated(None, "Please switch to tf.train.get_global_step")
 def get_global_step(graph=None):
   return training_util.get_global_step(graph)
 
-
+@deprecated(None, "Please switch to tf.train.create_global_step")
 def create_global_step(graph=None):
   """Create global step tensor in graph.
 
@@ -132,7 +133,7 @@
   """
   return training_util.create_global_step(graph)
 
-
+@deprecated(None, "Please switch to tf.train.get_or_create_global_step")
 def get_or_create_global_step(graph=None):
   """Returns and create (if necessary) the global step tensor.
 
@@ -561,7 +562,7 @@
       grouped_vars[ckpt_name].append(var)
 
   else:
-    for ckpt_name, value in var_list.iteritems():
+    for ckpt_name, value in var_list.items():
       if isinstance(value, (tuple, list)):
         grouped_vars[ckpt_name] = value
       else:
diff --git a/tensorflow/contrib/framework/python/ops/variables_test.py b/tensorflow/contrib/framework/python/ops/variables_test.py
index cb27870..6a74e4e 100644
--- a/tensorflow/contrib/framework/python/ops/variables_test.py
+++ b/tensorflow/contrib/framework/python/ops/variables_test.py
@@ -443,19 +443,19 @@
         e = variables_lib2.variable('e', initializer=e_init)
       # The values below highlight how the VariableDeviceChooser puts initial
       # values on the same device as the variable job.
-      self.assertDeviceEqual(a.device, '/gpu:0')
+      self.assertDeviceEqual(a.device, '/device:GPU:0')
       self.assertEqual(a.initial_value.op.colocation_groups(),
                        a.op.colocation_groups())
-      self.assertDeviceEqual(b.device, '/gpu:0')
+      self.assertDeviceEqual(b.device, '/device:GPU:0')
       self.assertEqual(b.initial_value.op.colocation_groups(),
                        b.op.colocation_groups())
       self.assertDeviceEqual(c.device, '/cpu:12')
       self.assertEqual(c.initial_value.op.colocation_groups(),
                        c.op.colocation_groups())
-      self.assertDeviceEqual(d.device, '/gpu:0')
+      self.assertDeviceEqual(d.device, '/device:GPU:0')
       self.assertEqual(d.initial_value.op.colocation_groups(),
                        d.op.colocation_groups())
-      self.assertDeviceEqual(e.device, '/gpu:0')
+      self.assertDeviceEqual(e.device, '/device:GPU:0')
       self.assertDeviceEqual(e.initial_value.device, '/cpu:99')
 
 
diff --git a/tensorflow/contrib/gdr/BUILD b/tensorflow/contrib/gdr/BUILD
new file mode 100644
index 0000000..645e364
--- /dev/null
+++ b/tensorflow/contrib/gdr/BUILD
@@ -0,0 +1,125 @@
+# Description:
+#   GPU Direct RDMA Out-of-Band Tensor transport for TensorFlow.
+
+package(default_visibility = [
+    "//tensorflow:__subpackages__",
+])
+
+licenses(["notice"])  # Apache 2.0
+
+exports_files(["LICENSE"])
+
+filegroup(
+    name = "all_files",
+    srcs = glob(
+        ["**/*"],
+        exclude = [
+            "**/METADATA",
+            "**/OWNERS",
+        ],
+    ),
+    visibility = ["//tensorflow:__subpackages__"],
+)
+
+filegroup(
+    name = "c_srcs",
+    data = glob([
+        "**/*.cc",
+        "**/*.h",
+    ]),
+)
+
+load(
+    "//tensorflow:tensorflow.bzl",
+    "tf_cuda_library",
+)
+
+# For platform specific build config
+load(
+    "//tensorflow/core:platform/default/build_config.bzl",
+    "tf_proto_library_cc",
+)
+
+tf_proto_library_cc(
+    name = "gdr_proto",
+    srcs = ["gdr.proto"],
+    cc_api_version = 2,
+    visibility = [
+        "//tensorflow:__subpackages__",
+    ],
+)
+
+tf_cuda_library(
+    name = "gdr_memory_manager",
+    srcs = ["gdr_memory_manager.cc"],
+    hdrs = ["gdr_memory_manager.h"],
+    linkopts = select({
+        "//tensorflow:with_gdr_support": [
+            "-libverbs",
+            "-lrdmacm",
+        ],
+        "//conditions:default": [],
+    }),
+    deps = [
+        ":gdr_proto_cc",
+        "//tensorflow/core:framework",
+        "//tensorflow/core:gpu_runtime",
+        "//tensorflow/core:lib",
+        "//tensorflow/core:lib_internal",
+    ],
+)
+
+tf_cuda_library(
+    name = "gdr_worker",
+    srcs = ["gdr_worker.cc"],
+    hdrs = ["gdr_worker.h"],
+    deps = [
+        ":gdr_memory_manager",
+        "//tensorflow/core:core_cpu_internal",
+        "//tensorflow/core:framework",
+        "//tensorflow/core:gpu_runtime",
+        "//tensorflow/core:lib",
+        "//tensorflow/core:lib_internal",
+        "//tensorflow/core/distributed_runtime:graph_mgr",
+        "//tensorflow/core/distributed_runtime:rendezvous_mgr_interface",
+        "//tensorflow/core/distributed_runtime:worker",
+        "//tensorflow/core/distributed_runtime:worker_cache",
+        "//tensorflow/core/distributed_runtime:worker_env",
+        "//tensorflow/core/distributed_runtime:worker_session",
+        "//tensorflow/core/distributed_runtime/rpc:grpc_call",
+        "//tensorflow/core/distributed_runtime/rpc:grpc_tensor_coding",
+        "//tensorflow/core/distributed_runtime/rpc:grpc_util",
+        "//tensorflow/core/distributed_runtime/rpc:grpc_worker_service",
+    ],
+)
+
+cc_library(
+    name = "gdr_rendezvous_mgr",
+    srcs = ["gdr_rendezvous_mgr.cc"],
+    hdrs = ["gdr_rendezvous_mgr.h"],
+    deps = [
+        ":gdr_memory_manager",
+        "//tensorflow/core:core_cpu_internal",
+        "//tensorflow/core:framework",
+        "//tensorflow/core:lib",
+        "//tensorflow/core/distributed_runtime:base_rendezvous_mgr",
+        "//tensorflow/core/distributed_runtime:worker_cache",
+        "//tensorflow/core/distributed_runtime:worker_env",
+        "//tensorflow/core/distributed_runtime:worker_interface",
+    ],
+)
+
+cc_library(
+    name = "gdr_server_lib",
+    srcs = ["gdr_server_lib.cc"],
+    hdrs = ["gdr_server_lib.h"],
+    linkstatic = 1,  # Seems to be needed since alwayslink is broken in bazel
+    deps = [
+        ":gdr_memory_manager",
+        ":gdr_rendezvous_mgr",
+        ":gdr_worker",
+        "//tensorflow/core:lib_internal",
+        "//tensorflow/core/distributed_runtime/rpc:grpc_server_lib",
+    ],
+    alwayslink = 1,
+)
diff --git a/tensorflow/contrib/gdr/README.md b/tensorflow/contrib/gdr/README.md
new file mode 100644
index 0000000..34ce60b
--- /dev/null
+++ b/tensorflow/contrib/gdr/README.md
@@ -0,0 +1,122 @@
+Introduction
+===
+
+This is an implementation of GDR out-of-band transport for TensorFlow distributed runtime, complementary to current gRPC transport. It uses gRPC as control plane to setup rendezvous for each tensor transmission, and utilizes [GPU Direct RDMA](https://developer.nvidia.com/gpudirect) whenever possible to transmit tensors in remote GPU memory through network interface card (NIC), bypassing host memory and CPU entirely. It gracefully falls back to ordinary RDMA or even gRPC when GDR is not available.
+
+Design
+===
+
+The GDR out-of-band transport is designed to avoid any unnecessary memory copies, especially for large tensors (>100MB). That typically requires registration of tensor buffers to NIC in an ad-hoc manner, which is rather slow as described in the design trade-off of the verbs runtime. The verbs runtime thus chooses to manage its own NIC-registered buffers and copy the tensors from/to those buffers for every single tensor transfer.
+
+We show that, however, such design trade-off is not always relevant. In this patch, we manage both computation and communication buffers in a unified manner. By pre-registration of large buffers to NIC and allocating small tensors from the buffer pool using a BFC allocator, it is possible to avoid both ad-hoc buffer registration and memory copies all together.
+
+For the actual tensor transport, we rely on gRPC to transmit the [remote buffer information](gdr.proto). This greatly simplifies our design, and there are only 2 types of RDMA messages: a single READ to retrieve the tensor data (bypassing remote CPU), and another invalidate using WRITE with IMM to release the tensor buffer on the remote side. The remote side will only be polling the invalidate message and `Unref` the tensor buffers that read by its peer.
+
+Environment
+===
+
+To fully utilize GDR, the target environment has to meet 3 conditions:
+
+1. There is an RDMA capable device with corresponding [OFED package](https://www.openfabrics.org/index.php/overview.html) installed (detailed information is available from your [Infiniband/RoCE](http://www.mellanox.com/page/products_dyn?product_family=116)/[iWarp](http://www.chelsio.com/gpudirect-rdma/) vendor), which could be verified through `ibv_devinfo`, e.g.
+
+```
+$ ibv_devinfo
+hca_id:	mlx4_0
+	transport:			InfiniBand (0)
+	fw_ver:				2.40.7000
+	node_guid:			248a:0703:00f6:3370
+	sys_image_guid:			248a:0703:00f6:3370
+	vendor_id:			0x02c9
+	vendor_part_id:			4099
+	hw_ver:				0x1
+	board_id:			MT_1090110023
+	phys_port_cnt:			2
+	Device ports:
+		port:	1
+			state:			PORT_ACTIVE (4)
+			max_mtu:		4096 (5)
+			active_mtu:		1024 (3)
+			sm_lid:			0
+			port_lid:		0
+			port_lmc:		0x00
+			link_layer:		Ethernet
+
+		port:	2
+			state:			PORT_ACTIVE (4)
+			max_mtu:		4096 (5)
+			active_mtu:		1024 (3)
+			sm_lid:			0
+			port_lid:		0
+			port_lmc:		0x00
+			link_layer:		Ethernet
+```
+
+2. There is a GDR capable GPU, i.e. of Fermi, Kepler or later architecture with [corresponding driver](http://docs.nvidia.com/cuda/gpudirect-rdma/index.html) installed. The PCI-e topology could be confirmed by `nvidia-smi topo -m`. For example, in the following topology, `GPU2` and `GPU3` are adjacent to `mlx4_0`, and tensors on these devices could benefit from GDR in current implementation.
+
+```
+$ nvidia-smi topo -m
+	GPU0	GPU1	GPU2	GPU3	mlx4_0	CPU Affinity
+GPU0	 X 	PHB	SOC	SOC	SOC	0-5
+GPU1	PHB	 X 	SOC	SOC	SOC	0-5
+GPU2	SOC	SOC	 X 	PHB	PHB	6-11
+GPU3	SOC	SOC	PHB	 X 	PHB	6-11
+mlx4_0	SOC	SOC	PHB	PHB	 X
+
+Legend:
+
+  X   = Self
+  SOC  = Connection traversing PCIe as well as the SMP link between CPU sockets(e.g. QPI)
+  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
+  PXB  = Connection traversing multiple PCIe switches (without traversing the PCIe Host Bridge)
+  PIX  = Connection traversing a single PCIe switch
+  NV#  = Connection traversing a bonded set of # NVLinks
+```
+
+3. The [`nv_peer_mem`](https://github.com/Mellanox/nv_peer_memory) kernel module is installed.
+
+How to build and run in GDR mode
+===
+
+To test it out on a GDR capable environment, choose to enable GDR in your configure script.
+
+```
+Do you wish to build TensorFlow with GDR support? [y/N]: y
+GDR support will be enabled for TensorFlow.
+```
+
+Change your `protocol` to `grpc+gdr` to enable GDR in your deployment.
+
+```
+server = tf.train.Server(cluster, job_name="local", task_index=0, protocol='grpc+gdr') # default protocol is 'grpc'
+```
+
+Currently the out-of-band transport service listens to the same IP and port address as specified in gRPC.
+
+A successful initialization looks like this:
+
+```
+2017-08-05 19:10:38.601718: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla K40m, pci bus id: 0000:02:00.0)
+2017-08-05 19:10:38.601728: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: Tesla K40m, pci bus id: 0000:03:00.0)
+2017-08-05 19:10:38.601736: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:2) -> (device: 2, name: Tesla K40m, pci bus id: 0000:82:00.0)
+2017-08-05 19:10:38.601742: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:3) -> (device: 3, name: Tesla K40m, pci bus id: 0000:83:00.0)
+2017-08-05 19:10:39.591026: I tensorflow/contrib/gdr/gdr_memory_manager.cc:235] RDMA server is listening on 10.40.2.200:5001
+2017-08-05 19:10:39.591071: I tensorflow/contrib/gdr/gdr_memory_manager.cc:285] Instrumenting CPU allocator cuda_host_bfc
+2017-08-05 19:10:39.591083: I tensorflow/contrib/gdr/gdr_memory_manager.cc:285] Instrumenting CPU allocator cpu_pool
+2017-08-05 19:10:39.591095: I tensorflow/contrib/gdr/gdr_memory_manager.cc:285] Instrumenting CPU allocator cpu_rdma_bfc
+2017-08-05 19:10:39.591278: I tensorflow/contrib/gdr/gdr_memory_manager.cc:78] NUMA node for device: mlx4_0 is 1
+2017-08-05 19:10:39.740253: I tensorflow/contrib/gdr/gdr_memory_manager.cc:296] Instrumenting GPU allocator with bus_id 2
+```
+
+The last line suggests that the GPUs with bus id 2 (mapped to pci bus id prefixed 0000:8) will benefit from GDR and host memory bypass, which is `/gpu:2` and `/gpu:3` in this case.
+
+Caveats
+===
+
+In current implementation, only tensors that reside in host memory or in GPU memory such that the GPU is adjacent to an RDMA capable NIC will use direct RDMA as its transport. When RDMA is available but not GDR, a temporary tensor copy on host memory will be used as RDMA source/destination (and copied from/to the target device). When there is no RDMA device present, it can even fallback to the original gRPC runtime. While it is theoretically possible to mix GDR enabled TF with non-GDR deployments in the same job, make sure the environment is properly setup so the GDR mode is enabled whenever possible (i.e. do not fall back to gRPC when it is not absolutely necessary).
+
+In the original design (as in the reference), tensor buffers are only registered to NIC when we could determine that the tensor will be either a source of Send or a sink of Recv across physical machine boundary. However, to implement the precise allocations, we need to change all the devices to possibly return a NIC compatible allocator. As GDR is currently in contrib, we would like to avoid the unnecessary code disruption to the TF core, so we allocate all tensors from NIC-registered buffers using a BFC allocator. This behaviour is similar to the effect of enabling the extra GPU option `force_gpu_compatible`, which allocate all host tensors in GPU-registered buffers no matter they will be transferred from/to GPUs or not.
+
+Reference
+===
+
+Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. 2017. Towards Zero Copy Dataflows using RDMA. In Proceedings of SIGCOMM Posters and Demos'17, Los Angeles, CA, USA, August 22-24, 2017, 3 pages. https://doi.org/10.1145/3123878.3123907
diff --git a/tensorflow/contrib/gdr/gdr.proto b/tensorflow/contrib/gdr/gdr.proto
new file mode 100644
index 0000000..c0b8924
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr.proto
@@ -0,0 +1,13 @@
+syntax = "proto3";
+
+package tensorflow;
+option cc_enable_arenas = true;
+
+message RemoteMemoryRegion {
+  string host = 1;
+  string port = 2;
+  uint64 addr = 3;
+  uint32 rkey = 4;
+  uint32 tensor_key = 5;
+  uint64 checksum = 6;
+}
diff --git a/tensorflow/contrib/gdr/gdr_memory_manager.cc b/tensorflow/contrib/gdr/gdr_memory_manager.cc
new file mode 100644
index 0000000..c55989e
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_memory_manager.cc
@@ -0,0 +1,682 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifdef TENSORFLOW_USE_GDR
+
+#include "tensorflow/contrib/gdr/gdr_memory_manager.h"
+
+#include <atomic>
+#include <cerrno>
+#include <fstream>
+#include <list>
+#include <map>
+#include <set>
+
+#include <fcntl.h>
+#include <rdma/rdma_cma.h>
+#include <rdma/rdma_verbs.h>
+#include <sys/epoll.h>
+
+#include "tensorflow/contrib/gdr/gdr.pb.h"
+#include "tensorflow/core/common_runtime/bfc_allocator.h"
+#include "tensorflow/core/common_runtime/device.h"
+#include "tensorflow/core/common_runtime/dma_helper.h"
+#if GOOGLE_CUDA
+#include "tensorflow/core/common_runtime/gpu/gpu_util.h"
+#include "tensorflow/core/common_runtime/gpu/process_state.h"
+#endif  // GOOGLE_CUDA
+#include "tensorflow/core/framework/allocator_registry.h"
+#include "tensorflow/core/lib/core/status.h"
+#include "tensorflow/core/platform/macros.h"
+#include "tensorflow/core/platform/mutex.h"
+
+namespace tensorflow {
+
+namespace {
+
+bool IsGDRAvailable() {
+#if defined(__APPLE__)
+  return false;
+#elif defined(PLATFORM_WINDOWS)
+  return false;
+#else
+  std::ifstream ifs("/proc/modules");
+  string line;
+  while (std::getline(ifs, line)) {
+    auto sep = line.find(' ');
+    CHECK_NE(sep, std::string::npos);
+    if (line.substr(0, sep) == "nv_peer_mem") {
+      return true;
+    }
+  }
+  return false;
+#endif
+}
+
+int TryToReadNumaNode(ibv_device* device) {
+#if defined(__APPLE__)
+  LOG(INFO) << "OS X does not support NUMA - returning NUMA node 0";
+  return 0;
+#elif defined(PLATFORM_WINDOWS)
+  // Windows support for NUMA is not currently implemented. Return node 0.
+  return 0;
+#else
+  VLOG(2) << "Trying to read NUMA node for device: " << device->name;
+  static const int kUnknownNumaNode = -1;
+
+  auto filename = string(device->ibdev_path) + "/device/numa_node";
+
+  std::ifstream ifs(filename.c_str());
+  string content;
+  CHECK(std::getline(ifs, content));
+
+  int32 value;
+  if (strings::safe_strto32(content, &value)) {
+    if (value < 0) {
+      LOG(INFO) << "Successful NUMA node read from SysFS had negative value ("
+                << value << "), but there must be at least one NUMA node"
+                            ", so returning NUMA node zero";
+      return 0;
+    }
+    LOG(INFO) << "NUMA node for device: " << device->name << " is " << value;
+    return value;
+  }
+  return kUnknownNumaNode;
+#endif
+}
+
+void EndpointDeleter(rdma_cm_id* id) {
+  if (id) {
+    rdma_destroy_ep(id);
+  }
+}
+
+void MRDeleter(ibv_mr* mr) {
+  if (mr) {
+    rdma_dereg_mr(mr);
+  }
+}
+
+using RdmaEndpointPtr = std::unique_ptr<rdma_cm_id, decltype(&EndpointDeleter)>;
+
+using MemoryRegionPtr = std::unique_ptr<ibv_mr, decltype(&MRDeleter)>;
+
+class GdrMemoryManager : public RemoteMemoryManager {
+ public:
+  GdrMemoryManager(const string& host, const string& port);
+
+  virtual ~GdrMemoryManager();
+
+  virtual Status Init() override;
+
+  virtual void Run() override;
+
+  virtual void Stop() override;
+
+  virtual Status TransportOptionsFromTensor(
+      ::google::protobuf::Any* mutable_transport_options, const Tensor& tensor,
+      Device* device, DeviceContext* device_context, bool on_host) override;
+
+  virtual Status TensorFromTransportOptions(
+      Tensor* tensor, const ::google::protobuf::Any& transport_options,
+      Device* device, DeviceContext* device_context, bool on_host) override;
+
+ protected:
+  Status CreateEndpoint(const string& host, const string& port,
+                        RdmaEndpointPtr& endpoint);
+
+  static bool Comparator(const void* ptr, const MemoryRegionPtr& other) {
+    return ptr < reinterpret_cast<char*>(other->addr) + other->length;
+  }
+
+  ibv_mr* FindMemoryRegion(void* addr, size_t length);
+
+  void InsertMemoryRegion(void* addr, size_t length);
+
+#if GOOGLE_CUDA
+  void InsertCUDAMemoryRegion(void* addr, size_t length);
+#endif
+
+  void EvictMemoryRegion(void* addr, size_t length);
+
+ private:
+  const string host_;
+  const string port_;
+  RdmaEndpointPtr listening_;
+  std::atomic<bool> stopped_;
+  int epfd_;
+
+  // Server side endpoints
+  // Accessed sequentially in Run() so not protected by lock
+  std::list<RdmaEndpointPtr> server_clients_;
+
+  using TensorKey = uint32_t;
+  std::atomic<TensorKey> next_key_;
+
+  // Server side on-the-fly tensor buffers
+  mutex server_mu_;
+  std::map<TensorKey, const TensorBuffer*> tensor_buffers_
+      GUARDED_BY(server_mu_);
+
+  // Client side endpoints
+  mutex client_mu_;
+  std::map<std::pair<string, string>, RdmaEndpointPtr> clients_
+      GUARDED_BY(cient_mu_);
+
+  // Managed memory regions
+  mutex alloc_mu_;
+  std::vector<MemoryRegionPtr> mrs_ GUARDED_BY(alloc_mu_);
+
+  TF_DISALLOW_COPY_AND_ASSIGN(GdrMemoryManager);
+};
+
+// TODO(byronyi): remove this class duplicated from the one in
+// common/runtime/gpu/pool_allocator.h when it is available in common_runtime
+class BasicCPUAllocator : public SubAllocator {
+ public:
+  ~BasicCPUAllocator() override {}
+
+  void* Alloc(size_t alignment, size_t num_bytes) override {
+    return port::AlignedMalloc(num_bytes, alignment);
+  }
+  void Free(void* ptr, size_t) override { port::AlignedFree(ptr); }
+};
+
+// TODO(byronyi): remove this class and its registration when the default
+// cpu_allocator() returns visitable allocator
+class BFCRdmaAllocator : public BFCAllocator {
+ public:
+  BFCRdmaAllocator()
+      : BFCAllocator(new BasicCPUAllocator(), 1LL << 36, true, "cpu_rdma_bfc") {
+  }
+};
+
+REGISTER_MEM_ALLOCATOR("BFCRdmaAllocator", 101, BFCRdmaAllocator);
+
+GdrMemoryManager::GdrMemoryManager(const string& host, const string& port)
+    : host_(host),
+      port_(port),
+      listening_(nullptr, EndpointDeleter),
+      stopped_(true),
+      next_key_(0) {}
+
+GdrMemoryManager::~GdrMemoryManager() { close(epfd_); }
+
+Status GdrMemoryManager::Init() {
+  epfd_ = epoll_create1(0);
+  if (epfd_ == -1) {
+    return errors::Unavailable(strerror(errno), ": ", "epoll_create");
+  }
+
+  rdma_addrinfo* addrinfo;
+  rdma_addrinfo hints = {};
+  hints.ai_port_space = RDMA_PS_TCP;
+  hints.ai_flags = RAI_PASSIVE;
+  if (rdma_getaddrinfo(const_cast<char*>(host_.c_str()),
+                       const_cast<char*>(port_.c_str()), &hints, &addrinfo)) {
+    return errors::Unavailable(strerror(errno), ": ", "cannot resolve rdma://",
+                               host_, ":", port_);
+  }
+
+  ibv_qp_init_attr init_attr = {};
+  init_attr.qp_type = IBV_QPT_RC;
+  init_attr.cap.max_recv_wr = 32;
+  init_attr.cap.max_send_wr = 1;
+  init_attr.cap.max_recv_sge = 1;
+  init_attr.cap.max_send_sge = 1;
+
+  // Create listening endpoint
+  rdma_cm_id* id;
+  if (rdma_create_ep(&id, addrinfo, nullptr, &init_attr)) {
+    return errors::Unavailable(strerror(errno), ": ", "cannot bind to rdma://",
+                               host_, ":", port_);
+  }
+  listening_.reset(id);
+  rdma_freeaddrinfo(addrinfo);
+
+  // Listen without backlog
+  if (rdma_listen(listening_.get(), 0)) {
+    return errors::Unavailable(strerror(errno), ": ",
+                               "cannot listen on rdma://", host_, ":", port_);
+  }
+  LOG(INFO) << "RDMA server is listening on " << host_ << ":" << port_;
+
+  if (listening_->verbs == nullptr) {
+    return errors::Unimplemented(
+        "Unsupported address ", host_, ":", port_,
+        " as it does not bind to a particular RDMA device");
+  }
+
+  int flags = fcntl(listening_->channel->fd, F_GETFL, 0);
+  if (fcntl(listening_->channel->fd, F_SETFL, flags | O_NONBLOCK)) {
+    return errors::Unavailable(strerror(errno), ": ",
+                               "cannot set server to non-blocking mode");
+  }
+
+  epoll_event event = {};
+  event.events = EPOLLIN | EPOLLPRI;
+  event.data.ptr = listening_.get();
+  if (epoll_ctl(epfd_, EPOLL_CTL_ADD, listening_->channel->fd, &event)) {
+    return errors::Unavailable(strerror(errno), ": ",
+                               "cannot add server to epoll");
+  }
+
+  Allocator* allocators[] = {
+#if GOOGLE_CUDA
+    ProcessState::singleton()->GetCUDAHostAllocator(0),
+    ProcessState::singleton()->GetCPUAllocator(0),
+#endif  // GOOGLE_CUDA
+    cpu_allocator(),
+  };
+
+  using namespace std::placeholders;
+  VisitableAllocator::Visitor alloc_visitor =
+      std::bind(&GdrMemoryManager::InsertMemoryRegion, this, _1, _2);
+  VisitableAllocator::Visitor free_visitor =
+      std::bind(&GdrMemoryManager::EvictMemoryRegion, this, _1, _2);
+
+  std::set<Allocator*> instrumented_;
+
+  // Host memory allocators
+  for (Allocator* allocator : allocators) {
+    auto* visitable_allocator = dynamic_cast<VisitableAllocator*>(allocator);
+    CHECK(visitable_allocator) << "is not visitable for instrumentation"
+                               << allocator->Name();
+    // Make sure we don't instrument the same allocator twice
+    if (instrumented_.find(allocator) == std::end(instrumented_)) {
+      visitable_allocator->AddAllocVisitor(alloc_visitor);
+      visitable_allocator->AddFreeVisitor(free_visitor);
+      instrumented_.insert(allocator);
+      LOG(INFO) << "Instrumenting CPU allocator " << allocator->Name();
+    }
+  }
+
+#if GOOGLE_CUDA
+  VisitableAllocator::Visitor cuda_alloc_visitor =
+      std::bind(&GdrMemoryManager::InsertMemoryRegion, this, _1, _2);
+  if (IsGDRAvailable()) {
+    // Note we don't free allocated GPU memory so there is no free visitor
+    int32_t bus_id = TryToReadNumaNode(listening_->verbs->device) + 1;
+    ProcessState::singleton()->AddGPUAllocVisitor(bus_id, cuda_alloc_visitor);
+    LOG(INFO) << "Instrumenting GPU allocator with bus_id " << bus_id;
+  }
+#endif  // GOOGLE_CUDA
+
+  return Status::OK();
+}
+
+void GdrMemoryManager::Run() {
+  stopped_ = false;
+  while (!stopped_) {
+    epoll_event events[32];
+    int ret = epoll_wait(epfd_, events, 32, 1);
+    if (ret == -1) {
+      LOG(ERROR) << "epoll_wait: " << strerror(errno);
+      return;
+    }
+    for (int i = 0; i < ret; i++) {
+      rdma_cm_id* id = static_cast<rdma_cm_id*>(events[i].data.ptr);
+      if (id == listening_.get()) {
+        // Accept incoming connections
+        if (!rdma_get_request(listening_.get(), &id)) {
+          if (!rdma_accept(id, nullptr)) {
+            LOG(INFO) << "Accepted new RDMA connection";
+            if (ibv_req_notify_cq(id->recv_cq, 0)) {
+              LOG(ERROR) << strerror(errno) << ": ibv_req_notify_cq failed";
+              EndpointDeleter(id);
+              continue;
+            }
+            for (int i = 0; i < 32; i++) {
+              if (rdma_post_recvv(id, nullptr, nullptr, 0)) {
+                LOG(ERROR) << strerror(errno) << ": rdma_post_recvv failed";
+                EndpointDeleter(id);
+                continue;
+              }
+            }
+            int flags = fcntl(id->recv_cq_channel->fd, F_GETFL, 0);
+            if (fcntl(id->recv_cq_channel->fd, F_SETFL, flags | O_NONBLOCK)) {
+              LOG(ERROR) << strerror(errno)
+                         << ": cannot set server_client to non-blocking mode";
+              EndpointDeleter(id);
+              continue;
+            }
+            epoll_event event = {};
+            event.events = EPOLLIN | EPOLLPRI;
+            event.data.ptr = id;
+            if (epoll_ctl(epfd_, EPOLL_CTL_ADD, id->recv_cq_channel->fd,
+                          &event)) {
+              LOG(ERROR) << strerror(errno)
+                         << ": cannot add server client to epoll";
+              EndpointDeleter(id);
+              continue;
+            }
+            server_clients_.push_back({id, EndpointDeleter});
+          }
+        }
+      } else {
+        // Polling work completions
+        ibv_cq* cq;
+        void* context;
+        if (!ibv_get_cq_event(id->recv_cq_channel, &cq, &context)) {
+          ibv_ack_cq_events(id->recv_cq, 1);
+          if (ibv_req_notify_cq(id->recv_cq, 0)) {
+            LOG(ERROR) << strerror(errno) << ": ibv_req_notify_cq failed";
+            continue;
+          }
+          ibv_wc wc[32];
+          int ret = ibv_poll_cq(id->recv_cq, 32, wc);
+          if (ret < 0) {
+            LOG(ERROR) << "ibv_poll_cq failed";
+            continue;
+          }
+          for (int i = 0; i < ret; i++) {
+            if (wc[i].opcode != IBV_WC_RECV_RDMA_WITH_IMM) {
+              LOG(ERROR) << "Received unknown operation " << wc[i].opcode;
+            }
+            if (wc[i].status != 0) {
+              LOG(ERROR) << ibv_wc_status_str(wc[i].status);
+            }
+            TensorKey tensor_key = ntohl(wc[i].imm_data);
+            {
+              mutex_lock l(server_mu_);
+              auto iter = tensor_buffers_.find(tensor_key);
+              if (iter == std::end(tensor_buffers_)) {
+                LOG(ERROR) << "Cannot find tensor buffer for tensor key "
+                           << tensor_key;
+              } else {
+                const TensorBuffer* buffer = iter->second;
+                buffer->Unref();
+                tensor_buffers_.erase(iter);
+              }
+            }
+            if (rdma_post_recvv(id, nullptr, nullptr, 0)) {
+              perror("rdma_post_recvv");
+              LOG(ERROR) << "rdma_post_recvv failed";
+              continue;
+            }
+          }
+        }
+      }
+    }
+  }
+}
+
+void GdrMemoryManager::Stop() { stopped_ = true; }
+
+Status GdrMemoryManager::TransportOptionsFromTensor(
+    ::google::protobuf::Any* mutable_transport_options, const Tensor& tensor,
+    Device* device, DeviceContext* device_context, bool on_host) {
+  auto buffer = DMAHelper::buffer(&tensor);
+  void* addr = buffer->data();
+  size_t length = buffer->size();
+  if (length == 0) {
+    return errors::Unavailable("Cannot register tensor buffer of size 0");
+  }
+
+  ibv_mr* mr = FindMemoryRegion(addr, length);
+
+  Tensor host_copy;
+#if GOOGLE_CUDA
+  if (!on_host && mr != nullptr) {
+    TF_RETURN_IF_ERROR(GPUUtil::Sync(device));
+  } else if (!on_host) {
+    Allocator* alloc = ProcessState::singleton()->GetCUDAHostAllocator(0);
+    host_copy = Tensor(alloc, tensor.dtype(), tensor.shape());
+    Status s;
+    Notification n;
+    GPUUtil::CopyGPUTensorToCPU(device, device_context, &tensor, &host_copy,
+                                [&s, &n](const Status& status) {
+                                  s.Update(status);
+                                  n.Notify();
+                                });
+    n.WaitForNotification();
+    if (!s.ok()) {
+      return s;
+    }
+    buffer = DMAHelper::buffer(&host_copy);
+    addr = buffer->data();
+    length = buffer->size();
+    mr = FindMemoryRegion(addr, length);
+  }
+#endif
+
+  if (mr == nullptr) {
+    return errors::Unavailable("Cannot find pinned memory region");
+  }
+
+  buffer->Ref();
+  TensorKey tensor_key = next_key_++;
+  {
+    mutex_lock l(server_mu_);
+    tensor_buffers_.insert(std::make_pair(tensor_key, buffer));
+  }
+
+  uint64_t checksum = 0;
+  if (VLOG_IS_ON(2)) {
+#ifdef GOOGLE_CUDA
+    if (device->tensorflow_gpu_device_info() && (!on_host)) {
+      if (host_copy.NumElements() > 0) {
+        checksum = GPUUtil::Checksum(device, device_context, host_copy);
+      } else {
+        checksum = GPUUtil::Checksum(device, device_context, tensor);
+      }
+    } else {
+      checksum = GPUUtil::Checksum(tensor);
+    }
+#endif
+  }
+
+  RemoteMemoryRegion remote_mr;
+  remote_mr.set_host(host_);
+  remote_mr.set_port(port_);
+  remote_mr.set_addr(reinterpret_cast<uint64_t>(addr));
+  remote_mr.set_rkey(mr->rkey);
+  remote_mr.set_tensor_key(tensor_key);
+  remote_mr.set_checksum(checksum);
+  mutable_transport_options->PackFrom(remote_mr);
+
+  return Status::OK();
+}
+
+Status GdrMemoryManager::TensorFromTransportOptions(
+    Tensor* tensor, const ::google::protobuf::Any& transport_options,
+    Device* device, DeviceContext* device_context, bool on_host) {
+  RemoteMemoryRegion remote_mr;
+  if (!transport_options.UnpackTo(&remote_mr)) {
+    return errors::NotFound("No RDMA transport options found");
+  }
+
+  auto buffer = DMAHelper::buffer(tensor);
+  void* addr = buffer->data();
+  size_t length = buffer->size();
+  ibv_mr* mr = FindMemoryRegion(addr, length);
+
+  Tensor host_copy;
+#if GOOGLE_CUDA
+  if (!on_host && mr != nullptr) {
+    TF_RETURN_IF_ERROR(GPUUtil::Sync(device));
+  } else if (!on_host) {
+    Allocator* alloc = ProcessState::singleton()->GetCUDAHostAllocator(0);
+    host_copy = Tensor(alloc, tensor->dtype(), tensor->shape());
+    buffer = DMAHelper::buffer(&host_copy);
+    addr = buffer->data();
+    length = buffer->size();
+    mr = FindMemoryRegion(addr, length);
+  }
+#endif  // GOOGLE_CUDA
+
+  if (mr == nullptr) {
+    return errors::Unavailable("Cannot find pinned memory region");
+  }
+
+  decltype(clients_)::iterator iter;
+  bool success;
+  {
+    mutex_lock l(client_mu_);
+    std::tie(iter, success) = clients_.insert(
+        std::make_pair(std::make_pair(remote_mr.host(), remote_mr.port()),
+                       RdmaEndpointPtr(nullptr, EndpointDeleter)));
+    if (success || iter->second.get() == nullptr) {
+      TF_RETURN_IF_ERROR(
+          CreateEndpoint(remote_mr.host(), remote_mr.port(), iter->second));
+    }
+  }
+  rdma_cm_id* id = iter->second.get();
+
+  uint64_t start = Env::Default()->NowMicros();
+
+  if (rdma_post_read(id, nullptr, buffer->data(), buffer->size(), mr, 0,
+                     remote_mr.addr(), remote_mr.rkey())) {
+    return errors::Unavailable(strerror(errno), ": ", "rdma_post_read failed");
+  }
+
+  ibv_send_wr wr = {};
+  wr.opcode = IBV_WR_RDMA_WRITE_WITH_IMM;
+  wr.imm_data = htonl(remote_mr.tensor_key());
+  wr.send_flags = IBV_SEND_FENCE | IBV_SEND_SIGNALED;
+  ibv_send_wr* bad_wr;
+  if (ibv_post_send(id->qp, &wr, &bad_wr)) {
+    return errors::Unavailable(strerror(errno), ": ", "ibv_post_send failed");
+  }
+
+  ibv_wc wc = {};
+  int ret = rdma_get_send_comp(id, &wc);
+  if (ret < 0 || wc.status) {
+    return errors::Unavailable(ibv_wc_status_str(wc.status));
+  }
+
+#if GOOGLE_CUDA
+  if (host_copy.NumElements() > 0) {
+    Status s;
+    Notification n;
+    GPUUtil::CopyCPUTensorToGPU(&host_copy, device_context, device, tensor,
+                                [&s, &n](const Status& status) {
+                                  s.Update(status);
+                                  n.Notify();
+                                });
+    n.WaitForNotification();
+    if (!s.ok()) {
+      return s;
+    }
+  }
+#endif  // GOOGLE_CUDA
+
+  uint64_t end = Env::Default()->NowMicros();
+
+  VLOG(2) << "RDMA from remote memory region " << remote_mr.rkey()
+          << " of size " << buffer->size() << " with tensor key "
+          << remote_mr.tensor_key() << " took " << (end - start) << " micros";
+
+  uint64_t checksum = 0;
+  if (VLOG_IS_ON(2)) {
+#ifdef GOOGLE_CUDA
+    if (device->tensorflow_gpu_device_info() && (!on_host)) {
+      if (host_copy.NumElements() > 0) {
+        checksum = GPUUtil::Checksum(device, device_context, host_copy);
+      } else {
+        checksum = GPUUtil::Checksum(device, device_context, *tensor);
+      }
+    } else {
+      checksum = GPUUtil::Checksum(*tensor);
+    }
+    CHECK(checksum == remote_mr.checksum()) << "Checksum mismatch: " << checksum
+                                            << "!=" << remote_mr.checksum();
+#endif
+  }
+  return Status::OK();
+}
+
+Status GdrMemoryManager::CreateEndpoint(const string& host, const string& port,
+                                        RdmaEndpointPtr& endpoint) {
+  rdma_addrinfo* addrinfo;
+  rdma_addrinfo hints = {};
+  hints.ai_port_space = RDMA_PS_TCP;
+  if (rdma_getaddrinfo(const_cast<char*>(host.c_str()),
+                       const_cast<char*>(port.c_str()), &hints, &addrinfo)) {
+    return errors::InvalidArgument(
+        strerror(errno), ": ", "cannot connect to rdma://", host, ":", port);
+  }
+
+  ibv_qp_init_attr init_attr = {};
+  init_attr.qp_type = IBV_QPT_RC;
+  init_attr.cap.max_recv_wr = 1;
+  init_attr.cap.max_send_wr = 32;
+  init_attr.cap.max_recv_sge = 1;
+  init_attr.cap.max_send_sge = 1;
+
+  rdma_cm_id* id;
+  if (rdma_create_ep(&id, addrinfo, nullptr, &init_attr)) {
+    rdma_freeaddrinfo(addrinfo);
+    return errors::Unavailable(strerror(errno), ": ",
+                               "cannot create endpoint to rdma://", host, ":",
+                               port);
+  }
+  rdma_freeaddrinfo(addrinfo);
+
+  if (rdma_connect(id, nullptr)) {
+    rdma_destroy_ep(id);
+    return errors::Unavailable(strerror(errno), ": ",
+                               "cannot connect to rdma://", host, ":", port);
+  }
+
+  LOG(INFO) << "RDMA endpoint connected to rdma://" << host << ":" << port;
+  endpoint = RdmaEndpointPtr(id, EndpointDeleter);
+  return Status::OK();
+}
+
+ibv_mr* GdrMemoryManager::FindMemoryRegion(void* addr, size_t length) {
+  if (length == 0) return nullptr;
+  mutex_lock l(alloc_mu_);
+  auto iter = std::upper_bound(mrs_.begin(), mrs_.end(), addr, &Comparator);
+  if (iter == std::end(mrs_) || iter->get()->addr > addr) {
+    return nullptr;
+  } else {
+    return iter->get();
+  }
+}
+
+void GdrMemoryManager::InsertMemoryRegion(void* addr, size_t length) {
+  if (length == 0) return;
+  ibv_mr* mr = rdma_reg_read(listening_.get(), addr, length);
+  if (mr != nullptr) {
+    mutex_lock l(alloc_mu_);
+    auto iter = std::upper_bound(mrs_.begin(), mrs_.end(), addr, &Comparator);
+    mrs_.insert(iter, {mr, &MRDeleter});
+  } else {
+    LOG(WARNING) << "Cannot register memory region";
+  }
+}
+
+void GdrMemoryManager::EvictMemoryRegion(void* addr, size_t length) {
+  if (length == 0) return;
+  mutex_lock l(alloc_mu_);
+  auto iter = std::upper_bound(mrs_.begin(), mrs_.end(), addr, &Comparator);
+  if (iter != std::end(mrs_) && iter->get()->addr == addr) {
+    mrs_.erase(iter);
+  } else {
+    LOG(WARNING) << "Failed to de-register memory region";
+  }
+}
+
+}  // namespace
+
+RemoteMemoryManager* CreateRemoteMemoryManager(const string& host,
+                                               const string& port) {
+  return new GdrMemoryManager(host, port);
+}
+
+}  // namespace tensorflow
+
+#endif  // TENSORFLOW_USE_GDR
diff --git a/tensorflow/contrib/gdr/gdr_memory_manager.h b/tensorflow/contrib/gdr/gdr_memory_manager.h
new file mode 100644
index 0000000..7e9fe01
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_memory_manager.h
@@ -0,0 +1,63 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifndef GDR_MEMORY_MANAGER_H_
+#define GDR_MEMORY_MANAGER_H_
+
+#include "tensorflow/core/lib/core/status.h"
+
+namespace google {
+namespace protobuf {
+class Any;
+}
+}
+
+namespace tensorflow {
+
+class Device;
+class DeviceContext;
+class Tensor;
+
+// Abstract interface that handles out-of-band tensor transport.
+//
+// The transport options are encoded into a protocol buffer and transmitted via
+// some other communication channels like RPC.
+// See RecvTensorRequest in tensorflow/core/protobuf/worker.proto
+class RemoteMemoryManager {
+ public:
+  virtual ~RemoteMemoryManager() {}
+  virtual Status Init() = 0;
+  virtual void Run() = 0;
+  virtual void Stop() = 0;
+
+  // Encodes the tensor information to an arbitrary protocol buffer
+  // The protocol buffer needs to be transmitted via some other channel
+  virtual Status TransportOptionsFromTensor(
+      ::google::protobuf::Any* mutable_transport_options, const Tensor& tensor,
+      Device* device, DeviceContext* device_context, bool on_host) = 0;
+
+  // Retrieve the tensor from the encoded protocol buffer
+  // Note that the tensor has to be allocated, but not initialized
+  virtual Status TensorFromTransportOptions(
+      Tensor* tensor, const ::google::protobuf::Any& transport_options,
+      Device* device, DeviceContext* device_context, bool on_host) = 0;
+};
+
+RemoteMemoryManager* CreateRemoteMemoryManager(const string& host,
+                                               const string& port);
+
+}  // namespace tensorflow
+
+#endif  // GDR_MEMORY_MANAGER_H_
diff --git a/tensorflow/contrib/gdr/gdr_rendezvous_mgr.cc b/tensorflow/contrib/gdr/gdr_rendezvous_mgr.cc
new file mode 100644
index 0000000..259ee88
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_rendezvous_mgr.cc
@@ -0,0 +1,201 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "tensorflow/contrib/gdr/gdr_rendezvous_mgr.h"
+
+#include "google/protobuf/any.pb.h"
+#include "tensorflow/contrib/gdr/gdr_memory_manager.h"
+#include "tensorflow/core/common_runtime/device.h"
+#include "tensorflow/core/common_runtime/device_mgr.h"
+#include "tensorflow/core/common_runtime/process_util.h"
+#include "tensorflow/core/distributed_runtime/tensor_coding.h"
+#include "tensorflow/core/distributed_runtime/worker_cache.h"
+#include "tensorflow/core/distributed_runtime/worker_interface.h"
+#include "tensorflow/core/framework/types.h"
+#include "tensorflow/core/lib/core/errors.h"
+#include "tensorflow/core/lib/strings/numbers.h"
+#include "tensorflow/core/lib/strings/str_util.h"
+#include "tensorflow/core/platform/logging.h"
+#include "tensorflow/core/platform/macros.h"
+#include "tensorflow/core/platform/types.h"
+
+namespace tensorflow {
+
+namespace {
+
+class GdrRecvTensorCall : public BaseRecvTensorCall {
+ public:
+  GdrRecvTensorCall(WorkerInterface* wi, Device* dst_device,
+                    RemoteMemoryManager* remote_memory_manager,
+                    const Rendezvous::Args& recv_args, int64 step_id,
+                    StringPiece key)
+      : wi_(wi),
+        dst_device_(dst_device),
+        remote_memory_manager_(remote_memory_manager),
+        recv_args_(recv_args) {
+    req_.set_step_id(step_id);
+    req_.set_rendezvous_key(key.data(), key.size());
+  }
+
+  ~GdrRecvTensorCall() override {}
+
+  void Start(std::function<void()> recv_done) override {
+    req_.set_dma_ok(true);
+    resp_.InitAlloc(dst_device_, recv_args_.alloc_attrs);
+    StatusCallback cb = [this, recv_done](const Status& s) {
+      bool dma_ok = resp_.metadata().has_transport_options();
+      if (s.ok() && tensor().TotalBytes() > 0 && (!is_dead()) && dma_ok) {
+        auto transport_options = resp_.metadata().transport_options();
+        const bool on_host =
+            (dst_device_->tensorflow_gpu_device_info() == nullptr) ||
+            recv_args_.alloc_attrs.on_host();
+        Status s = remote_memory_manager_->TensorFromTransportOptions(
+            const_cast<Tensor*>(&tensor()), transport_options, dst_device_,
+            recv_args_.device_context, on_host);
+        if (!s.ok()) {
+          mutex_lock l(mu_);
+          status_.Update(s);
+          LOG(ERROR)
+              << "Cannot find pinned memory region from allocator "
+              << dst_device_->GetAllocator(recv_args_.alloc_attrs)->Name();
+        }
+      }
+      if (!s.ok()) {
+        mutex_lock l(mu_);
+        status_.Update(s);
+      }
+      recv_done();
+    };
+    wi_->RecvTensorAsync(&opts_, &req_, &resp_, std::move(cb));
+  }
+
+  void StartAbort(const Status& s) override {
+    {
+      mutex_lock l(mu_);
+      status_.Update(s);
+    }
+    opts_.StartCancel();
+  }
+
+  Status status() const override {
+    mutex_lock l(mu_);
+    return status_;
+  }
+
+  const Tensor& tensor() const { return resp_.tensor(); }
+
+  bool is_dead() const { return resp_.metadata().is_dead(); }
+
+  Device* dst_device() const { return dst_device_; }
+
+  const Rendezvous::Args& recv_args() const { return recv_args_; }
+
+ private:
+  WorkerInterface* wi_;
+  Device* dst_device_;
+  RemoteMemoryManager* remote_memory_manager_;
+  CallOptions opts_;
+  RecvTensorRequest req_;
+  TensorResponse resp_;
+  Rendezvous::Args recv_args_;
+
+  mutable mutex mu_;
+  Status status_ GUARDED_BY(mu_);
+
+  TF_DISALLOW_COPY_AND_ASSIGN(GdrRecvTensorCall);
+};
+
+class GdrRemoteRendezvous : public BaseRemoteRendezvous {
+ public:
+  GdrRemoteRendezvous(const WorkerEnv* env, int64 step_id,
+                      RemoteMemoryManager* remote_memory_manager)
+      : BaseRemoteRendezvous(env, step_id),
+        remote_memory_manager_(remote_memory_manager) {}
+
+ protected:
+  void RecvFromRemoteAsync(const Rendezvous::ParsedKey& parsed,
+                           const Rendezvous::Args& recv_args,
+                           DoneCallback done) override {
+    CHECK(is_initialized());
+
+    string src_worker;
+    string src_rel_device;
+    if (!DeviceNameUtils::SplitDeviceName(parsed.src_device, &src_worker,
+                                          &src_rel_device)) {
+      Status s = errors::Internal(parsed.src_device,
+                                  " is invalid remote source device.");
+      done(s, Args(), recv_args, Tensor{}, false);
+      return;
+    }
+
+    WorkerSession* sess = session();
+    WorkerInterface* rwi = sess->worker_cache->CreateWorker(src_worker);
+    if (rwi == nullptr) {
+      Status s = errors::Internal("No worker known as ", src_worker);
+      done(s, Args(), recv_args, Tensor{}, false);
+      return;
+    }
+
+    Device* dst_device;
+    Status s = sess->device_mgr->LookupDevice(parsed.dst_device, &dst_device);
+    if (!s.ok()) {
+      sess->worker_cache->ReleaseWorker(src_worker, rwi);
+      done(s, Args(), recv_args, Tensor{}, false);
+      return;
+    }
+
+    // Prepare a RecvTensor call that can handle being aborted.
+    GdrRecvTensorCall* call =
+        new GdrRecvTensorCall(rwi, dst_device, remote_memory_manager_,
+                              recv_args, step_id_, parsed.FullKey());
+
+    // Record "call" in active_ so that it can be aborted cleanly.
+    RegisterCall(call);
+
+    // Start "call".
+    Ref();
+    call->Start([this, call, src_worker, rwi, done]() {
+      // Removes "call" from active_. Prevent StartAbort().
+      DeregisterCall(call);
+      // If StartAbort was called prior to DeregisterCall, then the
+      // current status should be bad.
+      Status s = call->status();
+      done(s, Args(), call->recv_args(), call->tensor(), call->is_dead());
+      session()->worker_cache->ReleaseWorker(src_worker, rwi);
+      delete call;
+      Unref();
+    });
+  }
+
+ private:
+  ~GdrRemoteRendezvous() override {}
+
+  RemoteMemoryManager* remote_memory_manager_;
+
+  TF_DISALLOW_COPY_AND_ASSIGN(GdrRemoteRendezvous);
+};
+
+}  // namespace
+
+GdrRendezvousMgr::GdrRendezvousMgr(const WorkerEnv* env,
+                                   RemoteMemoryManager* remote_memory_manager)
+    : BaseRendezvousMgr(env), remote_memory_manager_(remote_memory_manager) {}
+
+BaseRemoteRendezvous* GdrRendezvousMgr::Create(int64 step_id,
+                                               const WorkerEnv* worker_env) {
+  return new GdrRemoteRendezvous(worker_env, step_id, remote_memory_manager_);
+}
+
+}  // end namespace tensorflow
diff --git a/tensorflow/contrib/gdr/gdr_rendezvous_mgr.h b/tensorflow/contrib/gdr/gdr_rendezvous_mgr.h
new file mode 100644
index 0000000..7fedd04
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_rendezvous_mgr.h
@@ -0,0 +1,42 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifndef GDR_RENDEZVOUS_MGR_H_
+#define GDR_RENDEZVOUS_MGR_H_
+
+#include "tensorflow/contrib/gdr/gdr_memory_manager.h"
+#include "tensorflow/core/distributed_runtime/base_rendezvous_mgr.h"
+#include "tensorflow/core/distributed_runtime/worker_env.h"
+#include "tensorflow/core/platform/macros.h"
+
+namespace tensorflow {
+
+class GdrRendezvousMgr : public BaseRendezvousMgr {
+ public:
+  explicit GdrRendezvousMgr(const WorkerEnv* env,
+                            RemoteMemoryManager* remote_memory_manager);
+
+ protected:
+  BaseRemoteRendezvous* Create(int64 step_id, const WorkerEnv* worker_env);
+
+ private:
+  RemoteMemoryManager* remote_memory_manager_;  // Not owned
+
+  TF_DISALLOW_COPY_AND_ASSIGN(GdrRendezvousMgr);
+};
+
+}  // end namespace tensorflow
+
+#endif  // GDR_RENDEZVOUS_MGR_H_
diff --git a/tensorflow/contrib/gdr/gdr_server_lib.cc b/tensorflow/contrib/gdr/gdr_server_lib.cc
new file mode 100644
index 0000000..ae6a612
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_server_lib.cc
@@ -0,0 +1,127 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "tensorflow/contrib/gdr/gdr_server_lib.h"
+#include "tensorflow/contrib/gdr/gdr_memory_manager.h"
+#include "tensorflow/contrib/gdr/gdr_rendezvous_mgr.h"
+#include "tensorflow/contrib/gdr/gdr_worker.h"
+
+#include "net/grpc/public/include/grpc/support/alloc.h"
+
+namespace tensorflow {
+
+GdrServer::GdrServer(const ServerDef& server_def, Env* env)
+    : GrpcServer(server_def, env) {
+  string host;
+  string port;
+  for (const auto& job : server_def.cluster().job()) {
+    if (job.name() == server_def.job_name()) {
+      auto iter = job.tasks().find(server_def.task_index());
+      if (iter != job.tasks().end()) {
+        const std::vector<string> hostname_port =
+            str_util::Split(iter->second, ':');
+        if (hostname_port.size() == 2) {
+          host = hostname_port[0];
+          port = hostname_port[1];
+        }
+      }
+    }
+  }
+  remote_memory_manager_ = std::unique_ptr<RemoteMemoryManager>(
+      CreateRemoteMemoryManager(host, port));
+}
+
+GdrServer::~GdrServer() {}
+
+Status GdrServer::Init() {
+  RendezvousMgrCreationFunction rendezvous_mgr_func =
+      [this](const WorkerEnv* env) {
+        return new GdrRendezvousMgr(env, remote_memory_manager_.get());
+      };
+  WorkerCreationFunction worker_func = [this](WorkerEnv* env) {
+    return std::unique_ptr<GdrWorker>(
+        new GdrWorker(env, remote_memory_manager_.get()));
+  };
+  TF_RETURN_IF_ERROR(
+      GrpcServer::Init(nullptr, rendezvous_mgr_func, worker_func));
+
+  return remote_memory_manager_->Init();
+}
+
+Status GdrServer::Start() {
+  {
+    mutex_lock l(mu_);
+    gdr_thread_.reset(worker_env()->env->StartThread(
+        ThreadOptions(), "TF_gdr_service",
+        [this] { remote_memory_manager_->Run(); }));
+  }
+  return GrpcServer::Start();
+}
+
+Status GdrServer::Stop() {
+  TF_RETURN_IF_ERROR(GrpcServer::Stop());
+  remote_memory_manager_->Stop();
+  return Status::OK();
+}
+
+Status GdrServer::Join() {
+  {
+    mutex_lock l(mu_);
+    gdr_thread_.reset();
+  }
+  return GrpcServer::Join();
+}
+
+/* static */
+Status GdrServer::Create(const ServerDef& server_def, Env* env,
+                         std::unique_ptr<ServerInterface>* out_server) {
+  std::unique_ptr<GdrServer> ret(
+      new GdrServer(server_def, env == nullptr ? Env::Default() : env));
+  TF_RETURN_IF_ERROR(ret->Init());
+  *out_server = std::move(ret);
+  return Status::OK();
+}
+
+namespace {
+
+class GdrServerFactory : public ServerFactory {
+ public:
+  bool AcceptsOptions(const ServerDef& server_def) override {
+    return server_def.protocol() == "grpc+gdr";
+  }
+
+  Status NewServer(const ServerDef& server_def,
+                   std::unique_ptr<ServerInterface>* out_server) override {
+    return GdrServer::Create(server_def, Env::Default(), out_server);
+  }
+};
+
+// Registers a `ServerFactory` for `GdrServer` instances.
+class GdrServerRegistrar {
+ public:
+  GdrServerRegistrar() {
+    gpr_allocation_functions alloc_fns;
+    memset(&alloc_fns, 0, sizeof(alloc_fns));
+    alloc_fns.malloc_fn = port::Malloc;
+    alloc_fns.realloc_fn = port::Realloc;
+    alloc_fns.free_fn = port::Free;
+    gpr_set_allocation_functions(alloc_fns);
+    ServerFactory::Register("GDR_SERVER", new GdrServerFactory());
+  }
+};
+static GdrServerRegistrar registrar;
+
+}  // namespace
+}  // namespace tensorflow
diff --git a/tensorflow/contrib/gdr/gdr_server_lib.h b/tensorflow/contrib/gdr/gdr_server_lib.h
new file mode 100644
index 0000000..d6c40d4
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_server_lib.h
@@ -0,0 +1,52 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifndef GDR_SERVER_LIB_H_
+#define GDR_SERVER_LIB_H_
+
+#include "tensorflow/contrib/gdr/gdr_memory_manager.h"
+#include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h"
+
+namespace tensorflow {
+
+class GdrServer : public GrpcServer {
+ protected:
+  GdrServer(const ServerDef& server_def, Env* env);
+
+ public:
+  static Status Create(const ServerDef& server_def, Env* env,
+                       std::unique_ptr<ServerInterface>* out_server);
+
+  virtual ~GdrServer() override;
+
+  virtual Status Start() override;
+
+  virtual Status Stop() override;
+
+  virtual Status Join() override;
+
+ protected:
+  Status Init();
+
+ private:
+  mutex mu_;
+
+  std::unique_ptr<RemoteMemoryManager> remote_memory_manager_;
+  std::unique_ptr<Thread> gdr_thread_ GUARDED_BY(mu_);
+};
+
+}  // namespace tensorflow
+
+#endif  // GDR_SERVER_LIB_H_
diff --git a/tensorflow/contrib/gdr/gdr_worker.cc b/tensorflow/contrib/gdr/gdr_worker.cc
new file mode 100644
index 0000000..0bff0af
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_worker.cc
@@ -0,0 +1,146 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "tensorflow/contrib/gdr/gdr_worker.h"
+
+#include "tensorflow/core/common_runtime/device.h"
+#include "tensorflow/core/common_runtime/device_mgr.h"
+#include "tensorflow/core/common_runtime/dma_helper.h"
+#if GOOGLE_CUDA
+#include "tensorflow/core/common_runtime/gpu/gpu_util.h"
+#endif  // GOOGLE_CUDA
+#include "tensorflow/core/common_runtime/process_util.h"
+#include "tensorflow/core/common_runtime/step_stats_collector.h"
+#include "tensorflow/core/distributed_runtime/graph_mgr.h"
+#include "tensorflow/core/distributed_runtime/rendezvous_mgr_interface.h"
+#include "tensorflow/core/distributed_runtime/rpc/grpc_call.h"
+#include "tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding.h"
+#include "tensorflow/core/distributed_runtime/rpc/grpc_util.h"
+#include "tensorflow/core/distributed_runtime/worker.h"
+#include "tensorflow/core/distributed_runtime/worker_cache.h"
+#include "tensorflow/core/distributed_runtime/worker_session.h"
+#include "tensorflow/core/framework/cancellation.h"
+#include "tensorflow/core/framework/tensor.h"
+#include "tensorflow/core/lib/core/errors.h"
+#include "tensorflow/core/platform/logging.h"
+#include "tensorflow/core/platform/tracing.h"
+
+namespace tensorflow {
+
+GdrWorker::GdrWorker(WorkerEnv* worker_env,
+                     RemoteMemoryManager* remote_memory_manager)
+    : GrpcWorker(worker_env), remote_memory_manager_(remote_memory_manager) {}
+
+void GdrWorker::GrpcRecvTensorAsync(CallOptions* opts,
+                                    const RecvTensorRequest* request,
+                                    ::grpc::ByteBuffer* response,
+                                    StatusCallback done) {
+  const int64 step_id = request->step_id();
+  const string& key = request->rendezvous_key();
+  TRACEPRINTF("RecvTensor: %lld %s", step_id, key.c_str());
+  Rendezvous::ParsedKey parsed;
+  Status s = Rendezvous::ParseKey(key, &parsed);
+  Device* src_dev = nullptr;
+  if (s.ok()) {
+    s = PrepareRecvTensor(parsed, &src_dev);
+  }
+  if (!s.ok()) {
+    done(s);
+    return;
+  }
+
+  // Request the tensor associated with the rendezvous key. Any time
+  // while waiting for the tensor to be produced, up until the start
+  // of execution of the callback lambda body below, an RPC
+  // cancellation should abort the rendezvous.
+  opts->SetCancelCallback([this, step_id]() { AbortStep(step_id); });
+  const bool dma_ok = request->dma_ok();
+  env_->rendezvous_mgr->RecvLocalAsync(
+      step_id, parsed,
+      [this, opts, response, done, src_dev, dma_ok](
+          const Status& status, const Rendezvous::Args& send_args,
+          const Rendezvous::Args&, const Tensor& val, const bool is_dead) {
+        opts->ClearCancelCallback();
+        if (status.ok()) {
+          // DMA can only be used for Tensors that do not fall into
+          // the following three odd edge cases: 1) a zero-size
+          // buffer, 2) a dead tensor which has an uninit value, and
+          // 3) the tensor has the on_host allocation attribute,
+          // i.e. it's in CPU RAM *independent of its assigned
+          // device type*.
+          const bool on_host =
+              (src_dev->tensorflow_gpu_device_info() == nullptr) ||
+              send_args.alloc_attrs.on_host();
+          if (val.TotalBytes() > 0 && (!is_dead) &&
+              DMAHelper::CanUseDMA(&val) && dma_ok) {
+            // DMA cases.
+            RecvTensorResponse proto;
+            auto transport_options = proto.mutable_transport_options();
+            Status s = remote_memory_manager_->TransportOptionsFromTensor(
+                transport_options, val, src_dev, send_args.device_context,
+                on_host);
+            if (s.ok()) {
+              proto.set_is_dead(is_dead);
+              proto.set_send_start_micros(Env::Default()->NowMicros());
+              TensorProto* tensor_proto = proto.mutable_tensor();
+              tensor_proto->set_dtype(val.dtype());
+              val.shape().AsProto(tensor_proto->mutable_tensor_shape());
+              grpc::EncodeRecvTensorResponseToByteBuffer(proto, response);
+              done(Status::OK());
+              return;
+            } else {
+              done(s);
+              return;
+            }
+          } else {
+            // Non-DMA cases.
+            if (src_dev->tensorflow_gpu_device_info() && (!on_host)) {
+#if GOOGLE_CUDA
+              const DeviceContext* send_dev_context = send_args.device_context;
+              AllocatorAttributes alloc_attrs;
+              alloc_attrs.set_gpu_compatible(true);
+              alloc_attrs.set_on_host(true);
+              Allocator* alloc = src_dev->GetAllocator(alloc_attrs);
+              Tensor* copy = new Tensor(alloc, val.dtype(), val.shape());
+              CHECK(send_dev_context)
+                  << "send dev name: " << src_dev->name()
+                  << " gpu_info: " << src_dev->tensorflow_gpu_device_info();
+              // "val" is on a GPU. Uses GPUUtil to fill the response proto.
+              StatusCallback copy_ready = [response, done, copy,
+                                           is_dead](const Status& s) {
+                // The value is now ready to be returned on the wire.
+                grpc::EncodeTensorToByteBuffer(is_dead, *copy, response);
+                done(s);
+                delete copy;
+              };
+
+              GPUUtil::CopyGPUTensorToCPU(src_dev, send_dev_context, &val, copy,
+                                          copy_ready);
+#else
+              done(errors::Internal("No GPU device in process"));
+#endif  // GOOGLE_CUDA
+            } else {
+              grpc::EncodeTensorToByteBuffer(is_dead, val, response);
+              done(Status::OK());
+            }
+          }
+        } else {
+          //  !s.ok()
+          done(status);
+        }
+      });
+}
+
+}  // namespace tensorflow
diff --git a/tensorflow/contrib/gdr/gdr_worker.h b/tensorflow/contrib/gdr/gdr_worker.h
new file mode 100644
index 0000000..a30b7ba
--- /dev/null
+++ b/tensorflow/contrib/gdr/gdr_worker.h
@@ -0,0 +1,45 @@
+/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifndef GDR_WORKER_H_
+#define GDR_WORKER_H_
+
+#include "tensorflow/contrib/gdr/gdr_memory_manager.h"
+
+#include "tensorflow/core/distributed_runtime/rpc/grpc_worker_service.h"
+
+namespace tensorflow {
+
+class GdrWorker : public GrpcWorker {
+ public:
+  GdrWorker(WorkerEnv* env, RemoteMemoryManager* remote_memory_manager);
+
+  // Serve the RecvTensorRequest but omit the tensor content and transmit it
+  // out-of-band using GPU Direct RDMA whenever possible.
+  // If it's not possible, it falls back to gRPC in-band tensor transport by
+  // encoding the tensor content into the grpc::ByteBuffer.
+  // The RecvTensorResponse will carry the necessary information for RDMA.
+  virtual void GrpcRecvTensorAsync(CallOptions* opts,
+                                   const RecvTensorRequest* request,
+                                   ::grpc::ByteBuffer* response,
+                                   StatusCallback done) override;
+
+ private:
+  RemoteMemoryManager* remote_memory_manager_;  // Not owned
+};
+
+}  // namespace tensorflow
+
+#endif  // GDR_WORKER_H_
diff --git a/tensorflow/contrib/keras/python/keras/backend.py b/tensorflow/contrib/keras/python/keras/backend.py
index 4fa4ec0..6d7429d 100644
--- a/tensorflow/contrib/keras/python/keras/backend.py
+++ b/tensorflow/contrib/keras/python/keras/backend.py
@@ -3570,7 +3570,7 @@
 
   Returns:
       the tensor after 1d conv with un-shared weights, with shape (batch_size,
-      output_lenght, filters)
+      output_length, filters)
 
   Raises:
       ValueError: if `data_format` is neither `channels_last` or
diff --git a/tensorflow/contrib/keras/python/keras/utils/generic_utils.py b/tensorflow/contrib/keras/python/keras/utils/generic_utils.py
index ed57144..3428476 100644
--- a/tensorflow/contrib/keras/python/keras/utils/generic_utils.py
+++ b/tensorflow/contrib/keras/python/keras/utils/generic_utils.py
@@ -18,6 +18,7 @@
 from __future__ import print_function
 
 import marshal
+import os
 import sys
 import time
 import types as python_types
@@ -195,7 +196,10 @@
   Returns:
       A tuple `(code, defaults, closure)`.
   """
-  code = marshal.dumps(func.__code__).decode('raw_unicode_escape')
+  if os.name == 'nt':
+    code = marshal.dumps(func.__code__).replace(b'\\',b'/').decode('raw_unicode_escape')
+  else:
+    code = marshal.dumps(func.__code__).decode('raw_unicode_escape')
   defaults = func.__defaults__
   if func.__closure__:
     closure = tuple(c.cell_contents for c in func.__closure__)
diff --git a/tensorflow/contrib/layers/python/layers/layers.py b/tensorflow/contrib/layers/python/layers/layers.py
index 0499b11..09def36 100644
--- a/tensorflow/contrib/layers/python/layers/layers.py
+++ b/tensorflow/contrib/layers/python/layers/layers.py
@@ -1944,7 +1944,7 @@
   spatial dimensions. It is similar to local response normalization, but much
   more flexible, as `beta` and `gamma` are trainable parameters.
 
-  Arguments:
+  Args:
     inputs: Tensor input.
     inverse: If `False` (default), compute GDN response. If `True`, compute IGDN
       response (one step of fixed point iteration to invert GDN; the division
diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator.py b/tensorflow/contrib/learn/python/learn/estimators/estimator.py
index 22a6fa3..e2e2988 100644
--- a/tensorflow/contrib/learn/python/learn/estimators/estimator.py
+++ b/tensorflow/contrib/learn/python/learn/estimators/estimator.py
@@ -66,11 +66,11 @@
 from tensorflow.python.platform import tf_logging as logging
 from tensorflow.python.saved_model import builder as saved_model_builder
 from tensorflow.python.saved_model import tag_constants
+from tensorflow.python.summary import summary as core_summary
 from tensorflow.python.training import basic_session_run_hooks
 from tensorflow.python.training import device_setter
 from tensorflow.python.training import monitored_session
 from tensorflow.python.training import saver
-from tensorflow.python.training import summary_io
 from tensorflow.python.training import training_util
 from tensorflow.python.util import compat
 from tensorflow.python.util import tf_decorator
@@ -337,7 +337,7 @@
   """
   logging.info('Saving dict for global step %d: %s', current_global_step,
                _dict_to_str(dictionary))
-  summary_writer = summary_io.SummaryWriterCache.get(output_dir)
+  summary_writer = core_summary.FileWriterCache.get(output_dir)
   summary_proto = summary_pb2.Summary()
   for key in dictionary:
     if dictionary[key] is None:
@@ -1034,7 +1034,7 @@
         loss = None
         while not mon_sess.should_stop():
           _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss])
-      summary_io.SummaryWriterCache.clear()
+      core_summary.FileWriterCache.clear()
       return loss
 
 
diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py b/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
index fe712bd..be2b0cb 100644
--- a/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
+++ b/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
@@ -506,7 +506,7 @@
       return input_fn_utils.InputFnOps(
           features, labels, {'examples': serialized_tf_example})
 
-    est.export_savedmodel(est.model_dir + '/export', serving_input_fn)
+    est.export_savedmodel(os.path.join(est.model_dir, 'export'), serving_input_fn)
     self.assertTrue(self.mock_saver.restore.called)
 
 
@@ -988,10 +988,11 @@
         self.assertTrue('input_example_tensor' in graph_ops)
         self.assertTrue('ParseExample/ParseExample' in graph_ops)
         self.assertTrue('linear/linear/feature/matmul' in graph_ops)
-        self.assertSameElements(
-            ['bogus_lookup', 'feature'],
-            graph.get_collection(
-                constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS))
+        self.assertItemsEqual(
+          ['bogus_lookup', 'feature'],
+          [compat.as_str_any(x) for x in graph.get_collection(
+            constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS)])
+
 
     # cleanup
     gfile.DeleteRecursively(tmpdir)
diff --git a/tensorflow/contrib/learn/python/learn/monitors.py b/tensorflow/contrib/learn/python/learn/monitors.py
index d9d2248..3051f40 100644
--- a/tensorflow/contrib/learn/python/learn/monitors.py
+++ b/tensorflow/contrib/learn/python/learn/monitors.py
@@ -44,15 +44,16 @@
 
 from tensorflow.contrib.framework import deprecated
 from tensorflow.contrib.framework.python.ops import variables as contrib_variables
-from tensorflow.contrib.learn.python.learn import session_run_hook
 from tensorflow.contrib.learn.python.learn.summary_writer_cache import SummaryWriterCache
 from tensorflow.core.framework.summary_pb2 import Summary
 from tensorflow.core.util.event_pb2 import SessionLog
 from tensorflow.python.estimator import estimator as core_estimator
 from tensorflow.python.framework import ops
 from tensorflow.python.platform import tf_logging as logging
+from tensorflow.python.summary import summary as core_summary
 from tensorflow.python.training import saver as saver_lib
-from tensorflow.python.training import summary_io
+from tensorflow.python.training import session_run_hook
+from tensorflow.python.training import training_util
 from tensorflow.python.util import deprecation
 from tensorflow.python.util import tf_inspect
 
@@ -521,7 +522,7 @@
     self._summary_op = summary_op
     self._summary_writer = summary_writer
     if summary_writer is None and output_dir:
-      self._summary_writer = summary_io.SummaryWriter(output_dir)
+      self._summary_writer = core_summary.FileWriter(output_dir)
     self._scaffold = scaffold
     # TODO(mdan): Throw an error if output_dir and summary_writer are None.
 
@@ -529,7 +530,7 @@
     super(SummarySaver, self).set_estimator(estimator)
     # TODO(mdan): This line looks redundant.
     if self._summary_writer is None:
-      self._summary_writer = summary_io.SummaryWriter(estimator.model_dir)
+      self._summary_writer = core_summary.FileWriter(estimator.model_dir)
 
   def every_n_step_begin(self, step):
     super(SummarySaver, self).every_n_step_begin(step)
@@ -1029,7 +1030,7 @@
     logging.info("Create CheckpointSaver.")
     super(CheckpointSaver, self).__init__()
     self._saver = saver
-    self._summary_writer = SummaryWriterCache.get(checkpoint_dir)
+    self._summary_writer = core_summary.FileWriterCache.get(checkpoint_dir)
     self._save_path = os.path.join(checkpoint_dir, checkpoint_basename)
     self._scaffold = scaffold
     self._save_secs = save_secs
@@ -1098,12 +1099,12 @@
     self._last_reported_time = None
     self._summary_writer = summary_writer
     if summary_writer is None and output_dir:
-      self._summary_writer = SummaryWriterCache.get(output_dir)
+      self._summary_writer = core_summary.FileWriterCache.get(output_dir)
 
   def set_estimator(self, estimator):
     super(StepCounter, self).set_estimator(estimator)
     if self._summary_writer is None:
-      self._summary_writer = SummaryWriterCache.get(estimator.model_dir)
+      self._summary_writer = core_summary.FileWriterCache.get(estimator.model_dir)
 
   def every_n_step_end(self, current_step, outputs):
     current_time = time.time()
@@ -1169,7 +1170,7 @@
 
   def begin(self):
     self._last_step = None
-    self._global_step_tensor = contrib_variables.get_global_step()
+    self._global_step_tensor = training_util.get_global_step()
     for m in self._monitors:
       m.begin(max_steps=None)
 
diff --git a/tensorflow/contrib/learn/python/learn/monitors_test.py b/tensorflow/contrib/learn/python/learn/monitors_test.py
index e8fe602..b2b2477 100644
--- a/tensorflow/contrib/learn/python/learn/monitors_test.py
+++ b/tensorflow/contrib/learn/python/learn/monitors_test.py
@@ -27,7 +27,6 @@
 
 from tensorflow.contrib import testing
 from tensorflow.contrib.framework.python.framework import checkpoint_utils
-from tensorflow.contrib.framework.python.ops import variables as variables_lib
 from tensorflow.contrib.learn.python import learn
 from tensorflow.contrib.learn.python.learn import estimators
 from tensorflow.python.client import session as session_lib
@@ -43,6 +42,7 @@
 from tensorflow.python.training import gradient_descent
 from tensorflow.python.training import monitored_session
 from tensorflow.python.training import saver
+from tensorflow.python.training import training_util
 
 
 class _MyEveryN(learn.monitors.EveryN):
@@ -616,7 +616,7 @@
     self.graph = ops.Graph()
     with self.graph.as_default():
       self.scaffold = monitored_session.Scaffold()
-      self.global_step = variables_lib.get_or_create_global_step()
+      self.global_step = training_util.get_or_create_global_step()
       self.train_op = state_ops.assign_add(self.global_step, 1)
 
   def tearDown(self):
@@ -780,7 +780,7 @@
 
   def test_calls_and_steps(self):
     with ops.Graph().as_default(), session_lib.Session() as sess:
-      global_step_tensor = variables_lib.create_global_step()
+      global_step_tensor = training_util.create_global_step()
       inc_5 = state_ops.assign_add(global_step_tensor, 5)
       mock_mon = FakeMonitor()
       mock_mon2 = FakeMonitor()
@@ -821,7 +821,7 @@
 
   def test_requests(self):
     with ops.Graph().as_default(), session_lib.Session() as sess:
-      variables_lib.create_global_step()
+      training_util.create_global_step()
       mock_mon = FakeMonitor()
       mock_mon2 = FakeMonitor()
 
diff --git a/tensorflow/contrib/learn/python/learn/utils/export_test.py b/tensorflow/contrib/learn/python/learn/utils/export_test.py
index ce1d732..95070ad 100644
--- a/tensorflow/contrib/learn/python/learn/utils/export_test.py
+++ b/tensorflow/contrib/learn/python/learn/utils/export_test.py
@@ -31,6 +31,7 @@
 from tensorflow.contrib.session_bundle import manifest_pb2
 from tensorflow.python.client import session
 from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import errors
 from tensorflow.python.ops import array_ops
 from tensorflow.python.ops import random_ops
 from tensorflow.python.platform import gfile
@@ -49,9 +50,8 @@
 
 
 class ExportTest(test.TestCase):
-
   def _get_default_signature(self, export_meta_filename):
-    """Gets the default signature from the export.meta file."""
+    """ Gets the default signature from the export.meta file. """
     with session.Session():
       save = saver.import_meta_graph(export_meta_filename)
       meta_graph_def = save.export_meta_graph()
@@ -68,18 +68,19 @@
     self.assertTrue(gfile.Exists(export_dir))
     # Only the written checkpoints are exported.
     self.assertTrue(
-        saver.checkpoint_exists(export_dir + '00000001/export'),
+        saver.checkpoint_exists(os.path.join(export_dir, '00000001', 'export')),
         'Exported checkpoint expected but not found: %s' %
-        (export_dir + '00000001/export'))
+        os.path.join(export_dir, '00000001', 'export'))
     self.assertTrue(
-        saver.checkpoint_exists(export_dir + '00000010/export'),
+        saver.checkpoint_exists(os.path.join(export_dir, '00000010', 'export')),
         'Exported checkpoint expected but not found: %s' %
-        (export_dir + '00000010/export'))
+        os.path.join(export_dir, '00000010', 'export'))
     self.assertEquals(
         six.b(os.path.join(export_dir, '00000010')),
         export_monitor.last_export_dir)
     # Validate the signature
-    signature = self._get_default_signature(export_dir + '00000010/export.meta')
+    signature = self._get_default_signature(
+      os.path.join(export_dir, '00000010', 'export.meta'))
     self.assertTrue(signature.HasField(expected_signature))
 
   def testExportMonitor_EstimatorProvidesSignature(self):
@@ -88,7 +89,7 @@
     y = 2 * x + 3
     cont_features = [feature_column.real_valued_column('', dimension=1)]
     regressor = learn.LinearRegressor(feature_columns=cont_features)
-    export_dir = tempfile.mkdtemp() + 'export/'
+    export_dir = os.path.join(tempfile.mkdtemp(), 'export')
     export_monitor = learn.monitors.ExportMonitor(
         every_n_steps=1, export_dir=export_dir, exports_to_keep=2)
     regressor.fit(x, y, steps=10, monitors=[export_monitor])
@@ -99,7 +100,7 @@
     x = np.random.rand(1000)
     y = 2 * x + 3
     cont_features = [feature_column.real_valued_column('', dimension=1)]
-    export_dir = tempfile.mkdtemp() + 'export/'
+    export_dir = os.path.join(tempfile.mkdtemp(), 'export')
     export_monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
         export_dir=export_dir,
@@ -122,7 +123,7 @@
     input_feature_key = 'my_example_key'
     monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
-        export_dir=tempfile.mkdtemp() + 'export/',
+        export_dir=os.path.join(tempfile.mkdtemp(), 'export'),
         input_fn=_serving_input_fn,
         input_feature_key=input_feature_key,
         exports_to_keep=2,
@@ -140,7 +141,7 @@
 
     monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
-        export_dir=tempfile.mkdtemp() + 'export/',
+        export_dir=os.path.join(tempfile.mkdtemp(), 'export'),
         input_fn=_serving_input_fn,
         input_feature_key=input_feature_key,
         exports_to_keep=2,
@@ -165,7 +166,7 @@
 
     monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
-        export_dir=tempfile.mkdtemp() + 'export/',
+        export_dir=os.path.join(tempfile.mkdtemp(), 'export'),
         input_fn=_serving_input_fn,
         input_feature_key=input_feature_key,
         exports_to_keep=2,
@@ -187,7 +188,7 @@
 
     monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
-        export_dir=tempfile.mkdtemp() + 'export/',
+        export_dir=os.path.join(tempfile.mkdtemp(), 'export'),
         input_fn=_serving_input_fn,
         input_feature_key=input_feature_key,
         exports_to_keep=2,
@@ -210,7 +211,7 @@
                   shape=(1,), minval=0.0, maxval=1000.0)
       }, None
 
-    export_dir = tempfile.mkdtemp() + 'export/'
+    export_dir = os.path.join(tempfile.mkdtemp(), 'export')
     monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
         export_dir=export_dir,
@@ -235,7 +236,7 @@
     y = 2 * x + 3
     cont_features = [feature_column.real_valued_column('', dimension=1)]
     regressor = learn.LinearRegressor(feature_columns=cont_features)
-    export_dir = tempfile.mkdtemp() + 'export/'
+    export_dir = os.path.join(tempfile.mkdtemp(), 'export')
     export_monitor = learn.monitors.ExportMonitor(
         every_n_steps=1,
         export_dir=export_dir,
@@ -244,10 +245,13 @@
     regressor.fit(x, y, steps=10, monitors=[export_monitor])
 
     self.assertTrue(gfile.Exists(export_dir))
-    self.assertFalse(saver.checkpoint_exists(export_dir + '00000000/export'))
-    self.assertTrue(saver.checkpoint_exists(export_dir + '00000010/export'))
+    with self.assertRaises(errors.NotFoundError):
+      saver.checkpoint_exists(os.path.join(export_dir, '00000000', 'export'))
+    self.assertTrue(
+      saver.checkpoint_exists(os.path.join(export_dir, '00000010', 'export')))
     # Validate the signature
-    signature = self._get_default_signature(export_dir + '00000010/export.meta')
+    signature = self._get_default_signature(
+      os.path.join(export_dir, '00000010', 'export.meta'))
     self.assertTrue(signature.HasField('regression_signature'))
 
 
diff --git a/tensorflow/contrib/learn/python/learn/utils/gc_test.py b/tensorflow/contrib/learn/python/learn/utils/gc_test.py
index 0c1a1f4..76cfd88 100644
--- a/tensorflow/contrib/learn/python/learn/utils/gc_test.py
+++ b/tensorflow/contrib/learn/python/learn/utils/gc_test.py
@@ -33,8 +33,13 @@
 def _create_parser(base_dir):
   # create a simple parser that pulls the export_version from the directory.
   def parser(path):
-    match = re.match("^" + compat.as_str_any(base_dir) + "/(\\d+)$",
-                     compat.as_str_any(path.path))
+    # Modify the path object for RegEx match for Windows Paths
+    if os.name == 'nt':
+      match = re.match("^" + compat.as_str_any(base_dir).replace('\\','/') + "/(\\d+)$",
+                      compat.as_str_any(path.path).replace('\\','/'))
+    else:
+      match = re.match("^" + compat.as_str_any(base_dir) + "/(\\d+)$",
+                      compat.as_str_any(path.path))
     if not match:
       return None
     return path._replace(export_version=int(match.group(1)))
@@ -48,13 +53,13 @@
     paths = [gc.Path("/foo", 8), gc.Path("/foo", 9), gc.Path("/foo", 10)]
     newest = gc.largest_export_versions(2)
     n = newest(paths)
-    self.assertEquals(n, [gc.Path("/foo", 9), gc.Path("/foo", 10)])
+    self.assertEqual(n, [gc.Path("/foo", 9), gc.Path("/foo", 10)])
 
   def testLargestExportVersionsDoesNotDeleteZeroFolder(self):
     paths = [gc.Path("/foo", 0), gc.Path("/foo", 3)]
     newest = gc.largest_export_versions(2)
     n = newest(paths)
-    self.assertEquals(n, [gc.Path("/foo", 0), gc.Path("/foo", 3)])
+    self.assertEqual(n, [gc.Path("/foo", 0), gc.Path("/foo", 3)])
 
   def testModExportVersion(self):
     paths = [
@@ -62,9 +67,9 @@
         gc.Path("/foo", 9)
     ]
     mod = gc.mod_export_version(2)
-    self.assertEquals(mod(paths), [gc.Path("/foo", 4), gc.Path("/foo", 6)])
+    self.assertEqual(mod(paths), [gc.Path("/foo", 4), gc.Path("/foo", 6)])
     mod = gc.mod_export_version(3)
-    self.assertEquals(mod(paths), [gc.Path("/foo", 6), gc.Path("/foo", 9)])
+    self.assertEqual(mod(paths), [gc.Path("/foo", 6), gc.Path("/foo", 9)])
 
   def testOneOfEveryNExportVersions(self):
     paths = [
@@ -73,7 +78,7 @@
         gc.Path("/foo", 8), gc.Path("/foo", 33)
     ]
     one_of = gc.one_of_every_n_export_versions(3)
-    self.assertEquals(
+    self.assertEqual(
         one_of(paths), [
             gc.Path("/foo", 3), gc.Path("/foo", 6), gc.Path("/foo", 8),
             gc.Path("/foo", 33)
@@ -84,14 +89,14 @@
     # Test that here.
     paths = [gc.Path("/foo", 0), gc.Path("/foo", 4), gc.Path("/foo", 5)]
     one_of = gc.one_of_every_n_export_versions(3)
-    self.assertEquals(one_of(paths), [gc.Path("/foo", 0), gc.Path("/foo", 5)])
+    self.assertEqual(one_of(paths), [gc.Path("/foo", 0), gc.Path("/foo", 5)])
 
   def testUnion(self):
     paths = []
     for i in xrange(10):
       paths.append(gc.Path("/foo", i))
     f = gc.union(gc.largest_export_versions(3), gc.mod_export_version(3))
-    self.assertEquals(
+    self.assertEqual(
         f(paths), [
             gc.Path("/foo", 0), gc.Path("/foo", 3), gc.Path("/foo", 6),
             gc.Path("/foo", 7), gc.Path("/foo", 8), gc.Path("/foo", 9)
@@ -103,9 +108,9 @@
         gc.Path("/foo", 9)
     ]
     mod = gc.negation(gc.mod_export_version(2))
-    self.assertEquals(mod(paths), [gc.Path("/foo", 5), gc.Path("/foo", 9)])
+    self.assertEqual(mod(paths), [gc.Path("/foo", 5), gc.Path("/foo", 9)])
     mod = gc.negation(gc.mod_export_version(3))
-    self.assertEquals(mod(paths), [gc.Path("/foo", 4), gc.Path("/foo", 5)])
+    self.assertEqual(mod(paths), [gc.Path("/foo", 4), gc.Path("/foo", 5)])
 
   def testPathsWithParse(self):
     base_dir = os.path.join(test.get_temp_dir(), "paths_parse")
@@ -115,7 +120,7 @@
     # add a base_directory to ignore
     gfile.MakeDirs(os.path.join(base_dir, "ignore"))
 
-    self.assertEquals(
+    self.assertEqual(
         gc.get_paths(base_dir, _create_parser(base_dir)),
         [
             gc.Path(os.path.join(base_dir, "0"), 0),
diff --git a/tensorflow/contrib/memory_stats/kernels/memory_stats_ops.cc b/tensorflow/contrib/memory_stats/kernels/memory_stats_ops.cc
index 23a682f..3b88535 100644
--- a/tensorflow/contrib/memory_stats/kernels/memory_stats_ops.cc
+++ b/tensorflow/contrib/memory_stats/kernels/memory_stats_ops.cc
@@ -57,6 +57,11 @@
 REGISTER_KERNEL_BUILDER(Name("BytesLimit").Device(DEVICE_GPU).HostMemory("out"),
                         BytesLimitOp);
 
+#ifdef TENSORFLOW_USE_SYCL
+REGISTER_KERNEL_BUILDER(Name("BytesLimit").Device(DEVICE_SYCL).HostMemory("out"),
+                        BytesLimitOp);
+#endif // TENSORFLOW_USE_SYCL
+
 // Op that measures the peak memory in bytes.
 class MaxBytesInUseOp : public MemoryStatsOp {
  public:
@@ -76,4 +81,10 @@
     Name("MaxBytesInUse").Device(DEVICE_GPU).HostMemory("out"),
     MaxBytesInUseOp);
 
+#ifdef TENSORFLOW_USE_SYCL
+REGISTER_KERNEL_BUILDER(
+    Name("MaxBytesInUse").Device(DEVICE_SYCL).HostMemory("out"),
+    MaxBytesInUseOp);
+#endif // TENSORFLOW_USE_SYCL
+
 }  // namespace tensorflow
diff --git a/tensorflow/contrib/mpi/mpi_server_lib.cc b/tensorflow/contrib/mpi/mpi_server_lib.cc
index 3b2fba9..d585c05 100644
--- a/tensorflow/contrib/mpi/mpi_server_lib.cc
+++ b/tensorflow/contrib/mpi/mpi_server_lib.cc
@@ -20,6 +20,8 @@
 #include <string>
 #include <utility>
 
+#include "grpc/support/alloc.h"
+
 #include "tensorflow/core/distributed_runtime/server_lib.h"
 #include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h"
 #include "tensorflow/core/lib/core/status.h"
diff --git a/tensorflow/contrib/mpi/mpi_utils.cc b/tensorflow/contrib/mpi/mpi_utils.cc
index b8e7d1a..8184b85 100644
--- a/tensorflow/contrib/mpi/mpi_utils.cc
+++ b/tensorflow/contrib/mpi/mpi_utils.cc
@@ -61,7 +61,7 @@
     MPI_CHECK(MPI_Comm_size(MPI_COMM_WORLD, &number_of_procs));
     MPI_CHECK(MPI_Get_processor_name(my_host_name, &len));
     fprintf(stderr,
-            "MPI Environment initialised. Process id: %d Total processes: %d "
+            "MPI Environment initialized. Process id: %d Total processes: %d "
             "|| Hostname: %s \n",
             proc_id, number_of_procs, my_host_name);
   }
diff --git a/tensorflow/contrib/nccl/python/ops/nccl_ops_test.py b/tensorflow/contrib/nccl/python/ops/nccl_ops_test.py
index 130cb4c..ae658e7 100644
--- a/tensorflow/contrib/nccl/python/ops/nccl_ops_test.py
+++ b/tensorflow/contrib/nccl/python/ops/nccl_ops_test.py
@@ -43,7 +43,7 @@
         self._testSingleAllReduce(sess, dtype, nccl.all_max, np.maximum)
 
   def _testSingleAllReduce(self, sess, np_type, nccl_fn, numpy_accumulation_fn):
-    for devices in [['/gpu:0', '/gpu:0', '/gpu:0'], ['/gpu:0', '/gpu:0']]:
+    for devices in [['/device:GPU:0', '/device:GPU:0', '/device:GPU:0'], ['/device:GPU:0', '/device:GPU:0']]:
       shape = (3, 4)
       np_ans = None
       tensors = []
@@ -84,7 +84,7 @@
       # Create session inside outer loop to test use of
       # same communicator across multiple sessions.
       with self.test_session(use_gpu=True) as sess:
-        for devices in [['/gpu:0', '/gpu:0', '/gpu:0'], ['/gpu:0', '/gpu:0']]:
+        for devices in [['/device:GPU:0', '/device:GPU:0', '/device:GPU:0'], ['/device:GPU:0', '/device:GPU:0']]:
           shape = (3, 4)
           sender = np.random.randint(0, len(devices) - 1)
           with ops.device(devices[sender]):
@@ -115,7 +115,7 @@
       # Create session inside outer loop to test use of
       # same communicator across multiple sessions.
       with self.test_session(use_gpu=True) as sess:
-        for devices in [['/gpu:0', '/gpu:0', '/gpu:0'], ['/gpu:0', '/gpu:0']]:
+        for devices in [['/device:GPU:0', '/device:GPU:0', '/device:GPU:0'], ['/device:GPU:0', '/device:GPU:0']]:
           shape = (3, 4)
 
           # all-reduce
diff --git a/tensorflow/contrib/nn/BUILD b/tensorflow/contrib/nn/BUILD
index af33496e..a5535e7 100644
--- a/tensorflow/contrib/nn/BUILD
+++ b/tensorflow/contrib/nn/BUILD
@@ -15,6 +15,7 @@
         "__init__.py",
         "python/__init__.py",
         "python/ops/__init__.py",
+        "python/ops/alpha_dropout.py",
         "python/ops/cross_entropy.py",
         "python/ops/sampling_ops.py",
     ],
@@ -44,6 +45,23 @@
     ],
 )
 
+py_test(
+    name = "alpha_dropout_test",
+    size = "small",
+    srcs = ["python/ops/alpha_dropout_test.py"],
+    srcs_version = "PY2AND3",
+    deps = [
+        ":nn_py",
+        "//tensorflow/python:array_ops",
+        "//tensorflow/python:client_testlib",
+        "//tensorflow/python:constant_op",
+        "//tensorflow/python:dtypes",
+        "//tensorflow/python:framework_ops",
+        "//tensorflow/python:nn",
+        "//tensorflow/python:random_ops",
+    ],
+)
+
 filegroup(
     name = "all_files",
     srcs = glob(
diff --git a/tensorflow/contrib/nn/__init__.py b/tensorflow/contrib/nn/__init__.py
index ec832cb..2cfeaa9 100644
--- a/tensorflow/contrib/nn/__init__.py
+++ b/tensorflow/contrib/nn/__init__.py
@@ -14,6 +14,7 @@
 # ==============================================================================
 """Module for variants of ops in tf.nn.
 
+@@alpha_dropout
 @@deprecated_flipped_softmax_cross_entropy_with_logits
 @@deprecated_flipped_sparse_softmax_cross_entropy_with_logits
 @@deprecated_flipped_sigmoid_cross_entropy_with_logits
@@ -27,6 +28,7 @@
 # pylint: disable=unused-import,wildcard-import
 from tensorflow.contrib.nn.python.ops.cross_entropy import *
 from tensorflow.contrib.nn.python.ops.sampling_ops import *
+from tensorflow.contrib.nn.python.ops.alpha_dropout import *
 # pylint: enable=unused-import,wildcard-import
 
 from tensorflow.python.util.all_util import remove_undocumented
diff --git a/tensorflow/contrib/nn/python/ops/alpha_dropout.py b/tensorflow/contrib/nn/python/ops/alpha_dropout.py
new file mode 100644
index 0000000..d7b61a5
--- /dev/null
+++ b/tensorflow/contrib/nn/python/ops/alpha_dropout.py
@@ -0,0 +1,88 @@
+# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numbers
+
+from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import ops
+from tensorflow.python.framework import tensor_shape
+from tensorflow.python.framework import tensor_util
+from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import random_ops
+from tensorflow.python.ops import gen_math_ops
+from tensorflow.python.ops import math_ops
+from tensorflow.python.ops import nn_impl
+
+
+def alpha_dropout(x, keep_prob, noise_shape=None, seed=None, name=None): # pylint: disable=invalid-name
+  """Computes alpha dropout.
+
+  Alpha Dropout is a dropout that maintains the self-normalizing property. For
+  an input with zero mean and unit standard deviation, the output of
+  Alpha Dropout maintains the original mean and standard deviation of the input.
+
+  See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
+
+  Args:
+    x: A tensor.
+    keep_prob: A scalar `Tensor` with the same type as x. The probability
+      that each element is kept.
+    noise_shape: A 1-D `Tensor` of type `int32`, representing the
+      shape for randomly generated keep/drop flags.
+    seed: A Python integer. Used to create random seeds. See
+      @{tf.set_random_seed} for behavior.
+    name: A name for this operation (optional).
+
+  Returns:
+    A Tensor of the same shape of `x`.
+
+  Raises:
+    ValueError: If `keep_prob` is not in `(0, 1]`.
+
+  """
+  with ops.name_scope(name, "alpha_dropout", [x]) as name:
+    x = ops.convert_to_tensor(x, name="x")
+    if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1.:
+      raise ValueError("keep_prob must be a scalar tensor or a float in the "
+                       "range (0, 1], got %g" % keep_prob)
+    keep_prob = ops.convert_to_tensor(keep_prob,
+                                      dtype=x.dtype,
+                                      name="keep_prob")
+    keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
+
+    # Do nothing if we know keep_prob == 1
+    if tensor_util.constant_value(keep_prob) == 1:
+      return x
+
+    alpha = -1.7580993408473766
+
+    noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
+    random_tensor = random_ops.random_uniform(noise_shape,
+                                              seed=seed,
+                                              dtype=x.dtype)
+    kept_idx = gen_math_ops.greater_equal(random_tensor, 1 - keep_prob)
+    kept_idx = math_ops.cast(kept_idx, x.dtype)
+    # Mask
+    x = x * kept_idx + alpha * (1 - kept_idx)
+
+    # Affine transformation parameters
+    a = (keep_prob + keep_prob * (1 - keep_prob) * alpha ** 2) ** -0.5
+    b = -a * alpha * (1 - keep_prob)
+
+    # Affine transformation
+    return a * x + b
diff --git a/tensorflow/contrib/nn/python/ops/alpha_dropout_test.py b/tensorflow/contrib/nn/python/ops/alpha_dropout_test.py
new file mode 100644
index 0000000..2ff978a
--- /dev/null
+++ b/tensorflow/contrib/nn/python/ops/alpha_dropout_test.py
@@ -0,0 +1,88 @@
+# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""Tests for sampling_ops.py."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from tensorflow.contrib.nn.python.ops.alpha_dropout import alpha_dropout
+from tensorflow.python.framework import constant_op
+from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import ops
+from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import random_ops
+from tensorflow.python.ops import nn_impl
+from tensorflow.python.platform import test
+
+
+class AlphaDropoutTest(test.TestCase):
+
+  def testAlphaDropout(self):
+    x_dim, y_dim = 40, 30
+    for keep_prob in [0.1, 0.5, 0.8]:
+      with self.test_session():
+        t = random_ops.random_normal([x_dim, y_dim])
+        output = alpha_dropout(t, keep_prob)
+        self.assertEqual([x_dim, y_dim], output.get_shape())
+        t_mean, t_std = nn_impl.moments(t, axes=[0, 1])
+        output_mean, output_std = nn_impl.moments(output, axes=[0, 1])
+        self.assertLess(abs(t_mean.eval() - output_mean.eval()), 0.1)
+        self.assertLess(abs(t_std.eval() - output_std.eval()), 0.1)
+
+  def testShapedDropoutShapeError(self):
+    # Runs shaped dropout and verifies an error is thrown on misshapen noise.
+    x_dim = 40
+    y_dim = 30
+    keep_prob = 0.5
+    t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
+    with self.assertRaises(ValueError):
+      _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, y_dim + 10])
+    with self.assertRaises(ValueError):
+      _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, y_dim, 5])
+    with self.assertRaises(ValueError):
+      _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim + 3])
+    with self.assertRaises(ValueError):
+      _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim])
+
+    # test that broadcasting proceeds
+    _ = alpha_dropout(t, keep_prob, noise_shape=[y_dim])
+    _ = alpha_dropout(t, keep_prob, noise_shape=[1, y_dim])
+    _ = alpha_dropout(t, keep_prob, noise_shape=[x_dim, 1])
+    _ = alpha_dropout(t, keep_prob, noise_shape=[1, 1])
+
+  def testInvalidKeepProb(self):
+    x_dim, y_dim = 40, 30
+    t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
+    with self.assertRaises(ValueError):
+      alpha_dropout(t, -1.0)
+    with self.assertRaises(ValueError):
+      alpha_dropout(t, 1.1)
+    with self.assertRaises(ValueError):
+      alpha_dropout(t, [0.0, 1.0])
+    with self.assertRaises(ValueError):
+      alpha_dropout(t, array_ops.placeholder(dtypes.float64))
+    with self.assertRaises(ValueError):
+      alpha_dropout(t, array_ops.placeholder(dtypes.float32, shape=[2]))
+
+  def testNoDropoutFast(self):
+    x = array_ops.zeros((5,))
+    for p in 1, constant_op.constant(1.0):
+      y = alpha_dropout(x, keep_prob=p)
+      self.assertTrue(x is y)
+
+
+if __name__ == '__main__':
+  test.main()
diff --git a/tensorflow/contrib/rnn/__init__.py b/tensorflow/contrib/rnn/__init__.py
index d39c1f0..895f1c2 100644
--- a/tensorflow/contrib/rnn/__init__.py
+++ b/tensorflow/contrib/rnn/__init__.py
@@ -50,6 +50,10 @@
 @@UGRNNCell
 @@IntersectionRNNCell
 @@PhasedLSTMCell
+@@ConvLSTMCell
+@@Conv1DLSTMCell
+@@Conv2DLSTMCell
+@@Conv3DLSTMCell
 @@HighwayWrapper
 @@GLSTMCell
 
diff --git a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py
index c14463b..a77097e 100644
--- a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py
+++ b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_cell_test.py
@@ -40,6 +40,7 @@
 from tensorflow.python.ops import variable_scope
 from tensorflow.python.ops import variables as variables_lib
 from tensorflow.python.platform import test
+from tensorflow.python.framework import test_util
 
 
 # pylint: enable=protected-access
@@ -445,11 +446,12 @@
       # Can't perform this test w/o a GPU
       return
 
+    gpu_dev = test.gpu_device_name()
     with self.test_session(use_gpu=True) as sess:
       with variable_scope.variable_scope(
           "root", initializer=init_ops.constant_initializer(0.5)):
         x = array_ops.zeros([1, 1, 3])
-        cell = rnn_cell_impl.DeviceWrapper(rnn_cell_impl.GRUCell(3), "/gpu:0")
+        cell = rnn_cell_impl.DeviceWrapper(rnn_cell_impl.GRUCell(3), gpu_dev)
         with ops.device("/cpu:0"):
           outputs, _ = rnn.dynamic_rnn(
               cell=cell, inputs=x, dtype=dtypes.float32)
@@ -461,7 +463,7 @@
         _ = sess.run(outputs, options=opts, run_metadata=run_metadata)
 
       step_stats = run_metadata.step_stats
-      ix = 0 if "gpu" in step_stats.dev_stats[0].device else 1
+      ix = 0 if gpu_dev in step_stats.dev_stats[0].device else 1
       gpu_stats = step_stats.dev_stats[ix].node_stats
       cpu_stats = step_stats.dev_stats[1 - ix].node_stats
       self.assertFalse([s for s in cpu_stats if "gru_cell" in s.node_name])
diff --git a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py
index 701590a..40a3fb2 100644
--- a/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py
+++ b/tensorflow/contrib/rnn/python/kernel_tests/core_rnn_test.py
@@ -42,7 +42,6 @@
 from tensorflow.python.platform import test
 from tensorflow.python.platform import tf_logging
 from tensorflow.python.util import nest
-from tensorflow.python.framework import test_util
 
 class Plus1RNNCell(rnn_lib.RNNCell):
   """RNN Cell generating (output, new_state) = (input + 1, state + 1)."""
@@ -2208,11 +2207,11 @@
     if not test.is_gpu_available():
       return  # Test requires access to a GPU
 
+    gpu_dev = test.gpu_device_name()
     run_metadata = self._execute_rnn_on(
-        rnn_device="/cpu:0", cell_device=test_util.gpu_device_name())
+        rnn_device="/cpu:0", cell_device=gpu_dev)
     step_stats = run_metadata.step_stats
-    ix = 0 if (("gpu" in step_stats.dev_stats[0].device) or
-    ("sycl" in step_stats.dev_stats[0].device)) else 1
+    ix = 0 if (gpu_dev in step_stats.dev_stats[0].device) else 1
     gpu_stats = step_stats.dev_stats[ix].node_stats
     cpu_stats = step_stats.dev_stats[1 - ix].node_stats
 
@@ -2233,12 +2232,12 @@
     if not test.is_gpu_available():
       return  # Test requires access to a GPU
 
+    gpu_dev = test.gpu_device_name()
     run_metadata = self._execute_rnn_on(
         rnn_device="/cpu:0", cell_device="/cpu:0",
-        input_device=test_util.gpu_device_name())
+        input_device=gpu_dev)
     step_stats = run_metadata.step_stats
-    ix = 0 if (("gpu" in step_stats.dev_stats[0].device) or
-    ("sycl" in step_stats.dev_stats[0].device)) else 1
+    ix = 0 if (gpu_dev in step_stats.dev_stats[0].device) else 1
     gpu_stats = step_stats.dev_stats[ix].node_stats
     cpu_stats = step_stats.dev_stats[1 - ix].node_stats
 
@@ -2253,11 +2252,11 @@
     if not test.is_gpu_available():
       return  # Test requires access to a GPU
 
+    gpu_dev = test.gpu_device_name()
     run_metadata = self._execute_rnn_on(
-        input_device=test_util.gpu_device_name())
+        input_device=gpu_dev)
     step_stats = run_metadata.step_stats
-    ix = 0 if (("gpu" in step_stats.dev_stats[0].device) or
-    ("sycl" in step_stats.dev_stats[0].device)) else 1
+    ix = 0 if (gpu_dev in step_stats.dev_stats[0].device) else 1
     gpu_stats = step_stats.dev_stats[ix].node_stats
     cpu_stats = step_stats.dev_stats[1 - ix].node_stats
 
diff --git a/tensorflow/contrib/rnn/python/kernel_tests/gru_ops_test.py b/tensorflow/contrib/rnn/python/kernel_tests/gru_ops_test.py
index baf1743..4239e32 100644
--- a/tensorflow/contrib/rnn/python/kernel_tests/gru_ops_test.py
+++ b/tensorflow/contrib/rnn/python/kernel_tests/gru_ops_test.py
@@ -357,7 +357,7 @@
   ops.reset_default_graph()
   with session.Session(graph=ops.Graph()) as sess:
     # Specify the device which is been used.
-    with ops.device("/cpu:0" if not use_gpu else "/gpu:0"):
+    with ops.device("/cpu:0" if not use_gpu else "/device:GPU:0"):
 
       # Random initializers.
       seed = 1994
@@ -429,7 +429,7 @@
   """Benchmark inference speed between GRUBlockCell vs GRUCell."""
   ops.reset_default_graph()
   with session.Session(graph=ops.Graph()) as sess:
-    with ops.device("/cpu:0" if not use_gpu else "/gpu:0"):
+    with ops.device("/cpu:0" if not use_gpu else "/device:GPU:0"):
 
       # Random initializers.
       seed = 1994
@@ -484,7 +484,7 @@
   """Benchmark single bprop step speed between GRUBlockCell vs GRUCell."""
   ops.reset_default_graph()
   with session.Session(graph=ops.Graph()) as sess:
-    with ops.device("/cpu:0" if not use_gpu else "/gpu:0"):
+    with ops.device("/cpu:0" if not use_gpu else "/device:GPU:0"):
       initializer = init_ops.random_uniform_initializer(-1, 1, seed=1989)
       # Inputs
       x = vs.get_variable("x", [batch_size, input_size])
diff --git a/tensorflow/contrib/rnn/python/kernel_tests/rnn_cell_test.py b/tensorflow/contrib/rnn/python/kernel_tests/rnn_cell_test.py
index fb91fe1..ebd4564 100644
--- a/tensorflow/contrib/rnn/python/kernel_tests/rnn_cell_test.py
+++ b/tensorflow/contrib/rnn/python/kernel_tests/rnn_cell_test.py
@@ -875,6 +875,152 @@
         self.assertAllClose(res[1].c, expected_state_c)
         self.assertAllClose(res[1].h, expected_state_h)
 
+  def testConv1DLSTMCell(self):
+    with self.test_session() as sess:
+      shape = [2,1]
+      filter_size = [3]
+      num_features = 1
+      batch_size = 2
+      expected_state_c = np.array(
+          [[[1.4375670191], [1.4375670191]],
+           [[2.7542609292], [2.7542609292]]],
+          dtype=np.float32)
+      expected_state_h = np.array(
+          [[[0.6529865603], [0.6529865603]],
+           [[0.8736877431], [0.8736877431]]],
+          dtype=np.float32)
+      with variable_scope.variable_scope(
+          "root", initializer=init_ops.constant_initializer(1.0/2.0)):
+        x = array_ops.placeholder(dtypes.float32, [None, None, 1])
+        cell = contrib_rnn_cell.Conv1DLSTMCell(input_shape=shape,
+                                               kernel_shape=filter_size,
+                                               output_channels=num_features)
+        hidden = cell.zero_state(array_ops.shape(x)[0], dtypes.float32)
+        output, state = cell(x, hidden)
+
+        sess.run([variables.global_variables_initializer()])
+        res = sess.run([output, state], {
+            hidden[0].name:
+                np.array([[[1.],[1.]],
+                          [[2.],[2.]]]),
+            x.name:
+                np.array([[[1.],[1.]],
+                          [[2.],[2.]]]),
+        })
+        # This is a smoke test, making sure expected values are unchanged.
+        self.assertEqual(len(res), 2)
+        self.assertAllClose(res[0], res[1].h)
+        self.assertAllClose(res[1].c, expected_state_c)
+        self.assertAllClose(res[1].h, expected_state_h)
+
+  def testConv2DLSTMCell(self):
+    with self.test_session() as sess:
+      shape = [2,2,1]
+      filter_size = [3,3]
+      num_features = 1
+      batch_size = 2
+      expected_state_c = np.array(
+          [[[[1.4375670191], [1.4375670191]],
+            [[1.4375670191], [1.4375670191]]],
+           [[[2.7542609292], [2.7542609292]],
+            [[2.7542609292], [2.7542609292]]]],
+          dtype=np.float32)
+      expected_state_h = np.array(
+          [[[[0.6529865603], [0.6529865603]],
+            [[0.6529865603], [0.6529865603]]],
+           [[[0.8736877431], [0.8736877431]],
+            [[0.8736877431], [0.8736877431]]]],
+          dtype=np.float32)
+      with variable_scope.variable_scope(
+          "root", initializer=init_ops.constant_initializer(1.0/4.0)):
+        x = array_ops.placeholder(dtypes.float32, [None, None, None, 1])
+        cell = contrib_rnn_cell.Conv2DLSTMCell(input_shape=shape,
+                                               kernel_shape=filter_size,
+                                               output_channels=num_features)
+        hidden = cell.zero_state(array_ops.shape(x)[0], dtypes.float32)
+        output, state = cell(x, hidden)
+
+        sess.run([variables.global_variables_initializer()])
+        res = sess.run([output, state], {
+            hidden[0].name:
+                np.array([[[[1.],[1.]],
+                           [[1.],[1.]]],
+                          [[[2.],[2.]],
+                           [[2.],[2.]]]]),
+            x.name:
+                np.array([[[[1.],[1.]],
+                           [[1.],[1.]]],
+                          [[[2.],[2.]],
+                           [[2.],[2.]]]]),
+        })
+        # This is a smoke test, making sure expected values are unchanged.
+        self.assertEqual(len(res), 2)
+        self.assertAllClose(res[0], res[1].h)
+        self.assertAllClose(res[1].c, expected_state_c)
+        self.assertAllClose(res[1].h, expected_state_h)
+
+  def testConv3DLSTMCell(self):
+    with self.test_session() as sess:
+      shape = [2,2,2,1]
+      filter_size = [3,3,3]
+      num_features = 1
+      batch_size = 2
+      expected_state_c = np.array(
+         [[[[[1.4375670191], [1.4375670191]],
+            [[1.4375670191], [1.4375670191]]],
+           [[[1.4375670191], [1.4375670191]],
+            [[1.4375670191], [1.4375670191]]]],
+          [[[[2.7542609292], [2.7542609292]],
+            [[2.7542609292], [2.7542609292]]],
+           [[[2.7542609292], [2.7542609292]],
+            [[2.7542609292], [2.7542609292]]]]],
+          dtype=np.float32)
+      expected_state_h = np.array(
+         [[[[[0.6529865603], [0.6529865603]],
+            [[0.6529865603], [0.6529865603]]],
+           [[[0.6529865603], [0.6529865603]],
+            [[0.6529865603], [0.6529865603]]]],
+          [[[[0.8736877431], [0.8736877431]],
+            [[0.8736877431], [0.8736877431]]],
+           [[[0.8736877431], [0.8736877431]],
+            [[0.8736877431], [0.8736877431]]]]],
+          dtype=np.float32)
+      with variable_scope.variable_scope(
+          "root", initializer=init_ops.constant_initializer(1.0/8.0)):
+        x = array_ops.placeholder(dtypes.float32, [None, None, None, None, 1])
+        cell = contrib_rnn_cell.Conv3DLSTMCell(input_shape=shape,
+                                               kernel_shape=filter_size,
+                                               output_channels=num_features)
+        hidden = cell.zero_state(array_ops.shape(x)[0], dtypes.float32)
+        output, state = cell(x, hidden)
+
+        sess.run([variables.global_variables_initializer()])
+        res = sess.run([output, state], {
+            hidden[0].name:
+                np.array([[[[[1.],[1.]], 
+                            [[1.],[1.]]],
+                           [[[1.],[1.]],
+                            [[1.],[1.]]]], 
+                          [[[[2.],[2.]],
+                            [[2.],[2.]]],
+                           [[[2.],[2.]],
+                            [[2.],[2.]]]]]),
+            x.name:
+                np.array([[[[[1.],[1.]],
+                            [[1.],[1.]]],
+                           [[[1.],[1.]],
+                            [[1.],[1.]]]],
+                          [[[[2.],[2.]],
+                            [[2.],[2.]]],
+                           [[[2.],[2.]],
+                           [[2.],[2.]]]]])
+        })
+        # This is a smoke test, making sure expected values are unchanged.
+        self.assertEqual(len(res), 2)
+        self.assertAllClose(res[0], res[1].h)
+        self.assertAllClose(res[1].c, expected_state_c)
+        self.assertAllClose(res[1].h, expected_state_h)
+
   def testHighwayWrapper(self):
     with self.test_session() as sess:
       with variable_scope.variable_scope(
diff --git a/tensorflow/contrib/rnn/python/ops/rnn_cell.py b/tensorflow/contrib/rnn/python/ops/rnn_cell.py
index 090d28a..7b282222 100644
--- a/tensorflow/contrib/rnn/python/ops/rnn_cell.py
+++ b/tensorflow/contrib/rnn/python/ops/rnn_cell.py
@@ -26,6 +26,7 @@
 from tensorflow.python.framework import dtypes
 from tensorflow.python.framework import op_def_registry
 from tensorflow.python.framework import ops
+from tensorflow.python.framework import tensor_shape
 from tensorflow.python.ops import array_ops
 from tensorflow.python.ops import clip_ops
 from tensorflow.python.ops import init_ops
@@ -1921,6 +1922,181 @@
 
     return new_h, new_state
 
+class ConvLSTMCell(rnn_cell_impl.RNNCell):
+  """Convolutional LSTM recurrent network cell.
+
+  https://arxiv.org/pdf/1506.04214v1.pdf
+  """
+
+  def __init__(self,
+               conv_ndims,
+               input_shape,
+               output_channels,
+               kernel_shape,
+               use_bias=True,
+               skip_connection=False,
+               forget_bias=1.0,
+               initializers=None,
+               name="conv_lstm_cell"):
+    """Construct ConvLSTMCell.
+    Args:
+      conv_ndims: Convolution dimensionality (1, 2 or 3).
+      input_shape: Shape of the input as int tuple, excluding the batch size.
+      output_channels: int, number of output channels of the conv LSTM.
+      kernel_shape: Shape of kernel as in tuple (of size 1,2 or 3).
+      use_bias: Use bias in convolutions.
+      skip_connection: If set to `True`, concatenate the input to the
+      output of the conv LSTM. Default: `False`.
+      forget_bias: Forget bias.
+      name: Name of the module.
+    Raises:
+      ValueError: If `skip_connection` is `True` and stride is different from 1
+        or if `input_shape` is incompatible with `conv_ndims`.
+    """
+    super(ConvLSTMCell, self).__init__(name=name)
+
+    if conv_ndims != len(input_shape)-1:
+      raise ValueError("Invalid input_shape {} for conv_ndims={}.".format(
+          input_shape, conv_ndims))
+
+    self._conv_ndims = conv_ndims
+    self._input_shape = input_shape
+    self._output_channels = output_channels
+    self._kernel_shape = kernel_shape
+    self._use_bias = use_bias
+    self._forget_bias = forget_bias
+    self._skip_connection = skip_connection
+
+    self._total_output_channels = output_channels
+    if self._skip_connection:
+      self._total_output_channels += self._input_shape[-1]
+
+    state_size = tensor_shape.TensorShape(self._input_shape[:-1] 
+                                          + [self._output_channels])
+    self._state_size = rnn_cell_impl.LSTMStateTuple(state_size, state_size)
+    self._output_size = tensor_shape.TensorShape(self._input_shape[:-1]
+                                                 + [self._total_output_channels])
+
+  @property
+  def output_size(self):
+    return self._output_size
+
+  @property
+  def state_size(self):
+    return self._state_size
+
+  def call(self, inputs, state, scope=None):
+    cell, hidden = state
+    new_hidden = _conv([inputs, hidden],
+                       self._kernel_shape,
+                       4*self._output_channels,
+                       self._use_bias)
+    gates = array_ops.split(value=new_hidden,
+                            num_or_size_splits=4,
+                            axis=self._conv_ndims+1)
+
+    input_gate, new_input, forget_gate, output_gate = gates
+    new_cell = math_ops.sigmoid(forget_gate + self._forget_bias) * cell
+    new_cell += math_ops.sigmoid(input_gate) * math_ops.tanh(new_input)
+    output = math_ops.tanh(new_cell) * math_ops.sigmoid(output_gate)
+
+    if self._skip_connection:
+      output = array_ops.concat([output, inputs], axis=-1)
+    new_state = rnn_cell_impl.LSTMStateTuple(new_cell, output)
+    return output, new_state
+
+class Conv1DLSTMCell(ConvLSTMCell):
+  """1D Convolutional LSTM recurrent network cell.
+
+  https://arxiv.org/pdf/1506.04214v1.pdf
+  """
+  def __init__(self, name="conv_1d_lstm_cell", **kwargs):
+    """Construct Conv1DLSTM. See `ConvLSTMCell` for more details."""
+    super(Conv1DLSTMCell, self).__init__(conv_ndims=1, **kwargs)
+
+class Conv2DLSTMCell(ConvLSTMCell):
+  """2D Convolutional LSTM recurrent network cell.
+
+  https://arxiv.org/pdf/1506.04214v1.pdf
+  """
+  def __init__(self, name="conv_2d_lstm_cell", **kwargs):
+    """Construct Conv2DLSTM. See `ConvLSTMCell` for more details."""
+    super(Conv2DLSTMCell, self).__init__(conv_ndims=2, **kwargs)
+
+class Conv3DLSTMCell(ConvLSTMCell):
+  """3D Convolutional LSTM recurrent network cell.
+
+  https://arxiv.org/pdf/1506.04214v1.pdf
+  """
+  def __init__(self, name="conv_3d_lstm_cell", **kwargs):
+    """Construct Conv3DLSTM. See `ConvLSTMCell` for more details."""
+    super(Conv3DLSTMCell, self).__init__(conv_ndims=3, **kwargs)
+
+def _conv(args, 
+          filter_size,
+          num_features,
+          bias,
+          bias_start=0.0):
+  """convolution:
+  Args:
+    args: a Tensor or a list of Tensors of dimension 3D, 4D or 5D, 
+    batch x n, Tensors.
+    filter_size: int tuple of filter height and width.
+    num_features: int, number of features.
+    bias_start: starting value to initialize the bias; 0 by default.
+  Returns:
+    A 3D, 4D, or 5D Tensor with shape [batch ... num_features]
+  Raises:
+    ValueError: if some of the arguments has unspecified or wrong shape.
+  """
+
+  # Calculate the total size of arguments on dimension 1.
+  total_arg_size_depth = 0
+  shapes = [a.get_shape().as_list() for a in args]
+  shape_length = len(shapes[0])
+  for shape in shapes:
+    if len(shape) not in [3,4,5]:
+      raise ValueError("Conv Linear expects 3D, 4D or 5D arguments: %s" % str(shapes))
+    if len(shape) != len(shapes[0]):
+      raise ValueError("Conv Linear expects all args to be of same Dimensiton: %s" % str(shapes))
+    else:
+      total_arg_size_depth += shape[-1]
+  dtype = [a.dtype for a in args][0]
+
+  # determine correct conv operation
+  if   shape_length == 3:
+    conv_op = nn_ops.conv1d
+    strides = 1
+  elif shape_length == 4:
+    conv_op = nn_ops.conv2d
+    strides = shape_length*[1]
+  elif shape_length == 5:
+    conv_op = nn_ops.conv3d
+    strides = shape_length*[1]
+
+  # Now the computation.
+  kernel = vs.get_variable(
+      "kernel", 
+      filter_size + [total_arg_size_depth, num_features],
+      dtype=dtype)
+  if len(args) == 1:
+    res = conv_op(args[0],
+                  kernel,
+                  strides,
+                  padding='SAME')
+  else:
+    res = conv_op(array_ops.concat(axis=shape_length-1, values=args),
+                  kernel,
+                  strides,
+                  padding='SAME')
+  if not bias:
+    return res
+  bias_term = vs.get_variable(
+      "biases", [num_features],
+      dtype=dtype,
+      initializer=init_ops.constant_initializer(
+          bias_start, dtype=dtype))
+  return res + bias_term
 
 class GLSTMCell(rnn_cell_impl.RNNCell):
   """Group LSTM cell (G-LSTM).
diff --git a/tensorflow/contrib/seq2seq/python/kernel_tests/beam_search_ops_test.py b/tensorflow/contrib/seq2seq/python/kernel_tests/beam_search_ops_test.py
index 3496b35..50cccf3 100644
--- a/tensorflow/contrib/seq2seq/python/kernel_tests/beam_search_ops_test.py
+++ b/tensorflow/contrib/seq2seq/python/kernel_tests/beam_search_ops_test.py
@@ -78,7 +78,7 @@
     sequence_length = [[3, 3, 3]]
     expected_result = _transpose_batch_time(
         [[[2, -1, 2], [6, 5, 6], [7, 8, 9], [-1, -1, -1]]])
-    with ops.device("/gpu:0"):
+    with ops.device("/device:GPU:0"):
       beams = beam_search_ops.gather_tree(
           step_ids=step_ids, parent_ids=parent_ids,
           sequence_length=sequence_length)
diff --git a/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py b/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py
index c434113..259c8e0 100644
--- a/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py
+++ b/tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py
@@ -979,9 +979,9 @@
   # alignments shape is
   #   [batch_size, 1, memory_time]
   # attention_mechanism.values shape is
-  #   [batch_size, memory_time, attention_mechanism.num_units]
+  #   [batch_size, memory_time, memory_size]
   # the batched matmul is over memory_time, so the output shape is
-  #   [batch_size, 1, attention_mechanism.num_units].
+  #   [batch_size, 1, memory_size].
   # we then squeeze out the singleton dim.
   context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
   context = array_ops.squeeze(context, [1])
diff --git a/tensorflow/contrib/session_bundle/exporter.py b/tensorflow/contrib/session_bundle/exporter.py
index dcc7fba..f6f663a 100644
--- a/tensorflow/contrib/session_bundle/exporter.py
+++ b/tensorflow/contrib/session_bundle/exporter.py
@@ -301,7 +301,12 @@
     if exports_to_keep:
       # create a simple parser that pulls the export_version from the directory.
       def parser(path):
-        match = re.match("^" + export_dir_base + "/(\\d{8})$", path.path)
+        if os.name == 'nt':
+          match = re.match("^" + export_dir_base.replace('\\','/') + "/(\\d{8})$",
+                           path.path.replace('\\','/'))
+        else:
+          match = re.match("^" + export_dir_base + "/(\\d{8})$",
+                           path.path)
         if not match:
           return None
         return path._replace(export_version=int(match.group(1)))
diff --git a/tensorflow/contrib/training/python/training/sgdr_learning_rate_decay.py b/tensorflow/contrib/training/python/training/sgdr_learning_rate_decay.py
new file mode 100644
index 0000000..0ef5f11
--- /dev/null
+++ b/tensorflow/contrib/training/python/training/sgdr_learning_rate_decay.py
@@ -0,0 +1,187 @@
+# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+"""SGDR learning rate decay function."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import math
+
+from tensorflow.python.framework import constant_op
+from tensorflow.python.framework import ops
+from tensorflow.python.ops import math_ops, control_flow_ops
+
+
+def sgdr_decay(learning_rate, global_step, initial_period_steps,
+               t_mul=2.0, m_mul=1.0, name=None):
+  """Implements Stochastic Gradient Descent with Warm Restarts (SGDR).
+  
+  As described in "SGDR: Stochastic Gradient Descent
+  with Warm Restarts" by Ilya Loshchilov & Frank Hutter, Proceedings of
+  ICLR'2017, available at https://arxiv.org/pdf/1608.03983.pdf
+
+  The learning rate decreases according to cosine annealing:
+
+  ```python
+  learning_rate * 0.5 * (1 + cos(x_val * pi)) # for x_val defined in [0, 1]
+  ```
+
+  Thus, at the beginning (when the restart index i = 0),
+  the learning rate decreases for `initial_period_steps` steps from the initial
+  learning rate `learning_rate` (when `x_val=0`, we get `cos(0)=1`) to
+  0 (when `x_val=1`, we get `cos(pi)=-1`).
+
+  The decrease within the i-th period takes `t_i` steps,
+  where `t_0` = `initial_period_steps` is the user-defined number of batch
+  iterations (not epochs as in the paper) to be performed before the first
+  restart is launched.
+  
+  Then, we perform the first restart (i=1) by setting the learning rate to
+  `learning_rate*(m_mul^i)`, where `m_mul in [0,1]` (set to 1 by default).
+  The i-th restart runs for `t_i=t_0*(t_mul^i)` steps, i.e., every new
+  restart runs `t_mul` times longer than the previous one.
+
+  Importantly, when one has no access to a validation set, SGDR suggests
+  to report the best expected / recommended solution in the following way:
+  When we are within our initial run (i=0), every new solution represents
+  SGDR's recommended solution. Instead, when i>0, the recommended solution is
+  the one obtained at the end of each restart.
+
+  Note that the minimum learning rate is set to 0 for simplicity,
+  you can adjust the code to deal with any positive minimum learning rate
+  as defined in the paper.
+
+  `initial_period_steps` is the duration of the first period measured in terms
+  of number of minibatch updates. If one wants to use epochs, one should compute
+  the number of updates required for an epoch.
+
+  For example, assume the following parameters and intention:
+      Minibatch size: 100
+      Training dataset size: 10000
+      If the user wants the first decay period to span across 5 epochs, then
+      `initial_period_steps` = 5 * 10000/100 = 500
+  
+      Train for 10000 batch iterations with the initial learning rate set to
+      0.1, then restart to run 2 times longer, i.e, for 20000 batch iterations
+      and with the initial learning rate 0.05, then restart again and again,
+      doubling the runtime of each new period and with two times smaller
+      initial learning rate.
+
+  To accomplish the above, one would write:
+
+  ```python
+  ...
+  global_step = tf.Variable(0, trainable=False)
+  starter_learning_rate = 0.1
+  learning_rate = sgdr_decay(starter_learning_rate, global_step,
+                             initial_period_steps=10000, t_mul=2, m_mul=0.5)
+  # Passing global_step to minimize() will increment it at each step.
+  learning_step = (
+      tf.train.GradientDescentOptimizer(learning_rate)
+      .minimize(...my loss..., global_step=global_step)
+  )
+
+  # Step  | 0   | 1000  | 5000 | 9000  | 9999 | 10000 | 11000  |
+  # LR    | 0.1 | 0.097 | 0.05 | 0.002 | 0.00 | 0.05  | 0.0496 |
+
+  # Step  | 20000 | 29000  | 29999 | 30000 |
+  # LR    | 0.025 | 0.0003 | 0.00  | 0.025 |
+  ```
+
+  Args:
+    learning_rate: A scalar `float32` or `float64` `Tensor` or a
+      Python number.  The initial learning rate.
+    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
+      Global step to use for the decay computation.  Must not be negative.
+    initial_period_steps: Duration of the first period measured as the number
+      of minibatch updates, if one wants to use epochs, one should compute
+      the number of updates required for an epoch.
+    t_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
+      Must be positive.
+      Used to derive the number of iterations in the i-th period:
+      `initial_period_steps * (t_mul^i)`. Defaults to 2.0.
+    m_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
+      Must be positive.
+      Used to derive the initial learning rate of the i-th period:
+      `learning_rate * (m_mul^i)`. Defaults to 1.0
+
+  Returns:
+    A scalar `Tensor` of the same type as `learning_rate`.
+    The learning rate for a provided global_step.
+  Raises:
+    ValueError: if `global_step` is not supplied.
+  """
+
+  if global_step is None:
+    raise ValueError("global_step is required for sgdr_decay.")
+  with ops.name_scope(name, "SGDRDecay",
+                      [learning_rate, global_step,
+                       initial_period_steps, t_mul, m_mul]) as name:
+    learning_rate = ops.convert_to_tensor(learning_rate,
+                                          name="initial_learning_rate")
+    dtype = learning_rate.dtype
+    global_step = math_ops.cast(global_step, dtype)
+    t_0 = math_ops.cast(initial_period_steps, dtype)
+    t_mul = math_ops.cast(t_mul, dtype)
+    m_mul = math_ops.cast(m_mul, dtype)
+
+    c_one = math_ops.cast(constant_op.constant(1.0), dtype)
+    c_half = math_ops.cast(constant_op.constant(0.5), dtype)
+    c_pi = math_ops.cast(constant_op.constant(math.pi), dtype)
+
+    # Find normalized value of the current step
+    x_val = math_ops.div(global_step, t_0)
+
+    def compute_step(x_val, geometric=False):
+      if geometric:
+        # Consider geometric series where t_mul != 1
+        # 1 + t_mul + t_mul^2 ... = (1 - t_mul^i_restart) / (1 - t_mul)
+
+        # First find how many restarts were performed for a given x_val
+        # Find maximal integer i_restart value for which this equation holds
+        # x_val >= (1 - t_mul^i_restart) / (1 - t_mul)
+        # x_val * (1 - t_mul) <= (1 - t_mul^i_restart)
+        # t_mul^i_restart <= (1 - x_val * (1 - t_mul))
+
+        # tensorflow allows only log with base e
+        # i_restart <= log(1 - x_val * (1 - t_mul) / log(t_mul)
+        # Find how many restarts were performed
+
+        i_restart = math_ops.floor(
+            math_ops.log(c_one - x_val * (c_one - t_mul)) / math_ops.log(t_mul))
+        # Compute the sum of all restarts before the current one
+        sum_r = (c_one - t_mul ** i_restart) / (c_one - t_mul)
+        # Compute our position within the current restart
+        x_val = (x_val - sum_r) / t_mul ** i_restart
+
+      else:
+        # Find how many restarts were performed
+        i_restart = math_ops.floor(x_val)
+        # Compute our position within the current restart
+        x_val = x_val - i_restart
+      return i_restart, x_val
+
+    i_restart, x_val = control_flow_ops.cond(
+        math_ops.equal(t_mul, c_one),
+        lambda: compute_step(x_val, geometric=False),
+        lambda: compute_step(x_val, geometric=True))
+
+    # If m_mul < 1, then the initial learning rate of every new restart will be
+    # smaller, i.e., by a factor of m_mul ** i_restart at i_restart-th restart
+    m_fac = learning_rate * (m_mul ** i_restart)
+
+  return math_ops.multiply(c_half * m_fac,
+                           (math_ops.cos(x_val * c_pi) + c_one), name=name)
diff --git a/tensorflow/contrib/training/python/training/sgdr_learning_rate_decay_test.py b/tensorflow/contrib/training/python/training/sgdr_learning_rate_decay_test.py
new file mode 100644
index 0000000..4a46e9a
--- /dev/null
+++ b/tensorflow/contrib/training/python/training/sgdr_learning_rate_decay_test.py
@@ -0,0 +1,145 @@
+# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+"""Functional test for sgdr learning rate decay."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import math
+
+from sgdr_learning_rate_decay import sgdr_decay
+from tensorflow.python.platform import googletest
+from tensorflow.python.framework import test_util
+from tensorflow.python.framework import dtypes
+from tensorflow import placeholder
+
+
+class SGDRDecayTest(test_util.TensorFlowTestCase):
+  """Unit tests for SGDR learning rate decay."""
+
+  def get_original_values(self, lr, t_e, mult_factor, iter_per_epoch, epochs):
+    """Get an array with learning rate values from the consecutive steps using
+    the original implementation
+    (https://github.com/loshchil/SGDR/blob/master/SGDR_WRNs.py)."""
+    t0 = math.pi / 2.0
+    tt = 0
+    te_next = t_e
+
+    lr_values = []
+    sh_lr = lr
+    for epoch in range(epochs):
+      for _ in range(iter_per_epoch):
+        # In the original approach training function is executed here
+        lr_values.append(sh_lr)
+        dt = 2.0 * math.pi / float(2.0 * t_e)
+        tt = tt + float(dt) / iter_per_epoch
+        if tt >= math.pi:
+          tt = tt - math.pi
+        cur_t = t0 + tt
+        new_lr = lr * (1.0 + math.sin(cur_t)) / 2.0  # lr_min = 0, lr_max = lr
+        sh_lr = new_lr
+      if (epoch + 1) == te_next:  # time to restart
+        sh_lr = lr
+        tt = 0                # by setting to 0 we set lr to lr_max, see above
+        t_e = t_e * mult_factor  # change the period of restarts
+        te_next = te_next + t_e  # note the next restart's epoch
+
+    return lr_values
+
+  def get_sgdr_values(self, lr, initial_period_steps, t_mul, iters):
+    """Get an array with learning rate values from the consecutive steps
+    using current tensorflow implementation."""
+    with self.test_session():
+      step = placeholder(dtypes.int32)
+
+      decay = sgdr_decay(lr, step, initial_period_steps, t_mul)
+      lr_values = []
+      for i in range(iters):
+        lr_values.append(decay.eval(feed_dict={step: i}))
+
+      return lr_values
+
+  def testCompareToOriginal(self):
+    """Compare values generated by tensorflow implementation to the values
+    generated by the original implementation
+    (https://github.com/loshchil/SGDR/blob/master/SGDR_WRNs.py)."""
+    with self.test_session():
+      lr = 10.0
+      init_steps = 2
+      t_mul = 3
+      iters = 10
+      epochs = 50
+
+      org_lr = self.get_original_values(lr, init_steps, t_mul, iters, epochs)
+      sgdr_lr = self.get_sgdr_values(lr, init_steps*iters, t_mul, iters*epochs)
+
+      for org, sgdr in zip(org_lr, sgdr_lr):
+        self.assertAllClose(org, sgdr)
+
+  def testMDecay(self):
+    """Test m_mul argument. Check values for learning rate at the beginning
+    of the first, second, third and fourth period. """
+    with self.test_session():
+      step = placeholder(dtypes.int32)
+
+      lr = 0.1
+      t_e = 10
+      t_mul = 3
+      m_mul = 0.9
+
+      decay = sgdr_decay(lr, step, t_e, t_mul, m_mul)
+
+      test_step = 0
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}),
+                          lr)
+
+      test_step = t_e
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}),
+                          lr * m_mul)
+
+      test_step = t_e + t_e*t_mul
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}),
+                          lr * m_mul**2)
+
+      test_step = t_e + t_e*t_mul + t_e * (t_mul**2)
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}),
+                          lr * (m_mul**3))
+
+  def testCos(self):
+    """Check learning rate values at the beginning, in the middle
+    and at the end of the period."""
+    with self.test_session():
+      step = placeholder(dtypes.int32)
+      lr = 0.2
+      t_e = 1000
+      t_mul = 1
+
+      decay = sgdr_decay(lr, step, t_e, t_mul)
+
+      test_step = 0
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}), lr)
+
+      test_step = t_e//2
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}), lr/2)
+
+      test_step = t_e
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}), lr)
+
+      test_step = t_e*3//2
+      self.assertAllClose(decay.eval(feed_dict={step: test_step}), lr/2)
+
+if __name__ == "__main__":
+  googletest.main()
diff --git a/tensorflow/contrib/verbs/verbs_server_lib.cc b/tensorflow/contrib/verbs/verbs_server_lib.cc
index c359724..6d1c79c 100644
--- a/tensorflow/contrib/verbs/verbs_server_lib.cc
+++ b/tensorflow/contrib/verbs/verbs_server_lib.cc
@@ -17,6 +17,8 @@
 
 #include "tensorflow/contrib/verbs/verbs_server_lib.h"
 
+#include "grpc/support/alloc.h"
+
 #include "tensorflow/contrib/verbs/rdma_mgr.h"
 #include "tensorflow/contrib/verbs/rdma_rendezvous_mgr.h"
 #include "tensorflow/core/distributed_runtime/server_lib.h"
diff --git a/tensorflow/core/BUILD b/tensorflow/core/BUILD
index 7b6022f..1d7afa0 100644
--- a/tensorflow/core/BUILD
+++ b/tensorflow/core/BUILD
@@ -116,6 +116,7 @@
     "tf_lib_proto_parsing_deps",
     "tf_additional_verbs_lib_defines",
     "tf_additional_mpi_lib_defines",
+    "tf_additional_gdr_lib_defines",
     "tf_additional_gpu_tracer_srcs",
     "tf_additional_gpu_tracer_deps",
     "tf_additional_gpu_tracer_cuda_deps",
@@ -1245,72 +1246,36 @@
     ],
 )
 
-LIB_INTERNAL_WINDOWS_DEPS = glob(
-    [
-        "lib/**/*.h",
-        "lib/**/*.cc",
-        "platform/*.h",
-        "platform/*.cc",
-        "platform/profile_utils/**/*.h",
-        "platform/profile_utils/**/*.cc",
-    ] + [
-        "framework/resource_handle.h",
-        "framework/resource_handle.cc",
-        "framework/variant_tensor_data.h",
-        "framework/variant_tensor_data.cc",
-    ],
-    exclude = [
-        "**/*test*",
-        "lib/hash/crc32c_accelerate.cc",
-        "lib/gif/**/*",
-        "lib/jpeg/**/*",
-        "platform/gif.h",
-        "platform/jpeg.h",
-        "platform/**/env_time.cc",
-        "platform/**/cuda.h",
-        "platform/**/cuda_libdevice_path.cc",
-        "platform/**/stream_executor.h",
-        "platform/load_library.cc",
-        "platform/variant_coding.cc",
-        "platform/**/variant_cord_coding.cc",
-    ],
-)
-
 cc_library(
     name = "lib_internal",
-    srcs = select({
-        "//tensorflow:windows": LIB_INTERNAL_WINDOWS_DEPS,
-        "//tensorflow:windows_msvc": LIB_INTERNAL_WINDOWS_DEPS,
-        "//conditions:default": glob(
-            [
-                "lib/**/*.h",
-                "lib/**/*.cc",
-                "platform/*.h",
-                "platform/*.cc",
-                "platform/profile_utils/**/*.h",
-                "platform/profile_utils/**/*.cc",
-                "framework/resource_handle.h",
-                "framework/resource_handle.cc",
-            ],
-            exclude = [
-                "**/*test*",
-                "framework/variant.cc",
-                "platform/variant_coding.cc",
-                "lib/hash/crc32c_accelerate.cc",
-                "lib/gif/**/*",
-                "lib/jpeg/**/*",
-                "platform/gif.h",
-                "platform/jpeg.h",
-                "platform/**/env_time.cc",
-                "platform/**/cuda.h",
-                "platform/**/cuda_libdevice_path.cc",
-                "platform/**/stream_executor.h",
-                "platform/**/gpu_tracer.cc",
-                "platform/variant_coding.cc",
-                "platform/**/variant_cord_coding.cc",
-            ],
-        ),
-    }) + tf_additional_lib_srcs(
+    srcs = glob(
+        [
+            "lib/**/*.h",
+            "lib/**/*.cc",
+            "platform/*.h",
+            "platform/*.cc",
+            "platform/profile_utils/**/*.h",
+            "platform/profile_utils/**/*.cc",
+            "framework/resource_handle.h",
+            "framework/resource_handle.cc",
+        ],
+        exclude = [
+            "**/*test*",
+            "framework/variant.cc",
+            "lib/hash/crc32c_accelerate.cc",
+            "lib/gif/**/*",
+            "lib/jpeg/**/*",
+            "platform/gif.h",
+            "platform/jpeg.h",
+            "platform/**/env_time.cc",
+            "platform/**/cuda.h",
+            "platform/**/cuda_libdevice_path.cc",
+            "platform/**/stream_executor.h",
+            "platform/**/gpu_tracer.cc",
+            "platform/variant_coding.cc",
+            "platform/**/variant_cord_coding.cc",
+        ],
+    ) + tf_additional_lib_srcs(
         exclude = [
             "**/*test*",
             "platform/**/cuda.h",
@@ -1370,9 +1335,12 @@
     defines = tf_additional_lib_defines() + [
                   "SNAPPY",
               ] + tf_additional_verbs_lib_defines() +
-              tf_additional_mpi_lib_defines(),
+              tf_additional_mpi_lib_defines() +
+              tf_additional_gdr_lib_defines(),
     linkopts = select({
         "//tensorflow:freebsd": [],
+        "//tensorflow:windows": [],
+        "//tensorflow:windows_msvc": [],
         "//conditions:default": [
             "-ldl",
             "-lpthread",
@@ -1407,6 +1375,8 @@
     copts = tf_copts(),
     linkopts = select({
         "//tensorflow:freebsd": [],
+        "//tensorflow:windows": [],
+        "//tensorflow:windows_msvc": [],
         "//conditions:default": ["-ldl"],
     }),
     deps = [
@@ -1430,6 +1400,8 @@
     copts = tf_copts(),
     linkopts = select({
         "//tensorflow:freebsd": [],
+        "//tensorflow:windows": [],
+        "//tensorflow:windows_msvc": [],
         "//conditions:default": ["-ldl"],
     }),
     deps = [
@@ -1605,6 +1577,8 @@
     copts = tf_copts(),
     linkopts = select({
         "//tensorflow:freebsd": [],
+        "//tensorflow:windows": [],
+        "//tensorflow:windows_msvc": [],
         "//conditions:default": ["-ldl"],
     }) + [
         "-lm",
diff --git a/tensorflow/core/common_runtime/device.h b/tensorflow/core/common_runtime/device.h
index ded7e38..1d450aa 100644
--- a/tensorflow/core/common_runtime/device.h
+++ b/tensorflow/core/common_runtime/device.h
@@ -22,7 +22,7 @@
 // Device names
 // * Every Device should have a unique name with the format:
 //     /job:___/replica:___/task:___/(gpu|cpu):___
-//   An example name would be "/job:train/replica:0/task:3/gpu:2".
+//   An example name would be "/job:train/replica:0/task:3/device:GPU:2".
 // * Task numbers are within the specified replica, so there are as
 //   many "task zeros" as replicas.
 
diff --git a/tensorflow/core/common_runtime/direct_session.cc b/tensorflow/core/common_runtime/direct_session.cc
index b92bf62..a6630f3 100644
--- a/tensorflow/core/common_runtime/direct_session.cc
+++ b/tensorflow/core/common_runtime/direct_session.cc
@@ -471,7 +471,7 @@
   args.step_id = step_id_counter_.fetch_add(1);
 
   TF_RETURN_IF_ERROR(
-      GetOrCreateExecutors(pool, input_tensor_names, output_names, target_nodes,
+      GetOrCreateExecutors(input_tensor_names, output_names, target_nodes,
                            &executors_and_keys, &run_state_args));
   const int64 executor_step_count = executors_and_keys->step_count.fetch_add(1);
 
@@ -711,7 +711,7 @@
   DebugOptions debug_options;
   RunStateArgs run_state_args(debug_options);
   run_state_args.is_partial_run = true;
-  TF_RETURN_IF_ERROR(GetOrCreateExecutors(pool, input_names, output_names,
+  TF_RETURN_IF_ERROR(GetOrCreateExecutors(input_names, output_names,
                                           target_nodes, &executors_and_keys,
                                           &run_state_args));
 
@@ -1042,9 +1042,9 @@
 }
 
 Status DirectSession::GetOrCreateExecutors(
-    thread::ThreadPool* pool, gtl::ArraySlice<string> inputs,
-    gtl::ArraySlice<string> outputs, gtl::ArraySlice<string> target_nodes,
-    ExecutorsAndKeys** executors_and_keys, RunStateArgs* run_state_args) {
+    gtl::ArraySlice<string> inputs, gtl::ArraySlice<string> outputs,
+    gtl::ArraySlice<string> target_nodes, ExecutorsAndKeys** executors_and_keys,
+    RunStateArgs* run_state_args) {
   int64 handle_name_counter_value = -1;
   if (LogMemory::IsEnabled() || run_state_args->is_partial_run) {
     handle_name_counter_value = handle_name_counter_.fetch_add(1);
diff --git a/tensorflow/core/common_runtime/direct_session.h b/tensorflow/core/common_runtime/direct_session.h
index 8c6fe0d..020831d 100644
--- a/tensorflow/core/common_runtime/direct_session.h
+++ b/tensorflow/core/common_runtime/direct_session.h
@@ -194,8 +194,8 @@
   // Retrieves an already existing set of executors to run 'inputs' and
   // 'outputs', or creates and caches them for future use.
   ::tensorflow::Status GetOrCreateExecutors(
-      thread::ThreadPool* pool, gtl::ArraySlice<string> inputs,
-      gtl::ArraySlice<string> outputs, gtl::ArraySlice<string> target_nodes,
+      gtl::ArraySlice<string> inputs, gtl::ArraySlice<string> outputs,
+      gtl::ArraySlice<string> target_nodes,
       ExecutorsAndKeys** executors_and_keys, RunStateArgs* run_state_args);
 
   // Creates several graphs given the existing graph_def_ and the
diff --git a/tensorflow/core/common_runtime/direct_session_test.cc b/tensorflow/core/common_runtime/direct_session_test.cc
index 097dab8..05f683f 100644
--- a/tensorflow/core/common_runtime/direct_session_test.cc
+++ b/tensorflow/core/common_runtime/direct_session_test.cc
@@ -476,7 +476,7 @@
     vx.scalar<float>()() = 1.0;
     Node* x = test::graph::Constant(&g, vx);
     Node* y = test::graph::Unary(&g, "Darth", x);
-    y->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+    y->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
     GraphDef def;
     test::graph::ToGraphDef(&g, &def);
 
@@ -494,7 +494,7 @@
     vx.scalar<float>()() = 1.0;
     Node* x = test::graph::Constant(&g, vx);
     Node* y = test::graph::Unary(&g, "Darth", x);
-    y->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+    y->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
     GraphDef def;
     test::graph::ToGraphDef(&g, &def);
 
diff --git a/tensorflow/core/common_runtime/direct_session_with_tracking_alloc_test.cc b/tensorflow/core/common_runtime/direct_session_with_tracking_alloc_test.cc
index da76ac8..459c20e 100644
--- a/tensorflow/core/common_runtime/direct_session_with_tracking_alloc_test.cc
+++ b/tensorflow/core/common_runtime/direct_session_with_tracking_alloc_test.cc
@@ -154,14 +154,14 @@
   Tensor x_tensor(DT_FLOAT, TensorShape({2, 1}));
   test::FillValues<float>(&x_tensor, {1, 1});
   Node* x = test::graph::Constant(&graph, x_tensor);
-  x->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+  x->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
 #ifdef TENSORFLOW_USE_SYCL
   x->set_assigned_device_name("/job:localhost/replica:0/task:0/device:SYCL:0");
 #endif // TENSORFLOW_USE_SYCL
 
   // y = A * x
   Node* y = test::graph::Matmul(&graph, a, x, false, false);
-  y->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+  y->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
 #ifdef TENSORFLOW_USE_SYCL
 y->set_assigned_device_name("/job:localhost/replica:0/task:0/device:SYCL:0");
 #endif // TENSORFLOW_USE_SYCL
diff --git a/tensorflow/core/common_runtime/gpu/gpu_device.cc b/tensorflow/core/common_runtime/gpu/gpu_device.cc
index d3b6099..63956af 100644
--- a/tensorflow/core/common_runtime/gpu/gpu_device.cc
+++ b/tensorflow/core/common_runtime/gpu/gpu_device.cc
@@ -114,14 +114,14 @@
             << num_bytes << ". See error logs for more detailed info.";
       }
     }
-    if (LogMemory::IsEnabled()) {
+    if (LogMemory::IsEnabled() && ret != nullptr) {
       LogMemory::RecordRawAllocation(operation_, step_id_, num_bytes, ret,
                                      allocator_);
     }
     return ret;
   }
   void deallocate(void* buffer) const override {
-    if (LogMemory::IsEnabled()) {
+    if (LogMemory::IsEnabled() && buffer != nullptr) {
       LogMemory::RecordRawDeallocation(operation_, step_id_, buffer, allocator_,
                                        true);
     }
@@ -588,7 +588,7 @@
   for (int i = 0; i < n; i++) {
     BaseGPUDevice* gpu_device;
     TF_RETURN_IF_ERROR(CreateGPUDevice(options,
-                                       strings::StrCat(name_prefix, "/gpu:", i),
+                                       strings::StrCat(name_prefix, "/device:GPU:", i),
                                        valid_gpu_ids[i], &gpu_device));
     TF_RETURN_IF_ERROR(gpu_device->Init(options));
     devices->push_back(gpu_device);
@@ -1049,7 +1049,7 @@
     size_t new_id = ids->size();
     ids->push_back(visible_gpu_id);
 
-    LOG(INFO) << "Creating TensorFlow device (/gpu:" << new_id << ") -> "
+    LOG(INFO) << "Creating TensorFlow device (/device:GPU:" << new_id << ") -> "
               << "(" << GetShortDeviceDescription(visible_gpu_id, desc) << ")";
   }
 
diff --git a/tensorflow/core/common_runtime/gpu/gpu_device.h b/tensorflow/core/common_runtime/gpu/gpu_device.h
index 08c5886..a7e078e 100644
--- a/tensorflow/core/common_runtime/gpu/gpu_device.h
+++ b/tensorflow/core/common_runtime/gpu/gpu_device.h
@@ -141,7 +141,7 @@
                                          Allocator* cpu_allocator) = 0;
 
   // Returns into 'ids' the list of valid GPU ids, in the order that
-  // they should map to logical gpu ids "/gpu:0", "/gpu:1", etc, based
+  // they should map to logical gpu ids "/device:GPU:0", "/device:GPU:1", etc, based
   // upon 'visible_device_list', a comma-separated list of 'visible
   // gpu ids'.
   Status GetValidDeviceIds(const string& visible_device_list,
diff --git a/tensorflow/core/common_runtime/gpu/gpu_stream_util_test.cc b/tensorflow/core/common_runtime/gpu/gpu_stream_util_test.cc
index a8bad5b..003e416 100644
--- a/tensorflow/core/common_runtime/gpu/gpu_stream_util_test.cc
+++ b/tensorflow/core/common_runtime/gpu/gpu_stream_util_test.cc
@@ -106,9 +106,9 @@
 TEST_F(GpuStreamUtilTest, StreamOverrides) {
   auto root = Scope::NewRootScope().ExitOnError();
   ops::_Recv(root.WithOpName("input"), DT_FLOAT, "input", "/cpu:0", 0,
-             "/gpu:0");
+             "/device:GPU:0");
   Output n = ops::MatMul(root, {}, {});
-  ops::_Send(root.WithOpName("output"), n, "output", "/gpu:0", 0, "/cpu:0");
+  ops::_Send(root.WithOpName("output"), n, "output", "/device:GPU:0", 0, "/cpu:0");
   Graph g(OpRegistry::Global());
   TF_ASSERT_OK(root.ToGraph(&g));
 
diff --git a/tensorflow/core/common_runtime/gpu/process_state.cc b/tensorflow/core/common_runtime/gpu/process_state.cc
index 7a1c10d..6b3c58a 100644
--- a/tensorflow/core/common_runtime/gpu/process_state.cc
+++ b/tensorflow/core/common_runtime/gpu/process_state.cc
@@ -167,7 +167,7 @@
     if (!status.ok()) {
       LOG(ERROR) << "GetCPUAllocator: " << status.error_message();
     }
-    Allocator* allocator;
+    VisitableAllocator* allocator;
     if (use_bfc_allocator) {
       // TODO(reedwm): evaluate whether 64GB by default is the best choice.
       int64 cpu_mem_limit_in_mb = -1;
@@ -192,7 +192,7 @@
     if (LogMemory::IsEnabled()) {
       // Wrap the allocator to track allocation ids for better logging
       // at the cost of performance.
-      allocator = new TrackingAllocator(allocator, true);
+      allocator = new TrackingVisitableAllocator(allocator, true);
     }
     cpu_allocators_.push_back(allocator);
   }
@@ -237,14 +237,14 @@
       LOG(ERROR) << "GetCUDAHostAllocator: " << status.error_message();
     }
     int64 cuda_host_mem_limit = cuda_host_mem_limit_in_mb * (1LL << 20);
-    Allocator* allocator =
+    VisitableAllocator* allocator =
         new BFCAllocator(new CUDAHostAllocator(se), cuda_host_mem_limit,
                          true /*allow_growth*/, "cuda_host_bfc" /*name*/);
 
     if (LogMemory::IsEnabled()) {
       // Wrap the allocator to track allocation ids for better logging
       // at the cost of performance.
-      allocator = new TrackingAllocator(allocator, true);
+      allocator = new TrackingVisitableAllocator(allocator, true);
     }
     cuda_host_allocators_.push_back(allocator);
     if (FLAGS_brain_gpu_record_mem_types) {
diff --git a/tensorflow/core/common_runtime/memory_types_test.cc b/tensorflow/core/common_runtime/memory_types_test.cc
index b3a43d3..2a834dd 100644
--- a/tensorflow/core/common_runtime/memory_types_test.cc
+++ b/tensorflow/core/common_runtime/memory_types_test.cc
@@ -53,7 +53,7 @@
   EXPECT_TRUE(errors::IsInternal(ValidateMemoryTypes(DEVICE_GPU, g)));
 
   // But we can insert _HostSend/_HostRecv to ensure the invariant.
-  TF_EXPECT_OK(EnsureMemoryTypes(DEVICE_GPU, "/gpu:0", g));
+  TF_EXPECT_OK(EnsureMemoryTypes(DEVICE_GPU, "/device:GPU:0", g));
   TF_EXPECT_OK(ValidateMemoryTypes(DEVICE_GPU, g));
 #endif  // GOOGLE_CUDA
 #ifdef TENSORFLOW_USE_SYCL
diff --git a/tensorflow/core/common_runtime/simple_placer.cc b/tensorflow/core/common_runtime/simple_placer.cc
index 5e6c3d1..f3406ac 100644
--- a/tensorflow/core/common_runtime/simple_placer.cc
+++ b/tensorflow/core/common_runtime/simple_placer.cc
@@ -682,7 +682,7 @@
       int dst_root_id = colocation_graph.FindRoot(dst->id());
       auto& src_root = colocation_graph.members_[src_root_id];
       auto& dst_root = colocation_graph.members_[dst_root_id];
-      // If both the source node and this node have paritally
+      // If both the source node and this node have partially
       // specified a device, then 'node's device should be
       // cleared: the reference edge forces 'node' to be on the
       // same device as the source node.
diff --git a/tensorflow/core/common_runtime/sycl/sycl_allocator.cc b/tensorflow/core/common_runtime/sycl/sycl_allocator.cc
index 0ddd4dc..65b0db5 100644
--- a/tensorflow/core/common_runtime/sycl/sycl_allocator.cc
+++ b/tensorflow/core/common_runtime/sycl/sycl_allocator.cc
@@ -19,7 +19,7 @@
 
 namespace tensorflow {
 
-SYCLAllocator::SYCLAllocator(Eigen::QueueInterface *queue)
+SYCLAllocator::SYCLAllocator(Eigen::QueueInterface* queue)
     : sycl_device_(new Eigen::SyclDevice(queue)) {
   cl::sycl::queue& sycl_queue = sycl_device_->sycl_queue();
   const cl::sycl::device& device = sycl_queue.get_device();
@@ -28,14 +28,15 @@
 }
 
 SYCLAllocator::~SYCLAllocator() {
-  if(sycl_device_) {
+  if (sycl_device_) {
     delete sycl_device_;
   }
 }
 
 string SYCLAllocator::Name() { return "device:SYCL"; }
 
-void *SYCLAllocator::AllocateRaw(size_t alignment, size_t num_bytes) {
+void* SYCLAllocator::AllocateRaw(size_t alignment, size_t num_bytes) {
+  mutex_lock lock(mu_);
   assert(sycl_device_);
   if (num_bytes == 0) {
     // Cannot allocate no bytes in SYCL, so instead allocate a single byte
@@ -45,7 +46,6 @@
   const auto& allocated_buffer = sycl_device_->get_sycl_buffer(p);
   const std::size_t bytes_allocated = allocated_buffer.get_range().size();
 
-  mutex_lock lock(mu_);
   ++stats_.num_allocs;
   stats_.bytes_in_use += bytes_allocated;
   stats_.max_bytes_in_use =
@@ -56,12 +56,12 @@
   return p;
 }
 
-void SYCLAllocator::DeallocateRaw(void *ptr) {
-  const auto& buffer_to_delete = sycl_device_->get_sycl_buffer(ptr);
-  const std::size_t dealloc_size = buffer_to_delete.get_range().size();
+void SYCLAllocator::DeallocateRaw(void* ptr) {
   mutex_lock lock(mu_);
-  stats_.bytes_in_use -= dealloc_size;
   if (sycl_device_) {
+    const auto& buffer_to_delete = sycl_device_->get_sycl_buffer(ptr);
+    const std::size_t dealloc_size = buffer_to_delete.get_range().size();
+    stats_.bytes_in_use -= dealloc_size;
     sycl_device_->deallocate(ptr);
   }
 }
@@ -72,6 +72,10 @@
 }
 
 size_t SYCLAllocator::RequestedSize(void* ptr) {
+  mutex_lock lock(mu_);
+  if(!sycl_device_) {
+    return 0;
+  }
   const auto& buffer = sycl_device_->get_sycl_buffer(ptr);
   return buffer.get_size();
 }
diff --git a/tensorflow/core/common_runtime/sycl/sycl_allocator.h b/tensorflow/core/common_runtime/sycl/sycl_allocator.h
index 3597afa..3066e0e 100644
--- a/tensorflow/core/common_runtime/sycl/sycl_allocator.h
+++ b/tensorflow/core/common_runtime/sycl/sycl_allocator.h
@@ -29,15 +29,20 @@
 
 class SYCLAllocator : public Allocator {
  public:
-  SYCLAllocator(Eigen::QueueInterface *queue);
+  SYCLAllocator(Eigen::QueueInterface* queue);
   virtual ~SYCLAllocator() override;
   string Name() override;
-  void *AllocateRaw(size_t alignment, size_t num_bytes) override;
-  void DeallocateRaw(void *ptr) override;
+  void* AllocateRaw(size_t alignment, size_t num_bytes) override;
+  void DeallocateRaw(void* ptr) override;
 
   virtual bool ShouldAllocateEmptyTensors() override final { return true; }
-  void Synchronize() { sycl_device_->synchronize(); }
-  bool Ok() { return sycl_device_->ok(); }
+  void Synchronize() {
+    mutex_lock lock(mu_);
+    if (sycl_device_) {
+      sycl_device_->synchronize();
+    }
+  }
+  bool Ok() { return sycl_device_ && sycl_device_->ok(); }
   void GetStats(AllocatorStats* stats) override;
   // The SYCL buffers keep track of their size, so we already have tracking.
   bool TracksAllocationSizes() override { return true; }
@@ -46,10 +51,19 @@
   // AllocatedSize(void* ptr) by default.
   size_t RequestedSize(void* ptr) override;
   Eigen::SyclDevice* getSyclDevice() { return sycl_device_; }
+  // Clear the SYCL device used by the Allocator
+  void ClearSYCLDevice() {
+    mutex_lock lock(mu_);
+    if(sycl_device_) {
+      delete sycl_device_;
+      sycl_device_ = nullptr;
+    }
+  }
+
  private:
-  Eigen::SyclDevice *sycl_device_;  // owned
 
   mutable mutex mu_;
+  Eigen::SyclDevice* sycl_device_ GUARDED_BY(mu_);  // owned
   AllocatorStats stats_ GUARDED_BY(mu_);
 
   TF_DISALLOW_COPY_AND_ASSIGN(SYCLAllocator);
diff --git a/tensorflow/core/common_runtime/sycl/sycl_device.cc b/tensorflow/core/common_runtime/sycl/sycl_device.cc
index 17f5edd..6e1a45b 100644
--- a/tensorflow/core/common_runtime/sycl/sycl_device.cc
+++ b/tensorflow/core/common_runtime/sycl/sycl_device.cc
@@ -22,20 +22,10 @@
 #include "tensorflow/core/platform/tracing.h"
 
 namespace tensorflow {
-std::mutex GSYCLInterface::mutex_;
-GSYCLInterface *GSYCLInterface::s_instance = 0;
-
-void ShutdownSycl() {
-  GSYCLInterface::Reset();
-}
-
-void SYCLDevice::RegisterDevice() {
-    atexit(ShutdownSycl);
-}
 
 SYCLDevice::~SYCLDevice() {}
 
-void SYCLDevice::Compute(OpKernel *op_kernel, OpKernelContext *context) {
+void SYCLDevice::Compute(OpKernel* op_kernel, OpKernelContext* context) {
   assert(context);
   if (port::Tracing::IsActive()) {
     // TODO(pbar) We really need a useful identifier of the graph node.
@@ -46,16 +36,16 @@
   op_kernel->Compute(context);
 }
 
-Allocator *SYCLDevice::GetAllocator(AllocatorAttributes attr) {
+Allocator* SYCLDevice::GetAllocator(AllocatorAttributes attr) {
   if (attr.on_host())
     return cpu_allocator_;
   else
     return sycl_allocator_;
 }
 
-Status SYCLDevice::MakeTensorFromProto(const TensorProto &tensor_proto,
+Status SYCLDevice::MakeTensorFromProto(const TensorProto& tensor_proto,
                                        const AllocatorAttributes alloc_attrs,
-                                       Tensor *tensor) {
+                                       Tensor* tensor) {
   AllocatorAttributes attr;
   attr.set_on_host(true);
   Allocator* host_alloc = GetAllocator(attr);
@@ -79,18 +69,18 @@
     }
 
     device_context_->CopyCPUTensorToDevice(
-        &parsed, this, &copy, [&status](const Status &s) { status = s; });
+        &parsed, this, &copy, [&status](const Status& s) { status = s; });
     *tensor = copy;
   }
   return status;
 }
 
-Status SYCLDevice::FillContextMap(const Graph *graph,
-                                  DeviceContextMap *device_context_map) {
+Status SYCLDevice::FillContextMap(const Graph* graph,
+                                  DeviceContextMap* device_context_map) {
   // Fill in the context map.  It is OK for this map to contain
   // duplicate DeviceContexts so long as we increment the refcount.
   device_context_map->resize(graph->num_node_ids());
-  for (Node *n : graph->nodes()) {
+  for (Node* n : graph->nodes()) {
     device_context_->Ref();
     (*device_context_map)[n->id()] = device_context_;
   }
diff --git a/tensorflow/core/common_runtime/sycl/sycl_device.h b/tensorflow/core/common_runtime/sycl/sycl_device.h
index b4123ca..9caa076 100644
--- a/tensorflow/core/common_runtime/sycl/sycl_device.h
+++ b/tensorflow/core/common_runtime/sycl/sycl_device.h
@@ -27,201 +27,190 @@
 
 namespace tensorflow {
 
-
-class GSYCLInterface
-{
-    std::vector<Eigen::QueueInterface*>     m_queue_interface_;    // owned
-    std::vector<Allocator*>                 m_cpu_allocator_;      // not owned
-    std::vector<SYCLAllocator*>             m_sycl_allocator_;     // owned
-    std::vector<SYCLDeviceContext*>         m_sycl_context_;       // owned
-
-    static std::mutex mutex_;
-    static GSYCLInterface* s_instance;
-    GSYCLInterface() {
-      bool found_device =false;
-      auto device_list = Eigen::get_sycl_supported_devices();
-      // Obtain list of supported devices from Eigen
-      for (const auto& device : device_list) {
-        if(device.is_gpu()) {
-          // returns first found GPU
-          AddDevice(device);
-          found_device = true;
-        }
-      }
-
-      if(!found_device) {
-        // Currently Intel GPU is not supported
-        LOG(WARNING) << "No OpenCL GPU found that is supported by ComputeCpp, trying OpenCL CPU";
-      }
-
-      for (const auto& device : device_list) {
-        if(device.is_cpu()) {
-          // returns first found CPU
-          AddDevice(device);
-          found_device = true;
-        }
-      }
-
-      if(!found_device) {
-        // Currently Intel GPU is not supported
-        LOG(FATAL) << "No OpenCL GPU nor CPU found that is supported by ComputeCpp";
-      } else {
-        LOG(INFO) << "Found following OpenCL devices:";
-        for (int i = 0; i < device_list.size(); i++) {
-          LOG(INFO) << GetShortDeviceDescription(i);
-        }
+class GSYCLInterface {
+  std::vector<Eigen::QueueInterface*> m_queue_interface_;  // owned
+  std::vector<Allocator*> m_cpu_allocator_;                // not owned
+  std::vector<SYCLAllocator*> m_sycl_allocator_;           // owned
+  std::vector<SYCLDeviceContext*> m_sycl_context_;         // ref counted
+  GSYCLInterface() {
+    bool found_device = false;
+    auto device_list = Eigen::get_sycl_supported_devices();
+    // Obtain list of supported devices from Eigen
+    for (const auto& device : device_list) {
+      if (device.is_gpu()) {
+        // returns first found GPU
+        AddDevice(device);
+        found_device = true;
       }
     }
 
-    ~GSYCLInterface() {
-        m_cpu_allocator_.clear();
-
-        for (auto p : m_sycl_allocator_) {
-          p->Synchronize();
-          delete p;
-        }
-        m_sycl_allocator_.clear();
-
-        for(auto p : m_sycl_context_) {
-          p->Unref();
-        }
-        m_sycl_context_.clear();
-
-        for (auto p : m_queue_interface_) {
-          p->deallocate_all();
-          delete p;
-          p = nullptr;
-        }
-        m_queue_interface_.clear();
+    if (!found_device) {
+      // Currently Intel GPU is not supported
+      LOG(WARNING) << "No OpenCL GPU found that is supported by ComputeCpp, "
+                      "trying OpenCL CPU";
     }
 
-    void AddDevice(const cl::sycl::device & d) {
-      m_queue_interface_.push_back(new Eigen::QueueInterface(d));
-      m_cpu_allocator_.push_back(cpu_allocator());
-      m_sycl_allocator_.push_back(new SYCLAllocator(m_queue_interface_.back()));
-      m_sycl_context_.push_back(new SYCLDeviceContext());
-    }
-
-  public:
-    static GSYCLInterface *instance()
-    {
-      std::lock_guard<std::mutex> lock(mutex_);
-      if (!s_instance) {
-        s_instance = new GSYCLInterface();
-      }
-      return s_instance;
-    }
-
-    static void Reset()
-    {
-      std::lock_guard<std::mutex> lock(mutex_);
-      if(s_instance) {
-        delete s_instance;
-        s_instance = NULL;
+    for (const auto& device : device_list) {
+      if (device.is_cpu()) {
+        // returns first found CPU
+        AddDevice(device);
+        found_device = true;
       }
     }
 
-    Eigen::QueueInterface * GetQueueInterface(size_t i = 0) {
-      if(!m_queue_interface_.empty()) {
-        return m_queue_interface_[i];
-      } else {
-        std::cerr << "No cl::sycl::device has been added" << std::endl;
-        return nullptr;
+    if (!found_device) {
+      // Currently Intel GPU is not supported
+      LOG(FATAL)
+          << "No OpenCL GPU nor CPU found that is supported by ComputeCpp";
+    } else {
+      LOG(INFO) << "Found following OpenCL devices:";
+      for (int i = 0; i < device_list.size(); i++) {
+        LOG(INFO) << GetShortDeviceDescription(i);
       }
     }
+  }
 
-    SYCLAllocator * GetSYCLAllocator(size_t i = 0) {
-      if(!m_sycl_allocator_.empty()) {
-        return m_sycl_allocator_[i];
-      } else {
-        std::cerr << "No cl::sycl::device has been added" << std::endl;
-        return nullptr;
-      }
+  ~GSYCLInterface() {
+    m_cpu_allocator_.clear();
+
+    for (auto p : m_sycl_allocator_) {
+      p->Synchronize();
+      p->ClearSYCLDevice();
+      // Cannot delete the Allocator instances, as the Allocator lifetime
+      // needs to exceed any Tensor created by it. There is no way of
+      // knowing when all Tensors have been deallocated, as they are
+      // RefCounted and wait until all instances of a Tensor have been
+      // destroyed before calling Allocator.Deallocate. This could happen at
+      // program exit, which can set up a race condition between destroying
+      // Tensors and Allocators when the program is cleaning up.
+    }
+    m_sycl_allocator_.clear();
+
+    for (auto p : m_sycl_context_) {
+      p->Unref();
+    }
+    m_sycl_context_.clear();
+
+    for (auto p : m_queue_interface_) {
+      p->deallocate_all();
+      delete p;
+    }
+    m_queue_interface_.clear();
+  }
+
+  void AddDevice(const cl::sycl::device& d) {
+    m_queue_interface_.push_back(new Eigen::QueueInterface(d));
+    m_cpu_allocator_.push_back(cpu_allocator());
+    m_sycl_allocator_.push_back(new SYCLAllocator(m_queue_interface_.back()));
+    m_sycl_context_.push_back(new SYCLDeviceContext());
+  }
+
+ public:
+  static const GSYCLInterface* instance() {
+    // c++11 guarantees that this will be constructed in a thread safe way
+    static const GSYCLInterface instance;
+    return &instance;
+  }
+
+  Eigen::QueueInterface* GetQueueInterface(size_t i = 0) const {
+    if (!m_queue_interface_.empty()) {
+      return m_queue_interface_[i];
+    } else {
+      std::cerr << "No cl::sycl::device has been added" << std::endl;
+      return nullptr;
+    }
+  }
+
+  SYCLAllocator* GetSYCLAllocator(size_t i = 0) const {
+    if (!m_sycl_allocator_.empty()) {
+      return m_sycl_allocator_[i];
+    } else {
+      std::cerr << "No cl::sycl::device has been added" << std::endl;
+      return nullptr;
+    }
+  }
+
+  Allocator* GetCPUAllocator(size_t i = 0) const {
+    if (!m_cpu_allocator_.empty()) {
+      return m_cpu_allocator_[i];
+    } else {
+      std::cerr << "No cl::sycl::device has been added" << std::endl;
+      return nullptr;
+    }
+  }
+
+  SYCLDeviceContext* GetSYCLContext(size_t i = 0) const {
+    if (!m_sycl_context_.empty()) {
+      return m_sycl_context_[i];
+    } else {
+      std::cerr << "No cl::sycl::device has been added" << std::endl;
+      return nullptr;
+    }
+  }
+
+  string GetShortDeviceDescription(int device_id = 0) const {
+    Eigen::QueueInterface* queue_ptr = GetQueueInterface(device_id);
+    if (!queue_ptr) {
+      LOG(ERROR)
+          << "Device name cannot be given after Eigen QueueInterface destroyed";
+      return "";
+    }
+    auto device = queue_ptr->sycl_queue().get_device();
+    auto name = device.get_info<cl::sycl::info::device::name>();
+    auto vendor = device.get_info<cl::sycl::info::device::vendor>();
+    auto profile = device.get_info<cl::sycl::info::device::profile>();
+
+    std::string type;
+    if (device.is_host()) {
+      type = "Host";
+    } else if (device.is_cpu()) {
+      type = "CPU";
+    } else if (device.is_gpu()) {
+      type = "GPU";
+    } else if (device.is_accelerator()) {
+      type = "Accelerator";
+    } else {
+      type = "Unknown";
     }
 
-    Allocator * GetCPUAllocator(size_t i = 0) {
-      if(!m_cpu_allocator_.empty()) {
-        return m_cpu_allocator_[i];
-      } else {
-        std::cerr << "No cl::sycl::device has been added" << std::endl;
-        return nullptr;
-      }
-    }
-
-    SYCLDeviceContext * GetSYCLContext(size_t i = 0) {
-      if(!m_sycl_context_.empty()) {
-        return m_sycl_context_[i];
-      } else {
-        std::cerr << "No cl::sycl::device has been added" << std::endl;
-        return nullptr;
-      }
-    }
-
-    string GetShortDeviceDescription(int device_id = 0) {
-      auto _device = GetSYCLAllocator(device_id)
-                         ->getSyclDevice()
-                         ->sycl_queue()
-                         .get_device();
-      auto _name = _device.get_info<cl::sycl::info::device::name>();
-      auto _vendor = _device.get_info<cl::sycl::info::device::vendor>();
-      auto _profile = _device.get_info<cl::sycl::info::device::profile>();
-
-      std::string _type;
-      if (_device.is_host()) {
-        _type = "Host";
-      } else if (_device.is_cpu()) {
-        _type = "CPU";
-      } else if (_device.is_gpu()) {
-        _type = "GPU";
-      } else if (_device.is_accelerator()) {
-        _type = "Accelerator";
-      } else {
-        _type = "Unknown";
-      }
-
-      return strings::StrCat("id: ", device_id, " ,type: ", _type, " ,name: ",
-                             _name.c_str(), " ,vendor: ", _vendor.c_str(),
-                             " ,profile: ", _profile.c_str());
-    }
+    return strings::StrCat("id: ", device_id, ", type: ", type, ", name: ",
+                           name.c_str(), ", vendor: ", vendor.c_str(),
+                           ", profile: ", profile.c_str());
+  }
 };
 
-
 class SYCLDevice : public LocalDevice {
  public:
-  SYCLDevice(const SessionOptions &options, const string &name,
-             Bytes memory_limit, const DeviceLocality &locality,
-             const string &physical_device_desc, SYCLAllocator * sycl_allocator,
-             Allocator *cpu_allocator, SYCLDeviceContext* ctx)
-      : LocalDevice(
-            options,
-            Device::BuildDeviceAttributes(name, DEVICE_SYCL, memory_limit,
-                                          locality, physical_device_desc)),
+  SYCLDevice(const SessionOptions& options, const string& name,
+             Bytes memory_limit, const DeviceLocality& locality,
+             const string& physical_device_desc, SYCLAllocator* sycl_allocator,
+             Allocator* cpu_allocator, SYCLDeviceContext* ctx)
+      : LocalDevice(options, Device::BuildDeviceAttributes(
+                                 name, DEVICE_SYCL, memory_limit, locality,
+                                 physical_device_desc)),
         cpu_allocator_(cpu_allocator),
         sycl_allocator_(sycl_allocator),
         device_context_(ctx) {
-    RegisterDevice();
     set_eigen_sycl_device(sycl_allocator->getSyclDevice());
   }
 
   ~SYCLDevice() override;
 
-  void Compute(OpKernel *op_kernel, OpKernelContext *context) override;
-  Allocator *GetAllocator(AllocatorAttributes attr) override;
-  Status MakeTensorFromProto(const TensorProto &tensor_proto,
+  void Compute(OpKernel* op_kernel, OpKernelContext* context) override;
+  Allocator* GetAllocator(AllocatorAttributes attr) override;
+  Status MakeTensorFromProto(const TensorProto& tensor_proto,
                              const AllocatorAttributes alloc_attrs,
-                             Tensor *tensor) override;
+                             Tensor* tensor) override;
 
-  Status FillContextMap(const Graph *graph,
-                        DeviceContextMap *device_context_map) override;
+  Status FillContextMap(const Graph* graph,
+                        DeviceContextMap* device_context_map) override;
 
   Status Sync() override;
 
  private:
-  void RegisterDevice();
-
-  Allocator         *cpu_allocator_;           // not owned
-  SYCLAllocator     *sycl_allocator_;          // not owned
-  SYCLDeviceContext *device_context_;
+  Allocator* cpu_allocator_;           // not owned
+  SYCLAllocator* sycl_allocator_;      // not owned
+  SYCLDeviceContext* device_context_;  // not owned
 };
 
 }  // namespace tensorflow
diff --git a/tensorflow/core/common_runtime/sycl/sycl_util.h b/tensorflow/core/common_runtime/sycl/sycl_util.h
index f58614c..83016b7 100644
--- a/tensorflow/core/common_runtime/sycl/sycl_util.h
+++ b/tensorflow/core/common_runtime/sycl/sycl_util.h
@@ -21,17 +21,60 @@
 #define TENSORFLOW_CORE_COMMON_RUNTIME_SYCL_SYCL_UTIL_H_
 
 #include "tensorflow/core/common_runtime/device.h"
+#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
 // For DMA helper
 #include "tensorflow/core/common_runtime/dma_helper.h"
 #include "tensorflow/core/framework/tensor.h"
 
 namespace tensorflow {
-  inline void* GetBase(const Tensor* src) {
-    return const_cast<void*>(DMAHelper::base(src));
+inline void const* GetBase(const Tensor* src) { return DMAHelper::base(src); }
+inline void* GetBase(Tensor* dst) { return DMAHelper::base(dst); }
+
+inline void SYCLmemcpy(Eigen::SyclDevice const& device,
+                       Tensor const& src_tensor, Tensor* dst_tensor) {
+  const size_t size = src_tensor.TotalBytes();
+  void* dst_ptr = GetBase(dst_tensor);
+  void const* src_ptr = GetBase(&src_tensor);
+
+#define COPY_WITH_TYPE(T) \
+  device.memcpy(dst_ptr, static_cast<T const*>(src_ptr), size);
+  switch (src_tensor.dtype()) {
+    case DT_COMPLEX128:
+      COPY_WITH_TYPE(cl::sycl::cl_ulong2);
+      break;
+    case DT_DOUBLE:
+    case DT_COMPLEX64:
+    case DT_INT64:
+      COPY_WITH_TYPE(cl::sycl::cl_ulong);
+      break;
+    case DT_FLOAT:
+    case DT_INT32:
+    case DT_QINT32:
+      COPY_WITH_TYPE(cl::sycl::cl_uint);
+      break;
+    case DT_INT16:
+    case DT_UINT16:
+    case DT_BFLOAT16:
+    case DT_QINT16:
+    case DT_QUINT16:
+    case DT_HALF:
+      COPY_WITH_TYPE(cl::sycl::cl_ushort);
+      break;
+    case DT_BOOL:
+      COPY_WITH_TYPE(bool);
+      break;
+    case DT_UINT8:
+    case DT_INT8:
+    case DT_QINT8:
+    case DT_QUINT8:
+      COPY_WITH_TYPE(cl::sycl::cl_uchar);
+      break;
+    default:
+      LOG(FATAL) << "Unknown data type " << src_tensor.dtype();
+      break;
   }
-
-  inline void* GetBase(Tensor* dst) { return DMAHelper::base(dst); }
-
+#undef COPY_WITH_TYPE
 }
+}  // namespace tensorflow
 
-#endif // TENSORFLOW_CORE_COMMON_RUNTIME_SYCL_SYCL_UTIL_H_
+#endif  // TENSORFLOW_CORE_COMMON_RUNTIME_SYCL_SYCL_UTIL_H_
diff --git a/tensorflow/core/debug/debug_gateway.cc b/tensorflow/core/debug/debug_gateway.cc
index 2aaed95..616ced3 100644
--- a/tensorflow/core/debug/debug_gateway.cc
+++ b/tensorflow/core/debug/debug_gateway.cc
@@ -86,7 +86,7 @@
     // Determine if the tensor is on device (GPU) or host (CPU).
     // The second part of the check is necessary because even an OpKernel on
     // may have output tensors allocated on CPU.
-    if ((device->name().find("gpu:") != string::npos || device->name().find("SYCL:") != string::npos) &&
+    if ((device->name().find("GPU:") != string::npos || device->name().find("SYCL:") != string::npos) &&
         !ctx->output_alloc_attr(output_slot).on_host()) {
       // GPU tensors: Copy it to host (CPU).
       DeviceContext* device_ctxt = ctx->op_device_context();
diff --git a/tensorflow/core/debug/debug_gateway_test.cc b/tensorflow/core/debug/debug_gateway_test.cc
index f25d91a..9a74a4b 100644
--- a/tensorflow/core/debug/debug_gateway_test.cc
+++ b/tensorflow/core/debug/debug_gateway_test.cc
@@ -47,7 +47,7 @@
     Graph graph(OpRegistry::Global());
 
 #if GOOGLE_CUDA
-    const string kDeviceName = "/job:localhost/replica:0/task:0/gpu:0";
+    const string kDeviceName = "/job:localhost/replica:0/task:0/device:GPU:0";
 #elif defined(TENSORFLOW_USE_SYCL)
     const string kDeviceName = "/job:localhost/replica:0/task:0/device:SYCL:0";
 #else
@@ -505,7 +505,7 @@
     Graph graph(OpRegistry::Global());
 
 #if GOOGLE_CUDA
-    const string kDeviceName = "/job:localhost/replica:0/task:0/gpu:0";
+    const string kDeviceName = "/job:localhost/replica:0/task:0/device:GPU:0";
 #elif defined(TENSORFLOW_USE_SYCL)
     const string kDeviceName = "/job:localhost/replica:0/task:0/device:SYCL:0";
 #else
@@ -607,7 +607,7 @@
     Graph graph(OpRegistry::Global());
 
 #if GOOGLE_CUDA
-    const string kDeviceName = "/job:localhost/replica:0/task:0/gpu:0";
+    const string kDeviceName = "/job:localhost/replica:0/task:0/device:GPU:0";
 #elif defined(TENSORFLOW_USE_SYCL)
     const string kDeviceName = "/job:localhost/replica:0/task:0/device:SYCL:0";
 #else
@@ -879,7 +879,7 @@
     Graph graph(OpRegistry::Global());
 
 #ifdef GOOGLE_CUDA
-    const string kDeviceName = "/job:localhost/replica:0/task:0/gpu:0";
+    const string kDeviceName = "/job:localhost/replica:0/task:0/device:GPU:0";
 #elif TENSORFLOW_USE_SYCL
     const string kDeviceName = "/job:localhost/replica:0/task:0/device:SYCL:0";
 #endif
diff --git a/tensorflow/core/debug/debug_io_utils_test.cc b/tensorflow/core/debug/debug_io_utils_test.cc
index eee9d3f..c0bb65e 100644
--- a/tensorflow/core/debug/debug_io_utils_test.cc
+++ b/tensorflow/core/debug/debug_io_utils_test.cc
@@ -53,14 +53,14 @@
 };
 
 TEST_F(DebugIOUtilsTest, ConstructDebugNodeKey) {
-  DebugNodeKey debug_node_key("/job:worker/replica:1/task:0/gpu:2",
+  DebugNodeKey debug_node_key("/job:worker/replica:1/task:0/device:GPU:2",
                               "hidden_1/MatMul", 0, "DebugIdentity");
-  EXPECT_EQ("/job:worker/replica:1/task:0/gpu:2", debug_node_key.device_name);
+  EXPECT_EQ("/job:worker/replica:1/task:0/device:GPU:2", debug_node_key.device_name);
   EXPECT_EQ("hidden_1/MatMul", debug_node_key.node_name);
   EXPECT_EQ(0, debug_node_key.output_slot);
   EXPECT_EQ("DebugIdentity", debug_node_key.debug_op);
   EXPECT_EQ("hidden_1/MatMul:0:DebugIdentity", debug_node_key.debug_node_name);
-  EXPECT_EQ("_tfdbg_device_,job_worker,replica_1,task_0,gpu_2",
+  EXPECT_EQ("_tfdbg_device_,job_worker,replica_1,task_0,device_GPU_2",
             debug_node_key.device_path);
 }
 
diff --git a/tensorflow/core/distributed_runtime/executor_test.cc b/tensorflow/core/distributed_runtime/executor_test.cc
index 1a4980a..5b115f9 100644
--- a/tensorflow/core/distributed_runtime/executor_test.cc
+++ b/tensorflow/core/distributed_runtime/executor_test.cc
@@ -140,7 +140,7 @@
 }
 
 #define ALICE "/job:j/replica:0/task:0/cpu:0"
-#define BOB "/job:j/replica:0/task:0/gpu:0"
+#define BOB "/job:j/replica:0/task:0/device:GPU:0"
 
 TEST_F(ExecutorTest, SimpleAdd) {
   // c = a + b
diff --git a/tensorflow/core/distributed_runtime/rpc/grpc_channel_test.cc b/tensorflow/core/distributed_runtime/rpc/grpc_channel_test.cc
index c975563..a17acc8 100644
--- a/tensorflow/core/distributed_runtime/rpc/grpc_channel_test.cc
+++ b/tensorflow/core/distributed_runtime/rpc/grpc_channel_test.cc
@@ -31,9 +31,9 @@
   EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:0",
                            "/job:mnist/replica:10/task:10/cpu:1"));
   EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:0",
-                           "/job:mnist/replica:10/task:10/gpu:2"));
+                           "/job:mnist/replica:10/task:10/device:GPU:2"));
   EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10",
-                           "/job:mnist/replica:10/task:10/gpu:2"));
+                           "/job:mnist/replica:10/task:10/device:GPU:2"));
   EXPECT_TRUE(IsSameAddrSp("/job:mnist/replica:10/task:10/cpu:1",
                            "/job:mnist/replica:10/task:10"));
 
diff --git a/tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.cc b/tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.cc
index 9ee471b..a94f754 100644
--- a/tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.cc
+++ b/tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.cc
@@ -129,28 +129,14 @@
                        TensorResponse* response, StatusCallback done) override {
     VLOG(1) << "RecvTensorAsync req: " << request->DebugString();
     int64 start_usec = Env::Default()->NowMicros();
-    // Don't propagate dma_ok over gRPC.
-    RecvTensorRequest* req_copy = nullptr;
-    if (request->dma_ok()) {
-      req_copy = new RecvTensorRequest;
-      *req_copy = *request;
-      req_copy->set_dma_ok(false);
-    }
     // Type-specialized logging for this method.
     bool logging_active = logger_->LoggingActive() || VLOG_IS_ON(2);
     StatusCallback wrapper_done;
     const StatusCallback* cb_to_use;
-    if (!logging_active && req_copy == nullptr) {
+    if (!logging_active) {
       cb_to_use = &done;  // No additional work to do, so just use done directly
-    } else if (!logging_active) {
-      wrapper_done = [req_copy, done](Status s) {
-        delete req_copy;
-        done(s);
-      };
-      cb_to_use = &wrapper_done;
     } else {
-      wrapper_done = [this, request, req_copy, response, done,
-                      start_usec](Status s) {
+      wrapper_done = [this, request, response, done, start_usec](Status s) {
         if (logger_->LoggingActive()) {
           int64 end_usec = Env::Default()->NowMicros();
           int64 step_id = request->step_id();
@@ -189,14 +175,12 @@
         }
         VLOG(2) << "done callback, req: " << request->DebugString()
                 << " response " << response->metadata().DebugString();
-        delete req_copy;
         done(s);
       };
       cb_to_use = &wrapper_done;
     }
 
-    IssueRequest(req_copy ? req_copy : request, response, recvtensor_,
-                 *cb_to_use, call_opts);
+    IssueRequest(request, response, recvtensor_, *cb_to_use, call_opts);
   }
 
   void LoggingAsync(const LoggingRequest* request, LoggingResponse* response,
diff --git a/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc b/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc
index 3867dd1..4883e50 100644
--- a/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc
+++ b/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc
@@ -105,7 +105,8 @@
 
 Status GrpcServer::Init(
     ServiceInitFunction service_func,
-    const RendezvousMgrCreationFunction& rendezvous_mgr_func) {
+    const RendezvousMgrCreationFunction& rendezvous_mgr_func,
+    const WorkerCreationFunction& worker_func) {
   mutex_lock l(mu_);
   CHECK_EQ(state_, NEW);
   master_env_.env = env_;
@@ -183,7 +184,8 @@
   master_impl_ = CreateMaster(&master_env_);
   master_service_ = NewGrpcMasterService(
       master_impl_.get(), config.operation_timeout_in_ms(), &builder);
-  worker_impl_ = NewGrpcWorker(&worker_env_);
+  worker_impl_ =
+      worker_func ? worker_func(&worker_env_) : NewGrpcWorker(&worker_env_);
   worker_service_ =
       NewGrpcWorkerService(worker_impl_.get(), &builder).release();
   // extra service:
@@ -239,7 +241,13 @@
   return Status::OK();
 }
 
-Status GrpcServer::Init() { return Init(nullptr, nullptr); }
+Status GrpcServer::Init(
+    ServiceInitFunction service_func,
+    const RendezvousMgrCreationFunction& rendezvous_mgr_func) {
+  return Init(service_func, rendezvous_mgr_func, nullptr);
+}
+
+Status GrpcServer::Init() { return Init(nullptr, nullptr, nullptr); }
 
 Status GrpcServer::ParseChannelSpec(const WorkerCacheFactoryOptions& options,
                                     GrpcChannelSpec* channel_spec) {
diff --git a/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h b/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h
index 7b54bb8..c3f513d 100644
--- a/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h
+++ b/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h
@@ -45,6 +45,10 @@
 typedef std::function<void(const WorkerEnv*, ::grpc::ServerBuilder*)>
     ServiceInitFunction;
 
+// function that creates a grpc based worker implementation.
+typedef std::function<std::unique_ptr<GrpcWorker>(WorkerEnv*)>
+    WorkerCreationFunction;
+
 class GrpcServer : public ServerInterface {
  protected:
   GrpcServer(const ServerDef& server_def, Env* env);
@@ -65,6 +69,10 @@
 
  protected:
   Status Init(ServiceInitFunction service_func,
+              const RendezvousMgrCreationFunction& rendezvous_mgr_func,
+              const WorkerCreationFunction& worker_func);
+
+  Status Init(ServiceInitFunction service_func,
               const RendezvousMgrCreationFunction& rendezvous_mgr_func);
 
   Status Init();
diff --git a/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.cc b/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.cc
index a3b5239..4ee5ae0 100644
--- a/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.cc
+++ b/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.cc
@@ -347,32 +347,25 @@
             if (src_dev->tensorflow_gpu_device_info() && (!on_host)) {
 #if GOOGLE_CUDA
               const DeviceContext* send_dev_context = send_args.device_context;
-              RecvTensorResponse* tmp = new RecvTensorResponse;
-              tmp->set_is_dead(is_dead);
+              AllocatorAttributes alloc_attrs;
+              alloc_attrs.set_gpu_compatible(true);
+              alloc_attrs.set_on_host(true);
+              Allocator* alloc = src_dev->GetAllocator(alloc_attrs);
+              Tensor* copy = new Tensor(alloc, val.dtype(), val.shape());
               CHECK(send_dev_context)
                   << "send dev name: " << src_dev->name()
                   << " gpu_info: " << src_dev->tensorflow_gpu_device_info();
-              // "val" is on a GPU. Uses GPUUtil to fill the response proto.
-              StatusCallback response_ready = [response, done,
-                                               tmp](const Status& s) {
+              // "val" is on a GPU. Uses GPUUtil to fill the copy on host.
+              StatusCallback copy_ready = [response, done, copy,
+                                           is_dead](const Status& s) {
                 // The value is now ready to be returned on the wire.
-                tmp->set_send_start_micros(Env::Default()->NowMicros());
-
-                grpc::EncodeRecvTensorResponseToByteBuffer(*tmp, response);
+                grpc::EncodeTensorToByteBuffer(is_dead, *copy, response);
                 done(s);
-                delete tmp;
+                delete copy;
               };
 
-              // TODO (jeff,sanjay,mrry): Avoid copy on GPU path by
-              // modifying GPUUtil::SetProtoFromGPU to accept a
-              // ::grpc::ByteBuffer to serialize to, rather than
-              // encoding into a protocol buffer and then
-              // serializing that (i.e. figure out how to use
-              // EncodeTensorToByteBuffer on this path rather than
-              // EncodeRecvTensorResponseToByteBuffer)
-              GPUUtil::SetProtoFromGPU(val, src_dev, send_dev_context,
-                                       tmp->mutable_tensor(), is_dead,
-                                       response_ready);
+              GPUUtil::CopyGPUTensorToCPU(src_dev, send_dev_context, &val, copy,
+                                          copy_ready);
 #else
               done(errors::Internal("No GPU device in process"));
 #endif  // GOOGLE_CUDA
diff --git a/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.h b/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.h
index f6cf0f9..64d7c98 100644
--- a/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.h
+++ b/tensorflow/core/distributed_runtime/rpc/grpc_worker_service.h
@@ -34,8 +34,10 @@
   GrpcWorker(WorkerEnv* env);
 
   // Specialized version of RecvTensor for gRPC, which avoids a copy.
-  void GrpcRecvTensorAsync(CallOptions* opts, const RecvTensorRequest* request,
-                           ::grpc::ByteBuffer* response, StatusCallback done);
+  virtual void GrpcRecvTensorAsync(CallOptions* opts,
+                                   const RecvTensorRequest* request,
+                                   ::grpc::ByteBuffer* response,
+                                   StatusCallback done);
 
   WorkerEnv* env();
 };
diff --git a/tensorflow/core/framework/common_shape_fns.cc b/tensorflow/core/framework/common_shape_fns.cc
index 9df5cbd..bd5d6e4 100644
--- a/tensorflow/core/framework/common_shape_fns.cc
+++ b/tensorflow/core/framework/common_shape_fns.cc
@@ -673,6 +673,116 @@
   return Status::OK();
 }
 
+Status MaxPoolV2Shape(shape_inference::InferenceContext* c, int num_inputs) {
+  ShapeHandle input_shape;
+  TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 4, &input_shape));
+
+  string data_format;
+  Status s = c->GetAttr("data_format", &data_format);
+
+  std::vector<int32> kernel_sizes;
+  std::vector<int32> strides;
+
+  if (c->num_inputs() + 2 == num_inputs) {
+    TF_RETURN_IF_ERROR(c->GetAttr("ksize", &kernel_sizes));
+
+    TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
+  } else {
+    // Verify shape of ksize and strides input.
+    ShapeHandle size;
+    DimensionHandle unused;
+    TF_RETURN_IF_ERROR(c->WithRank(c->input(c->num_inputs() - 2), 1, &size));
+    TF_RETURN_IF_ERROR(c->WithValue(c->Dim(size, 0), 4, &unused));
+    TF_RETURN_IF_ERROR(c->WithRank(c->input(c->num_inputs() - 1), 1, &size));
+    TF_RETURN_IF_ERROR(c->WithValue(c->Dim(size, 0), 4, &unused));
+
+    const Tensor* kernel_sizes_tensor = c->input_tensor(c->num_inputs() - 2);
+    if (kernel_sizes_tensor == nullptr) {
+      c->set_output(0, c->UnknownShape());
+      return Status::OK();
+    }
+    kernel_sizes.resize(kernel_sizes_tensor->shape().num_elements());
+    auto kernel_sizes_vec = kernel_sizes_tensor->flat<int32>();
+    std::copy_n(&kernel_sizes_vec(0), kernel_sizes.size(), kernel_sizes.begin());
+
+    const Tensor* strides_tensor = c->input_tensor(c->num_inputs() - 1);
+    if (strides_tensor == nullptr) {
+      c->set_output(0, c->UnknownShape());
+      return Status::OK();
+    }
+    strides.resize(strides_tensor->shape().num_elements());
+    auto strides_vec = strides_tensor->flat<int32>();
+    std::copy_n(&strides_vec(0), strides.size(), strides.begin());
+  }
+
+  if (strides.size() != 4) {
+    return errors::InvalidArgument(
+        "MaxPool requires the stride attribute to contain 4 values, but "
+        "got: ",
+        strides.size());
+  }
+  if (kernel_sizes.size() != 4) {
+    return errors::InvalidArgument(
+        "MaxPool requires the ksize attribute to contain 4 values, but got: ",
+        kernel_sizes.size());
+  }
+
+  int32 stride_rows, stride_cols, stride_depth;
+  int32 kernel_rows, kernel_cols, kernel_depth;
+
+  if (s.ok() && data_format == "NCHW") {
+    // Canonicalize input shape to NHWC so the shape inference code below can
+    // process it.
+    auto dim = [&](char dimension) {
+      return c->Dim(input_shape, GetTensorDimIndex<2>(FORMAT_NCHW, dimension));
+    };
+    input_shape = c->MakeShape({{dim('N'), dim('0'), dim('1'), dim('C')}});
+    stride_depth = strides[1];
+    stride_rows = strides[2];
+    stride_cols = strides[3];
+    kernel_depth = kernel_sizes[1];
+    kernel_rows = kernel_sizes[2];
+    kernel_cols = kernel_sizes[3];
+  } else {
+    stride_rows = strides[1];
+    stride_cols = strides[2];
+    stride_depth = strides[3];
+    kernel_rows = kernel_sizes[1];
+    kernel_cols = kernel_sizes[2];
+    kernel_depth = kernel_sizes[3];
+  }
+
+  DimensionHandle batch_size_dim = c->Dim(input_shape, 0);
+  DimensionHandle in_rows_dim = c->Dim(input_shape, 1);
+  DimensionHandle in_cols_dim = c->Dim(input_shape, 2);
+  DimensionHandle in_depth_dim = c->Dim(input_shape, 3);
+
+  Padding padding;
+  TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
+
+  ShapeHandle output_shape;
+  DimensionHandle output_rows, output_cols, output_depth;
+  TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
+      c, in_rows_dim, kernel_rows, stride_rows, padding, &output_rows));
+  TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
+      c, in_cols_dim, kernel_cols, stride_cols, padding, &output_cols));
+  TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
+      c, in_depth_dim, kernel_depth, stride_depth, padding, &output_depth));
+
+  output_shape =
+      c->MakeShape({batch_size_dim, output_rows, output_cols, output_depth});
+  if (data_format == "NCHW") {
+    // Convert output shape back to expected NCHW data format.
+    auto dim = [&](char dimension) {
+      return c->Dim(output_shape, GetTensorDimIndex<2>(FORMAT_NHWC, dimension));
+    };
+    output_shape = c->MakeShape({{dim('N'), dim('C'), dim('0'), dim('1')}});
+  }
+
+  c->set_output(0, output_shape);
+  return Status::OK();
+}
+
 Status Pool3DShape(shape_inference::InferenceContext* c) {
   ShapeHandle input_shape;
   TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 5, &input_shape));
diff --git a/tensorflow/core/framework/common_shape_fns.h b/tensorflow/core/framework/common_shape_fns.h
index 73b9156..fb79df0 100644
--- a/tensorflow/core/framework/common_shape_fns.h
+++ b/tensorflow/core/framework/common_shape_fns.h
@@ -179,6 +179,9 @@
 // Shape function for MaxPool-like operations.
 Status MaxPoolShape(shape_inference::InferenceContext* c);
 
+// Shape function for MaxPoolV2-like operations.
+Status MaxPoolV2Shape(shape_inference::InferenceContext* c, int num_inputs);
+
 // Shape function for 3D Pooling operations.
 Status Pool3DShape(shape_inference::InferenceContext* c);
 
diff --git a/tensorflow/core/framework/node_def.proto b/tensorflow/core/framework/node_def.proto
index d145fac..53aa031 100644
--- a/tensorflow/core/framework/node_def.proto
+++ b/tensorflow/core/framework/node_def.proto
@@ -38,8 +38,8 @@
   //              | ( ("gpu" | "cpu") ":" ([1-9][0-9]* | "*") )
   //
   // Valid values for this string include:
-  // * "/job:worker/replica:0/task:1/gpu:3"  (full specification)
-  // * "/job:worker/gpu:3"                   (partial specification)
+  // * "/job:worker/replica:0/task:1/device:GPU:3"  (full specification)
+  // * "/job:worker/device:GPU:3"                   (partial specification)
   // * ""                                    (no specification)
   //
   // If the constraints do not resolve to a single device (or if this
diff --git a/tensorflow/core/framework/rendezvous_test.cc b/tensorflow/core/framework/rendezvous_test.cc
index fe37b16..32b8ad7 100644
--- a/tensorflow/core/framework/rendezvous_test.cc
+++ b/tensorflow/core/framework/rendezvous_test.cc
@@ -39,11 +39,11 @@
 TEST(RendezvousTest, Key) {
   const string key = Rendezvous::CreateKey(
       "/job:mnist/replica:1/task:2/CPU:0", 7890,
-      "/job:mnist/replica:1/task:2/GPU:0", "var0", FrameAndIter(0, 0));
+      "/job:mnist/replica:1/task:2/device:GPU:0", "var0", FrameAndIter(0, 0));
   EXPECT_EQ(key,
             "/job:mnist/replica:1/task:2/CPU:0;"
             "0000000000001ed2;"  // 7890 = 0x1ed2
-            "/job:mnist/replica:1/task:2/GPU:0;"
+            "/job:mnist/replica:1/task:2/device:GPU:0;"
             "var0;"
             "0:0");
   Rendezvous::ParsedKey parsed;
@@ -51,12 +51,12 @@
   EXPECT_EQ(parsed.src_device, "/job:mnist/replica:1/task:2/CPU:0");
   EXPECT_EQ(parsed.src_incarnation, 7890);
   EXPECT_EQ(parsed.src.type, "CPU");
-  EXPECT_EQ(parsed.dst_device, "/job:mnist/replica:1/task:2/GPU:0");
+  EXPECT_EQ(parsed.dst_device, "/job:mnist/replica:1/task:2/device:GPU:0");
   EXPECT_EQ(parsed.dst.type, "GPU");
 
   EXPECT_FALSE(Rendezvous::ParseKey("foo;bar;baz", &parsed).ok());
   EXPECT_FALSE(Rendezvous::ParseKey("/job:mnist/replica:1/task:2/CPU:0;"
-                                    "/job:mnist/replica:1/task:2/GPU:0;",
+                                    "/job:mnist/replica:1/task:2/device:GPU:0;",
                                     &parsed)
                    .ok());
   EXPECT_FALSE(
@@ -99,7 +99,7 @@
 
 Rendezvous::ParsedKey MakeKey(const string& name) {
   string s = Rendezvous::CreateKey("/job:mnist/replica:1/task:2/CPU:0", 7890,
-                                   "/job:mnist/replica:1/task:2/GPU:0", name,
+                                   "/job:mnist/replica:1/task:2/device:GPU:0", name,
                                    FrameAndIter(0, 0));
   Rendezvous::ParsedKey k;
   TF_EXPECT_OK(Rendezvous::ParseKey(s, &k));
diff --git a/tensorflow/core/framework/tensor_slice.h b/tensorflow/core/framework/tensor_slice.h
index 3a00e52..6019737 100644
--- a/tensorflow/core/framework/tensor_slice.h
+++ b/tensorflow/core/framework/tensor_slice.h
@@ -126,7 +126,7 @@
   // Interaction with other TensorSlices.
 
   // Compute the intersection with another slice and if "result" is not
-  // nullptr, store the results in *result; returns true is there is any real
+  // nullptr, store the results in *result; returns true if there is any real
   // intersection.
   bool Intersect(const TensorSlice& other, TensorSlice* result) const;
   // A short hand.
diff --git a/tensorflow/core/graph/graph_constructor_test.cc b/tensorflow/core/graph/graph_constructor_test.cc
index f222b9b..6be8e36 100644
--- a/tensorflow/core/graph/graph_constructor_test.cc
+++ b/tensorflow/core/graph/graph_constructor_test.cc
@@ -2325,7 +2325,93 @@
   ImportGraphDefOptions opts;
   // A valid graph at producer version 20, but one
   // that would not import if the graph_def_version were 21.
-  string gdef_ascii = strings::StrCat(R"EOF(
+  string gdef_ascii;
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+  gdef_ascii = strings::StrCat(R"EOF(
+node {
+  name: "Sum/input"
+  op: "Const"
+  attr {
+    key: "dtype"
+    value {
+      type: DT_INT32
+    }
+  }
+  attr {
+    key: "value"
+    value {
+      tensor {
+        dtype: DT_INT32
+        tensor_shape {
+          dim {
+            size: 2
+          }
+          dim {
+            size: 1
+          }
+        }
+        tensor_content: "\000\000\000\001\000\000\000\002"
+      }
+    }
+  }
+}
+node {
+  name: "Sum/reduction_indices"
+  op: "Const"
+  attr {
+    key: "dtype"
+    value {
+      type: DT_INT32
+    }
+  }
+  attr {
+    key: "value"
+    value {
+      tensor {
+        dtype: DT_INT32
+        tensor_shape {
+          dim {
+            size: 2
+          }
+          dim {
+            size: 1
+          }
+        }
+        tensor_content: "\000\000\000\000\000\000\000\001"
+      }
+    }
+  }
+}
+node {
+  name: "Sum"
+  op: "Sum"
+  input: "Sum/input"
+  input: "Sum/reduction_indices"
+  attr {
+    key: "T"
+    value {
+      type: DT_INT32
+    }
+  }
+  attr {
+    key: "Tidx"
+    value {
+      type: DT_INT32
+    }
+  }
+  attr {
+    key: "keep_dims"
+    value {
+      b: false
+    }
+  }
+}
+versions {
+  producer: 20
+})EOF");
+
+#else
+  gdef_ascii = strings::StrCat(R"EOF(
 node {
   name: "Sum/input"
   op: "Const"
@@ -2407,7 +2493,7 @@
 versions {
   producer: 20
 })EOF");
-
+#endif
   // Create a shape refiner with the latest TF_GRAPH_DEF_VERSION.
   // Importing the graphdef with an existing refiner should
   // make the refiner inherit the graphdef version from the
@@ -2416,6 +2502,40 @@
   ExpectOK(gdef_ascii, opts, &refiner);
 
   // Add another node with a higher producer
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+  gdef_ascii = strings::StrCat(R"EOF(
+node {
+  name: "RandomConst"
+  op: "Const"
+  attr {
+    key: "dtype"
+    value {
+      type: DT_INT32
+    }
+  }
+  attr {
+    key: "value"
+    value {
+      tensor {
+        dtype: DT_INT32
+        tensor_shape {
+          dim {
+            size: 2
+          }
+          dim {
+            size: 1
+          }
+        }
+        tensor_content: "\000\000\000\001\000\000\000\002"
+      }
+    }
+  }
+}
+versions {
+  producer: 21
+})EOF");
+
+#else
   gdef_ascii = strings::StrCat(R"EOF(
 node {
   name: "RandomConst"
@@ -2447,6 +2567,7 @@
 versions {
   producer: 21
 })EOF");
+#endif
 
   ExpectOK(gdef_ascii, opts, &refiner);
   // Check that the refiner's graph def version is the lowest of
@@ -2454,6 +2575,40 @@
   EXPECT_EQ(20, refiner.graph_def_version());
 
   // Add another node with a lower producer
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+  gdef_ascii = strings::StrCat(R"EOF(
+node {
+  name: "RandomConst2"
+  op: "Const"
+  attr {
+    key: "dtype"
+    value {
+      type: DT_INT32
+    }
+  }
+  attr {
+    key: "value"
+    value {
+      tensor {
+        dtype: DT_INT32
+        tensor_shape {
+          dim {
+            size: 2
+          }
+          dim {
+            size: 1
+          }
+        }
+        tensor_content: "\000\000\000\001\000\000\000\002"
+      }
+    }
+  }
+}
+versions {
+  producer: 17
+})EOF");
+
+#else
   gdef_ascii = strings::StrCat(R"EOF(
 node {
   name: "RandomConst2"
@@ -2485,6 +2640,7 @@
 versions {
   producer: 17
 })EOF");
+#endif
   ExpectOK(gdef_ascii, opts, &refiner);
 
   // Check that the refiner's graph def version is the lowest of
diff --git a/tensorflow/core/graph/graph_partition_test.cc b/tensorflow/core/graph/graph_partition_test.cc
index 3c12ed2..d84c62d 100644
--- a/tensorflow/core/graph/graph_partition_test.cc
+++ b/tensorflow/core/graph/graph_partition_test.cc
@@ -50,7 +50,7 @@
 
 namespace {
 
-const char gpu_device[] = "/job:a/replica:0/task:0/gpu:0";
+const char gpu_device[] = "/job:a/replica:0/task:0/device:GPU:0";
 
 string SplitByDevice(const Node* node) { return node->assigned_device_name(); }
 
diff --git a/tensorflow/core/graph/mkl_layout_pass.cc b/tensorflow/core/graph/mkl_layout_pass.cc
index 625780e..2f9ceaa 100644
--- a/tensorflow/core/graph/mkl_layout_pass.cc
+++ b/tensorflow/core/graph/mkl_layout_pass.cc
@@ -477,27 +477,7 @@
   static ContextInfo biasaddgrad_matmul_context_;
   static ContextInfo biasaddgrad_conv2dwithbias_context_;
 
-  /// Hash table to maintain nodes visited in the graph.
-  std::unordered_set<const Node*> visited_nodes_;
-
  private:
-  // Check if we rewrote node 'n'
-  //
-  // If we rewrote the node, then the rewritten node will produce
-  // Mkl tensor as output. If we did not rewrite the node, then
-  // we need to insert dummy Mkl node on the input side.
-  //
-  // Returns true if node is rewritten, false otherwise.
-  inline bool IsRewrittenNode(Node* n) const {
-    return visited_nodes_.find(n) != visited_nodes_.end();
-  }
-
-  // Mark the node as rewritten
-  inline void MarkRewrittenNode(Node* n) { visited_nodes_.insert(n); }
-
-  // Clear all visited nodes
-  inline void UnMarkRewrittenNodes() { visited_nodes_.clear(); }
-
   // Is OpDef::ArgDef a list type? It could be N * T or list(type).
   // Refer to opdef.proto for details of list type.
   inline bool ArgIsList(const OpDef::ArgDef& arg) const {
@@ -1087,15 +1067,13 @@
   CHECK_NOTNULL(n);
   CHECK_NOTNULL(mkl_node);
   CHECK_NOTNULL(mkl_node_output_slot);
-  if (IsRewrittenNode(n)) {
-    // If we have visited this node and rewritten it, then it will generate
-    // an edge that will receive Mkl tensor from a node.
-    // First, let's assert that this op is Mkl layer.
-    DataType T;
-    TF_CHECK_OK(GetNodeAttr(n->def(), "T", &T));
-    // If this op has been rewritten, then its name must have been same as
-    // Mkl op.
-    CHECK_EQ(mkl_op_registry::IsMklOp(n->type_string(), T), true);
+
+  // If this is an MKL op, then it will create extra output for MKL layout.
+  DataType T;
+  if (GetNodeAttr(n->def(), "T", &T).ok() &&
+      mkl_op_registry::IsMklOp(n->type_string(), T)) {
+    // If this is an MKL op, then it will generate an edge that will receive
+    // Mkl tensor from a node.
     // output slot number for Mkl tensor would be N+slot number of TensorFlow
     // tensor, where N is total number of TensorFlow tensors.
     *mkl_node = n;
@@ -1801,7 +1779,6 @@
 
     (*g)->RemoveNode(succ);
     (*g)->RemoveNode(pred);
-    MarkRewrittenNode(new_node);
 
     return Status::OK();
   }
@@ -1932,7 +1909,6 @@
 
   // Delete original node and mark new node as rewritten.
   (*g)->RemoveNode(orig_node);
-  MarkRewrittenNode(new_node);
 
   VLOG(1) << "MklLayoutRewritePass: New node:" << new_node->DebugString();
   return Status::OK();
@@ -2062,9 +2038,6 @@
 
   DumpGraph("After running MklLayoutRewritePass", &**g);
 
-  // Clear marked nodes as the same graph pass may be used multiple times.
-  UnMarkRewrittenNodes();
-
   return result;
 }
 
diff --git a/tensorflow/core/graph/mkl_layout_pass_test.cc b/tensorflow/core/graph/mkl_layout_pass_test.cc
index efbe213..482e339 100644
--- a/tensorflow/core/graph/mkl_layout_pass_test.cc
+++ b/tensorflow/core/graph/mkl_layout_pass_test.cc
@@ -40,7 +40,7 @@
 namespace {
 
 const char kCPUDevice[] = "/job:a/replica:0/task:0/cpu:0";
-const char kGPUDevice[] = "/job:a/replica:0/task:0/gpu:0";
+const char kGPUDevice[] = "/job:a/replica:0/task:0/device:GPU:0";
 
 static void InitGraph(const string& s, Graph* graph,
                       const string& device = kCPUDevice) {
diff --git a/tensorflow/core/grappler/clusters/single_machine.cc b/tensorflow/core/grappler/clusters/single_machine.cc
index 3481b2b..7139c24 100644
--- a/tensorflow/core/grappler/clusters/single_machine.cc
+++ b/tensorflow/core/grappler/clusters/single_machine.cc
@@ -89,7 +89,7 @@
   VLOG(1) << "Number of GPUs: " << num_gpus_;
   for (int i = 0; i < num_gpus_; ++i) {
     string device_name =
-        strings::StrCat("/job:localhost/replica:0/task:0/gpu:", i);
+        strings::StrCat("/job:localhost/replica:0/task:0/device:GPU:", i);
     VLOG(1) << "Adding GPU device " << device_name;
     devices_[device_name] = GetLocalGPUInfo(i);
   }
@@ -112,10 +112,10 @@
   TF_RETURN_IF_ERROR(CloseSession(true /*use_timeout*/));
 
   // Delete the threadpool: this ensures that all the pending closures complete
-  // before we return. Note that if that if TF deadlocked on us, the closures
-  // will never complete, and the call to thread_pool_.reset() will never
-  // return: therefore we need to delete the threadpool with the background
-  // thread. That thread itself will also never complete, so the user should
+  // before we return. Note that if TF deadlocked on us, the closures will
+  // never complete, and the call to thread_pool_.reset() will never return:
+  // therefore we need to delete the threadpool with the background thread.
+  // That thread itself will also never complete, so the user should
   // abort the process to avoid leaking too many resources.
   auto n = std::make_shared<Notification>();
   Env::Default()->SchedClosure([this, n]() {
diff --git a/tensorflow/core/grappler/costs/analytical_cost_estimator_test.cc b/tensorflow/core/grappler/costs/analytical_cost_estimator_test.cc
index 02156fb..d1f3e36 100644
--- a/tensorflow/core/grappler/costs/analytical_cost_estimator_test.cc
+++ b/tensorflow/core/grappler/costs/analytical_cost_estimator_test.cc
@@ -42,7 +42,7 @@
     gpu_device.set_frequency(1100);
     gpu_device.set_bandwidth(180 * 1024 * 1024);
     (*gpu_device.mutable_environment())["architecture"] = "6";
-    devices["/job:localhost/replica:0/task:0/gpu:0"] = gpu_device;
+    devices["/job:localhost/replica:0/task:0/device:GPU:0"] = gpu_device;
 
     cluster_.reset(new VirtualCluster(devices));
   }
diff --git a/tensorflow/core/grappler/costs/virtual_placer_test.cc b/tensorflow/core/grappler/costs/virtual_placer_test.cc
index 65a03fb..a16455c 100644
--- a/tensorflow/core/grappler/costs/virtual_placer_test.cc
+++ b/tensorflow/core/grappler/costs/virtual_placer_test.cc
@@ -30,14 +30,14 @@
   devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device;
   DeviceProperties gpu_device;
   gpu_device.set_type("GPU");
-  devices["/job:localhost/replica:0/task:0/gpu:0"] = gpu_device;
+  devices["/job:localhost/replica:0/task:0/device:GPU:0"] = gpu_device;
   VirtualCluster cluster(devices);
   VirtualPlacer placer(&cluster);
 
   NodeDef node;
   node.set_op("Conv2D");
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:localhost/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:localhost/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 
   node.set_device("CPU");
@@ -47,7 +47,7 @@
 
   node.set_device("GPU:0");
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:localhost/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:localhost/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 }
 
@@ -60,7 +60,7 @@
   devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device;
   DeviceProperties gpu_device;
   gpu_device.set_type("GPU");
-  devices["/job:localhost/replica:0/task:0/gpu:0"] = gpu_device;
+  devices["/job:localhost/replica:0/task:0/device:GPU:0"] = gpu_device;
   VirtualCluster cluster(devices);
   VirtualPlacer placer(&cluster);
 
@@ -70,7 +70,7 @@
   EXPECT_EQ("/job:localhost/replica:0/task:0/cpu:0",
             placer.get_canonical_device_name(node));
   node.set_device("/device:GPU:0");
-  EXPECT_EQ("/job:localhost/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:localhost/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 }
 
@@ -113,7 +113,7 @@
   devices["/job:my_job/replica:0/task:0/cpu:0"] = cpu_device;
   DeviceProperties gpu_device;
   gpu_device.set_type("GPU");
-  devices["/job:my_job/replica:0/task:0/gpu:0"] = gpu_device;
+  devices["/job:my_job/replica:0/task:0/device:GPU:0"] = gpu_device;
   VirtualCluster cluster(devices);
   VirtualPlacer placer(&cluster);
 
@@ -122,7 +122,7 @@
 
   // Device falls back to GPU.
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:my_job/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 
   node.set_device("/job:my_job/replica:0/task:0/cpu:0");
@@ -130,27 +130,27 @@
   EXPECT_EQ("/job:my_job/replica:0/task:0/cpu:0",
             placer.get_canonical_device_name(node));
 
-  node.set_device("/job:my_job/replica:0/task:0/gpu:0");
+  node.set_device("/job:my_job/replica:0/task:0/device:GPU:0");
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:my_job/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 
   // There is no local cpu available. Device falls back to GPU.
   node.set_device("CPU");
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:my_job/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 
   node.set_device("GPU:0");
   // There is no local GPU available. Fall back to default GPU.
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:my_job/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 
   // This isn't a valid name. Fall back to GPU.
   node.set_device("/job:my_job/replica:0/task:0");
   EXPECT_EQ("GPU", placer.get_device(node).type());
-  EXPECT_EQ("/job:my_job/replica:0/task:0/gpu:0",
+  EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0",
             placer.get_canonical_device_name(node));
 }
 
diff --git a/tensorflow/core/grappler/optimizers/model_pruner_test.cc b/tensorflow/core/grappler/optimizers/model_pruner_test.cc
index aea1fcd..ee722f3 100644
--- a/tensorflow/core/grappler/optimizers/model_pruner_test.cc
+++ b/tensorflow/core/grappler/optimizers/model_pruner_test.cc
@@ -320,14 +320,14 @@
   Output c = ops::Const(s.WithOpName("c").WithDevice("/cpu:0"), 0.0f, {10, 10});
 
   // Node i1 should be preserved.
-  Output i1 = ops::Identity(s.WithOpName("i1").WithDevice("/gpu:0"), c);
-  Output a1 = ops::Sqrt(s.WithOpName("a1").WithDevice("/gpu:0"), {i1});
-  Output a2 = ops::Sqrt(s.WithOpName("a2").WithDevice("/gpu:0"), {i1});
+  Output i1 = ops::Identity(s.WithOpName("i1").WithDevice("/device:GPU:0"), c);
+  Output a1 = ops::Sqrt(s.WithOpName("a1").WithDevice("/device:GPU:0"), {i1});
+  Output a2 = ops::Sqrt(s.WithOpName("a2").WithDevice("/device:GPU:0"), {i1});
 
   // Node i2 should be pruned since it resides on the sender's device.
   Output i2 = ops::Identity(s.WithOpName("i2").WithDevice("/cpu:0"), c);
-  Output a3 = ops::Sqrt(s.WithOpName("a3").WithDevice("/gpu:0"), {i2});
-  Output a4 = ops::Sqrt(s.WithOpName("a4").WithDevice("/gpu:0"), {i2});
+  Output a3 = ops::Sqrt(s.WithOpName("a3").WithDevice("/device:GPU:0"), {i2});
+  Output a4 = ops::Sqrt(s.WithOpName("a4").WithDevice("/device:GPU:0"), {i2});
 
   GrapplerItem item;
   TF_CHECK_OK(s.ToGraphDef(&item.graph));
diff --git a/tensorflow/core/kernels/BUILD b/tensorflow/core/kernels/BUILD
index a5e3a5f..05974f5 100644
--- a/tensorflow/core/kernels/BUILD
+++ b/tensorflow/core/kernels/BUILD
@@ -103,7 +103,6 @@
         "strided_slice_op.h",
         "strided_slice_op_impl.h",
         "strided_slice_op_gpu.cu.cc",
-        "slice_op_gpu.cu.cc",
     ],
     deps = [
         ":bounds_check",
diff --git a/tensorflow/core/kernels/bias_op.cc b/tensorflow/core/kernels/bias_op.cc
index 10f5d4c..b3a77d1 100644
--- a/tensorflow/core/kernels/bias_op.cc
+++ b/tensorflow/core/kernels/bias_op.cc
@@ -35,14 +35,13 @@
 
 typedef Eigen::ThreadPoolDevice CPUDevice;
 typedef Eigen::GpuDevice GPUDevice;
+#ifdef TENSORFLOW_USE_SYCL
+typedef Eigen::SyclDevice SYCLDevice;
+#endif  // TENSORFLOW_USE_SYCL
 
 template <typename Device, typename T>
-class BiasOp;
-
-template <typename T>
-class BiasOp<CPUDevice, T> : public BinaryOp<T> {
+class BiasOp : public BinaryOp<T> {
  public:
-  typedef CPUDevice Device;
   explicit BiasOp(OpKernelConstruction* context) : BinaryOp<T>(context) {
     string data_format;
     if (context->GetAttr("data_format", &data_format).ok()) {
@@ -52,7 +51,8 @@
       data_format_ = FORMAT_NHWC;
     }
     OP_REQUIRES(context, data_format_ == FORMAT_NHWC,
-                errors::InvalidArgument("CPU BiasOp only supports NHWC."));
+                errors::InvalidArgument(context->device()->attributes().name() +
+                                        " BiasOp only supports NHWC."));
   }
 
   void Compute(OpKernelContext* context) override {
@@ -122,6 +122,21 @@
 TF_CALL_NUMBER_TYPES(REGISTER_KERNEL);
 #undef REGISTER_KERNEL
 
+#ifdef TENSORFLOW_USE_SYCL
+#define REGISTER_KERNEL(type)                                          \
+  REGISTER_KERNEL_BUILDER(                                             \
+      Name("BiasAdd").Device(DEVICE_SYCL).TypeConstraint<type>("T"),   \
+      BiasOp<SYCLDevice, type>);                                       \
+  REGISTER_KERNEL_BUILDER(                                             \
+      Name("BiasAddV1").Device(DEVICE_SYCL).TypeConstraint<type>("T"), \
+      BiasOp<SYCLDevice, type>);
+
+TF_CALL_INTEGRAL_TYPES(REGISTER_KERNEL);
+REGISTER_KERNEL(float);
+REGISTER_KERNEL(double);
+#undef REGISTER_KERNEL
+#endif  // TENSORFLOW_USE_SYCL
+
 namespace {
 
 void GetBiasValueDims(const Tensor& value_tensor, TensorFormat data_format,
@@ -165,12 +180,8 @@
 }  // namespace
 
 template <typename Device, typename T>
-class BiasGradOp;
-
-template <typename T>
-class BiasGradOp<CPUDevice, T> : public OpKernel {
+class BiasGradOp : public OpKernel {
  public:
-  typedef CPUDevice Device;
   explicit BiasGradOp(OpKernelConstruction* context) : OpKernel(context) {
     string data_format;
     if (context->GetAttr("data_format", &data_format).ok()) {
@@ -180,7 +191,8 @@
       data_format_ = FORMAT_NHWC;
     }
     OP_REQUIRES(context, data_format_ == FORMAT_NHWC,
-                errors::InvalidArgument("CPU BiasGradOp only supports NHWC."));
+                errors::InvalidArgument(context->device()->attributes().name() +
+                                        " BiasGradOp only supports NHWC."));
   }
 
   void Compute(OpKernelContext* context) override {
@@ -192,8 +204,9 @@
                                         output_backprop.shape().DebugString()));
 
     OP_REQUIRES(
-        context, FastBoundsCheck(output_backprop.NumElements(),
-                                 std::numeric_limits<int32>::max()),
+        context,
+        FastBoundsCheck(output_backprop.NumElements(),
+                        std::numeric_limits<int32>::max()),
         errors::InvalidArgument("BiasGrad requires tensor size <= int32 max"));
 
     int32 batch, height, width, channel;
@@ -215,7 +228,7 @@
 #else
       Eigen::array<int, 1> reduction_axis = {0};
 #endif
-      output->template flat<T>().device(context->eigen_device<CPUDevice>()) =
+      output->template flat<T>().device(context->eigen_device<Device>()) =
           output_backprop.flat<T>()
               .template cast<typename AccumulatorType<T>::type>()
               .reshape(two_dims)
@@ -237,6 +250,18 @@
 TF_CALL_NUMBER_TYPES(REGISTER_KERNEL);
 #undef REGISTER_KERNEL
 
+#ifdef TENSORFLOW_USE_SYCL
+#define REGISTER_KERNEL(type)                                            \
+  REGISTER_KERNEL_BUILDER(                                               \
+      Name("BiasAddGrad").Device(DEVICE_SYCL).TypeConstraint<type>("T"), \
+      BiasGradOp<SYCLDevice, type>);
+
+TF_CALL_INTEGRAL_TYPES(REGISTER_KERNEL);
+REGISTER_KERNEL(float);
+REGISTER_KERNEL(double);
+#undef REGISTER_KERNEL
+#endif  // TENSORFLOW_USE_SYCL
+
 #if GOOGLE_CUDA
 template <typename T>
 class BiasOp<GPUDevice, T> : public BinaryOp<T> {
diff --git a/tensorflow/core/kernels/concat_lib_gpu.cc b/tensorflow/core/kernels/concat_lib_gpu.cc
index 5159cda..319ead4 100644
--- a/tensorflow/core/kernels/concat_lib_gpu.cc
+++ b/tensorflow/core/kernels/concat_lib_gpu.cc
@@ -117,6 +117,7 @@
 TF_CALL_complex128(REGISTER);
 TF_CALL_int64(REGISTER);
 REGISTER(bfloat16);
+REGISTER(bool);
 
 #undef REGISTER
 
diff --git a/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc b/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc
index f971637..0f7adaf 100644
--- a/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc
+++ b/tensorflow/core/kernels/concat_lib_gpu_impl.cu.cc
@@ -203,24 +203,28 @@
 TF_CALL_complex128(REGISTER_GPUCONCAT32);
 TF_CALL_int64(REGISTER_GPUCONCAT32);
 REGISTER_GPUCONCAT32(bfloat16);
+REGISTER_GPUCONCAT32(bool);
 
 TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPUCONCAT64);
 TF_CALL_complex64(REGISTER_GPUCONCAT64);
 TF_CALL_complex128(REGISTER_GPUCONCAT64);
 TF_CALL_int64(REGISTER_GPUCONCAT64);
 REGISTER_GPUCONCAT64(bfloat16);
+REGISTER_GPUCONCAT64(bool);
 
 TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU32);
 TF_CALL_complex64(REGISTER_GPU32);
 TF_CALL_complex128(REGISTER_GPU32);
 TF_CALL_int64(REGISTER_GPU32);
 REGISTER_GPU32(bfloat16);
+REGISTER_GPU32(bool);
 
 TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU64);
 TF_CALL_complex64(REGISTER_GPU64);
 TF_CALL_complex128(REGISTER_GPU64);
 TF_CALL_int64(REGISTER_GPU64);
 REGISTER_GPU64(bfloat16);
+REGISTER_GPU64(bool);
 
 #undef REGISTER_GPUCONCAT32
 #undef REGISTER_GPUCONCAT64
diff --git a/tensorflow/core/kernels/concat_op.cc b/tensorflow/core/kernels/concat_op.cc
index 01a744d..8e480aa 100644
--- a/tensorflow/core/kernels/concat_op.cc
+++ b/tensorflow/core/kernels/concat_op.cc
@@ -196,6 +196,7 @@
 TF_CALL_complex64(REGISTER_GPU);
 TF_CALL_complex128(REGISTER_GPU);
 TF_CALL_int64(REGISTER_GPU);
+REGISTER_GPU(bool);
 #undef REGISTER_GPU
 
 // A special GPU kernel for int32.
diff --git a/tensorflow/core/kernels/debug_ops.h b/tensorflow/core/kernels/debug_ops.h
index ef12e2e..2c21053 100644
--- a/tensorflow/core/kernels/debug_ops.h
+++ b/tensorflow/core/kernels/debug_ops.h
@@ -94,12 +94,7 @@
                             !context->input_alloc_attr(0).on_host();
 
       if (off_host_input) {
-        auto size = src_tensor.NumElements() * sizeof(src_tensor.dtype());
-        auto dst_ptr = GetBase(copied_tensor);
-        auto src_ptr = GetBase(&src_tensor);
-        typedef decltype(src_tensor.dtype()) ttype;
-        context->eigen_sycl_device().memcpy(
-            dst_ptr, static_cast<const ttype*>(src_ptr), size);
+        SYCLmemcpy(context->eigen_sycl_device(), src_tensor, copied_tensor);
       } else {
         *copied_tensor = tensor::DeepCopy(src_tensor);
       }
diff --git a/tensorflow/core/kernels/maxpooling_op.cc b/tensorflow/core/kernels/maxpooling_op.cc
index 6cb5679..8d825c1 100644
--- a/tensorflow/core/kernels/maxpooling_op.cc
+++ b/tensorflow/core/kernels/maxpooling_op.cc
@@ -208,22 +208,26 @@
         errors::InvalidArgument("Default MaxPoolingGradOp only supports NHWC ",
                                 "on device type ",
                                 DeviceTypeString(context->device_type())));
-    OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
-    OP_REQUIRES(context, ksize_.size() == 4,
-                errors::InvalidArgument("Sliding window ksize field must "
-                                        "specify 4 dimensions"));
-    OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
-    OP_REQUIRES(context, stride_.size() == 4,
-                errors::InvalidArgument("Sliding window strides field must "
-                                        "specify 4 dimensions"));
+
+    if (context->num_inputs() == 3) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window strides field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+      OP_REQUIRES(
+          context, ksize_[3] == 1 && stride_[3] == 1,
+          errors::Unimplemented(
+              "MaxPoolingGrad is not yet supported on the depth dimension."));
+    }
+
     OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
-    OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
-                errors::Unimplemented(
-                    "Pooling is not yet supported on the batch dimension."));
-    OP_REQUIRES(
-        context, ksize_[3] == 1 && stride_[3] == 1,
-        errors::Unimplemented(
-            "MaxPoolingGrad is not yet supported on the depth dimension."));
   }
 
   void Compute(OpKernelContext* context) override {
@@ -250,8 +254,35 @@
     OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<int64>::v(),
                                                    tensor_out.shape(),
                                                    &tensor_out_arg_max));
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+    if (context->num_inputs() == 5) {
+      const Tensor& tensor_ksize = context->input(3);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
 
-    PoolParameters params{context,  ksize_,      stride_,
+      const Tensor& tensor_stride = context->input(4);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window strides field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, ksize[0] == 1 && stride[0] == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+    OP_REQUIRES(
+        context, ksize[3] == 1 && stride[3] == 1,
+        errors::Unimplemented(
+            "MaxPoolingGrad is not yet supported on the depth dimension."));
+
+    PoolParameters params{context,  ksize,       stride,
                           padding_, FORMAT_NHWC, tensor_in.shape()};
     if (!context->status().ok()) {
       return;
@@ -309,20 +340,22 @@
     OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
     OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                 errors::InvalidArgument("Invalid data format"));
-    OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
-    OP_REQUIRES(context, ksize_.size() == 4,
-                errors::InvalidArgument("Sliding window ksize field must "
-                                        "specify 4 dimensions"));
-    OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
-    OP_REQUIRES(context, stride_.size() == 4,
-                errors::InvalidArgument("Sliding window strides field must "
-                                        "specify 4 dimensions"));
+    if (context->num_inputs() == 3) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window strides field must "
+                                          "specify 4 dimensions"));
+      const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N');
+      const int32 stride_n = GetTensorDim(stride_, data_format_, 'N');
+      OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+    }
     OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
-    const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N');
-    const int32 stride_n = GetTensorDim(stride_, data_format_, 'N');
-    OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
-                errors::Unimplemented(
-                    "Pooling is not yet supported on the batch dimension."));
 
     use_dnn_ = CanUseCudnn();
   }
@@ -343,15 +376,40 @@
 
     TensorShape output_shape = tensor_in.shape();
 
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+    if (context->num_inputs() == 5) {
+      const Tensor& tensor_ksize = context->input(3);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
+
+      const Tensor& tensor_stride = context->input(4);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window strides field must "
+                                        "specify 4 dimensions"));
+    const int32 ksize_n = GetTensorDim(ksize, data_format_, 'N');
+    const int32 stride_n = GetTensorDim(stride, data_format_, 'N');
+    OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+
     if (use_dnn_) {
       DnnPoolingGradOp<T>::Compute(
-          context, perftools::gputools::dnn::PoolingMode::kMaximum, ksize_,
-          stride_, padding_, data_format_, &tensor_in, &tensor_out,
-          out_backprop, output_shape);
+          context, perftools::gputools::dnn::PoolingMode::kMaximum, ksize,
+          stride, padding_, data_format_, &tensor_in, &tensor_out, out_backprop,
+          output_shape);
     } else {
       CHECK(data_format_ == FORMAT_NHWC)
           << "Non-Cudnn MaxPoolGrad only supports NHWC format";
-      MaxPoolingBackwardCustomKernel<T>(context, ksize_, stride_, padding_,
+      MaxPoolingBackwardCustomKernel<T>(context, ksize, stride, padding_,
                                         &tensor_in, out_backprop, output_shape);
     }
   }
@@ -386,22 +444,25 @@
         errors::InvalidArgument(
             "Default MaxPoolingGradGradOp only supports NHWC ",
             "on device type ", DeviceTypeString(context->device_type())));
-    OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
-    OP_REQUIRES(context, ksize_.size() == 4,
-                errors::InvalidArgument("Sliding window ksize field must "
-                                        "specify 4 dimensions"));
-    OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
-    OP_REQUIRES(context, stride_.size() == 4,
-                errors::InvalidArgument("Sliding window strides field must "
-                                        "specify 4 dimensions"));
+
     OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
-    OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
-                errors::Unimplemented(
-                    "Pooling is not yet supported on the batch dimension."));
-    OP_REQUIRES(
-        context, ksize_[3] == 1 && stride_[3] == 1,
-        errors::Unimplemented(
-            "MaxPoolingGradGrad is not yet supported on the depth dimension."));
+
+    if (context->num_inputs() == 3) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window strides field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+      OP_REQUIRES(context, ksize_[3] == 1 && stride_[3] == 1,
+                  errors::Unimplemented("MaxPoolingGradGrad is not yet "
+                                        "supported on the depth dimension."));
+    }
   }
 
   void Compute(OpKernelContext* context) override {
@@ -419,7 +480,35 @@
         context, out_grad_backprop.dims() == 4,
         errors::InvalidArgument("out_grad_backprop must be 4-dimensional"));
 
-    PoolParameters params{context,  ksize_,      stride_,
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+    if (context->num_inputs() == 5) {
+      const Tensor& tensor_ksize = context->input(3);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
+
+      const Tensor& tensor_stride = context->input(4);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window strides field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, ksize[0] == 1 && stride[0] == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+    OP_REQUIRES(
+        context, ksize[3] == 1 && stride[3] == 1,
+        errors::Unimplemented(
+            "MaxPoolingGrad is not yet supported on the depth dimension."));
+
+    PoolParameters params{context,  ksize,       stride,
                           padding_, FORMAT_NHWC, tensor_in.shape()};
     Tensor* output = nullptr;
     OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
@@ -474,7 +563,7 @@
     //    tensor_out_as_matrix with the corresponding values in
     //    top_diff_as_matrix.
     auto shard = [&params, &in_mat, &out_mat, &top_diff_mat, &bottom_diff_mat](
-                     int64 start, int64 limit) {
+        int64 start, int64 limit) {
       const int32 depth = params.depth;
       const int32 in_rows = params.tensor_in_rows;
       const int32 in_cols = params.tensor_in_cols;
@@ -555,20 +644,22 @@
     OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
     OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
                 errors::InvalidArgument("Invalid data format"));
-    OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
-    OP_REQUIRES(context, ksize_.size() == 4,
-                errors::InvalidArgument("Sliding window ksize field must "
-                                        "specify 4 dimensions"));
-    OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
-    OP_REQUIRES(context, stride_.size() == 4,
-                errors::InvalidArgument("Sliding window strides field must "
-                                        "specify 4 dimensions"));
+    if (context->num_inputs() == 3) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window strides field must "
+                                          "specify 4 dimensions"));
+      const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N');
+      const int32 stride_n = GetTensorDim(stride_, data_format_, 'N');
+      OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+    }
     OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
-    const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N');
-    const int32 stride_n = GetTensorDim(stride_, data_format_, 'N');
-    OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
-                errors::Unimplemented(
-                    "Pooling is not yet supported on the batch dimension."));
   }
 
   void Compute(OpKernelContext* context) override {
@@ -590,7 +681,33 @@
     OP_REQUIRES_OK(context,
                    context->allocate_output(0, tensor_out.shape(), &output));
 
-    PoolParameters params{context,  ksize_,       stride_,
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+    if (context->num_inputs() == 5) {
+      const Tensor& tensor_ksize = context->input(3);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
+
+      const Tensor& tensor_stride = context->input(4);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window strides field must "
+                                        "specify 4 dimensions"));
+    const int32 ksize_n = GetTensorDim(ksize, data_format_, 'N');
+    const int32 stride_n = GetTensorDim(stride, data_format_, 'N');
+    OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+
+    PoolParameters params{context,  ksize,        stride,
                           padding_, data_format_, tensor_in.shape()};
 
     functor::MaxPoolGradBackwardNoMask<T>()(
@@ -670,6 +787,84 @@
 };
 
 template <typename Device, typename T>
+class MaxPoolingNoMaskV2Op : public OpKernel {
+ public:
+  explicit MaxPoolingNoMaskV2Op(OpKernelConstruction* context)
+      : OpKernel(context) {
+    string data_format;
+    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
+    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
+                errors::InvalidArgument("Invalid data format"));
+    OP_REQUIRES(
+        context, data_format_ == FORMAT_NHWC,
+        errors::InvalidArgument(
+            "Default MaxPoolingNoMaskOp only supports NHWC on device type ",
+            DeviceTypeString(context->device_type())));
+    if (context->num_inputs() == 1) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window stride field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+    }
+    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
+  }
+
+  void Compute(OpKernelContext* context) override {
+    const Tensor& tensor_in = context->input(0);
+
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+
+    if (context->num_inputs() != 1) {
+      const Tensor& tensor_ksize = context->input(1);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
+
+      const Tensor& tensor_stride = context->input(2);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window stride field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, ksize[0] == 1 && stride[0] == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+    PoolParameters params{context,  ksize,        stride,
+                          padding_, data_format_, tensor_in.shape()};
+    if (!context->status().ok()) {
+      return;
+    }
+
+    TensorShape out_shape({params.tensor_in_batch, params.out_height,
+                           params.out_width, params.depth});
+    Tensor* output = nullptr;
+    OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output));
+
+    LaunchMaxPoolingNoMask<Device, T>::launch(context, params, tensor_in,
+                                              output);
+  }
+
+ private:
+  std::vector<int32> ksize_;
+  std::vector<int32> stride_;
+  Padding padding_;
+  TensorFormat data_format_;
+};
+
+template <typename Device, typename T>
 struct LaunchMaxPoolingWithArgmax;
 
 template <typename Device, typename T>
@@ -879,6 +1074,95 @@
 };
 
 template <typename T>
+class MaxPoolingNoMaskV2Op<GPUDevice, T> : public OpKernel {
+ public:
+  typedef GPUDevice Device;
+  explicit MaxPoolingNoMaskV2Op(OpKernelConstruction* context)
+      : OpKernel(context) {
+    string data_format;
+    OP_REQUIRES_OK(context, context->GetAttr("data_format", &data_format));
+    OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
+                errors::InvalidArgument("Invalid data format"));
+    if (context->num_inputs() == 1) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window stride field must "
+                                          "specify 4 dimensions"));
+      const int32 ksize_n = GetTensorDim(ksize_, data_format_, 'N');
+      const int32 stride_n = GetTensorDim(stride_, data_format_, 'N');
+      OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+    }
+    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
+    use_dnn_ = CanUseCudnn();
+  }
+
+  void Compute(OpKernelContext* context) override {
+    const Tensor& tensor_in = context->input(0);
+
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+
+    if (context->num_inputs() != 1) {
+      const Tensor& tensor_ksize = context->input(1);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
+
+      const Tensor& tensor_stride = context->input(2);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window stride field must "
+                                        "specify 4 dimensions"));
+    const int32 ksize_n = GetTensorDim(ksize, data_format_, 'N');
+    const int32 stride_n = GetTensorDim(stride, data_format_, 'N');
+    OP_REQUIRES(context, ksize_n == 1 && stride_n == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+
+    PoolParameters params{context,  ksize,        stride,
+                          padding_, data_format_, tensor_in.shape()};
+    if (!context->status().ok()) {
+      return;
+    }
+
+    TensorShape out_shape =
+        ShapeFromFormat(data_format_, params.tensor_in_batch, params.out_height,
+                        params.out_width, params.depth);
+    if (use_dnn_ && data_format_ == FORMAT_NCHW) {
+      DnnPoolingOp<T>::Compute(
+          context, perftools::gputools::dnn::PoolingMode::kMaximum, ksize,
+          stride, padding_, data_format_, tensor_in, out_shape);
+    } else {
+      CHECK(data_format_ == FORMAT_NHWC)
+          << "Non-Cudnn MaxPool only supports NHWC format";
+      Tensor* output = nullptr;
+      OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output));
+      LaunchMaxPoolingNoMask<Device, T>::launch(context, params, tensor_in,
+                                                output);
+    }
+  }
+
+ private:
+  std::vector<int32> ksize_;
+  std::vector<int32> stride_;
+  Padding padding_;
+  TensorFormat data_format_;
+  bool use_dnn_;
+};
+
+template <typename T>
 struct LaunchMaxPoolingNoMask<Eigen::GpuDevice, T> {
   static void launch(OpKernelContext* context, const PoolParameters& params,
                      const Tensor& input, Tensor* output) {
@@ -969,13 +1253,28 @@
       MaxPoolingGradOp<D##Device, T>);                                   \
   REGISTER_KERNEL_BUILDER(                                               \
       Name("MaxPoolGradGrad").Device(DEVICE_##D).TypeConstraint<T>("T"), \
-      MaxPoolingGradGradOp<D##Device, T>);
+      MaxPoolingGradGradOp<D##Device, T>);                               \
+  REGISTER_KERNEL_BUILDER(Name("MaxPoolGradV2")                          \
+                              .Device(DEVICE_##D)                        \
+                              .HostMemory("ksize")                       \
+                              .HostMemory("strides")                     \
+                              .TypeConstraint<T>("T"),                   \
+                          MaxPoolingGradOp<D##Device, T>);               \
+  REGISTER_KERNEL_BUILDER(Name("MaxPoolGradGradV2")                      \
+                              .Device(DEVICE_##D)                        \
+                              .HostMemory("ksize")                       \
+                              .HostMemory("strides")                     \
+                              .TypeConstraint<T>("T"),                   \
+                          MaxPoolingGradGradOp<D##Device, T>);
 
 // Below kernels implemented only for CPU device.
-#define REGISTER_CPU_ONLY_POOL_KERNELS(T)                        \
-  REGISTER_KERNEL_BUILDER(                                       \
-      Name("MaxPool").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
-      MaxPoolingOp<CPUDevice, T>);
+#define REGISTER_CPU_ONLY_POOL_KERNELS(T)                          \
+  REGISTER_KERNEL_BUILDER(                                         \
+      Name("MaxPool").Device(DEVICE_CPU).TypeConstraint<T>("T"),   \
+      MaxPoolingOp<CPUDevice, T>);                                 \
+  REGISTER_KERNEL_BUILDER(                                         \
+      Name("MaxPoolV2").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
+      MaxPoolingV2Op<CPUDevice, T>);
 TF_CALL_REAL_NUMBER_TYPES(REGISTER_CPU_ONLY_POOL_KERNELS);
 #undef REGISTER_CPU_ONLY_POOL_KERNELS
 
@@ -1015,9 +1314,22 @@
                               .TypeConstraint<T>("T")                \
                               .Label("eigen_tensor"),                \
                           MaxPoolingOp<GPUDevice, T>);               \
+  REGISTER_KERNEL_BUILDER(Name("MaxPoolV2")                          \
+                              .Device(DEVICE_GPU)                    \
+                              .HostMemory("ksize")                   \
+                              .HostMemory("strides")                 \
+                              .TypeConstraint<T>("T")                \
+                              .Label("eigen_tensor"),                \
+                          MaxPoolingV2Op<GPUDevice, T>);             \
   REGISTER_KERNEL_BUILDER(                                           \
       Name("MaxPool").Device(DEVICE_GPU).TypeConstraint<T>("T"),     \
       MaxPoolingNoMaskOp<GPUDevice, T>);                             \
+  REGISTER_KERNEL_BUILDER(Name("MaxPoolV2")                          \
+                              .Device(DEVICE_GPU)                    \
+                              .HostMemory("ksize")                   \
+                              .HostMemory("strides")                 \
+                              .TypeConstraint<T>("T"),               \
+                          MaxPoolingNoMaskV2Op<GPUDevice, T>);       \
   REGISTER_KERNEL_BUILDER(Name("MaxPoolWithArgmax")                  \
                               .Device(DEVICE_GPU)                    \
                               .TypeConstraint<int64>("Targmax")      \
diff --git a/tensorflow/core/kernels/mkl_conv_grad_filter_ops.cc b/tensorflow/core/kernels/mkl_conv_grad_filter_ops.cc
index 3b23c72..f81a448 100644
--- a/tensorflow/core/kernels/mkl_conv_grad_filter_ops.cc
+++ b/tensorflow/core/kernels/mkl_conv_grad_filter_ops.cc
@@ -206,15 +206,10 @@
     // Mkl needs the entities in its native format.
     // So create temporary tensors along with buffers to
     // convert the received entities.
-    Tensor mkl_tmp_input_buf_tensor, mkl_tmp_out_backprop_buf_tensor,
-           mkl_tmp_buf_trans_input;
+    Tensor mkl_tmp_input_buf_tensor, mkl_tmp_out_backprop_buf_tensor;
     // This preparation sets (1) dnnResourceSrc (2) dnnResourceDiffDst
-    mkl_context.MklPrepareInputs(context, data_format_,
-                                 input_in_mkl_format,
-                                 out_backprop_in_mkl_format,
-                                 &mkl_tmp_input_buf_tensor,
-                                 &mkl_tmp_out_backprop_buf_tensor,
-                                 &mkl_tmp_buf_trans_input);
+    mkl_context.MklPrepareInputs(context, &mkl_tmp_input_buf_tensor,
+                                 &mkl_tmp_out_backprop_buf_tensor);
 
     // Final conv-grad-filter should be in TF layout.
     Tensor* grad_filter;
@@ -312,58 +307,34 @@
 
     // Compare incoming tensor layouts with MKL preferred layouts and convert
     // data to the preferred layout if necessary
-    void MklPrepareInputs(OpKernelContext* context, TensorFormat format,
-                          bool input_in_mkl_format,
-                          bool out_backprop_in_mkl_format,
+    void MklPrepareInputs(OpKernelContext* context,
                           Tensor* mkl_tmp_input_buf_tensor,
-                          Tensor* mkl_tmp_out_backprop_buf_tensor,
-                          Tensor* mkl_tmp_buf_trans_input) {
+                          Tensor* mkl_tmp_out_backprop_buf_tensor) {
       bool mkl_convert_input, mkl_convert_out_backprop;
       dnnPrimitive_t mkl_prim_convert_input, mkl_prim_convert_out_backprop;
-      dnnLayout_t mkl_lt_internal_input, mkl_lt_internal_out_backprop,
-                  mkl_lt_trans_input;
+      dnnLayout_t mkl_lt_internal_input, mkl_lt_internal_out_backprop;
       void *mkl_buf_convert_input, *mkl_buf_convert_out_backprop;
-      void *mkl_buf_input, *mkl_buf_out_backprop;
 
       mkl_prim_convert_input = nullptr;
       mkl_prim_convert_out_backprop = nullptr;
       mkl_lt_internal_input = nullptr;
       mkl_lt_internal_out_backprop = nullptr;
-      mkl_lt_trans_input = nullptr;
       mkl_buf_convert_input = nullptr;
       mkl_buf_convert_out_backprop = nullptr;
-      mkl_buf_input = nullptr;
-      mkl_buf_out_backprop = nullptr;
 
       // Compare with internal layouts and convert if needed
       const Tensor& input = MklGetInput(context, 0);
-      if (!input_in_mkl_format && format == FORMAT_NHWC){
-        TensorShape nchw_shape = ShapeFromFormat(FORMAT_NCHW,
-            in_sizes[MklDims::N], in_sizes[MklDims::H],
-            in_sizes[MklDims::W], in_sizes[MklDims::C]);
-        OP_REQUIRES_OK(context, context->allocate_temp(
-            DataTypeToEnum<float>::value, nchw_shape, mkl_tmp_buf_trans_input));
-        MklNHWCToNCHW(input, &mkl_tmp_buf_trans_input);
-        mkl_buf_input = const_cast<void*>(static_cast<const void*>(
-            mkl_tmp_buf_trans_input->flat<float>().data()));
-        size_t strides[4];
-        GetStridesFromSizes(FORMAT_NCHW, strides, in_sizes);
-        CHECK_EQ(dnnLayoutCreate_F32(&mkl_lt_trans_input, in_dims, in_sizes,
-            strides), E_SUCCESS);
-      }
-      else {
-        mkl_buf_input =
-            const_cast<void*>(static_cast<const void*>(input.flat<T>().data()));
-        mkl_lt_trans_input = lt_input;
-      }
+      void* mkl_buf_input =
+          const_cast<void*>(static_cast<const void*>(input.flat<T>().data()));
       CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(
                    &mkl_lt_internal_input, prim_conv_bwdfilter, dnnResourceSrc),
                E_SUCCESS);
       mkl_convert_input =
-          !dnnLayoutCompare_F32(mkl_lt_internal_input, mkl_lt_trans_input);
+          !dnnLayoutCompare_F32(mkl_lt_internal_input, lt_input);
       if (mkl_convert_input) {
-        CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_input,
-                     mkl_lt_trans_input, mkl_lt_internal_input), E_SUCCESS);
+        CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_input, lt_input,
+                                         mkl_lt_internal_input),
+                 E_SUCCESS);
         AllocTmpBuffer(context, mkl_tmp_input_buf_tensor, mkl_lt_internal_input,
                        &mkl_buf_convert_input);
         CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_input, mkl_buf_input,
@@ -372,30 +343,26 @@
         dnnDelete_F32(mkl_prim_convert_input);
       }
       dnnLayoutDelete_F32(mkl_lt_internal_input);
-      if (!input_in_mkl_format && format == FORMAT_NHWC)
-        dnnLayoutDelete_F32(mkl_lt_trans_input);
-
 
       conv_res[dnnResourceSrc] =
           (mkl_convert_input) ? mkl_buf_convert_input : mkl_buf_input;
 
       const Tensor& out_backprop = MklGetInput(context, 2);
-      mkl_buf_out_backprop = const_cast<void*>(
-                      static_cast<const void*>(out_backprop.flat<T>().data()));
+      void* mkl_buf_out_backprop = const_cast<void*>(static_cast<const void*>(
+                                      out_backprop.flat<T>().data()));
 
       CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_out_backprop,
                                                 prim_conv_bwdfilter,
                                                 dnnResourceDiffDst),
                E_SUCCESS);
       mkl_convert_out_backprop =
-          !dnnLayoutCompare_F32(mkl_lt_internal_out_backprop,
-                                lt_out_backprop);
+          !dnnLayoutCompare_F32(mkl_lt_internal_out_backprop, lt_out_backprop);
       if (mkl_convert_out_backprop) {
         CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_out_backprop,
                       lt_out_backprop, mkl_lt_internal_out_backprop),
                  E_SUCCESS);
         AllocTmpBuffer(context, mkl_tmp_out_backprop_buf_tensor,
-            mkl_lt_internal_out_backprop, &mkl_buf_convert_out_backprop);
+            lt_out_backprop, &mkl_buf_convert_out_backprop);
         CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_out_backprop,
                                           mkl_buf_out_backprop,
                                           mkl_buf_convert_out_backprop),
diff --git a/tensorflow/core/kernels/mkl_conv_ops.cc b/tensorflow/core/kernels/mkl_conv_ops.cc
index 45d2255..203e694 100644
--- a/tensorflow/core/kernels/mkl_conv_ops.cc
+++ b/tensorflow/core/kernels/mkl_conv_ops.cc
@@ -272,13 +272,11 @@
 
     // Temp tensor used to allocate tmp buffers
     Tensor mkl_tmp_input_buf_tensor, mkl_tmp_filter_buf_tensor,
-        mkl_tmp_bias_buf_tensor, mkl_tmp_buf_trans_input;
-    mkl_context.MklPrepareConvolutionInputs(context, data_format_,
-                                            input_in_mkl_format,
+        mkl_tmp_bias_buf_tensor;
+    mkl_context.MklPrepareConvolutionInputs(context,
                                             &mkl_tmp_input_buf_tensor,
                                             &mkl_tmp_filter_buf_tensor,
-                                            &mkl_tmp_bias_buf_tensor,
-                                            &mkl_tmp_buf_trans_input);
+                                            &mkl_tmp_bias_buf_tensor);
 
     // Execute convolution
     CHECK_EQ(dnnExecute_F32(mkl_context.prim_fwd, mkl_context.conv_res),
@@ -329,59 +327,38 @@
     // Compare incoming tensor layouts with MKL preferred layouts and convert
     // data to the preferred layout if necessary
     void MklPrepareConvolutionInputs(OpKernelContext* context,
-                                     TensorFormat format,
-                                     bool input_in_mkl_format,
                                      Tensor* mkl_tmp_input_buf_tensor,
                                      Tensor* mkl_tmp_filter_buf_tensor,
-                                     Tensor* mkl_tmp_bias_buf_tensor,
-                                     Tensor* mkl_tmp_buf_trans_input) {
+                                     Tensor* mkl_tmp_bias_buf_tensor) {
       bool mkl_convert_input, mkl_convert_filter, mkl_convert_bias;
       dnnPrimitive_t mkl_prim_convert_filter, mkl_prim_convert_bias,
           mkl_prim_convert_input;
       dnnLayout_t mkl_lt_internal_filter, mkl_lt_internal_bias,
-          mkl_lt_internal_input, mkl_lt_trans_input;
+          mkl_lt_internal_input;
       void *mkl_buf_convert_input, *mkl_buf_convert_filter,
-          *mkl_buf_convert_bias, *mkl_buf_input;
+          *mkl_buf_convert_bias;
       mkl_prim_convert_filter = nullptr;
       mkl_prim_convert_bias = nullptr;
       mkl_prim_convert_input = nullptr;
       mkl_lt_internal_filter = nullptr;
       mkl_lt_internal_bias = nullptr;
       mkl_lt_internal_input = nullptr;
-      mkl_lt_trans_input = nullptr;
       mkl_buf_convert_input = nullptr;
       mkl_buf_convert_filter = nullptr;
       mkl_buf_convert_bias = nullptr;
-      mkl_buf_input = nullptr;
 
       // Compare with internal layouts and convert if needed
       const Tensor& input = MklGetInput(context, 0);
-      if (!input_in_mkl_format && format == FORMAT_NHWC) {
-        TensorShape nchw_shape = ShapeFromFormat(FORMAT_NCHW,
-            in_sizes[MklDims::N], in_sizes[MklDims::H],
-            in_sizes[MklDims::W], in_sizes[MklDims::C]);
-        OP_REQUIRES_OK(context, context->allocate_temp(
-            DataTypeToEnum<float>::value, nchw_shape, mkl_tmp_buf_trans_input));
-        MklNHWCToNCHW(input, &mkl_tmp_buf_trans_input);
-        mkl_buf_input = const_cast<void*>(static_cast<const void*>(
-            mkl_tmp_buf_trans_input->flat<float>().data()));
-        size_t strides[4];
-        GetStridesFromSizes(FORMAT_NCHW, strides, in_sizes);
-        CHECK_EQ(dnnLayoutCreate_F32(&mkl_lt_trans_input, in_dims, in_sizes,
-            strides), E_SUCCESS);
-      } else {
-          mkl_buf_input = const_cast<void*>(
-                              static_cast<const void*>(input.flat<T>().data()));
-          mkl_lt_trans_input = lt_input;
-      }
+      void* mkl_buf_input =
+          const_cast<void*>(static_cast<const void*>(input.flat<T>().data()));
       CHECK_EQ(dnnLayoutCreateFromPrimitive_F32(&mkl_lt_internal_input,
                                                 prim_fwd, dnnResourceSrc),
                E_SUCCESS);
       mkl_convert_input =
-          !dnnLayoutCompare_F32(mkl_lt_internal_input, mkl_lt_trans_input);
+          !dnnLayoutCompare_F32(mkl_lt_internal_input, lt_input);
       if (mkl_convert_input) {
         CHECK_EQ(dnnConversionCreate_F32(&mkl_prim_convert_input,
-                 mkl_lt_trans_input, mkl_lt_internal_input), E_SUCCESS);
+                 lt_input, mkl_lt_internal_input), E_SUCCESS);
         AllocTmpBuffer(context, mkl_tmp_input_buf_tensor, mkl_lt_internal_input,
                        &mkl_buf_convert_input);
         CHECK_EQ(dnnConversionExecute_F32(mkl_prim_convert_input, mkl_buf_input,
@@ -390,8 +367,6 @@
         dnnDelete_F32(mkl_prim_convert_input);
       }
       dnnLayoutDelete_F32(mkl_lt_internal_input);
-      if (!input_in_mkl_format && format == FORMAT_NHWC)
-        dnnLayoutDelete_F32(mkl_lt_trans_input);
 
       conv_res[dnnResourceSrc] =
           (mkl_convert_input) ? mkl_buf_convert_input : mkl_buf_input;
diff --git a/tensorflow/core/kernels/mkl_tfconv_op.cc b/tensorflow/core/kernels/mkl_tfconv_op.cc
index c8e5df3..b48c735 100644
--- a/tensorflow/core/kernels/mkl_tfconv_op.cc
+++ b/tensorflow/core/kernels/mkl_tfconv_op.cc
@@ -83,42 +83,16 @@
     OP_REQUIRES_OK(context,
                    context->allocate_output(0, output_shape, &output_tensor));
 
-    // If data format is NHWC, transform MKL tensor to NCHW format and then
-    // do NCHW -> NHWC.
-    dnnLayout_t lt_trans_input = nullptr;
-    Tensor mkl_tmp_trans_input_buf_tensor;
-    void* buf_trans_input = nullptr;
-    bool input_fmt_nhwc = input_shape.IsTensorInNHWCFormat();
-    if (input_fmt_nhwc && ndims == 4 && has_avx512f_) {
-      size_t strides_nchw[4];
-      GetStridesFromSizes(FORMAT_NCHW, strides_nchw, in_sizes);
-      CHECK_EQ(
-          dnnLayoutCreate_F32(&lt_trans_input, ndims, in_sizes, strides_nchw),
-          E_SUCCESS);
-      AllocTmpBuffer(context, &mkl_tmp_trans_input_buf_tensor, lt_trans_input,
-                     &buf_trans_input);
-    } else {
-      lt_trans_input = static_cast<dnnLayout_t>(input_shape.GetTfLayout());
-      buf_trans_input =
-          static_cast<void*>(const_cast<T*>(output_tensor->flat<T>().data()));
-    }
-
+    dnnLayout_t output_layout =
+        static_cast<dnnLayout_t>(input_shape.GetTfLayout());
     // Execute DNNConversion.
     void* input_buffer =
         static_cast<void*>(const_cast<T*>(input_tensor.flat<T>().data()));
-    input_shape.GetConvertedFlatData(lt_trans_input, input_buffer,
-                                     buf_trans_input);
-    // NCHW -> NHWC, if data format is NHWC
-    if (input_fmt_nhwc && ndims == 4 && has_avx512f_) {
-      dnnLayoutDelete_F32(lt_trans_input);
-      TensorShape nhwc_shape = ShapeFromFormat(
-          FORMAT_NHWC, in_sizes[MklDims::N], in_sizes[MklDims::H],
-          in_sizes[MklDims::W], in_sizes[MklDims::C]);
-      MklNCHWToNHWC(mkl_tmp_trans_input_buf_tensor, &output_tensor);
-    }
-
     delete[] in_sizes;
-
+    void* output_buffer =
+        static_cast<void*>(const_cast<T*>(output_tensor->flat<T>().data()));
+    input_shape.GetConvertedFlatData(output_layout, input_buffer,
+                                     output_buffer);
     VLOG(1) << "MKLToTFConversion complete successfully.";
   }
 
diff --git a/tensorflow/core/kernels/pack_op.cc b/tensorflow/core/kernels/pack_op.cc
index 75820e3..814128d 100644
--- a/tensorflow/core/kernels/pack_op.cc
+++ b/tensorflow/core/kernels/pack_op.cc
@@ -158,6 +158,7 @@
 
 TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU);
 TF_CALL_int64(REGISTER_GPU);
+REGISTER_GPU(bool);
 #undef REGISTER_GPU
 
 // A special GPU kernel for int32.
diff --git a/tensorflow/core/kernels/pooling_ops_common.h b/tensorflow/core/kernels/pooling_ops_common.h
index 2c097c0..1b59c18 100644
--- a/tensorflow/core/kernels/pooling_ops_common.h
+++ b/tensorflow/core/kernels/pooling_ops_common.h
@@ -69,6 +69,8 @@
 };
 
 // An implementation of MaxPooling (forward).
+// TODO (yongtang): Remove MaxPoolingOp and use MaxPoolingV2Op,
+//     QuantizedMaxPoolingOp depends on MaxPoolingOp so keep intact for now
 template <typename Device, typename T>
 class MaxPoolingOp : public OpKernel {
  public:
@@ -255,6 +257,219 @@
 };
 
 template <typename Device, typename T>
+class MaxPoolingV2Op : public OpKernel {
+ public:
+  explicit MaxPoolingV2Op(OpKernelConstruction* context) : OpKernel(context) {
+    string data_format;
+    auto status = context->GetAttr("data_format", &data_format);
+    if (status.ok()) {
+      OP_REQUIRES(context, FormatFromString(data_format, &data_format_),
+                  errors::InvalidArgument("Invalid data format"));
+      OP_REQUIRES(
+          context, data_format_ == FORMAT_NHWC,
+          errors::InvalidArgument("Default MaxPoolingOp only supports NHWC."));
+    } else {
+      data_format_ = FORMAT_NHWC;
+    }
+    if (context->num_inputs() == 1) {
+      OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_));
+      OP_REQUIRES(context, ksize_.size() == 4,
+                  errors::InvalidArgument("Sliding window ksize field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_));
+      OP_REQUIRES(context, stride_.size() == 4,
+                  errors::InvalidArgument("Sliding window stride field must "
+                                          "specify 4 dimensions"));
+      OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1,
+                  errors::Unimplemented(
+                      "Pooling is not yet supported on the batch dimension."));
+    }
+    OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_));
+  }
+
+  void Compute(OpKernelContext* context) override {
+    const Tensor& tensor_in = context->input(0);
+
+    std::vector<int32> ksize = ksize_;
+    std::vector<int32> stride = stride_;
+
+    if (context->num_inputs() != 1) {
+      const Tensor& tensor_ksize = context->input(1);
+      auto value_ksize = tensor_ksize.flat<int32>();
+      ksize.resize(tensor_ksize.shape().num_elements());
+      std::copy_n(&value_ksize(0), ksize.size(), ksize.begin());
+
+      const Tensor& tensor_stride = context->input(2);
+      auto value_stride = tensor_stride.flat<int32>();
+      stride.resize(tensor_stride.shape().num_elements());
+      std::copy_n(&value_stride(0), stride.size(), stride.begin());
+    }
+
+    OP_REQUIRES(context, ksize.size() == 4,
+                errors::InvalidArgument("Sliding window ksize field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, stride.size() == 4,
+                errors::InvalidArgument("Sliding window stride field must "
+                                        "specify 4 dimensions"));
+    OP_REQUIRES(context, ksize[0] == 1 && stride[0] == 1,
+                errors::Unimplemented(
+                    "Pooling is not yet supported on the batch dimension."));
+
+    PoolParameters params{context,  ksize,       stride,
+                          padding_, FORMAT_NHWC, tensor_in.shape()};
+    if (!context->status().ok()) {
+      return;
+    }
+
+    Tensor* output = nullptr;
+    OP_REQUIRES_OK(context, context->allocate_output(
+                                0, params.forward_output_shape(), &output));
+
+    if (params.depth_window > 1) {
+      // Validate spec against the current implementation.  A
+      // relaxation of these requirements would be ideal.
+      OP_REQUIRES(context, params.depth % params.depth_window == 0,
+                  errors::Unimplemented(
+                      "Depthwise max pooling requires "
+                      "the depth window to evenly divide the input depth."));
+      OP_REQUIRES(
+          context, params.depth_window == params.depth_stride,
+          errors::Unimplemented("Depthwise max pooling requires "
+                                "the depth window to equal the depth stride."));
+
+      DepthwiseMaxPool(context, output, tensor_in, params);
+    } else {
+      SpatialMaxPool(context, output, tensor_in, params, padding_);
+    }
+  }
+
+ private:
+  // Single-threaded implementation of DepthwiseMaxPool which
+  // does not handle all of the same options as SpatialMaxPool
+  // (strict assumptions on no padding, stride).
+  //
+  // TODO(vrv): implement a more general depthwise-max pool that works
+  // on GPU as well.
+  void DepthwiseMaxPool(OpKernelContext* context, Tensor* output,
+                        const Tensor& tensor_in, const PoolParameters& params) {
+    Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
+        in_by_pool(tensor_in.flat<T>().data(), params.depth_window,
+                   tensor_in.NumElements() / params.depth_window);
+    Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>> out_by_pool(
+        output->flat<T>().data(), 1, output->NumElements());
+    out_by_pool = in_by_pool.colwise().maxCoeff();
+  }
+
+  void SpatialMaxPool(OpKernelContext* context, Tensor* output,
+                      const Tensor& tensor_in, const PoolParameters& params,
+                      const Padding& padding) {
+    // On GPU, use Eigen's Spatial Max Pooling.  On CPU, use an
+    // EigenMatrix version that is currently faster than Eigen's
+    // Spatial MaxPooling implementation.
+    //
+    // TODO(vrv): Remove this once we no longer need it.
+    if (std::is_same<Device, GPUDevice>::value) {
+      Eigen::PaddingType pt = BrainPadding2EigenPadding(padding);
+      functor::SpatialMaxPooling<Device, T>()(
+          context->eigen_device<Device>(), output->tensor<T, 4>(),
+          tensor_in.tensor<T, 4>(), params.window_rows, params.window_cols,
+          params.row_stride, params.col_stride, pt);
+    } else {
+      typedef Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
+          ConstEigenMatrixMap;
+      typedef Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
+          EigenMatrixMap;
+
+      ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), params.depth,
+                                 params.tensor_in_cols * params.tensor_in_rows *
+                                     params.tensor_in_batch);
+      EigenMatrixMap out_mat(
+          output->flat<T>().data(), params.depth,
+          params.out_width * params.out_height * params.tensor_in_batch);
+
+      const DeviceBase::CpuWorkerThreads& worker_threads =
+          *(context->device()->tensorflow_cpu_worker_threads());
+
+      // The following code basically does the following:
+      // 1. Flattens the input and output tensors into two dimensional arrays.
+      //    tensor_in_as_matrix:
+      //      depth by (tensor_in_cols * tensor_in_rows * tensor_in_batch)
+      //    output_as_matrix:
+      //      depth by (out_width * out_height * tensor_in_batch)
+      //
+      // 2. Walks through the set of columns in the flattened
+      // tensor_in_as_matrix,
+      //    and updates the corresponding column(s) in output_as_matrix with the
+      //    max value.
+      auto shard = [&params, &in_mat, &out_mat](int64 start, int64 limit) {
+
+        const int32 in_rows = params.tensor_in_rows;
+        const int32 in_cols = params.tensor_in_cols;
+        const int32 pad_rows = params.pad_rows;
+        const int32 pad_cols = params.pad_cols;
+        const int32 window_rows = params.window_rows;
+        const int32 window_cols = params.window_cols;
+        const int32 row_stride = params.row_stride;
+        const int32 col_stride = params.col_stride;
+        const int32 out_height = params.out_height;
+        const int32 out_width = params.out_width;
+
+        {
+          // Initializes the output tensor with MIN<T>.
+          const int32 output_image_size = out_height * out_width * params.depth;
+          EigenMatrixMap out_shard(out_mat.data() + start * output_image_size,
+                                   1, (limit - start) * output_image_size);
+          out_shard.setConstant(Eigen::NumTraits<T>::lowest());
+        }
+
+        for (int32 b = start; b < limit; ++b) {
+          const int32 out_offset_batch = b * out_height;
+          for (int32 h = 0; h < in_rows; ++h) {
+            for (int32 w = 0; w < in_cols; ++w) {
+              // (h_start, h_end) * (w_start, w_end) is the range that the input
+              // vector projects to.
+              const int32 hpad = h + pad_rows;
+              const int32 wpad = w + pad_cols;
+              const int32 h_start = (hpad < window_rows)
+                                        ? 0
+                                        : (hpad - window_rows) / row_stride + 1;
+              const int32 h_end = std::min(hpad / row_stride + 1, out_height);
+              const int32 w_start = (wpad < window_cols)
+                                        ? 0
+                                        : (wpad - window_cols) / col_stride + 1;
+              const int32 w_end = std::min(wpad / col_stride + 1, out_width);
+              // compute elementwise max
+              const int32 in_offset = (b * in_rows + h) * in_cols + w;
+              for (int32 ph = h_start; ph < h_end; ++ph) {
+                const int32 out_offset_base =
+                    (out_offset_batch + ph) * out_width;
+                for (int32 pw = w_start; pw < w_end; ++pw) {
+                  const int32 out_offset = out_offset_base + pw;
+                  out_mat.col(out_offset) =
+                      out_mat.col(out_offset).cwiseMax(in_mat.col(in_offset));
+                }
+              }
+            }
+          }
+        }
+      };
+
+      // TODO(andydavis) Consider sharding across batch x rows x cols.
+      // TODO(andydavis) Consider a higher resolution shard cost model.
+      const int64 shard_cost =
+          params.tensor_in_rows * params.tensor_in_cols * params.depth;
+      Shard(worker_threads.num_threads, worker_threads.workers,
+            params.tensor_in_batch, shard_cost, shard);
+    }
+  }
+
+  std::vector<int32> ksize_;
+  std::vector<int32> stride_;
+  Padding padding_;
+  TensorFormat data_format_;
+};
+
+template <typename Device, typename T>
 void SpatialAvgPool(OpKernelContext* context, Tensor* output,
                     const Tensor& input, const PoolParameters& params,
                     const Padding& padding) {
diff --git a/tensorflow/core/kernels/qr_op_impl.h b/tensorflow/core/kernels/qr_op_impl.h
index 029ef83..ab664fa 100644
--- a/tensorflow/core/kernels/qr_op_impl.h
+++ b/tensorflow/core/kernels/qr_op_impl.h
@@ -20,6 +20,10 @@
 // improve compilation times.
 #include <algorithm>
 
+#ifdef INTEL_MKL
+#define EIGEN_USE_MKL_ALL
+#endif // INTEL_MKL
+
 #include "third_party/eigen3/Eigen/QR"
 #include "tensorflow/core/framework/kernel_def_builder.h"
 #include "tensorflow/core/framework/op_kernel.h"
diff --git a/tensorflow/core/kernels/reshape_op.cc b/tensorflow/core/kernels/reshape_op.cc
index 04454b7..16db8a6 100644
--- a/tensorflow/core/kernels/reshape_op.cc
+++ b/tensorflow/core/kernels/reshape_op.cc
@@ -32,6 +32,7 @@
                               .TypeConstraint<int32>("Tshape"), \
                           ReshapeOp);
 TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL);
+REGISTER_GPU_KERNEL(bool);
 #undef REGISTER_GPU_KERNEL
 
 #ifdef TENSORFLOW_USE_SYCL
diff --git a/tensorflow/core/kernels/sparse_matmul_op.h b/tensorflow/core/kernels/sparse_matmul_op.h
index 098b2d6..308b641 100644
--- a/tensorflow/core/kernels/sparse_matmul_op.h
+++ b/tensorflow/core/kernels/sparse_matmul_op.h
@@ -153,6 +153,32 @@
 }
 #endif
 
+#if defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX)
+// Return a packet with the first value of the input Packet replicated
+template <>
+EIGEN_STRONG_INLINE Packet4f pbroadcast_first<Packet4f>(const Packet4f& a) {
+  return vec_splat (a, 0);
+}
+
+// Return a packet with the second value of the input Packet replicated
+template <>
+EIGEN_STRONG_INLINE Packet4f pbroadcast_second<Packet4f>(const Packet4f& a) {
+  return vec_splat (a, 1);
+}
+
+// Return a packet with the third value of the input Packet replicated
+template <>
+EIGEN_STRONG_INLINE Packet4f pbroadcast_third<Packet4f>(const Packet4f& a) {
+  return vec_splat (a, 2);
+}
+
+// Return a packet with the fourth value of the input Packet replicated
+template <>
+EIGEN_STRONG_INLINE Packet4f pbroadcast_fourth<Packet4f>(const Packet4f& a) {
+  return vec_splat (a, 3);
+}
+#endif
+
 #ifdef EIGEN_VECTORIZE_SSE2
 // For PacketSize of 4 floats the Packet is not modified
 template <>
diff --git a/tensorflow/core/kernels/tile_ops.cc b/tensorflow/core/kernels/tile_ops.cc
index f1da3c8..c49ebc06 100644
--- a/tensorflow/core/kernels/tile_ops.cc
+++ b/tensorflow/core/kernels/tile_ops.cc
@@ -538,6 +538,12 @@
                         TileOp<GPUDevice>);
 REGISTER_KERNEL_BUILDER(Name("Tile")
                             .Device(DEVICE_GPU)
+                            .TypeConstraint<int32>("T")
+                            .TypeConstraint<int32>("Tmultiples")
+                            .HostMemory("multiples"),
+                        TileOp<GPUDevice>);
+REGISTER_KERNEL_BUILDER(Name("Tile")
+                            .Device(DEVICE_GPU)
                             .TypeConstraint<complex64>("T")
                             .TypeConstraint<int32>("Tmultiples")
                             .HostMemory("multiples"),
@@ -575,6 +581,12 @@
                         TileGradientOp<GPUDevice>);
 REGISTER_KERNEL_BUILDER(Name("TileGrad")
                             .Device(DEVICE_GPU)
+                            .TypeConstraint<int32>("T")
+                            .TypeConstraint<int32>("Tmultiples")
+                            .HostMemory("multiples"),
+                        TileGradientOp<GPUDevice>);
+REGISTER_KERNEL_BUILDER(Name("TileGrad")
+                            .Device(DEVICE_GPU)
                             .TypeConstraint<complex64>("T")
                             .TypeConstraint<int32>("Tmultiples")
                             .HostMemory("multiples"),
diff --git a/tensorflow/core/kernels/unique_op.cc b/tensorflow/core/kernels/unique_op.cc
index 6e51696..701c5f6 100644
--- a/tensorflow/core/kernels/unique_op.cc
+++ b/tensorflow/core/kernels/unique_op.cc
@@ -26,7 +26,7 @@
 
 typedef Eigen::ThreadPoolDevice CPUDevice;
 
-template <typename T>
+template <typename T, typename TIndex>
 class UniqueOp : public OpKernel {
  public:
   explicit UniqueOp(OpKernelConstruction* context) : OpKernel(context) {}
@@ -48,9 +48,9 @@
     Tensor* idx = nullptr;
     OP_REQUIRES_OK(context, context->forward_input_or_allocate_output(
                                 {0}, 1, input.shape(), &idx));
-    auto idx_vec = idx->template vec<int32>();
+    auto idx_vec = idx->template vec<TIndex>();
 
-    std::unordered_map<T, int32> uniq;
+    std::unordered_map<T, TIndex> uniq;
     uniq.reserve(2 * N);
     for (int64 i = 0, j = 0; i < N; ++i) {
       auto it = uniq.insert(std::make_pair(Tin(i), j));
@@ -72,7 +72,7 @@
     if (num_outputs() > 2) {
       OP_REQUIRES_OK(context, context->allocate_output(
                                   2, TensorShape({uniq_size}), &output));
-      auto count_output_vec = output->template vec<int32>();
+      auto count_output_vec = output->template vec<TIndex>();
       count_output_vec.setZero();
       for (int64 i = 0; i < N; ++i) {
         count_output_vec(idx_vec(i))++;
@@ -86,12 +86,22 @@
                               .Device(DEVICE_CPU)                \
                               .TypeConstraint<type>("T")         \
                               .TypeConstraint<int32>("out_idx"), \
-                          UniqueOp<type>);                       \
+                          UniqueOp<type, int32>);                \
+  REGISTER_KERNEL_BUILDER(Name("Unique")                         \
+                              .Device(DEVICE_CPU)                \
+                              .TypeConstraint<type>("T")         \
+                              .TypeConstraint<int64>("out_idx"), \
+                          UniqueOp<type, int64>);                \
   REGISTER_KERNEL_BUILDER(Name("UniqueWithCounts")               \
                               .Device(DEVICE_CPU)                \
                               .TypeConstraint<type>("T")         \
                               .TypeConstraint<int32>("out_idx"), \
-                          UniqueOp<type>)
+                          UniqueOp<type, int32>)                 \
+  REGISTER_KERNEL_BUILDER(Name("UniqueWithCounts")               \
+                              .Device(DEVICE_CPU)                \
+                              .TypeConstraint<type>("T")         \
+                              .TypeConstraint<int64>("out_idx"), \
+                          UniqueOp<type, int64>)
 TF_CALL_REAL_NUMBER_TYPES(REGISTER_UNIQUE);
 REGISTER_UNIQUE(string)
 #undef REGISTER_UNIQUE
@@ -107,7 +117,15 @@
                             .HostMemory("x")
                             .HostMemory("y")
                             .HostMemory("idx"),
-                        UniqueOp<int32>);
+                        UniqueOp<int32, int32>);
+REGISTER_KERNEL_BUILDER(Name("Unique")
+                            .Device(DEVICE_GPU)
+                            .TypeConstraint<int32>("T")
+                            .TypeConstraint<int64>("out_idx")
+                            .HostMemory("x")
+                            .HostMemory("y")
+                            .HostMemory("idx"),
+                        UniqueOp<int32, int64>);
 REGISTER_KERNEL_BUILDER(Name("Unique")
                             .Device(DEVICE_GPU)
                             .TypeConstraint<int64>("T")
@@ -115,7 +133,15 @@
                             .HostMemory("x")
                             .HostMemory("y")
                             .HostMemory("idx"),
-                        UniqueOp<int64>);
+                        UniqueOp<int64, int32>);
+REGISTER_KERNEL_BUILDER(Name("Unique")
+                            .Device(DEVICE_GPU)
+                            .TypeConstraint<int64>("T")
+                            .TypeConstraint<int64>("out_idx")
+                            .HostMemory("x")
+                            .HostMemory("y")
+                            .HostMemory("idx"),
+                        UniqueOp<int64, int64>);
 
 #ifdef TENSORFLOW_USE_SYCL
 REGISTER_KERNEL_BUILDER(Name("Unique")
@@ -125,7 +151,7 @@
                             .HostMemory("x")
                             .HostMemory("y")
                             .HostMemory("idx"),
-                        UniqueOp<int32>);
+                        UniqueOp<int32, int32>);
 REGISTER_KERNEL_BUILDER(Name("Unique")
                             .Device(DEVICE_SYCL)
                             .TypeConstraint<int64>("T")
@@ -133,6 +159,22 @@
                             .HostMemory("x")
                             .HostMemory("y")
                             .HostMemory("idx"),
-                        UniqueOp<int64>);
+                        UniqueOp<int64, int32>);
+REGISTER_KERNEL_BUILDER(Name("Unique")
+                            .Device(DEVICE_SYCL)
+                            .TypeConstraint<int32>("T")
+                            .TypeConstraint<int64>("out_idx")
+                            .HostMemory("x")
+                            .HostMemory("y")
+                            .HostMemory("idx"),
+                        UniqueOp<int32, int64>);
+REGISTER_KERNEL_BUILDER(Name("Unique")
+                            .Device(DEVICE_SYCL)
+                            .TypeConstraint<int64>("T")
+                            .TypeConstraint<int64>("out_idx")
+                            .HostMemory("x")
+                            .HostMemory("y")
+                            .HostMemory("idx"),
+                        UniqueOp<int64, int64>);
 #endif // TENSORFLOW_USE_SYCL
 }  // namespace tensorflow
diff --git a/tensorflow/core/kernels/unpack_op.cc b/tensorflow/core/kernels/unpack_op.cc
index c3bebfc..7fd1def 100644
--- a/tensorflow/core/kernels/unpack_op.cc
+++ b/tensorflow/core/kernels/unpack_op.cc
@@ -69,6 +69,8 @@
                                  std::numeric_limits<Eigen::DenseIndex>::max()),
         errors::InvalidArgument("output size must fit in Eigen DenseIndex"));
 
+// This optimization is currently not applicable for SYCL devices
+#ifndef TENSORFLOW_USE_SYCL
     // Special case: Aligned, so we can share the underlying buffer.
     //
     // Apply this optimization conservatively: if input is aligned,
@@ -85,6 +87,7 @@
       }
       return;
     }
+#endif  // TENSORFLOW_USE_SYCL
 
     int64 before_dim = 1;
     for (int i = 0; i < axis; ++i) {
diff --git a/tensorflow/core/lib/core/status.h b/tensorflow/core/lib/core/status.h
index 85eb607..3b8a322 100644
--- a/tensorflow/core/lib/core/status.h
+++ b/tensorflow/core/lib/core/status.h
@@ -120,17 +120,19 @@
 
 extern tensorflow::string* TfCheckOpHelperOutOfLine(
     const ::tensorflow::Status& v, const char* msg);
+
 inline tensorflow::string* TfCheckOpHelper(::tensorflow::Status v,
                                            const char* msg) {
   if (v.ok()) return nullptr;
   return TfCheckOpHelperOutOfLine(v, msg);
 }
-#define TF_CHECK_OK(val)                                             \
-  while (::tensorflow::string* _result = TfCheckOpHelper(val, #val)) \
-  LOG(FATAL) << *(_result)
-#define TF_QCHECK_OK(val)                                            \
-  while (::tensorflow::string* _result = TfCheckOpHelper(val, #val)) \
-  LOG(QFATAL) << *(_result)
+
+#define TF_DO_CHECK_OK(val, level)                  \
+  while (auto _result = TfCheckOpHelper(val, #val)) \
+    LOG(level) << *(_result)
+
+#define TF_CHECK_OK(val)  TF_DO_CHECK_OK(val, FATAL)
+#define TF_QCHECK_OK(val) TF_DO_CHECK_OK(val, QFATAL)
 
 // DEBUG only version of TF_CHECK_OK.  Compiler still parses 'val' even in opt
 // mode.
diff --git a/tensorflow/core/lib/wav/wav_io.cc b/tensorflow/core/lib/wav/wav_io.cc
index 1db4746..77d3c88 100644
--- a/tensorflow/core/lib/wav/wav_io.cc
+++ b/tensorflow/core/lib/wav/wav_io.cc
@@ -111,7 +111,7 @@
         reinterpret_cast<const uint8*>(data.data() + *offset);
     int shift = 0;
     for (int i = 0; i < sizeof(T); ++i, shift += 8) {
-      *value = *value | (data_buf[i] >> shift);
+      *value = *value | (data_buf[i] << shift);
     }
   }
   *offset = new_offset;
diff --git a/tensorflow/core/ops/nn_ops.cc b/tensorflow/core/ops/nn_ops.cc
index 1018742..0a96258 100644
--- a/tensorflow/core/ops/nn_ops.cc
+++ b/tensorflow/core/ops/nn_ops.cc
@@ -1368,6 +1368,34 @@
 output: The max pooled output tensor.
 )doc");
 
+REGISTER_OP("MaxPoolV2")
+    .Attr("T: realnumbertype = DT_FLOAT")
+    .Attr(GetPaddingAttrString())
+    .Attr(GetConvnetDataFormatAttrString())
+    .Input("input: T")
+    .Input("ksize: int32")
+    .Input("strides: int32")
+    .Output("output: T")
+    .SetShapeFn([](InferenceContext* c) {
+      TF_RETURN_IF_ERROR(shape_inference::MaxPoolV2Shape(c, 3));
+      return Status::OK();
+    })
+    .Doc(R"doc(
+Performs max pooling on the input.
+
+ksize: The size of the window for each dimension of the input tensor.
+strides: The stride of the sliding window for each dimension of the
+  input tensor.
+padding: The type of padding algorithm to use.
+data_format: Specify the data format of the input and output data. With the
+    default format "NHWC", the data is stored in the order of:
+        [batch, in_height, in_width, in_channels].
+    Alternatively, the format could be "NCHW", the data storage order of:
+        [batch, in_channels, in_height, in_width].
+input: 4-D input to pool over.
+output: The max pooled output tensor.
+)doc");
+
 REGISTER_OP("MaxPoolGrad")
     .Attr("ksize: list(int) >= 4")
     .Attr("strides: list(int) >= 4")
@@ -1399,6 +1427,37 @@
 output: Gradients w.r.t. the input to `max_pool`.
 )doc");
 
+REGISTER_OP("MaxPoolGradV2")
+    .Attr(GetPaddingAttrString())
+    .Attr(GetConvnetDataFormatAttrString())
+    .Input("orig_input: T")
+    .Input("orig_output: T")
+    .Input("grad: T")
+    .Input("ksize: int32")
+    .Input("strides: int32")
+    .Output("output: T")
+    .Attr("T: realnumbertype = DT_FLOAT")
+    .SetShapeFn([](InferenceContext* c) {
+      return UnchangedShapeWithRank(c, 4);
+    })
+    .Doc(R"doc(
+Computes gradients of the maxpooling function.
+
+ksize: The size of the window for each dimension of the input tensor.
+strides: The stride of the sliding window for each dimension of the
+  input tensor.
+padding: The type of padding algorithm to use.
+data_format: Specify the data format of the input and output data. With the
+    default format "NHWC", the data is stored in the order of:
+        [batch, in_height, in_width, in_channels].
+    Alternatively, the format could be "NCHW", the data storage order of:
+        [batch, in_channels, in_height, in_width].
+orig_input: The original input tensor.
+orig_output: The original output tensor.
+grad: 4-D.  Gradients w.r.t. the output of `max_pool`.
+output: Gradients w.r.t. the input to `max_pool`.
+)doc");
+
 REGISTER_OP("MaxPoolGradGrad")
     .Attr("ksize: list(int) >= 4")
     .Attr("strides: list(int) >= 4")
@@ -1436,6 +1495,43 @@
 output: Gradients of gradients w.r.t. the input to `max_pool`.
 )doc");
 
+REGISTER_OP("MaxPoolGradGradV2")
+    .Attr(GetPaddingAttrString())
+    .Attr(GetConvnetDataFormatAttrString())
+    .Input("orig_input: T")
+    .Input("orig_output: T")
+    .Input("grad: T")
+    .Input("ksize: int32")
+    .Input("strides: int32")
+    .Output("output: T")
+    .Attr("T: realnumbertype")
+    .SetShapeFn([](InferenceContext* c) {
+      TF_RETURN_IF_ERROR(shape_inference::MaxPoolV2Shape(c, 5));
+      ShapeHandle unused;
+      // Validate 'orig_input' is the same shape as 'grad'
+      TF_RETURN_IF_ERROR(c->Merge(c->input(0), c->input(2), &unused));
+      // Validate 'orig_output' is same shape as 'output'
+      TF_RETURN_IF_ERROR(c->Merge(c->input(1), c->output(0), &unused));
+      return Status::OK();
+    })
+    .Doc(R"doc(
+Computes second-order gradients of the maxpooling function.
+
+ksize: The size of the window for each dimension of the input tensor.
+strides: The stride of the sliding window for each dimension of the
+  input tensor.
+padding: The type of padding algorithm to use.
+data_format: Specify the data format of the input and output data. With the
+    default format "NHWC", the data is stored in the order of:
+        [batch, in_height, in_width, in_channels].
+    Alternatively, the format could be "NCHW", the data storage order of:
+        [batch, in_channels, in_height, in_width].
+orig_input: The original input tensor.
+orig_output: The original output tensor.
+grad: 4-D.  Gradients of gradients w.r.t. the input of `max_pool`.
+output: Gradients of gradients w.r.t. the input to `max_pool`.
+)doc");
+
 REGISTER_OP("MaxPoolWithArgmax")
     .Attr("ksize: list(int) >= 4")
     .Attr("strides: list(int) >= 4")
diff --git a/tensorflow/core/platform/cloud/oauth_client.cc b/tensorflow/core/platform/cloud/oauth_client.cc
index 7a9588b..b2ada53 100644
--- a/tensorflow/core/platform/cloud/oauth_client.cc
+++ b/tensorflow/core/platform/cloud/oauth_client.cc
@@ -21,6 +21,7 @@
 #include <openssl/bio.h>
 #include <openssl/evp.h>
 #include <openssl/pem.h>
+#include <openssl/rsa.h>
 #include "tensorflow/core/lib/core/errors.h"
 #include "tensorflow/core/lib/strings/base64.h"
 #include "tensorflow/core/platform/cloud/http_request.h"
diff --git a/tensorflow/core/platform/default/build_config.bzl b/tensorflow/core/platform/default/build_config.bzl
index ffb38a1..0af38af 100644
--- a/tensorflow/core/platform/default/build_config.bzl
+++ b/tensorflow/core/platform/default/build_config.bzl
@@ -293,6 +293,12 @@
       "//conditions:default": [],
   })
 
+def tf_additional_gdr_lib_defines():
+  return select({
+      "//tensorflow:with_gdr_support": ["TENSORFLOW_USE_GDR"],
+      "//conditions:default": [],
+  })
+
 def tf_pyclif_proto_library(name, proto_lib, proto_srcfile="", visibility=None,
                             **kwargs):
   pass
diff --git a/tensorflow/core/platform/default/build_config_root.bzl b/tensorflow/core/platform/default/build_config_root.bzl
index 04bf2ae..1ef4588 100644
--- a/tensorflow/core/platform/default/build_config_root.bzl
+++ b/tensorflow/core/platform/default/build_config_root.bzl
@@ -39,3 +39,11 @@
       ],
       "//conditions:default": [],
   })
+
+def tf_additional_gdr_deps():
+  return select({
+      "//tensorflow:with_gdr_support": [
+          "//tensorflow/contrib/gdr:gdr_server_lib",
+      ],
+      "//conditions:default": [],
+  })
diff --git a/tensorflow/core/platform/default/gpu_tracer.cc b/tensorflow/core/platform/default/gpu_tracer.cc
index 50c27b3..3f85546 100644
--- a/tensorflow/core/platform/default/gpu_tracer.cc
+++ b/tensorflow/core/platform/default/gpu_tracer.cc
@@ -579,8 +579,8 @@
   // TODO(pbar) Handle device IDs and prefix properly.
   const string prefix = "";
   const int id = 0;
-  const string stream_device = strings::StrCat(prefix, "/gpu:", id, "/stream:");
-  const string memcpy_device = strings::StrCat(prefix, "/gpu:", id, "/memcpy");
+  const string stream_device = strings::StrCat(prefix, "/device:GPU:", id, "/stream:");
+  const string memcpy_device = strings::StrCat(prefix, "/device:GPU:", id, "/memcpy");
 
   mutex_lock l2(trace_mu_);
   for (const auto &rec : kernel_records_) {
diff --git a/tensorflow/core/platform/env.cc b/tensorflow/core/platform/env.cc
index 44f11ae..12ef55e 100644
--- a/tensorflow/core/platform/env.cc
+++ b/tensorflow/core/platform/env.cc
@@ -22,6 +22,7 @@
 #endif
 #if defined(PLATFORM_WINDOWS)
 #include <windows.h>
+#include "tensorflow/core/platform/windows/windows_file_system.h"
 #define PATH_MAX MAX_PATH
 #else
 #include <unistd.h>
@@ -266,8 +267,11 @@
   _NSGetExecutablePath(unresolved_path, &buffer_size);
   CHECK(realpath(unresolved_path, exe_path));
 #elif defined(PLATFORM_WINDOWS)
-  HMODULE hModule = GetModuleHandle(NULL);
-  GetModuleFileName(hModule, exe_path, MAX_PATH);
+  HMODULE hModule = GetModuleHandleW(NULL);
+  WCHAR wc_file_path[MAX_PATH] = {0};
+  GetModuleFileNameW(hModule, wc_file_path, MAX_PATH);
+  string file_path = WindowsFileSystem::WideCharToUtf8(wc_file_path);
+  std::copy(file_path.begin(), file_path.end(), exe_path);
 #else
   CHECK_NE(-1, readlink("/proc/self/exe", exe_path, sizeof(exe_path) - 1));
 #endif
diff --git a/tensorflow/core/platform/gpu_tracer_test.cc b/tensorflow/core/platform/gpu_tracer_test.cc
index 713282c..f6c2c6c 100644
--- a/tensorflow/core/platform/gpu_tracer_test.cc
+++ b/tensorflow/core/platform/gpu_tracer_test.cc
@@ -63,12 +63,12 @@
     Tensor x_tensor(DT_FLOAT, TensorShape({2, 1}));
     test::FillValues<float>(&x_tensor, {1, 1});
     Node* x = test::graph::Constant(&graph, x_tensor);
-    x->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+    x->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
     x_ = x->name();
 
     // y = A * x
     Node* y = test::graph::Matmul(&graph, a, x, false, false);
-    y->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+    y->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
     y_ = y->name();
 
     // Use an Identity op to force a memcpy to CPU and back to GPU.
@@ -77,7 +77,7 @@
 
     Node* y_neg = test::graph::Unary(&graph, "Neg", i);
     y_neg_ = y_neg->name();
-    y_neg->set_assigned_device_name("/job:localhost/replica:0/task:0/gpu:0");
+    y_neg->set_assigned_device_name("/job:localhost/replica:0/task:0/device:GPU:0");
 
     test::graph::ToGraphDef(&graph, &def_);
   }
diff --git a/tensorflow/core/platform/profile_utils/cpu_utils.cc b/tensorflow/core/platform/profile_utils/cpu_utils.cc
index 52df84e..d336269 100644
--- a/tensorflow/core/platform/profile_utils/cpu_utils.cc
+++ b/tensorflow/core/platform/profile_utils/cpu_utils.cc
@@ -28,7 +28,7 @@
 
 static ICpuUtilsHelper* cpu_utils_helper_instance_ = nullptr;
 
-#if defined(__powerpc__) || defined(__ppc__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#if (defined(__powerpc__) || defined(__ppc__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (defined(__s390x__))
    /* static */ uint64 CpuUtils::GetCycleCounterFrequency() {
      static const uint64 cpu_frequency = GetCycleCounterFrequencyImpl();
      return cpu_frequency;
diff --git a/tensorflow/core/platform/profile_utils/cpu_utils.h b/tensorflow/core/platform/profile_utils/cpu_utils.h
index 8979a40..5d215b4 100644
--- a/tensorflow/core/platform/profile_utils/cpu_utils.h
+++ b/tensorflow/core/platform/profile_utils/cpu_utils.h
@@ -97,7 +97,7 @@
   // Return cycle counter frequency.
   // As this method caches the cpu frequency internally,
   // the first call will incur overhead, but not subsequent calls.
-  #if defined(__powerpc__) || defined(__ppc__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+  #if (defined(__powerpc__) || defined(__ppc__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (defined(__s390x__))
      static uint64 GetCycleCounterFrequency();
   #else
      static int64 GetCycleCounterFrequency();
diff --git a/tensorflow/core/platform/profile_utils/cpu_utils_test.cc b/tensorflow/core/platform/profile_utils/cpu_utils_test.cc
index e1ec4aa..5b11b68 100644
--- a/tensorflow/core/platform/profile_utils/cpu_utils_test.cc
+++ b/tensorflow/core/platform/profile_utils/cpu_utils_test.cc
@@ -53,7 +53,7 @@
 }
 
 TEST_F(CpuUtilsTest, CheckCycleCounterFrequency) {
-  #if defined(__powerpc__) || defined(__ppc__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+  #if (defined(__powerpc__) || defined(__ppc__) && ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (defined(__s390x__))
      const uint64 cpu_frequency = CpuUtils::GetCycleCounterFrequency();
      CHECK_GT(cpu_frequency, 0);
      CHECK_NE(cpu_frequency, unsigned(CpuUtils::INVALID_FREQUENCY));
diff --git a/tensorflow/core/platform/windows/env.cc b/tensorflow/core/platform/windows/env.cc
index 98fcf92..788a4bf 100644
--- a/tensorflow/core/platform/windows/env.cc
+++ b/tensorflow/core/platform/windows/env.cc
@@ -59,7 +59,7 @@
     // versions of Windows. For that reason, we try to look it up in
     // kernel32.dll at runtime and use an alternative option if the function
     // is not available.
-    HMODULE module = GetModuleHandle("kernel32.dll");
+    HMODULE module = GetModuleHandleW(L"kernel32.dll");
     if (module != NULL) {
       auto func = (FnGetSystemTimePreciseAsFileTime)GetProcAddress(
           module, "GetSystemTimePreciseAsFileTime");
@@ -72,7 +72,9 @@
   }
 
   bool MatchPath(const string& path, const string& pattern) override {
-    return PathMatchSpec(path.c_str(), pattern.c_str()) == TRUE;
+      std::wstring ws_path(WindowsFileSystem::Utf8ToWideChar(path));
+      std::wstring ws_pattern(WindowsFileSystem::Utf8ToWideChar(pattern));
+    return PathMatchSpecW(ws_path.c_str(), ws_pattern.c_str()) == TRUE;
   }
 
   void SleepForMicroseconds(int64 micros) override { Sleep(micros / 1000); }
@@ -124,7 +126,9 @@
     std::string file_name = library_filename;
     std::replace(file_name.begin(), file_name.end(), '/', '\\');
 
-    HMODULE hModule = LoadLibraryEx(file_name.c_str(), NULL,
+    std::wstring ws_file_name(WindowsFileSystem::Utf8ToWideChar(file_name));
+
+    HMODULE hModule = LoadLibraryExW(ws_file_name.c_str(), NULL,
       LOAD_WITH_ALTERED_SEARCH_PATH);
     if (!hModule) {
       return errors::NotFound(file_name + " not found");
diff --git a/tensorflow/core/platform/windows/env_time.cc b/tensorflow/core/platform/windows/env_time.cc
index 2765cb7..16cc9dc 100644
--- a/tensorflow/core/platform/windows/env_time.cc
+++ b/tensorflow/core/platform/windows/env_time.cc
@@ -30,7 +30,7 @@
     // versions of Windows. For that reason, we try to look it up in
     // kernel32.dll at runtime and use an alternative option if the function
     // is not available.
-    HMODULE module = GetModuleHandle("kernel32.dll");
+    HMODULE module = GetModuleHandleW(L"kernel32.dll");
     if (module != NULL) {
       auto func = (FnGetSystemTimePreciseAsFileTime)GetProcAddress(
           module, "GetSystemTimePreciseAsFileTime");
diff --git a/tensorflow/core/platform/windows/windows_file_system.cc b/tensorflow/core/platform/windows/windows_file_system.cc
index 72e7e06..604348f 100644
--- a/tensorflow/core/platform/windows/windows_file_system.cc
+++ b/tensorflow/core/platform/windows/windows_file_system.cc
@@ -227,6 +227,7 @@
 Status WindowsFileSystem::NewRandomAccessFile(
     const string& fname, std::unique_ptr<RandomAccessFile>* result) {
   string translated_fname = TranslateName(fname);
+  std::wstring ws_translated_fname = Utf8ToWideChar(translated_fname);
   result->reset();
 
   // Open the file for read-only random access
@@ -237,7 +238,7 @@
   // almost all tests would work with a possible exception of fault_injection.
   DWORD share_mode = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
 
-  HANDLE hfile = ::CreateFileA(translated_fname.c_str(), GENERIC_READ,
+  HANDLE hfile = ::CreateFileW(ws_translated_fname.c_str(), GENERIC_READ,
                                share_mode, NULL, OPEN_EXISTING, file_flags,
                                NULL);
 
@@ -253,10 +254,11 @@
 Status WindowsFileSystem::NewWritableFile(
     const string& fname, std::unique_ptr<WritableFile>* result) {
   string translated_fname = TranslateName(fname);
+  std::wstring ws_translated_fname = Utf8ToWideChar(translated_fname);
   result->reset();
 
   DWORD share_mode = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
-  HANDLE hfile = ::CreateFileA(translated_fname.c_str(), GENERIC_WRITE,
+  HANDLE hfile = ::CreateFileW(ws_translated_fname.c_str(), GENERIC_WRITE,
                                share_mode, NULL, CREATE_ALWAYS,
                                FILE_ATTRIBUTE_NORMAL, NULL);
 
@@ -272,10 +274,11 @@
 Status WindowsFileSystem::NewAppendableFile(
     const string& fname, std::unique_ptr<WritableFile>* result) {
   string translated_fname = TranslateName(fname);
+  std::wstring ws_translated_fname = Utf8ToWideChar(translated_fname);
   result->reset();
 
   DWORD share_mode = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
-  HANDLE hfile = ::CreateFileA(translated_fname.c_str(), GENERIC_WRITE,
+  HANDLE hfile = ::CreateFileW(ws_translated_fname.c_str(), GENERIC_WRITE,
                                share_mode, NULL, OPEN_ALWAYS,
                                FILE_ATTRIBUTE_NORMAL, NULL);
 
@@ -301,6 +304,7 @@
 Status WindowsFileSystem::NewReadOnlyMemoryRegionFromFile(
     const string& fname, std::unique_ptr<ReadOnlyMemoryRegion>* result) {
   string translated_fname = TranslateName(fname);
+  std::wstring ws_translated_fname = Utf8ToWideChar(translated_fname);
   result->reset();
   Status s = Status::OK();
 
@@ -312,7 +316,7 @@
   file_flags |= FILE_FLAG_OVERLAPPED;
 
   DWORD share_mode = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
-  HANDLE hfile = ::CreateFileA(translated_fname.c_str(), GENERIC_READ,
+  HANDLE hfile = ::CreateFileW(ws_translated_fname.c_str(), GENERIC_READ,
                                share_mode, NULL, OPEN_EXISTING, file_flags,
                                NULL);
 
@@ -382,28 +386,30 @@
 Status WindowsFileSystem::GetChildren(const string& dir,
                                       std::vector<string>* result) {
   string translated_dir = TranslateName(dir);
+  std::wstring ws_translated_dir = Utf8ToWideChar(translated_dir);
   result->clear();
 
-  string pattern = translated_dir;
+  std::wstring pattern = ws_translated_dir;
   if (!pattern.empty() && pattern.back() != '\\' && pattern.back() != '/') {
-    pattern += "\\*";
+    pattern += L"\\*";
   } else {
-    pattern += '*';
+    pattern += L'*';
   }
 
-  WIN32_FIND_DATA find_data;
-  HANDLE find_handle = ::FindFirstFileA(pattern.c_str(), &find_data);
+  WIN32_FIND_DATAW find_data;
+  HANDLE find_handle = ::FindFirstFileW(pattern.c_str(), &find_data);
   if (find_handle == INVALID_HANDLE_VALUE) {
     string context = "FindFirstFile failed for: " + translated_dir;
     return IOErrorFromWindowsError(context, ::GetLastError());
   }
 
   do {
-    const StringPiece basename = find_data.cFileName;
+	string file_name = WideCharToUtf8(find_data.cFileName);
+	const StringPiece basename = file_name;
     if (basename != "." && basename != "..") {
-      result->push_back(find_data.cFileName);
+      result->push_back(file_name);
     }
-  } while (::FindNextFileA(find_handle, &find_data));
+  } while (::FindNextFileW(find_handle, &find_data));
 
   if (!::FindClose(find_handle)) {
     string context = "FindClose failed for: " + translated_dir;
@@ -415,7 +421,8 @@
 
 Status WindowsFileSystem::DeleteFile(const string& fname) {
   Status result;
-  if (unlink(TranslateName(fname).c_str()) != 0) {
+  std::wstring file_name = Utf8ToWideChar(fname);
+  if (_wunlink(file_name.c_str()) != 0) {
     result = IOError("Failed to delete a file: " + fname, errno);
   }
   return result;
@@ -423,7 +430,8 @@
 
 Status WindowsFileSystem::CreateDir(const string& name) {
   Status result;
-  if (_mkdir(TranslateName(name).c_str()) != 0) {
+  std::wstring ws_name = Utf8ToWideChar(name);
+  if (_wmkdir(ws_name.c_str()) != 0) {
     result = IOError("Failed to create a directory: " + name, errno);
   }
   return result;
@@ -431,7 +439,8 @@
 
 Status WindowsFileSystem::DeleteDir(const string& name) {
   Status result;
-  if (_rmdir(TranslateName(name).c_str()) != 0) {
+  std::wstring ws_name = Utf8ToWideChar(name);
+  if (_wrmdir(ws_name.c_str()) != 0) {
     result = IOError("Failed to remove a directory: " + name, errno);
   }
   return result;
@@ -439,9 +448,10 @@
 
 Status WindowsFileSystem::GetFileSize(const string& fname, uint64* size) {
   string translated_fname = TranslateName(fname);
+  std::wstring ws_translated_dir = Utf8ToWideChar(translated_fname);
   Status result;
   WIN32_FILE_ATTRIBUTE_DATA attrs;
-  if (TRUE == ::GetFileAttributesExA(translated_fname.c_str(),
+  if (TRUE == ::GetFileAttributesExW(ws_translated_dir.c_str(),
                                      GetFileExInfoStandard, &attrs)) {
     ULARGE_INTEGER file_size;
     file_size.HighPart = attrs.nFileSizeHigh;
@@ -459,7 +469,9 @@
   Status result;
   // rename() is not capable of replacing the existing file as on Linux
   // so use OS API directly
-  if (!::MoveFileExA(TranslateName(src).c_str(), TranslateName(target).c_str(),
+  std::wstring ws_translated_src = Utf8ToWideChar(TranslateName(src));
+  std::wstring ws_translated_target = Utf8ToWideChar(TranslateName(target));
+  if (!::MoveFileExW(ws_translated_src.c_str(), ws_translated_target.c_str(),
       MOVEFILE_REPLACE_EXISTING)) {
     string context(strings::StrCat("Failed to rename: ", src, " to: ", target));
     result = IOErrorFromWindowsError(context, ::GetLastError());
@@ -487,12 +499,13 @@
 Status WindowsFileSystem::Stat(const string& fname, FileStatistics* stat) {
   Status result;
   struct _stat sbuf;
-  if (_stat(TranslateName(fname).c_str(), &sbuf) != 0) {
+  std::wstring ws_translated_fname = Utf8ToWideChar(TranslateName(fname));
+  if (_wstat(ws_translated_fname.c_str(), &sbuf) != 0) {
     result = IOError(fname, errno);
   } else {
     stat->mtime_nsec = sbuf.st_mtime * 1e9;
     stat->length = sbuf.st_size;
-    stat->is_directory = PathIsDirectory(TranslateName(fname).c_str());
+    stat->is_directory = PathIsDirectoryW(ws_translated_fname.c_str());
   }
   return result;
 }
diff --git a/tensorflow/core/platform/windows/windows_file_system.h b/tensorflow/core/platform/windows/windows_file_system.h
index 507290e..8dcc153 100644
--- a/tensorflow/core/platform/windows/windows_file_system.h
+++ b/tensorflow/core/platform/windows/windows_file_system.h
@@ -66,6 +66,21 @@
   string TranslateName(const string& name) const override {
     return name;
   }
+
+  static std::wstring Utf8ToWideChar(const string& utf8str) {
+      int size_required = MultiByteToWideChar(CP_UTF8, 0, utf8str.c_str(), (int)utf8str.size(), NULL, 0);
+      std::wstring ws_translated_str(size_required, 0);
+      MultiByteToWideChar(CP_UTF8, 0, utf8str.c_str(), (int)utf8str.size(), &ws_translated_str[0], size_required);
+      return ws_translated_str;
+  }
+
+  static string WideCharToUtf8(const std::wstring &wstr) {
+      if (wstr.empty()) return std::string();
+      int size_required = WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), (int)wstr.size(), NULL, 0, NULL, NULL);
+      string utf8_translated_str(size_required, 0);
+      WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), (int)wstr.size(), &utf8_translated_str[0], size_required, NULL, NULL);
+      return utf8_translated_str;
+  }
 };
 
 class LocalWinFileSystem : public WindowsFileSystem {
diff --git a/tensorflow/core/profiler/README.md b/tensorflow/core/profiler/README.md
index 6db38a5..06118e6 100644
--- a/tensorflow/core/profiler/README.md
+++ b/tensorflow/core/profiler/README.md
@@ -127,10 +127,10 @@
 Not running under xxxx. Skip JobChecker.
 
 AcceleratorUtilizationChecker:
-device: /job:worker/replica:0/task:0/gpu:0 low utilization: 0.03
-device: /job:worker/replica:0/task:0/gpu:1 low utilization: 0.08
-device: /job:worker/replica:0/task:0/gpu:2 low utilization: 0.04
-device: /job:worker/replica:0/task:0/gpu:3 low utilization: 0.21
+device: /job:worker/replica:0/task:0/device:GPU:0 low utilization: 0.03
+device: /job:worker/replica:0/task:0/device:GPU:1 low utilization: 0.08
+device: /job:worker/replica:0/task:0/device:GPU:2 low utilization: 0.04
+device: /job:worker/replica:0/task:0/device:GPU:3 low utilization: 0.21
 
 OperationChecker:
 Found operation using NHWC data_format on GPU. Maybe NCHW is faster.
diff --git a/tensorflow/core/profiler/g3doc/advise.md b/tensorflow/core/profiler/g3doc/advise.md
index cc16c8f..d87b0d8 100644
--- a/tensorflow/core/profiler/g3doc/advise.md
+++ b/tensorflow/core/profiler/g3doc/advise.md
@@ -31,10 +31,10 @@
 
 tfprof> advise
 AcceleratorUtilizationChecker:
-device: /job:worker/replica:0/task:0/gpu:0 low utilization: 0.03
-device: /job:worker/replica:0/task:0/gpu:1 low utilization: 0.08
-device: /job:worker/replica:0/task:0/gpu:2 low utilization: 0.04
-device: /job:worker/replica:0/task:0/gpu:3 low utilization: 0.21
+device: /job:worker/replica:0/task:0/device:GPU:0 low utilization: 0.03
+device: /job:worker/replica:0/task:0/device:GPU:1 low utilization: 0.08
+device: /job:worker/replica:0/task:0/device:GPU:2 low utilization: 0.04
+device: /job:worker/replica:0/task:0/device:GPU:3 low utilization: 0.21
 
 OperationChecker:
 Found operation using NHWC data_format on GPU. Maybe NCHW is faster.
diff --git a/tensorflow/core/profiler/g3doc/profile_time.md b/tensorflow/core/profiler/g3doc/profile_time.md
index db555b3..e11a755 100644
--- a/tensorflow/core/profiler/g3doc/profile_time.md
+++ b/tensorflow/core/profiler/g3doc/profile_time.md
@@ -134,7 +134,7 @@
 tfprof> op -select micros,device -order_by micros
 node name | execution time | assigned devices
 SoftmaxCrossEntropyWithLogits     1.37sec (100.00%, 36.44%), /job:worker/replica:0/task:0/cpu:0
-MatMul                        618.97ms (63.56%, 16.51%), |/job:worker/replica:0/task:0/cpu:0|/job:worker/replica:0/task:0/gpu:0|/job:worker/replica:0/task:0/gpu:1|/job:worker/replica:0/task:0/gpu:2|/job:worker/replica:0/task:0/gpu:3
+MatMul                        618.97ms (63.56%, 16.51%), |/job:worker/replica:0/task:0/cpu:0|/job:worker/replica:0/task:0/device:GPU:0|/job:worker/replica:0/task:0/device:GPU:1|/job:worker/replica:0/task:0/device:GPU:2|/job:worker/replica:0/task:0/device:GPU:3
 ```
 
 
diff --git a/tensorflow/core/profiler/internal/advisor/tfprof_advisor_test.cc b/tensorflow/core/profiler/internal/advisor/tfprof_advisor_test.cc
index 096c1d9..23ed287 100644
--- a/tensorflow/core/profiler/internal/advisor/tfprof_advisor_test.cc
+++ b/tensorflow/core/profiler/internal/advisor/tfprof_advisor_test.cc
@@ -53,10 +53,10 @@
     NodeExecStats node_stat;
     node_stat.set_all_start_micros(start_miros);
     node_stat.set_op_end_rel_micros(end_rel_micros);
-    node->AddStepStat(step, "/job:localhost/replica:0/task:0/gpu:0", node_stat);
-    node->AddStepStat(step, "/job:localhost/replica:0/task:0/gpu:0:stream:all",
+    node->AddStepStat(step, "/job:localhost/replica:0/task:0/device:GPU:0", node_stat);
+    node->AddStepStat(step, "/job:localhost/replica:0/task:0/device:GPU:0:stream:all",
                       node_stat);
-    node->AddStepStat(step, "/job:localhost/replica:0/task:0/gpu:0:stream:0",
+    node->AddStepStat(step, "/job:localhost/replica:0/task:0/device:GPU:0:stream:0",
                       node_stat);
     return node;
   }
diff --git a/tensorflow/core/profiler/internal/tfprof_code.h b/tensorflow/core/profiler/internal/tfprof_code.h
index 5e64104..8da036e 100644
--- a/tensorflow/core/profiler/internal/tfprof_code.h
+++ b/tensorflow/core/profiler/internal/tfprof_code.h
@@ -14,7 +14,7 @@
 ==============================================================================*/
 
 // Build a tree structure based on the TensorFlow model's python code stacks.
-// Stats are aggregated from descendants from ancestors.
+// Stats are aggregated from descendants to ancestors.
 
 #ifndef THIRD_PARTY_TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_CODE_H_
 #define THIRD_PARTY_TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_CODE_H_
diff --git a/tensorflow/core/profiler/internal/tfprof_node.cc b/tensorflow/core/profiler/internal/tfprof_node.cc
index 70b91c3..d4a784f 100644
--- a/tensorflow/core/profiler/internal/tfprof_node.cc
+++ b/tensorflow/core/profiler/internal/tfprof_node.cc
@@ -25,7 +25,7 @@
 }
 
 bool CountAsCPUTime(const string& device) {
-  return RE2::FullMatch(device, ".*/(gpu|cpu|device:sycl):\\d+");
+  return RE2::FullMatch(device, ".*/(device:gpu|gpu|cpu|device:sycl):\\d+");
 }
 
 bool IsCanonicalDevice(const string& device) { return CountAsCPUTime(device); }
@@ -143,7 +143,7 @@
 
   // TODO(xpan): Make this more robust?
   // See run_metadata_test.py
-  // It can be /job:0/replica:0/xxxx/gpu:0, or simply /gpu:0.
+  // It can be /job:0/replica:0/xxxx/device:GPU:0, or simply /device:GPU:0.
   // It can has some ad-hoc suffix, such as /stream:xx or /memcpy:xx.
   if (IsCanonicalDevice(dev)) {
     if (!canonical_device_.empty()) {
diff --git a/tensorflow/core/profiler/internal/tfprof_scope.h b/tensorflow/core/profiler/internal/tfprof_scope.h
index 5e1fa2a..710991d 100644
--- a/tensorflow/core/profiler/internal/tfprof_scope.h
+++ b/tensorflow/core/profiler/internal/tfprof_scope.h
@@ -15,7 +15,7 @@
 
 // Build a tree structure based on the TensorFlow op names.
 // For example, 'name1/name2' is a child of 'name1'.
-// Stats are aggregated from descendants from ancestors.
+// Stats are aggregated from descendants to ancestors.
 
 #ifndef THIRD_PARTY_TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_SCOPE_H_
 #define THIRD_PARTY_TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_SCOPE_H_
diff --git a/tensorflow/core/protobuf/config.proto b/tensorflow/core/protobuf/config.proto
index 69311e3..56bb709 100644
--- a/tensorflow/core/protobuf/config.proto
+++ b/tensorflow/core/protobuf/config.proto
@@ -42,7 +42,7 @@
   // A comma-separated list of GPU ids that determines the 'visible'
   // to 'virtual' mapping of GPU devices.  For example, if TensorFlow
   // can see 8 GPU devices in the process, and one wanted to map
-  // visible GPU devices 5 and 3 as "/gpu:0", and "/gpu:1", then one
+  // visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1", then one
   // would specify this field as "5,3".  This field is similar in
   // spirit to the CUDA_VISIBLE_DEVICES environment variable, except
   // it applies to the visible GPU devices in the process.
diff --git a/tensorflow/core/protobuf/rewriter_config.proto b/tensorflow/core/protobuf/rewriter_config.proto
index b71edb4..aea00b1 100644
--- a/tensorflow/core/protobuf/rewriter_config.proto
+++ b/tensorflow/core/protobuf/rewriter_config.proto
@@ -30,7 +30,7 @@
   // Fold constants (default is OFF)
   Toggle constant_folding = 3;
 
-  // If true, don't remove unecessary ops from the graph
+  // If true, don't remove unnecessary ops from the graph
   bool disable_model_pruning = 2;
 
   enum MemOptType {
diff --git a/tensorflow/core/public/version.h b/tensorflow/core/public/version.h
index 4626ab8..2fefa67 100644
--- a/tensorflow/core/public/version.h
+++ b/tensorflow/core/public/version.h
@@ -19,12 +19,12 @@
 // TensorFlow uses semantic versioning, see http://semver.org/.
 
 #define TF_MAJOR_VERSION 1
-#define TF_MINOR_VERSION 2
-#define TF_PATCH_VERSION 1
+#define TF_MINOR_VERSION 3
+#define TF_PATCH_VERSION 0
 
 // TF_VERSION_SUFFIX is non-empty for pre-releases (e.g. "-alpha", "-alpha.1",
 // "-beta", "-rc", "-rc.1")
-#define TF_VERSION_SUFFIX "-rc1"
+#define TF_VERSION_SUFFIX "-rc2"
 
 #define TF_STR_HELPER(x) #x
 #define TF_STR(x) TF_STR_HELPER(x)
diff --git a/tensorflow/core/util/device_name_utils_test.cc b/tensorflow/core/util/device_name_utils_test.cc
index 008100a..9a3f884 100644
--- a/tensorflow/core/util/device_name_utils_test.cc
+++ b/tensorflow/core/util/device_name_utils_test.cc
@@ -76,21 +76,21 @@
     DeviceNameUtils::ParsedName p;
     EXPECT_FALSE(DeviceNameUtils::ParseFullName("foobar", &p));
     EXPECT_FALSE(
-        DeviceNameUtils::ParseFullName("/job:123/replica:1/task:2/gpu:3", &p));
+        DeviceNameUtils::ParseFullName("/job:123/replica:1/task:2/device:GPU:3", &p));
     EXPECT_FALSE(
         DeviceNameUtils::ParseFullName("/job:123/replica:1/task:2/gpu:", &p));
     EXPECT_FALSE(DeviceNameUtils::ParseFullName(
         "/job:123/replica:1/task:2/device:gpu:", &p));
     EXPECT_FALSE(
-        DeviceNameUtils::ParseFullName("/job:foo/replica:-1/task:2/gpu:3", &p));
+        DeviceNameUtils::ParseFullName("/job:foo/replica:-1/task:2/device:GPU:3", &p));
     EXPECT_FALSE(
-        DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:-2/gpu:3", &p));
+        DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:-2/device:GPU:3", &p));
     EXPECT_FALSE(
         DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:2/bar:3", &p));
     EXPECT_FALSE(DeviceNameUtils::ParseFullName(
-        "/job:foo/replica:1/task:2/gpu:3/extra", &p));
+        "/job:foo/replica:1/task:2/device:GPU:3/extra", &p));
     EXPECT_TRUE(
-        DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:2/gpu:3", &p));
+        DeviceNameUtils::ParseFullName("/job:foo/replica:1/task:2/device:GPU:3", &p));
     EXPECT_TRUE(p.has_job);
     EXPECT_TRUE(p.has_replica);
     EXPECT_TRUE(p.has_task);
@@ -106,7 +106,7 @@
     // Allow _ in job names.
     DeviceNameUtils::ParsedName p;
     EXPECT_TRUE(DeviceNameUtils::ParseFullName(
-        "/job:foo_bar/replica:1/task:2/gpu:3", &p));
+        "/job:foo_bar/replica:1/task:2/device:GPU:3", &p));
     EXPECT_TRUE(p.has_job);
     EXPECT_TRUE(p.has_replica);
     EXPECT_TRUE(p.has_task);
@@ -193,7 +193,7 @@
   }
   {
     DeviceNameUtils::ParsedName p;
-    EXPECT_TRUE(DeviceNameUtils::ParseFullName("/job:*/replica:4/gpu:5", &p));
+    EXPECT_TRUE(DeviceNameUtils::ParseFullName("/job:*/replica:4/device:GPU:5", &p));
     EXPECT_FALSE(p.has_job);
     EXPECT_TRUE(p.has_replica);
     EXPECT_FALSE(p.has_task);
@@ -216,13 +216,13 @@
   }
 
   EXPECT_TRUE(DeviceNameUtils::IsSameAddressSpace(
-      "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:2/gpu:4"));
+      "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:2/device:GPU:4"));
   EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace(
-      "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:3/gpu:4"));
+      "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:1/task:3/device:GPU:4"));
   EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace(
-      "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:10/task:2/gpu:4"));
+      "/job:foo/replica:1/task:2/cpu:3", "/job:foo/replica:10/task:2/device:GPU:4"));
   EXPECT_FALSE(DeviceNameUtils::IsSameAddressSpace(
-      "/job:foo/replica:1/task:2/cpu:3", "/job:bar/replica:1/task:2/gpu:4"));
+      "/job:foo/replica:1/task:2/cpu:3", "/job:bar/replica:1/task:2/device:GPU:4"));
 
   EXPECT_EQ(DeviceNameUtils::LocalName("CPU", 1), "CPU:1");
   EXPECT_EQ(DeviceNameUtils::LocalName("GPU", 2), "GPU:2");
@@ -284,17 +284,17 @@
 }
 
 TEST(DeviceNameUtilsTest, IsCompleteSpecification) {
-  EXPECT_TRUE(IsCSHelper("/job:*", "/job:work/replica:1/task:2/gpu:3"));
+  EXPECT_TRUE(IsCSHelper("/job:*", "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(
-      IsCSHelper("/job:*/replica:*", "/job:work/replica:1/task:2/gpu:3"));
-  EXPECT_TRUE(IsCSHelper("/job:*/task:*", "/job:work/replica:1/task:2/gpu:3"));
+      IsCSHelper("/job:*/replica:*", "/job:work/replica:1/task:2/device:GPU:3"));
+  EXPECT_TRUE(IsCSHelper("/job:*/task:*", "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(IsCSHelper("/job:*/replica:*/task:*",
-                         "/job:work/replica:1/task:2/gpu:3"));
+                         "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(
-      IsCSHelper("/job:*/replica:*/gpu:*", "/job:work/replica:1/task:2/gpu:3"));
-  EXPECT_FALSE(IsCSHelper("/cpu:*", "/job:worker/replica:1/task:2/gpu:3"));
-  EXPECT_FALSE(IsCSHelper("/gpu:2", "/job:worker/replica:1/task:2/gpu:1"));
-  EXPECT_TRUE(IsCSHelper("/gpu:*", "/job:worker/replica:1/task:2/gpu:3"));
+      IsCSHelper("/job:*/replica:*/gpu:*", "/job:work/replica:1/task:2/device:GPU:3"));
+  EXPECT_FALSE(IsCSHelper("/cpu:*", "/job:worker/replica:1/task:2/device:GPU:3"));
+  EXPECT_FALSE(IsCSHelper("/device:GPU:2", "/job:worker/replica:1/task:2/device:GPU:1"));
+  EXPECT_TRUE(IsCSHelper("/gpu:*", "/job:worker/replica:1/task:2/device:GPU:3"));
 }
 
 static bool IsSpecHelper(StringPiece pattern, StringPiece actual) {
@@ -305,36 +305,36 @@
 }
 
 TEST(DeviceNameUtilsTest, IsSpecification) {
-  EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1/task:2/gpu:3"));
-  EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1/gpu:3"));
+  EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1/task:2/device:GPU:3"));
+  EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1/device:GPU:3"));
   EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work/replica:1"));
   EXPECT_TRUE(IsSpecHelper("/job:*", "/replica:1"));
   EXPECT_TRUE(IsSpecHelper("/job:*", "/job:work"));
   EXPECT_TRUE(
-      IsSpecHelper("/job:*/replica:*", "/job:work/replica:1/task:2/gpu:3"));
+      IsSpecHelper("/job:*/replica:*", "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/gpu:*",
-                           "/job:work/replica:1/task:2/gpu:3"));
-  EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/gpu:3",
-                           "/job:work/replica:1/task:2/gpu:3"));
+                           "/job:work/replica:1/task:2/device:GPU:3"));
+  EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/device:GPU:3",
+                           "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(IsSpecHelper("/job:work/replica:1/task:2",
-                           "/job:work/replica:1/task:2/gpu:3"));
+                           "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(IsSpecHelper("/job:work/replica:*/task:2",
-                           "/job:work/replica:1/task:2/gpu:3"));
-  EXPECT_TRUE(IsSpecHelper("/task:*", "/job:*/replica:1/task:2/gpu:3"));
-  EXPECT_TRUE(IsSpecHelper("/task:2", "/job:*/replica:1/task:2/gpu:3"));
+                           "/job:work/replica:1/task:2/device:GPU:3"));
+  EXPECT_TRUE(IsSpecHelper("/task:*", "/job:*/replica:1/task:2/device:GPU:3"));
+  EXPECT_TRUE(IsSpecHelper("/task:2", "/job:*/replica:1/task:2/device:GPU:3"));
   EXPECT_TRUE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/cpu:1"));
   EXPECT_TRUE(IsSpecHelper("/cpu:0", "/cpu:0"));
-  EXPECT_TRUE(IsSpecHelper("/gpu:*", "/job:worker/replica:1/task:2/gpu:3"));
+  EXPECT_TRUE(IsSpecHelper("/gpu:*", "/job:worker/replica:1/task:2/device:GPU:3"));
 
-  EXPECT_FALSE(IsSpecHelper("/job:worker/replica:1/task:2/gpu:3", "/gpu:*"));
+  EXPECT_FALSE(IsSpecHelper("/job:worker/replica:1/task:2/device:GPU:3", "/gpu:*"));
   EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2"));
-  EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/gpu:1"));
-  EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:worker/replica:1/task:2/gpu:3"));
-  EXPECT_FALSE(IsSpecHelper("/gpu:2", "/job:worker/replica:1/task:2/gpu:1"));
+  EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:*/replica:1/task:2/device:GPU:1"));
+  EXPECT_FALSE(IsSpecHelper("/cpu:*", "/job:worker/replica:1/task:2/device:GPU:3"));
+  EXPECT_FALSE(IsSpecHelper("/device:GPU:2", "/job:worker/replica:1/task:2/device:GPU:1"));
   EXPECT_FALSE(IsSpecHelper("/job:work/replica:*/task:0",
-                            "/job:work/replica:1/task:2/gpu:3"));
+                            "/job:work/replica:1/task:2/device:GPU:3"));
   EXPECT_FALSE(IsSpecHelper("/job:work/replica:0/task:2",
-                            "/job:work/replica:*/task:2/gpu:3"));
+                            "/job:work/replica:*/task:2/device:GPU:3"));
 }
 
 TEST(DeviceNameUtilsTest, SplitDeviceName) {
@@ -348,7 +348,7 @@
       "/job:foo/cpu:1/task:2/replica:1", &task, &device));
   EXPECT_EQ("/job:foo/replica:1/task:2", task);
   EXPECT_EQ("CPU:1", device);
-  EXPECT_TRUE(DeviceNameUtils::SplitDeviceName("/gpu:3", &task, &device));
+  EXPECT_TRUE(DeviceNameUtils::SplitDeviceName("/device:GPU:3", &task, &device));
   EXPECT_EQ("", task);
   EXPECT_EQ("GPU:3", device);
   EXPECT_FALSE(DeviceNameUtils::SplitDeviceName("gpu:3", &task, &device));
@@ -413,11 +413,11 @@
   MergeDevNamesHelper("", "/job:foo", "/job:foo");
   MergeDevNamesHelper("", "/replica:2", "/replica:2");
   MergeDevNamesHelper("", "/task:7", "/task:7");
-  // MergeDevNamesHelper("", "/gpu:1", "/gpu:1");
+  // MergeDevNamesHelper("", "/device:GPU:1", "/device:GPU:1");
 
   // Combining disjoint names.
   MergeDevNamesHelper("/job:foo", "/task:7", "/job:foo/task:7");
-  MergeDevNamesHelper("/job:foo", "/gpu:1", "/job:foo/gpu:1");
+  MergeDevNamesHelper("/job:foo", "/device:GPU:1", "/job:foo/device:GPU:1");
 
   // Combining overlapping names.
   MergeDevNamesHelper("/job:foo/replica:0", "/replica:0/task:1",
@@ -426,25 +426,25 @@
   // Wildcard tests.
   MergeDevNamesHelper("", "/gpu:*", "/gpu:*");
   MergeDevNamesHelper("/gpu:*", "/gpu:*", "/gpu:*");
-  MergeDevNamesHelper("/gpu:1", "/gpu:*", "/gpu:1");
+  MergeDevNamesHelper("/device:GPU:1", "/gpu:*", "/device:GPU:1");
 
   // Incompatible components.
   MergeDevNamesError("/job:foo", "/job:bar", "incompatible jobs");
   MergeDevNamesError("/replica:0", "/replica:1", "incompatible replicas");
   MergeDevNamesError("/task:0", "/task:1", "incompatible tasks");
   MergeDevNamesError("/gpu:*", "/cpu:*", "incompatible types");
-  MergeDevNamesError("/gpu:0", "/gpu:1", "incompatible ids");
+  MergeDevNamesError("/device:GPU:0", "/device:GPU:1", "incompatible ids");
 }
 
 TEST(DeviceNameUtilsTest, MergeDevNamesAllowSoftPlacement) {
   // Incompatible components with allow_soft_placement.
   MergeDevNamesHelperAllowSoftPlacement("/gpu:*", "/cpu:1", "");
-  MergeDevNamesHelperAllowSoftPlacement("/cpu:*", "/gpu:1", "");
-  MergeDevNamesHelperAllowSoftPlacement("/gpu:1", "/gpu:2", "/gpu:*");
+  MergeDevNamesHelperAllowSoftPlacement("/cpu:*", "/device:GPU:1", "");
+  MergeDevNamesHelperAllowSoftPlacement("/device:GPU:1", "/device:GPU:2", "/device:GPU:*");
 }
 
 TEST(DeviceNameUtilsTest, GetNamesForDeviceMappings) {
-  DeviceNameUtils::ParsedName p = Name("/job:foo/replica:10/task:0/gpu:1");
+  DeviceNameUtils::ParsedName p = Name("/job:foo/replica:10/task:0/device:GPU:1");
   EXPECT_EQ(str_util::Join(DeviceNameUtils::GetNamesForDeviceMappings(p), ","),
             "/job:foo/replica:10/task:0/device:GPU:1,"
             "/job:foo/replica:10/task:0/gpu:1");
diff --git a/tensorflow/core/util/mkl_util.h b/tensorflow/core/util/mkl_util.h
index 35aca70..cb22a50 100644
--- a/tensorflow/core/util/mkl_util.h
+++ b/tensorflow/core/util/mkl_util.h
@@ -616,8 +616,6 @@
   }
 }
 
-  // TODO(intel_tf): Remove this routine when faster MKL layout conversion is
-  // out. 
 inline void MklNHWCToNCHW(const Tensor& input, Tensor** output) {
   const float* buf_in = input.flat<float>().data();
   float* buf_out = (*output)->flat<float>().data();
@@ -634,8 +632,6 @@
   }
 }
 
-  // TODO(intel_tf): Remove this routine when faster MKL layout conversion is
-  // out. 
 inline void MklNCHWToNHWC(const Tensor& input, Tensor** output) {
   const float* buf_in = input.flat<float>().data();
   float* buf_out = (*output)->flat<float>().data();
diff --git a/tensorflow/docs_src/api_guides/python/contrib.seq2seq.md b/tensorflow/docs_src/api_guides/python/contrib.seq2seq.md
index b56a488..496d43d 100644
--- a/tensorflow/docs_src/api_guides/python/contrib.seq2seq.md
+++ b/tensorflow/docs_src/api_guides/python/contrib.seq2seq.md
@@ -73,12 +73,12 @@
 write:
 
 ```python
-cell = tf.contrib.rnn.DeviceWrapper(LSTMCell(512), "/gpu:0")
+cell = tf.contrib.rnn.DeviceWrapper(LSTMCell(512), "/device:GPU:0")
 attention_mechanism = tf.contrib.seq2seq.LuongAttention(512, encoder_outputs)
 attn_cell = tf.contrib.seq2seq.AttentionWrapper(
   cell, attention_mechanism, attention_size=256)
-attn_cell = tf.contrib.rnn.DeviceWrapper(attn_cell, "/gpu:1")
-top_cell = tf.contrib.rnn.DeviceWrapper(LSTMCell(512), "/gpu:1")
+attn_cell = tf.contrib.rnn.DeviceWrapper(attn_cell, "/device:GPU:1")
+top_cell = tf.contrib.rnn.DeviceWrapper(LSTMCell(512), "/device:GPU:1")
 multi_cell = MultiRNNCell([attn_cell, top_cell])
 ```
 
diff --git a/tensorflow/docs_src/install/install_c.md b/tensorflow/docs_src/install/install_c.md
index 1426fb3..ec37311 100644
--- a/tensorflow/docs_src/install/install_c.md
+++ b/tensorflow/docs_src/install/install_c.md
@@ -35,7 +35,7 @@
          OS="linux" # Change to "darwin" for Mac OS
          TARGET_DIRECTORY="/usr/local"
          curl -L \
-           "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-${OS}-x86_64-1.3.0-rc1.tar.gz" |
+           "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-${OS}-x86_64-1.3.0-rc2.tar.gz" |
            sudo tar -C $TARGET_DIRECTORY -xz
 
      The `tar` command extracts the TensorFlow C library into the `lib`
diff --git a/tensorflow/docs_src/install/install_go.md b/tensorflow/docs_src/install/install_go.md
index f0299f5..b7dc033 100644
--- a/tensorflow/docs_src/install/install_go.md
+++ b/tensorflow/docs_src/install/install_go.md
@@ -35,7 +35,7 @@
          TF_TYPE="cpu" # Change to "gpu" for GPU support
          TARGET_DIRECTORY='/usr/local'
          curl -L \
-           "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-1.3.0-rc1.tar.gz" |
+           "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-1.3.0-rc2.tar.gz" |
          sudo tar -C $TARGET_DIRECTORY -xz
 
      The `tar` command extracts the TensorFlow C library into the `lib`
diff --git a/tensorflow/docs_src/install/install_java.md b/tensorflow/docs_src/install/install_java.md
index 2d177d7..f9b7b32 100644
--- a/tensorflow/docs_src/install/install_java.md
+++ b/tensorflow/docs_src/install/install_java.md
@@ -34,7 +34,7 @@
 <dependency>
   <groupId>org.tensorflow</groupId>
   <artifactId>tensorflow</artifactId>
-  <version>1.3.0-rc1</version>
+  <version>1.3.0-rc2</version>
 </dependency>
 ```
 
@@ -63,7 +63,7 @@
                <dependency>
                  <groupId>org.tensorflow</groupId>
                  <artifactId>tensorflow</artifactId>
-                 <version>1.3.0-rc1</version>
+                 <version>1.3.0-rc2</version>
                </dependency>
              </dependencies>
          </project>
@@ -122,7 +122,7 @@
 Take the following steps to install TensorFlow for Java on Linux or Mac OS:
 
   1. Download
-     [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.3.0-rc1.jar),
+     [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.3.0-rc2.jar),
      which is the TensorFlow Java Archive (JAR).
 
   2. Decide whether you will run TensorFlow for Java on CPU(s) only or with
@@ -141,7 +141,7 @@
          OS=$(uname -s | tr '[:upper:]' '[:lower:]')
          mkdir -p ./jni
          curl -L \
-           "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-${TF_TYPE}-${OS}-x86_64-1.3.0-rc1.tar.gz" |
+           "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-${TF_TYPE}-${OS}-x86_64-1.3.0-rc2.tar.gz" |
            tar -xz -C ./jni
 
 ### Install on Windows
@@ -149,10 +149,10 @@
 Take the following steps to install TensorFlow for Java on Windows:
 
   1. Download
-     [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.3.0-rc1.jar),
+     [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.3.0-rc2.jar),
      which is the TensorFlow Java Archive (JAR).
   2. Download the following Java Native Interface (JNI) file appropriate for
-     [TensorFlow for Java on Windows](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-cpu-windows-x86_64-1.3.0-rc1.zip).
+     [TensorFlow for Java on Windows](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-cpu-windows-x86_64-1.3.0-rc2.zip).
   3. Extract this .zip file.
 
 
@@ -200,7 +200,7 @@
 downloaded `.jar` in your `classpath` by using the `-cp` compilation flag
 as follows:
 
-<pre><b>javac -cp libtensorflow-1.3.0-rc1.jar HelloTF.java</b></pre>
+<pre><b>javac -cp libtensorflow-1.3.0-rc2.jar HelloTF.java</b></pre>
 
 
 ### Running
@@ -214,11 +214,11 @@
 For example, the following command line executes the `HelloTF` program on Linux
 and Mac OS X:
 
-<pre><b>java -cp libtensorflow-1.3.0-rc1.jar:. -Djava.library.path=./jni HelloTF</b></pre>
+<pre><b>java -cp libtensorflow-1.3.0-rc2.jar:. -Djava.library.path=./jni HelloTF</b></pre>
 
 And the following command line executes the `HelloTF` program on Windows:
 
-<pre><b>java -cp libtensorflow-1.3.0-rc1.jar;. -Djava.library.path=jni HelloTF</b></pre>
+<pre><b>java -cp libtensorflow-1.3.0-rc2.jar;. -Djava.library.path=jni HelloTF</b></pre>
 
 If the program prints <tt>Hello from <i>version</i></tt>, you've successfully
 installed TensorFlow for Java and are ready to use the API.  If the program
diff --git a/tensorflow/docs_src/install/install_linux.md b/tensorflow/docs_src/install/install_linux.md
index 4885bb1..85182cc 100644
--- a/tensorflow/docs_src/install/install_linux.md
+++ b/tensorflow/docs_src/install/install_linux.md
@@ -172,7 +172,7 @@
      virtualenv environment:
 
      <pre>(tensorflow)$ <b>pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp34-cp34m-linux_x86_64.whl</b></pre>
+     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp34-cp34m-linux_x86_64.whl</b></pre>
 
 If you encounter installation problems, see
 [Common Installation Problems](#common_installation_problems).
@@ -277,7 +277,7 @@
 
      <pre>
      $ <b>sudo pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp34-cp34m-linux_x86_64.whl</b>
+     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp34-cp34m-linux_x86_64.whl</b>
      </pre>
 
      If this step fails, see
@@ -464,7 +464,7 @@
 
      <pre>
      (tensorflow)$ <b>pip install --ignore-installed --upgrade \
-     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp34-cp34m-linux_x86_64.whl</b></pre>
+     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp34-cp34m-linux_x86_64.whl</b></pre>
 
 
 <a name="ValidateYourInstallation"></a>
@@ -632,14 +632,14 @@
 CPU only:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp27-none-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp27-none-linux_x86_64.whl
 </pre>
 
 
 GPU support:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc1-cp27-none-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc2-cp27-none-linux_x86_64.whl
 </pre>
 
 Note that GPU support requires the NVIDIA hardware and software described in
@@ -651,14 +651,14 @@
 CPU only:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp34-cp34m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp34-cp34m-linux_x86_64.whl
 </pre>
 
 
 GPU support:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc1-cp34-cp34m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc2-cp34-cp34m-linux_x86_64.whl
 </pre>
 
 Note that GPU support requires the NVIDIA hardware and software described in
@@ -670,14 +670,14 @@
 CPU only:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp35-cp35m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp35-cp35m-linux_x86_64.whl
 </pre>
 
 
 GPU support:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc1-cp35-cp35m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc2-cp35-cp35m-linux_x86_64.whl
 </pre>
 
 
@@ -689,14 +689,14 @@
 CPU only:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc1-cp36-cp36m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.3.0rc2-cp36-cp36m-linux_x86_64.whl
 </pre>
 
 
 GPU support:
 
 <pre>
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc1-cp36-cp36m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc2-cp36-cp36m-linux_x86_64.whl
 </pre>
 
 
diff --git a/tensorflow/docs_src/install/install_mac.md b/tensorflow/docs_src/install/install_mac.md
index 6fa63dd..733ecc3 100644
--- a/tensorflow/docs_src/install/install_mac.md
+++ b/tensorflow/docs_src/install/install_mac.md
@@ -109,7 +109,7 @@
      TensorFlow in the active Virtualenv is as follows:
 
      <pre> $ <b>pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc1-py2-none-any.whl</b></pre>
+     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc2-py2-none-any.whl</b></pre>
 
 If you encounter installation problems, see
 [Common Installation Problems](#common-installation-problems).
@@ -230,7 +230,7 @@
      issue the following command:
 
      <pre> $ <b>sudo pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc1-py2-none-any.whl</b> </pre>
+     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc2-py2-none-any.whl</b> </pre>
 
      If the preceding command fails, see
      [installation problems](#common-installation-problems).
@@ -339,7 +339,7 @@
      TensorFlow for Python 2.7:
 
      <pre> (tensorflow)$ <b>pip install --ignore-installed --upgrade \
-     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc1-py2-none-any.whl</b></pre>
+     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc2-py2-none-any.whl</b></pre>
 
 
 <a name="ValidateYourInstallation"></a>
@@ -512,7 +512,7 @@
 
 
 <pre>
-https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc1-py2-none-any.whl
+https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc2-py2-none-any.whl
 </pre>
 
 
@@ -520,7 +520,7 @@
 
 
 <pre>
-https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc1-py3-none-any.whl
+https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.3.0rc2-py3-none-any.whl
 </pre>
 
 
diff --git a/tensorflow/docs_src/install/install_sources.md b/tensorflow/docs_src/install/install_sources.md
index 4f36589..a69f982 100644
--- a/tensorflow/docs_src/install/install_sources.md
+++ b/tensorflow/docs_src/install/install_sources.md
@@ -343,10 +343,10 @@
 The filename of the `.whl` file depends on your platform.
 For example, the following command will install the pip package
 
-for TensorFlow 1.3.0rc1 on Linux:
+for TensorFlow 1.3.0rc2 on Linux:
 
 <pre>
-$ <b>sudo pip install /tmp/tensorflow_pkg/tensorflow-1.3.0rc1-py2-none-any.whl</b>
+$ <b>sudo pip install /tmp/tensorflow_pkg/tensorflow-1.3.0rc2-py2-none-any.whl</b>
 </pre>
 
 ## Validate your installation
diff --git a/tensorflow/docs_src/install/install_windows.md b/tensorflow/docs_src/install/install_windows.md
index 2895438..a9d7dd9 100644
--- a/tensorflow/docs_src/install/install_windows.md
+++ b/tensorflow/docs_src/install/install_windows.md
@@ -115,12 +115,12 @@
      environment. To install the CPU-only version of TensorFlow, enter the
      following command:
 
-     <pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.3.0rc1-cp35-cp35m-win_amd64.whl</b> </pre>
+     <pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.3.0rc2-cp35-cp35m-win_amd64.whl</b> </pre>
 
      To install the GPU version of TensorFlow, enter the following command
      (on a single line):
 
-     <pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.3.0rc1-cp35-cp35m-win_amd64.whl</b> </pre>
+     <pre>(tensorflow)C:\> <b>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.3.0rc2-cp35-cp35m-win_amd64.whl</b> </pre>
 
 ## Validate your installation
 
diff --git a/tensorflow/docs_src/performance/quantization.md b/tensorflow/docs_src/performance/quantization.md
index d050fc5..544274c 100644
--- a/tensorflow/docs_src/performance/quantization.md
+++ b/tensorflow/docs_src/performance/quantization.md
@@ -89,12 +89,14 @@
 eight-bit computations:
 
 ```sh
-curl http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz -o /tmp/inceptionv3.tgz
-tar xzf /tmp/inceptionv3.tgz -C /tmp/
+curl -L "https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz" |
+  tar -C tensorflow/examples/label_image/data -xz
 bazel build tensorflow/tools/graph_transforms:transform_graph
 bazel-bin/tensorflow/tools/graph_transforms/transform_graph \
-  --inputs="Mul" --in_graph=/tmp/classify_image_graph_def.pb \
-  --outputs="softmax" --out_graph=/tmp/quantized_graph.pb \
+  --in_graph=tensorflow/examples/label_image/data/inception_v3_2016_08_28_frozen.pb \
+  --out_graph=/tmp/quantized_graph.pb \
+  --inputs=input \
+  --outputs=InceptionV3/Predictions/Reshape_1 \
   --transforms='add_default_attributes strip_unused_nodes(type=float, shape="1,299,299,3")
     remove_nodes(op=Identity, op=CheckNumerics) fold_constants(ignore_errors=true)
     fold_batch_norms fold_old_batch_norms quantize_weights quantize_nodes
@@ -110,15 +112,7 @@
 ```sh
 bazel build tensorflow/examples/label_image:label_image
 bazel-bin/tensorflow/examples/label_image/label_image \
---image=<input-image> \
 --graph=/tmp/quantized_graph.pb \
---labels=/tmp/imagenet_synset_to_human_label_map.txt \
---input_width=299 \
---input_height=299 \
---input_mean=128 \
---input_std=128 \
---input_layer="Mul:0" \
---output_layer="softmax:0"
 ```
 
 You'll see that this runs the newly-quantized graph, and outputs a very similar
diff --git a/tensorflow/docs_src/programmers_guide/variables.md b/tensorflow/docs_src/programmers_guide/variables.md
index dd18760..b265dbb 100644
--- a/tensorflow/docs_src/programmers_guide/variables.md
+++ b/tensorflow/docs_src/programmers_guide/variables.md
@@ -110,7 +110,7 @@
 places it on the second GPU device:
 
 ``` python
-with tf.device("/gpu:1"):
+with tf.device("/device:GPU:1"):
   v = tf.get_variable("v", [1])
 ```
 
diff --git a/tensorflow/docs_src/tutorials/deep_cnn.md b/tensorflow/docs_src/tutorials/deep_cnn.md
index a9802b0..591b8ea 100644
--- a/tensorflow/docs_src/tutorials/deep_cnn.md
+++ b/tensorflow/docs_src/tutorials/deep_cnn.md
@@ -411,7 +411,7 @@
 
 * A preferred hardware device to run the operation within a tower.
 @{tf.device} specifies this. For
-instance, all operations in the first tower reside within `device('/gpu:0')`
+instance, all operations in the first tower reside within `device('/device:GPU:0')`
 scope indicating that they should be run on the first GPU.
 
 All variables are pinned to the CPU and accessed via
diff --git a/tensorflow/docs_src/tutorials/using_gpu.md b/tensorflow/docs_src/tutorials/using_gpu.md
index dcec62d..b6edbe3 100644
--- a/tensorflow/docs_src/tutorials/using_gpu.md
+++ b/tensorflow/docs_src/tutorials/using_gpu.md
@@ -7,8 +7,8 @@
 For example:
 
 *   `"/cpu:0"`: The CPU of your machine.
-*   `"/gpu:0"`: The GPU of your machine, if you have one.
-*   `"/gpu:1"`: The second GPU of your machine, etc.
+*   `"/device:GPU:0"`: The GPU of your machine, if you have one.
+*   `"/device:GPU:1"`: The second GPU of your machine, etc.
 
 If a TensorFlow operation has both CPU and GPU implementations, the GPU devices
 will be given priority when the operation is assigned to a device. For example,
@@ -35,11 +35,11 @@
 
 ```
 Device mapping:
-/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
+/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
 id: 0000:05:00.0
-b: /job:localhost/replica:0/task:0/gpu:0
-a: /job:localhost/replica:0/task:0/gpu:0
-MatMul: /job:localhost/replica:0/task:0/gpu:0
+b: /job:localhost/replica:0/task:0/device:GPU:0
+a: /job:localhost/replica:0/task:0/device:GPU:0
+MatMul: /job:localhost/replica:0/task:0/device:GPU:0
 [[ 22.  28.]
  [ 49.  64.]]
 
@@ -71,11 +71,11 @@
 
 ```
 Device mapping:
-/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
+/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
 id: 0000:05:00.0
 b: /job:localhost/replica:0/task:0/cpu:0
 a: /job:localhost/replica:0/task:0/cpu:0
-MatMul: /job:localhost/replica:0/task:0/gpu:0
+MatMul: /job:localhost/replica:0/task:0/device:GPU:0
 [[ 22.  28.]
  [ 49.  64.]]
 ```
@@ -127,7 +127,7 @@
 
 ```python
 # Creates a graph.
-with tf.device('/gpu:2'):
+with tf.device('/device:GPU:2'):
   a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
   b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
   c = tf.matmul(a, b)
@@ -142,9 +142,9 @@
 
 ```
 InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b':
-Could not satisfy explicit device specification '/gpu:2'
+Could not satisfy explicit device specification '/device:GPU:2'
    [[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2]
-   values: 1 2 3...>, _device="/gpu:2"]()]]
+   values: 1 2 3...>, _device="/device:GPU:2"]()]]
 ```
 
 If you would like TensorFlow to automatically choose an existing and supported
@@ -154,7 +154,7 @@
 
 ```python
 # Creates a graph.
-with tf.device('/gpu:2'):
+with tf.device('/device:GPU:2'):
   a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
   b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
   c = tf.matmul(a, b)
@@ -175,7 +175,7 @@
 ```
 # Creates a graph.
 c = []
-for d in ['/gpu:2', '/gpu:3']:
+for d in ['/device:GPU:2', '/device:GPU:3']:
   with tf.device(d):
     a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
     b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
@@ -192,20 +192,20 @@
 
 ```
 Device mapping:
-/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K20m, pci bus
+/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K20m, pci bus
 id: 0000:02:00.0
-/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: Tesla K20m, pci bus
+/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla K20m, pci bus
 id: 0000:03:00.0
-/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: Tesla K20m, pci bus
+/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla K20m, pci bus
 id: 0000:83:00.0
-/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: Tesla K20m, pci bus
+/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla K20m, pci bus
 id: 0000:84:00.0
-Const_3: /job:localhost/replica:0/task:0/gpu:3
-Const_2: /job:localhost/replica:0/task:0/gpu:3
-MatMul_1: /job:localhost/replica:0/task:0/gpu:3
-Const_1: /job:localhost/replica:0/task:0/gpu:2
-Const: /job:localhost/replica:0/task:0/gpu:2
-MatMul: /job:localhost/replica:0/task:0/gpu:2
+Const_3: /job:localhost/replica:0/task:0/device:GPU:3
+Const_2: /job:localhost/replica:0/task:0/device:GPU:3
+MatMul_1: /job:localhost/replica:0/task:0/device:GPU:3
+Const_1: /job:localhost/replica:0/task:0/device:GPU:2
+Const: /job:localhost/replica:0/task:0/device:GPU:2
+MatMul: /job:localhost/replica:0/task:0/device:GPU:2
 AddN: /job:localhost/replica:0/task:0/cpu:0
 [[  44.   56.]
  [  98.  128.]]
diff --git a/tensorflow/docs_src/tutorials/wide.md b/tensorflow/docs_src/tutorials/wide.md
index fdf4395..3571a55 100644
--- a/tensorflow/docs_src/tutorials/wide.md
+++ b/tensorflow/docs_src/tutorials/wide.md
@@ -24,13 +24,13 @@
         # Ubuntu/Linux 64-bit
         $ sudo apt-get install python-pip python-dev
 
-        # Mac OS X
+        # macOS
         $ sudo easy_install pip
         $ sudo easy_install --upgrade six
 
     b. Use `pip` to install pandas:
 
-        $ sudo pip install pandas
+        $ pip install -U pandas
 
     If you have trouble installing pandas, consult the
     [instructions](http://pandas.pydata.org/pandas-docs/stable/install.html)
@@ -127,7 +127,7 @@
 :                :             : individual.                       :
 | income         | Categorical | ">50K" or "<=50K", meaning        |
 :                :             : whether the person makes more     :
-:                :             : than \$50,000 annually.           :
+:                :             : than $50,000 annually.           :
 
 ## Converting Data into Tensors
 
diff --git a/tensorflow/examples/android/src/org/tensorflow/demo/tracking/ObjectTracker.java b/tensorflow/examples/android/src/org/tensorflow/demo/tracking/ObjectTracker.java
index 69f202b5..8b4248d 100644
--- a/tensorflow/examples/android/src/org/tensorflow/demo/tracking/ObjectTracker.java
+++ b/tensorflow/examples/android/src/org/tensorflow/demo/tracking/ObjectTracker.java
@@ -481,7 +481,7 @@
   /**
    * A TrackedObject represents a native TrackedObject, and provides access to the
    * relevant native tracking information available after every frame update. They may
-   * be safely passed around and acessed externally, but will become invalid after
+   * be safely passed around and accessed externally, but will become invalid after
    * stopTracking() is called or the related creating ObjectTracker is deactivated.
    *
    * @author andrewharp@google.com (Andrew Harp)
diff --git a/tensorflow/examples/learn/multiple_gpu.py b/tensorflow/examples/learn/multiple_gpu.py
index c7364d1..a294950 100644
--- a/tensorflow/examples/learn/multiple_gpu.py
+++ b/tensorflow/examples/learn/multiple_gpu.py
@@ -47,12 +47,12 @@
   # Create three fully connected layers respectively of size 10, 20, and 10 with
   # each layer having a dropout probability of 0.1.
   net = features[X_FEATURE]
-  with tf.device('/gpu:1'):
+  with tf.device('/device:GPU:1'):
     for units in [10, 20, 10]:
       net = tf.layers.dense(net, units=units, activation=tf.nn.relu)
       net = tf.layers.dropout(net, rate=0.1)
 
-  with tf.device('/gpu:2'):
+  with tf.device('/device:GPU:2'):
     # Compute logits (1 per class).
     logits = tf.layers.dense(net, 3, activation=None)
 
diff --git a/tensorflow/go/README.md b/tensorflow/go/README.md
index 9c2fa60..376e22b 100644
--- a/tensorflow/go/README.md
+++ b/tensorflow/go/README.md
@@ -23,9 +23,9 @@
 
 -   [bazel](https://www.bazel.build/versions/master/docs/install.html)
 -   Environment to build TensorFlow from source code
-    ([Linux](https://www.tensorflow.org/versions/master/get_started/os_setup.html#prepare-environment-for-linux)
+    ([Linux](https://www.tensorflow.org/install/install_sources#PrepareLinux)
     or [OS
-    X](https://www.tensorflow.org/versions/master/get_started/os_setup.html#prepare-environment-for-mac-os-x)).
+    X](https://www.tensorflow.org/install/install_sources#PrepareMac)).
     If you don't need GPU support, then try the following: `sh # Linux sudo
     apt-get install python swig python-numpy # OS X with homebrew brew install
     swig`
diff --git a/tensorflow/java/README.md b/tensorflow/java/README.md
index 2abee05..2f1ce25 100644
--- a/tensorflow/java/README.md
+++ b/tensorflow/java/README.md
@@ -22,9 +22,9 @@
 1.  Install [bazel](https://www.bazel.build/versions/master/docs/install.html)
 
 2.  Setup the environment to build TensorFlow from source code
-    ([Linux](https://www.tensorflow.org/versions/master/get_started/os_setup.html#prepare-environment-for-linux)
+    ([Linux](https://www.tensorflow.org/install/install_sources#PrepareLinux)
     or [Mac OS
-    X](https://www.tensorflow.org/versions/master/get_started/os_setup.html#prepare-environment-for-mac-os-x)).
+    X](https://www.tensorflow.org/install/install_sources#PrepareMac)).
     If you'd like to skip reading those details and do not care about GPU
     support, try the following:
 
diff --git a/tensorflow/python/BUILD b/tensorflow/python/BUILD
index 6af0d2b..b5a6781 100644
--- a/tensorflow/python/BUILD
+++ b/tensorflow/python/BUILD
@@ -30,6 +30,7 @@
 load("//tensorflow/python:build_defs.bzl", "tf_gen_op_wrapper_private_py")
 load("//tensorflow/core:platform/default/build_config_root.bzl", "tf_additional_verbs_deps")
 load("//tensorflow/core:platform/default/build_config_root.bzl", "tf_additional_mpi_deps")
+load("//tensorflow/core:platform/default/build_config_root.bzl", "tf_additional_gdr_deps")
 
 py_library(
     name = "python",
@@ -2380,6 +2381,7 @@
         ":math_ops",
         "//third_party/py/numpy",
     ],
+    tags = ["no_windows_gpu"],
 )
 
 cuda_py_test(
@@ -2397,6 +2399,7 @@
         ":variables",
         "//third_party/py/numpy",
     ],
+    tags = ["no_windows_gpu"],
 )
 
 cuda_py_test(
@@ -2477,6 +2480,7 @@
         ":special_math_ops",
         "//third_party/py/numpy",
     ],
+    tags = ["no_windows_gpu"],
 )
 
 py_library(
@@ -2877,7 +2881,8 @@
     ] + (tf_additional_lib_deps() +
          tf_additional_plugin_deps() +
          tf_additional_verbs_deps() +
-         tf_additional_mpi_deps()),
+         tf_additional_mpi_deps() +
+         tf_additional_gdr_deps()),
 )
 
 py_library(
diff --git a/tensorflow/python/client/session_clusterspec_prop_test.py b/tensorflow/python/client/session_clusterspec_prop_test.py
index 6a89755..b77912b 100644
--- a/tensorflow/python/client/session_clusterspec_prop_test.py
+++ b/tensorflow/python/client/session_clusterspec_prop_test.py
@@ -173,7 +173,7 @@
     #
     # W0718 17:14:41.521534  190121 device_mgr.cc:107] Unknown device:
     #     /job:worker/replica:0/task:0/device:CPU:0 all devices:
-    #     /job:local/replica:0/task:0/gpu:0,
+    #     /job:local/replica:0/task:0/device:GPU:0,
     #     /job:local/replica:0/task:0/device:GPU:0,
     #     /job:local/replica:0/task:0/cpu:1, CPU:0, GPU:0,
     #     /job:local/replica:0/task:0/device:CPU:1,
@@ -198,7 +198,7 @@
         sum1 = input1 + input2
 
       if test.is_gpu_available():
-        device_str = '/job:worker/task:0/gpu:0'
+        device_str = '/job:worker/task:0/device:GPU:0'
       else:
         device_str = '/job:worker/task:0/cpu:1'
       with ops.device(device_str):
diff --git a/tensorflow/python/client/session_test.py b/tensorflow/python/client/session_test.py
index 15e7ae1..b4f0fd6 100644
--- a/tensorflow/python/client/session_test.py
+++ b/tensorflow/python/client/session_test.py
@@ -1124,7 +1124,7 @@
     # which is why placing this is invalid.  If at some point
     # GPU kernels are added to this test, some other different
     # op / device combo should be chosen.
-    with ops.device('/gpu:0'):
+    with ops.device('/device:GPU:0'):
       a = constant_op.constant(1.0, shape=[1, 2])
 
     b = constant_op.constant(1.0, shape=[1, 2])
@@ -1145,7 +1145,7 @@
     # which is why placing this is invalid.  If at some point
     # GPU kernels are added to this test, some other different
     # op / device combo should be chosen.
-    with ops.device('/gpu:0'):
+    with ops.device('/device:GPU:0'):
       _ = constant_op.constant(1.0, shape=[1, 2])
 
     b = constant_op.constant(1.0, shape=[1, 2])
@@ -1494,7 +1494,7 @@
         allow_soft_placement=True,
         graph_options=config_pb2.GraphOptions(build_cost_model=100))
     with session.Session(config=config) as sess:
-      with ops.device('/gpu:0'):
+      with ops.device('/device:GPU:0'):
         a = array_ops.placeholder(dtypes.float32, shape=[])
         b = math_ops.add(a, a)
         c = array_ops.identity(b)
diff --git a/tensorflow/python/client/timeline_test.py b/tensorflow/python/client/timeline_test.py
index e879771..8396df5 100644
--- a/tensorflow/python/client/timeline_test.py
+++ b/tensorflow/python/client/timeline_test.py
@@ -100,8 +100,8 @@
     self.assertTrue(run_metadata.HasField('step_stats'))
     step_stats = run_metadata.step_stats
     devices = [d.device for d in step_stats.dev_stats]
-    self.assertTrue('/job:localhost/replica:0/task:0/gpu:0' in devices)
-    self.assertTrue('/gpu:0/stream:all' in devices)
+    self.assertTrue('/job:localhost/replica:0/task:0/device:GPU:0' in devices)
+    self.assertTrue('/device:GPU:0/stream:all' in devices)
     tl = timeline.Timeline(step_stats)
     ctf = tl.generate_chrome_trace_format()
     self._validateTrace(ctf)
diff --git a/tensorflow/python/debug/lib/debug_data.py b/tensorflow/python/debug/lib/debug_data.py
index 044a91a..b2b3ec5 100644
--- a/tensorflow/python/debug/lib/debug_data.py
+++ b/tensorflow/python/debug/lib/debug_data.py
@@ -380,7 +380,8 @@
   path_items = os.path.basename(device_dir)[
       len(METADATA_FILE_PREFIX) + len(DEVICE_TAG):].split(",")
   return "/".join([
-      path_item.replace("_", ":", 1) for path_item in path_items])
+      path_item.replace("device_", "device:").replace("_", ":", 1)
+      for path_item in path_items])
 
 
 class DebugTensorDatum(object):
diff --git a/tensorflow/python/debug/lib/debug_data_test.py b/tensorflow/python/debug/lib/debug_data_test.py
index eff70b6..694010a 100644
--- a/tensorflow/python/debug/lib/debug_data_test.py
+++ b/tensorflow/python/debug/lib/debug_data_test.py
@@ -237,11 +237,11 @@
     gpu_0_dir = os.path.join(
         self._dump_root,
         debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG +
-        ",job_localhost,replica_0,task_0,gpu_0")
+        ",job_localhost,replica_0,task_0,device_GPU_0")
     gpu_1_dir = os.path.join(
         self._dump_root,
         debug_data.METADATA_FILE_PREFIX + debug_data.DEVICE_TAG +
-        ",job_localhost,replica_0,task_0,gpu_1")
+        ",job_localhost,replica_0,task_0,device_GPU_1")
     os.makedirs(cpu_0_dir)
     os.makedirs(gpu_0_dir)
     os.makedirs(gpu_1_dir)
@@ -281,12 +281,12 @@
     node = graph_gpu_0.node.add()
     node.name = "node_foo_1"
     node.op = "FooOp"
-    node.device = "/job:localhost/replica:0/task:0/gpu:0"
+    node.device = "/job:localhost/replica:0/task:0/device:GPU:0"
     graph_gpu_1 = graph_pb2.GraphDef()
     node = graph_gpu_1.node.add()
     node.name = "node_foo_1"
     node.op = "FooOp"
-    node.device = "/job:localhost/replica:0/task:0/gpu:1"
+    node.device = "/job:localhost/replica:0/task:0/device:GPU:1"
 
     dump_dir = debug_data.DebugDumpDir(
         self._dump_root,
@@ -294,14 +294,14 @@
 
     self.assertItemsEqual(
         ["/job:localhost/replica:0/task:0/cpu:0",
-         "/job:localhost/replica:0/task:0/gpu:0",
-         "/job:localhost/replica:0/task:0/gpu:1"], dump_dir.devices())
+         "/job:localhost/replica:0/task:0/device:GPU:0",
+         "/job:localhost/replica:0/task:0/device:GPU:1"], dump_dir.devices())
     self.assertEqual(1472563253536385, dump_dir.t0)
     self.assertEqual(3, dump_dir.size)
 
     with self.assertRaisesRegexp(
         ValueError, r"Invalid device name: "):
-      dump_dir.nodes("/job:localhost/replica:0/task:0/gpu:2")
+      dump_dir.nodes("/job:localhost/replica:0/task:0/device:GPU:2")
     self.assertItemsEqual(["node_foo_1", "node_foo_1", "node_foo_1"],
                           dump_dir.nodes())
     self.assertItemsEqual(
@@ -319,16 +319,16 @@
     node = graph_gpu_0.node.add()
     node.name = "node_foo_1"
     node.op = "FooOp"
-    node.device = "/job:localhost/replica:0/task:0/gpu:0"
+    node.device = "/job:localhost/replica:0/task:0/device:GPU:0"
     graph_gpu_1 = graph_pb2.GraphDef()
     node = graph_gpu_1.node.add()
     node.name = "node_foo_1"
     node.op = "FooOp"
-    node.device = "/job:localhost/replica:0/task:0/gpu:1"
+    node.device = "/job:localhost/replica:0/task:0/device:GPU:1"
     node = graph_gpu_1.node.add()  # Here is the duplicate.
     node.name = "node_foo_1"
     node.op = "FooOp"
-    node.device = "/job:localhost/replica:0/task:0/gpu:1"
+    node.device = "/job:localhost/replica:0/task:0/device:GPU:1"
 
     with self.assertRaisesRegexp(
         ValueError, r"Duplicate node name on device "):
diff --git a/tensorflow/python/debug/lib/session_debug_testlib.py b/tensorflow/python/debug/lib/session_debug_testlib.py
index e54590a..08b3e75 100644
--- a/tensorflow/python/debug/lib/session_debug_testlib.py
+++ b/tensorflow/python/debug/lib/session_debug_testlib.py
@@ -711,7 +711,7 @@
     # Test node name list lookup of the DebugDumpDir object.
     if test_util.gpu_device_name():
       node_names = dump.nodes(
-          device_name="/job:localhost/replica:0/task:0/gpu:0")
+          device_name="/job:localhost/replica:0/task:0/device:GPU:0")
     else:
       node_names = dump.nodes()
     self.assertTrue(u_name in node_names)
diff --git a/tensorflow/python/debug/wrappers/local_cli_wrapper_test.py b/tensorflow/python/debug/wrappers/local_cli_wrapper_test.py
index 575d74b..3d18d77 100644
--- a/tensorflow/python/debug/wrappers/local_cli_wrapper_test.py
+++ b/tensorflow/python/debug/wrappers/local_cli_wrapper_test.py
@@ -402,7 +402,7 @@
 
   def testRuntimeErrorBeforeGraphExecutionIsRaised(self):
     # Use an impossible device name to cause an error before graph execution.
-    with ops.device("/gpu:1337"):
+    with ops.device("/device:GPU:1337"):
       w = variables.Variable([1.0] * 10, name="w")
 
     wrapped_sess = LocalCLIDebuggerWrapperSessionForTest(
diff --git a/tensorflow/python/feature_column/feature_column.py b/tensorflow/python/feature_column/feature_column.py
index 37da89c..44ab1a6 100644
--- a/tensorflow/python/feature_column/feature_column.py
+++ b/tensorflow/python/feature_column/feature_column.py
@@ -1468,11 +1468,11 @@
   We're trying to use the following `_FeatureColumn`s:
 
   ```python
-    bucketized_age = fc.bucketized_column(fc.numeric_column("age"), ...)
-    keywords = fc.categorical_column_with_hash_buckets("keywords", ...)
-    age_X_keywords = fc.crossed_column([bucketized_age, "keywords"])
-    ... = linear_model(features,
-                            [bucketized_age, keywords, age_X_keywords]
+  bucketized_age = fc.bucketized_column(fc.numeric_column("age"), ...)
+  keywords = fc.categorical_column_with_hash_buckets("keywords", ...)
+  age_X_keywords = fc.crossed_column([bucketized_age, "keywords"])
+  ... = linear_model(features,
+                          [bucketized_age, keywords, age_X_keywords]
   ```
 
   If we transform each column independently, then we'll get duplication of
diff --git a/tensorflow/python/framework/device_test.py b/tensorflow/python/framework/device_test.py
index e6dc3c8..0859e95 100644
--- a/tensorflow/python/framework/device_test.py
+++ b/tensorflow/python/framework/device_test.py
@@ -79,17 +79,17 @@
     self.assertEquals("/replica:1/task:0/device:CPU:0", d.to_string())
     d.parse_from_string("/replica:1/task:0/device:CPU:0")
     self.assertEquals("/replica:1/task:0/device:CPU:0", d.to_string())
-    d.parse_from_string("/job:muu/gpu:2")
+    d.parse_from_string("/job:muu/device:GPU:2")
     self.assertEquals("/job:muu/device:GPU:2", d.to_string())
     with self.assertRaises(Exception) as e:
-      d.parse_from_string("/job:muu/gpu:2/cpu:0")
+      d.parse_from_string("/job:muu/device:GPU:2/cpu:0")
     self.assertTrue("Cannot specify multiple device" in str(e.exception))
 
   def testFromString(self):
     d = device.DeviceSpec.from_string("/job:foo/replica:0")
     self.assertEquals("/job:foo/replica:0", d.to_string())
     with self.assertRaises(Exception) as e:
-      d = device.DeviceSpec.from_string("/job:muu/gpu:2/cpu:0")
+      d = device.DeviceSpec.from_string("/job:muu/device:GPU:2/cpu:0")
     self.assertTrue("Cannot specify multiple device" in str(e.exception))
 
     d = device.DeviceSpec.from_string("/job:foo/replica:0/task:3/cpu:*")
@@ -102,13 +102,13 @@
   def testMerge(self):
     d = device.DeviceSpec.from_string("/job:foo/replica:0")
     self.assertEquals("/job:foo/replica:0", d.to_string())
-    d.merge_from(device.DeviceSpec.from_string("/task:1/gpu:2"))
+    d.merge_from(device.DeviceSpec.from_string("/task:1/device:GPU:2"))
     self.assertEquals("/job:foo/replica:0/task:1/device:GPU:2", d.to_string())
 
     d = device.DeviceSpec()
     d.merge_from(device.DeviceSpec.from_string("/task:1/cpu:0"))
     self.assertEquals("/task:1/device:CPU:0", d.to_string())
-    d.merge_from(device.DeviceSpec.from_string("/job:boo/gpu:0"))
+    d.merge_from(device.DeviceSpec.from_string("/job:boo/device:GPU:0"))
     self.assertEquals("/job:boo/task:1/device:GPU:0", d.to_string())
     d.merge_from(device.DeviceSpec.from_string("/job:muu/cpu:2"))
     self.assertEquals("/job:muu/task:1/device:CPU:2", d.to_string())
@@ -134,10 +134,10 @@
 
     self.assertEqual("/job:foo/replica:0/task:0/device:GPU:0",
                      device.canonical_name(
-                         "/job:foo/replica:0/task:0/gpu:0"))
+                         "/job:foo/replica:0/task:0/device:GPU:0"))
     self.assertEqual("/job:foo/replica:0/task:0/device:GPU:0",
                      device.canonical_name(
-                         "/gpu:0/task:0/replica:0/job:foo"))
+                         "/device:GPU:0/task:0/replica:0/job:foo"))
 
   def testCheckValid(self):
     device.check_valid("/job:foo/replica:0")
@@ -155,7 +155,7 @@
     self.assertTrue("Unknown attribute: 'bar'" in str(e.exception))
 
     with self.assertRaises(Exception) as e:
-      device.check_valid("/cpu:0/gpu:2")
+      device.check_valid("/cpu:0/device:GPU:2")
     self.assertTrue("Cannot specify multiple device" in str(e.exception))
 
 
diff --git a/tensorflow/python/framework/function.py b/tensorflow/python/framework/function.py
index 34295d8..7220f85 100644
--- a/tensorflow/python/framework/function.py
+++ b/tensorflow/python/framework/function.py
@@ -584,7 +584,7 @@
   _FuncGraph overrides ops.Graph's create_op() so that we can keep
   track of all inputs into every op created inside the function.  If
   any input is from other graphs, we keep track of it in self.capture
-  and substitue the input with a place holder.
+  and substitute the input with a place holder.
 
   Each captured input's corresponding place holder is converted into a
   function argument and the caller passes in the captured tensor.
diff --git a/tensorflow/python/framework/function_test.py b/tensorflow/python/framework/function_test.py
index c94e05c..589db9e 100644
--- a/tensorflow/python/framework/function_test.py
+++ b/tensorflow/python/framework/function_test.py
@@ -505,7 +505,7 @@
 
       _ = PlusOne(1, name="p1")
       with self.assertRaisesRegexp(ValueError, "Unknown keyword arguments"):
-        _ = PlusOne(1, device="/gpu:0")
+        _ = PlusOne(1, device="/device:GPU:0")
 
   def testFunctionDecorator(self):
 
diff --git a/tensorflow/python/framework/graph_util_test.py b/tensorflow/python/framework/graph_util_test.py
index f6e9bc9..647ed15 100644
--- a/tensorflow/python/framework/graph_util_test.py
+++ b/tensorflow/python/framework/graph_util_test.py
@@ -106,9 +106,9 @@
       var_0 = variables.Variable(0)
       with ops.device(test_device_func_pin_variable_to_cpu):
         var_1 = variables.Variable(1)
-        with ops.device(lambda op: "/gpu:0"):
+        with ops.device(lambda op: "/device:GPU:0"):
           var_2 = variables.Variable(2)
-        with ops.device("/gpu:0"):  # Implicit merging device function.
+        with ops.device("/device:GPU:0"):  # Implicit merging device function.
           var_3 = variables.Variable(3)
 
     self.assertDeviceEqual(var_0.device, None)
diff --git a/tensorflow/python/framework/importer_test.py b/tensorflow/python/framework/importer_test.py
index cfba6af..8ce8e76 100644
--- a/tensorflow/python/framework/importer_test.py
+++ b/tensorflow/python/framework/importer_test.py
@@ -878,7 +878,7 @@
         self.assertEqual(c.device, c4.device)  # worker overrides ps.
 
     with ops.Graph().as_default():
-      with ops.device(device.merge_device("/gpu:0")):
+      with ops.device(device.merge_device("/device:GPU:0")):
         a5, b5, c5 = importer.import_graph_def(
             gdef, return_elements=["a", "b", "c"])
         self.assertEqual("/device:GPU:0", a5.device)
diff --git a/tensorflow/python/framework/meta_graph_test.py b/tensorflow/python/framework/meta_graph_test.py
index 13a92c3..65abb69 100644
--- a/tensorflow/python/framework/meta_graph_test.py
+++ b/tensorflow/python/framework/meta_graph_test.py
@@ -550,7 +550,7 @@
         a = variables.Variable(
             constant_op.constant(
                 1.0, shape=[2, 2]), name="a")
-      with ops.device("/job:ps/replica:0/task:0/gpu:0"):
+      with ops.device("/job:ps/replica:0/task:0/device:GPU:0"):
         b = variables.Variable(
             constant_op.constant(
                 2.0, shape=[2, 2]), name="b")
diff --git a/tensorflow/python/framework/ops.py b/tensorflow/python/framework/ops.py
index 5948e59..1b7b9ee 100644
--- a/tensorflow/python/framework/ops.py
+++ b/tensorflow/python/framework/ops.py
@@ -1632,7 +1632,7 @@
   def _create_c_op(self, graph, node_def, inputs, control_inputs):
     """Creates a TF_Operation.
 
-    Arguments:
+    Args:
       graph: a `Graph`.
       node_def: `node_def_pb2.NodeDef` for the operation to create.
       inputs: A list of `Tensor`s (corresponding to scalar inputs) and lists of
@@ -1677,7 +1677,7 @@
   def _reconstruct_sequence_inputs(self, op_def, inputs, attrs):
     """Regroups a flat list of input tensors into scalar and sequence inputs.
 
-    Arguments:
+    Args:
       op_def: The `op_def_pb2.OpDef` (for knowing the input types)
       inputs: a list of input `Tensor`s to the op.
       attrs: mapping from attr name to `attr_value_pb2.AttrValue` (these define
@@ -3763,7 +3763,7 @@
     For example:
 
     ```python
-    with g.device('/gpu:0'):
+    with g.device('/device:GPU:0'):
       # All operations constructed in this context will be placed
       # on GPU 0.
       with g.device(None):
@@ -3773,7 +3773,7 @@
     # Defines a function from `Operation` to device string.
     def matmul_on_gpu(n):
       if n.type == "MatMul":
-        return "/gpu:0"
+        return "/device:GPU:0"
       else:
         return "/cpu:0"
 
diff --git a/tensorflow/python/framework/ops_test.py b/tensorflow/python/framework/ops_test.py
index acb5fa5..4cbb9de 100644
--- a/tensorflow/python/framework/ops_test.py
+++ b/tensorflow/python/framework/ops_test.py
@@ -1562,26 +1562,26 @@
 
   def testColocationDeviceInteraction(self):
     with ops.device("/cpu:0"):
-      with ops.device("/gpu:0"):
+      with ops.device("/device:GPU:0"):
         a = constant_op.constant([2.0], name="a")
       with ops.colocate_with(a.op):
         # 'b' is created in the scope of /cpu:0, but it is
-        # colocated with 'a', which is on '/gpu:0'.  colocate_with
+        # colocated with 'a', which is on '/device:GPU:0'.  colocate_with
         # overrides devices because it is a stronger constraint.
         b = constant_op.constant(3.0)
     self.assertEqual([b"loc:@a"], b.op.colocation_groups())
     self.assertEqual(a.op.device, b.op.device)
 
   def testColocationCanonicalization(self):
-    with ops.device("/gpu:0"):
+    with ops.device("/device:GPU:0"):
       _ = constant_op.constant(2.0)
-    with ops.device(lambda op: "/gpu:0"):
+    with ops.device(lambda op: "/device:GPU:0"):
       b = constant_op.constant(3.0)
     with ops.get_default_graph().colocate_with(b):
-      with ops.device("/gpu:0"):
+      with ops.device("/device:GPU:0"):
         c = constant_op.constant(4.0)
 
-    # A's device will be /gpu:0
+    # A's device will be /device:GPU:0
     # B's device will be /device:GPU:0
     # C's device will be /device:GPU:0 because it
     # inherits B's device name, after canonicalizing the names.
@@ -1589,10 +1589,10 @@
 
   def testLocationOverrides(self):
     with ops.device("/cpu:0"):
-      with ops.device("/gpu:0"):
+      with ops.device("/device:GPU:0"):
         a = constant_op.constant([2.0], name="a")
         # Note that this colocation is "redundant", since we are
-        # within the scope of "/gpu:0".  However, we would like to
+        # within the scope of "/device:GPU:0".  However, we would like to
         # preserve in the GraphDef that these two ops should be
         # colocated in a portable way.
         with ops.colocate_with(a.op):
@@ -1659,7 +1659,7 @@
     self.assertEqual([b"loc:@a"], b.op.colocation_groups())
 
   def testInconsistentDeviceWithinColocate(self):
-    with ops.device("/gpu:0"):
+    with ops.device("/device:GPU:0"):
       a = constant_op.constant([2.0], name="a")
       with ops.colocate_with(a.op):
         # This is allowed due to legacy but clearly wrong, since we
diff --git a/tensorflow/python/framework/tensor_shape.py b/tensorflow/python/framework/tensor_shape.py
index 66c0533..54ec15e 100644
--- a/tensorflow/python/framework/tensor_shape.py
+++ b/tensorflow/python/framework/tensor_shape.py
@@ -116,11 +116,11 @@
     Dimensions are combined as follows:
 
     ```python
-        Dimension(n)   .merge_with(Dimension(n))    == Dimension(n)
-        Dimension(n)   .merge_with(Dimension(None)) == Dimension(n)
-        Dimension(None).merge_with(Dimension(n))    == Dimension(n)
-        Dimension(None).merge_with(Dimension(None)) == Dimension(None)
-        Dimension(n)   .merge_with(Dimension(m)) raises ValueError for n != m
+    tf.Dimension(n)   .merge_with(tf.Dimension(n))    == tf.Dimension(n)
+    tf.Dimension(n)   .merge_with(tf.Dimension(None)) == tf.Dimension(n)
+    tf.Dimension(None).merge_with(tf.Dimension(n))    == tf.Dimension(n)
+    tf.Dimension(None).merge_with(tf.Dimension(None)) == tf.Dimension(None)
+    tf.Dimension(n)   .merge_with(tf.Dimension(m))  # raises ValueError for n != m
     ```
 
     Args:
@@ -146,10 +146,12 @@
 
     Dimensions are summed as follows:
 
-      Dimension(m)    + Dimension(n)    == Dimension(m + n)
-      Dimension(m)    + Dimension(None) == Dimension(None)
-      Dimension(None) + Dimension(n)    == Dimension(None)
-      Dimension(None) + Dimension(None) == Dimension(None)
+    ```python
+    tf.Dimension(m)    + tf.Dimension(n)    == tf.Dimension(m + n)
+    tf.Dimension(m)    + tf.Dimension(None) == tf.Dimension(None)
+    tf.Dimension(None) + tf.Dimension(n)    == tf.Dimension(None)
+    tf.Dimension(None) + tf.Dimension(None) == tf.Dimension(None)
+    ```
 
     Args:
       other: Another Dimension.
@@ -168,10 +170,12 @@
 
     Dimensions are subtracted as follows:
 
-      Dimension(m)    - Dimension(n)    == Dimension(m - n)
-      Dimension(m)    - Dimension(None) == Dimension(None)
-      Dimension(None) - Dimension(n)    == Dimension(None)
-      Dimension(None) - Dimension(None) == Dimension(None)
+    ```python
+    tf.Dimension(m)    - tf.Dimension(n)    == tf.Dimension(m - n)
+    tf.Dimension(m)    - tf.Dimension(None) == tf.Dimension(None)
+    tf.Dimension(None) - tf.Dimension(n)    == tf.Dimension(None)
+    tf.Dimension(None) - tf.Dimension(None) == tf.Dimension(None)
+    ```
 
     Args:
       other: Another Dimension.
@@ -190,11 +194,11 @@
 
     Dimensions are summed as follows:
 
-    ```
-      Dimension(m)    * Dimension(n)    == Dimension(m * n)
-      Dimension(m)    * Dimension(None) == Dimension(None)
-      Dimension(None) * Dimension(n)    == Dimension(None)
-      Dimension(None) * Dimension(None) == Dimension(None)
+    ```python
+    tf.Dimension(m)    * tf.Dimension(n)    == tf.Dimension(m * n)
+    tf.Dimension(m)    * tf.Dimension(None) == tf.Dimension(None)
+    tf.Dimension(None) * tf.Dimension(n)    == tf.Dimension(None)
+    tf.Dimension(None) * tf.Dimension(None) == tf.Dimension(None)
     ```
 
     Args:
@@ -214,10 +218,12 @@
 
     Dimensions are divided as follows:
 
-      Dimension(m)    // Dimension(n)    == Dimension(m // n)
-      Dimension(m)    // Dimension(None) == Dimension(None)
-      Dimension(None) // Dimension(n)    == Dimension(None)
-      Dimension(None) // Dimension(None) == Dimension(None)
+    ```python
+    tf.Dimension(m)    // tf.Dimension(n)    == tf.Dimension(m // n)
+    tf.Dimension(m)    // tf.Dimension(None) == tf.Dimension(None)
+    tf.Dimension(None) // tf.Dimension(n)    == tf.Dimension(None)
+    tf.Dimension(None) // tf.Dimension(None) == tf.Dimension(None)
+    ```
 
     Args:
       other: Another `Dimension`.
@@ -250,12 +256,14 @@
   def __mod__(self, other):
     """Returns `self` modulo `other.
 
-    Dimension moduli are computed  as follows:
+    Dimension moduli are computed as follows:
 
-      Dimension(m)    % Dimension(n)     == Dimension(m % n)
-      Dimension(m)    % Dimension(None)  == Dimension(None)
-      Dimension(None) % Dimension(n)     == Dimension(None)
-      Dimension(None) %  Dimension(None) == Dimension(None)
+    ```python
+    tf.Dimension(m)    % tf.Dimension(n)    == tf.Dimension(m % n)
+    tf.Dimension(m)    % tf.Dimension(None) == tf.Dimension(None)
+    tf.Dimension(None) % tf.Dimension(n)    == tf.Dimension(None)
+    tf.Dimension(None) % tf.Dimension(None) == tf.Dimension(None)
+    ```
 
     Args:
       other: Another Dimension.
@@ -274,10 +282,12 @@
 
     Dimensions are compared as follows:
 
-      Dimension(m)    < Dimension(n)    == m < n
-      Dimension(m)    < Dimension(None) == None
-      Dimension(None) < Dimension(n)    == None
-      Dimension(None) < Dimension(None) == None
+    ```python
+    (tf.Dimension(m)    < tf.Dimension(n))    == (m < n)
+    (tf.Dimension(m)    < tf.Dimension(None)) == None
+    (tf.Dimension(None) < tf.Dimension(n))    == None
+    (tf.Dimension(None) < tf.Dimension(None)) == None
+    ```
 
     Args:
       other: Another Dimension.
@@ -297,10 +307,12 @@
 
     Dimensions are compared as follows:
 
-      Dimension(m)    <= Dimension(n)    == m <= n
-      Dimension(m)    <= Dimension(None) == None
-      Dimension(None) <= Dimension(n)    == None
-      Dimension(None) <= Dimension(None) == None
+    ```python
+    (tf.Dimension(m)    <= tf.Dimension(n))    == (m <= n)
+    (tf.Dimension(m)    <= tf.Dimension(None)) == None
+    (tf.Dimension(None) <= tf.Dimension(n))    == None
+    (tf.Dimension(None) <= tf.Dimension(None)) == None
+    ```
 
     Args:
       other: Another Dimension.
@@ -320,10 +332,12 @@
 
     Dimensions are compared as follows:
 
-      Dimension(m)    > Dimension(n)    == m > n
-      Dimension(m)    > Dimension(None) == None
-      Dimension(None) > Dimension(n)    == None
-      Dimension(None) > Dimension(None) == None
+    ```python
+    (tf.Dimension(m)    > tf.Dimension(n))    == (m > n)
+    (tf.Dimension(m)    > tf.Dimension(None)) == None
+    (tf.Dimension(None) > tf.Dimension(n))    == None
+    (tf.Dimension(None) > tf.Dimension(None)) == None
+    ```
 
     Args:
       other: Another Dimension.
@@ -343,10 +357,12 @@
 
     Dimensions are compared as follows:
 
-      Dimension(m)    >= Dimension(n)    == m >= n
-      Dimension(m)    >= Dimension(None) == None
-      Dimension(None) >= Dimension(n)    == None
-      Dimension(None) >= Dimension(None) == None
+    ```python
+    (tf.Dimension(m)    >= tf.Dimension(n))    == (m >= n)
+    (tf.Dimension(m)    >= tf.Dimension(None)) == None
+    (tf.Dimension(None) >= tf.Dimension(n))    == None
+    (tf.Dimension(None) >= tf.Dimension(None)) == None
+    ```
 
     Args:
       other: Another Dimension.
diff --git a/tensorflow/python/framework/test_util.py b/tensorflow/python/framework/test_util.py
index d9e507d..e159cfa 100644
--- a/tensorflow/python/framework/test_util.py
+++ b/tensorflow/python/framework/test_util.py
@@ -405,7 +405,7 @@
     trigger the creation of a new session.
 
     Use the `use_gpu` and `force_gpu` options to control where ops are run. If
-    `force_gpu` is True, all ops are pinned to `/gpu:0`. Otherwise, if `use_gpu`
+    `force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if `use_gpu`
     is True, TensorFlow tries to run as many ops on the GPU as possible. If both
     `force_gpu and `use_gpu` are False, all ops are pinned to the CPU.
 
@@ -427,7 +427,7 @@
       config: An optional config_pb2.ConfigProto to use to configure the
         session.
       use_gpu: If True, attempt to run as many ops as possible on GPU.
-      force_gpu: If True, pin all ops to `/gpu:0`.
+      force_gpu: If True, pin all ops to `/device:GPU:0`.
 
     Returns:
       A Session object that should be used as a context manager to surround
@@ -466,11 +466,11 @@
       sess = self._cached_session
       with sess.graph.as_default(), sess.as_default():
         if force_gpu:
-          # Use the name of an actual device if one is detected, or '/gpu:0'
+          # Use the name of an actual device if one is detected, or '/device:GPU:0'
           # otherwise
           gpu_name = gpu_device_name()
           if not gpu_name:
-            gpu_name = "/gpu:0"
+            gpu_name = "/device:GPU:0"
           with sess.graph.device(gpu_name):
             yield sess
         elif use_gpu:
@@ -481,11 +481,11 @@
     else:
       with session.Session(graph=graph, config=prepare_config(config)) as sess:
         if force_gpu:
-          # Use the name of an actual device if one is detected, or '/gpu:0'
+          # Use the name of an actual device if one is detected, or '/device:GPU:0'
           # otherwise
           gpu_name = gpu_device_name()
           if not gpu_name:
-            gpu_name = "/gpu:0"
+            gpu_name = "/device:GPU:0"
           with sess.graph.device(gpu_name):
             yield sess
         elif use_gpu:
diff --git a/tensorflow/python/kernel_tests/BUILD b/tensorflow/python/kernel_tests/BUILD
index 22306e0..4dc6316 100644
--- a/tensorflow/python/kernel_tests/BUILD
+++ b/tensorflow/python/kernel_tests/BUILD
@@ -134,6 +134,7 @@
         "//tensorflow/python:platform",
     ],
     shard_count = 5,
+    tags = ["no_windows_gpu"],
 )
 
 tf_py_test(
@@ -1444,6 +1445,7 @@
         "//tensorflow/python:linalg_ops",
         "//tensorflow/python:math_ops",
     ],
+    tags = ["no_windows_gpu"],
 )
 
 cuda_py_test(
@@ -1661,6 +1663,7 @@
         "//tensorflow/python:math_ops",
     ],
     shard_count = 4,
+    tags = ["no_windows_gpu"],
 )
 
 cuda_py_test(
@@ -2640,6 +2643,7 @@
         "//tensorflow/python:linalg_ops",
     ],
     shard_count = 20,
+    tags = ["no_windows_gpu"],
 )
 
 cuda_py_test(
@@ -2725,6 +2729,7 @@
         "//tensorflow/python:variables",
     ],
     shard_count = 3,
+    tags = ["no_windows_gpu"],
 )
 
 tf_py_test(
diff --git a/tensorflow/python/kernel_tests/basic_gpu_test.py b/tensorflow/python/kernel_tests/basic_gpu_test.py
index 155aad8..405651e 100644
--- a/tensorflow/python/kernel_tests/basic_gpu_test.py
+++ b/tensorflow/python/kernel_tests/basic_gpu_test.py
@@ -238,7 +238,7 @@
     n_iterations = 500
     with session as s:
       data = variables.Variable(1.0)
-      with ops.device('/gpu:0'):
+      with ops.device('/device:GPU:0'):
         random_seed.set_random_seed(1)
         matrix1 = variables.Variable(
             random_ops.truncated_normal([1024, 1]), name='matrix1')
diff --git a/tensorflow/python/kernel_tests/cholesky_op_test.py b/tensorflow/python/kernel_tests/cholesky_op_test.py
index 5369d2d..d783522 100644
--- a/tensorflow/python/kernel_tests/cholesky_op_test.py
+++ b/tensorflow/python/kernel_tests/cholesky_op_test.py
@@ -311,7 +311,7 @@
       if test.is_gpu_available(True):
         with ops.Graph().as_default(), \
             session.Session() as sess, \
-            ops.device("/gpu:0"):
+            ops.device("/device:GPU:0"):
           l = linalg_ops.cholesky(data)
           self.run_op_benchmark(
               sess,
@@ -338,11 +338,11 @@
 
     if test.is_gpu_available(True):
       _BenchmarkGrad(
-          MatrixInverseCompositeGrad, "composite_matrix_inverse", "/gpu:0")
+          MatrixInverseCompositeGrad, "composite_matrix_inverse", "/device:GPU:0")
       _BenchmarkGrad(
-          TriAngInvCompositeGrad, "composite_tri_ang_inverse", "/gpu:0")
+          TriAngInvCompositeGrad, "composite_tri_ang_inverse", "/device:GPU:0")
       _BenchmarkGrad(
-          TriAngSolveCompositeGrad, "composite_triangular_solve", "/gpu:0")
+          TriAngSolveCompositeGrad, "composite_triangular_solve", "/device:GPU:0")
 
     _BenchmarkGrad(
         MatrixInverseCompositeGrad, "composite_matrix_inverse", "/cpu:0")
diff --git a/tensorflow/python/kernel_tests/concat_op_test.py b/tensorflow/python/kernel_tests/concat_op_test.py
index aba4224..a5fd3bc 100644
--- a/tensorflow/python/kernel_tests/concat_op_test.py
+++ b/tensorflow/python/kernel_tests/concat_op_test.py
@@ -138,6 +138,7 @@
         self.assertAllClose(result[ind], params[p[i]], 0.01)
 
   def testRandom(self):
+    self._testRandom(dtypes.bool)
     self._testRandom(dtypes.float32)
     self._testRandom(dtypes.int16)
     self._testRandom(dtypes.int32)
diff --git a/tensorflow/python/kernel_tests/control_flow_ops_py_test.py b/tensorflow/python/kernel_tests/control_flow_ops_py_test.py
index 1186439..fdecea1 100644
--- a/tensorflow/python/kernel_tests/control_flow_ops_py_test.py
+++ b/tensorflow/python/kernel_tests/control_flow_ops_py_test.py
@@ -1427,9 +1427,8 @@
       self.assertEqual(45, rx.eval())
 
   def _testWhileGrad_ColocateGradients(self, colocate):
-    gpu_dev_name = test.gpu_device_name().lower() if test.is_gpu_available(
-    ) else "/gpu:0"
-    gpu_short_name = gpu_dev_name.split("/")[-1]
+    gpu_dev_name = test.gpu_device_name() if test.is_gpu_available(
+    ) else "/device:GPU:0"
 
     with self.test_session(graph=ops.Graph()) as sess:
       v = constant_op.constant(2.0, name="v")
@@ -1443,19 +1442,19 @@
       r = gradients_impl.gradients(
           loop, v, colocate_gradients_with_ops=colocate)[0]
     r_ops = r.graph.get_operations()
-    r_devices = [(op.name, op.device.lower()) for op in r_ops]
+    r_devices = [(op.name, op.device) for op in r_ops]
 
     self.assertTrue(any("Square" in op.name for op in r_ops))
 
     for (name, dev) in r_devices:
       if not colocate and name.endswith("Square"):
         # Only forward graph contain gpu in Square device
-        self.assertTrue(gpu_short_name in dev)
+        self.assertTrue(gpu_dev_name in dev)
       elif colocate and "Square" in name:
         # Forward and backward graphs contain gpu in Square/Square_grad devices
-        self.assertTrue(gpu_short_name in dev)
+        self.assertTrue(gpu_dev_name in dev)
       else:
-        self.assertFalse(gpu_short_name in dev)
+        self.assertFalse(gpu_dev_name in dev)
     self.assertAllClose(1024.0, sess.run(r))
 
   def testWhileGrad_ColocateGradients(self):
@@ -2431,7 +2430,7 @@
 
       # device set on tensor, default device on graph => default device on dep.
       vdef = variables.Variable([0.0], name="vdef")
-      with ops.device("/job:worker/gpu:1"):
+      with ops.device("/job:worker/device:GPU:1"):
         with_vdef_dep = control_flow_ops.with_dependencies([vdef.initializer],
                                                            vdef)
         # The device is empty, but the colocation constraint is set.
diff --git a/tensorflow/python/kernel_tests/denormal_test.py b/tensorflow/python/kernel_tests/denormal_test.py
index f3b1a87..2d48cd4 100644
--- a/tensorflow/python/kernel_tests/denormal_test.py
+++ b/tensorflow/python/kernel_tests/denormal_test.py
@@ -19,6 +19,7 @@
 from __future__ import print_function
 
 import numpy as np
+import platform
 
 from tensorflow.python.framework import constant_op
 from tensorflow.python.ops import array_ops
@@ -34,6 +35,10 @@
       self.assertEqual(tiny, tiny / 16 * 16)
 
   def _flushDenormalsTest(self, use_gpu, dtypes):
+    if platform.machine() == "ppc64le":
+      # Disabled denormal_test on power platform
+      # Check relevant discussion - https://github.com/tensorflow/tensorflow/issues/11902
+      return
     with self.test_session(use_gpu=use_gpu):
       array_ops.identity(7).eval()
       for dtype in dtypes:
diff --git a/tensorflow/python/kernel_tests/dynamic_stitch_op_test.py b/tensorflow/python/kernel_tests/dynamic_stitch_op_test.py
index b4a5e1f..9b9aa98 100644
--- a/tensorflow/python/kernel_tests/dynamic_stitch_op_test.py
+++ b/tensorflow/python/kernel_tests/dynamic_stitch_op_test.py
@@ -26,6 +26,7 @@
 from tensorflow.python.ops import gradients_impl
 import tensorflow.python.ops.data_flow_grad  # pylint: disable=unused-import
 from tensorflow.python.platform import test
+from tensorflow.python.framework import dtypes
 
 
 class DynamicStitchTestBase(object):
@@ -216,6 +217,44 @@
       for datum, grad in zip(data, sess.run(grads[3:])):
         self.assertAllEqual(7.0 * datum.eval(), grad)
 
+  # GPU version unit tests
+  def testScalarGPU(self):
+    with self.test_session():
+      indices = [constant_op.constant(0), constant_op.constant(1)]
+      data = [constant_op.constant(40.0), constant_op.constant(60.0)]
+      for step in -1, 1:
+        stitched_t = data_flow_ops.dynamic_stitch(indices[::step], data)
+        stitched_val = stitched_t.eval()
+        self.assertAllEqual([40.0, 60.0][::step], stitched_val)
+        # Dimension 0 is determined by the max index in indices, so we
+        # can only infer that the output is a vector of some unknown
+        # length.
+        self.assertEqual([None], stitched_t.get_shape().as_list())
+
+  def testHigherRankGPU(self):
+    with self.test_session() as sess:
+      indices = [
+          constant_op.constant(6), constant_op.constant([4, 1]),
+          constant_op.constant([[5, 2], [0, 3]])
+      ]
+      data = [
+          constant_op.constant([61, 62], dtype=dtypes.float32),
+          constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
+          constant_op.constant([[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
+      ]
+      stitched_t = data_flow_ops.dynamic_stitch(indices, data)
+      stitched_val = stitched_t.eval()
+      correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
+      self.assertAllEqual(correct, stitched_val)
+      self.assertEqual([None, 2], stitched_t.get_shape().as_list())
+      # Test gradients
+      stitched_grad = 7 * stitched_val
+      grads = gradients_impl.gradients(stitched_t, indices + data,
+                                       stitched_grad)
+      self.assertEqual(grads[:3], [None] * 3)  # Indices have no gradients
+      for datum, grad in zip(data, sess.run(grads[3:])):
+        self.assertAllEqual(7.0 * datum.eval(), grad)
+
 
 if __name__ == "__main__":
   test.main()
diff --git a/tensorflow/python/kernel_tests/pooling_ops_test.py b/tensorflow/python/kernel_tests/pooling_ops_test.py
index f5fb7e4..da14871 100644
--- a/tensorflow/python/kernel_tests/pooling_ops_test.py
+++ b/tensorflow/python/kernel_tests/pooling_ops_test.py
@@ -29,6 +29,7 @@
 from tensorflow.python.ops import gradient_checker
 from tensorflow.python.ops import gradients_impl
 from tensorflow.python.ops import nn_ops
+from tensorflow.python.framework import ops
 import tensorflow.python.ops.nn_grad  # pylint: disable=unused-import
 from tensorflow.python.platform import test
 
@@ -76,7 +77,7 @@
 class PoolingTest(test.TestCase):
 
   def _VerifyOneType(self, pool_func, input_sizes, ksize, strides, padding,
-                     data_format, data_type, expected, use_gpu):
+                     data_format, data_type, expected, use_gpu, v2):
     """Verifies the output values of the pooling function.
 
     Args:
@@ -103,20 +104,35 @@
         t = test_util.NHWCToNCHW(t)
         ksize = test_util.NHWCToNCHW(ksize)
         strides = test_util.NHWCToNCHW(strides)
-      t = pool_func(
-          t,
-          ksize=ksize,
-          strides=strides,
-          padding=padding,
-          data_format=data_format)
+      v2 = v2 and data_format != "NCHW"
+      ksize_placeholder = array_ops.placeholder(dtypes.int32, shape=[4])
+      strides_placeholder = array_ops.placeholder(dtypes.int32, shape=[4])
+      if v2:
+        t = pool_func(
+            t,
+            ksize=ksize_placeholder,
+            strides=strides_placeholder,
+            padding=padding,
+            data_format=data_format)
+      else:
+        t = pool_func(
+            t,
+            ksize=ksize,
+            strides=strides,
+            padding=padding,
+            data_format=data_format)
       if data_format == "NCHW":
         t = test_util.NCHWToNHWC(t)
-      actual = t.eval()
+      if v2:
+        actual = t.eval(feed_dict={ksize_placeholder: ksize,
+                                   strides_placeholder: strides})
+      else:
+        actual = t.eval()
+        self.assertShapeEqual(actual, t)
       self.assertAllCloseAccordingToType(expected, actual.flatten())
-      self.assertShapeEqual(actual, t)
 
   def _VerifyOneTest(self, pool_func, input_sizes, ksize, strides, padding,
-                     data_format, expected, use_gpu):
+                     data_format, expected, use_gpu, v2):
     """Verifies the output values of the pooling function.
 
     Args:
@@ -131,14 +147,14 @@
       use_gpu: Whether we are running on GPU.
     """
     self._VerifyOneType(pool_func, input_sizes, ksize, strides, padding,
-                        data_format, dtypes.float32, expected, use_gpu)
+                        data_format, dtypes.float32, expected, use_gpu, v2)
 
     if not use_gpu or test_util.CudaSupportsHalfMatMulAndConv():
       self._VerifyOneType(pool_func, input_sizes, ksize, strides, padding,
-                          data_format, dtypes.float16, expected, use_gpu)
+                          data_format, dtypes.float16, expected, use_gpu, v2)
 
   def _VerifyValues(self, pool_func, input_sizes, ksize, strides, padding,
-                    expected, use_gpu):
+                    expected, use_gpu, v2=False):
     """Verifies the output values of the pooling function.
 
     Args:
@@ -154,7 +170,7 @@
     for (data_format, use_gpu_2) in GetTestConfigs():
       if use_gpu_2 == use_gpu:
         self._VerifyOneTest(pool_func, input_sizes, ksize, strides, padding,
-                            data_format, expected, use_gpu)
+                            data_format, expected, use_gpu, v2)
 
   def _testAvgPoolValidPadding(self, use_gpu):
     expected_output = [7.0, 8.0, 9.0]
@@ -325,6 +341,17 @@
         expected=expected_output,
         use_gpu=use_gpu)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 3, 3, 3],
+          ksize=[1, 2, 2, 1],
+          strides=[1, 2, 2, 1],
+          padding="VALID",
+          expected=expected_output,
+          use_gpu=use_gpu,
+          v2=v2)
+
   def _testMaxPoolSamePadding(self, use_gpu):
     expected_output = [13.0, 14.0, 15.0, 16.0, 17.0, 18.0]
     self._VerifyValues(
@@ -336,6 +363,17 @@
         expected=expected_output,
         use_gpu=use_gpu)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 2, 3, 3],
+          ksize=[1, 2, 2, 1],
+          strides=[1, 2, 2, 1],
+          padding="SAME",
+          expected=expected_output,
+          use_gpu=use_gpu,
+          v2=v2)
+
   def _testMaxPoolSamePaddingNonSquareWindow(self, use_gpu):
     # input is:
     # [1.0, 2.0
@@ -354,6 +392,17 @@
         expected=[2.0, 2.0, 4.0, 4.0],
         use_gpu=use_gpu)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 2, 2, 1],
+          ksize=[1, 1, 2, 1],
+          strides=[1, 1, 1, 1],
+          padding="SAME",
+          expected=[2.0, 2.0, 4.0, 4.0],
+          use_gpu=use_gpu,
+          v2=v2)
+
   def _testMaxPoolValidPaddingUnevenStride(self, use_gpu):
     self._VerifyValues(
         nn_ops.max_pool,
@@ -372,6 +421,26 @@
         expected=[6.0, 7.0, 8.0, 14.0, 15.0, 16.0],
         use_gpu=use_gpu)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 4, 4, 1],
+          ksize=[1, 2, 2, 1],
+          strides=[1, 1, 2, 1],
+          padding="VALID",
+          expected=[6.0, 8.0, 10.0, 12.0, 14.0, 16.0],
+          use_gpu=use_gpu,
+          v2=v2)
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 4, 4, 1],
+          ksize=[1, 2, 2, 1],
+          strides=[1, 2, 1, 1],
+          padding="VALID",
+          expected=[6.0, 7.0, 8.0, 14.0, 15.0, 16.0],
+          use_gpu=use_gpu,
+          v2=v2)
+
   def _testMaxPoolSamePaddingPacket4(self, use_gpu):
     expected_output = [
         21.0, 22.0, 23.0, 24.0, 29.0, 30.0, 31.0, 32.0, 53.0, 54.0, 55.0, 56.0,
@@ -386,6 +455,17 @@
         expected=expected_output,
         use_gpu=use_gpu)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 4, 4, 4],
+          ksize=[1, 2, 2, 1],
+          strides=[1, 2, 2, 1],
+          padding="SAME",
+          expected=expected_output,
+          use_gpu=use_gpu,
+          v2=v2)
+
   def _testMaxPoolSamePaddingPacket8(self, use_gpu):
     expected_output = [
         145.0, 146.0, 147.0, 148.0, 149.0, 150.0, 151.0, 152.0, 161.0, 162.0,
@@ -411,6 +491,17 @@
         expected=expected_output,
         use_gpu=use_gpu)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 8, 8, 8],
+          ksize=[1, 3, 3, 1],
+          strides=[1, 2, 2, 1],
+          padding="SAME",
+          expected=expected_output,
+          use_gpu=use_gpu,
+          v2=v2)
+
   def testMaxPooling(self):
     for use_gpu in True, False:
       self._testMaxPoolValidPadding(use_gpu)
@@ -435,6 +526,17 @@
         expected=[2.0, 4.0, 6.0, 8.0, 10.0],
         use_gpu=False)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 1, 1, 10],
+          ksize=[1, 1, 1, 2],
+          strides=[1, 1, 1, 2],
+          padding="SAME",
+          expected=[2.0, 4.0, 6.0, 8.0, 10.0],
+          use_gpu=False,
+          v2=v2)
+
   def testDepthwiseMaxPool2x2DepthWindow3(self):
     # input is:
     #
@@ -450,6 +552,17 @@
         expected=[3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0],
         use_gpu=False)
 
+    for v2 in [True, False]:
+      self._VerifyValues(
+          gen_nn_ops._max_pool_v2,
+          input_sizes=[1, 2, 2, 6],
+          ksize=[1, 1, 1, 3],
+          strides=[1, 1, 1, 3],
+          padding="SAME",
+          expected=[3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0],
+          use_gpu=False,
+          v2=v2)
+
   def testKernelSmallerThanStrideValid(self):
     for use_gpu in [True, False]:
       self._VerifyValues(
@@ -461,6 +574,17 @@
           expected=[9, 12, 30, 33],
           use_gpu=use_gpu)
 
+      for v2 in [True, False]:
+        self._VerifyValues(
+            gen_nn_ops._max_pool_v2,
+            input_sizes=[1, 7, 7, 1],
+            ksize=[1, 2, 2, 1],
+            strides=[1, 3, 3, 1],
+            padding="VALID",
+            expected=[9, 12, 30, 33],
+            use_gpu=use_gpu,
+            v2=v2)
+
       self._VerifyValues(
           nn_ops.avg_pool,
           input_sizes=[1, 7, 7, 1],
@@ -491,6 +615,27 @@
             expected=[1, 3, 9, 11],
             use_gpu=use_gpu)
 
+      for v2 in [True, False]:
+        self._VerifyValues(
+            gen_nn_ops._max_pool_v2,
+            input_sizes=[1, 3, 3, 1],
+            ksize=[1, 1, 1, 1],
+            strides=[1, 2, 2, 1],
+            padding="SAME",
+            expected=[1, 3, 7, 9],
+            use_gpu=use_gpu,
+            v2=v2)
+
+        self._VerifyValues(
+            gen_nn_ops._max_pool_v2,
+            input_sizes=[1, 4, 4, 1],
+            ksize=[1, 1, 1, 1],
+            strides=[1, 2, 2, 1],
+            padding="SAME",
+            expected=[1, 3, 9, 11],
+            use_gpu=use_gpu,
+            v2=v2)
+
   def _testDepthwiseMaxPoolInvalidConfig(self,
                                          in_size,
                                          ksize,
@@ -812,99 +957,107 @@
     self.assertLess(err, err_tolerance)
 
   def _testMaxPoolGradValidPadding1_1(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[1, 3, 3, 1],
-        output_sizes=[1, 3, 3, 1],
-        window_rows=1,
-        window_cols=1,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[1, 3, 3, 1],
+          output_sizes=[1, 3, 3, 1],
+          window_rows=1,
+          window_cols=1,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradValidPadding2_1_6(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 6, 6, 3],
-        output_sizes=[2, 5, 5, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[2, 6, 6, 3],
+          output_sizes=[2, 5, 5, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradValidPadding2_1_7(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 7, 7, 3],
-        output_sizes=[2, 6, 6, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[2, 7, 7, 3],
+          output_sizes=[2, 6, 6, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradValidPadding2_2(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 2, 3],
-        output_sizes=[2, 1, 1, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=2,
-        col_stride=2,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[2, 2, 2, 3],
+          output_sizes=[2, 1, 1, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=2,
+          col_stride=2,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradSamePadding1_1(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 4, 3],
-        output_sizes=[2, 2, 4, 3],
-        window_rows=1,
-        window_cols=1,
-        row_stride=1,
-        col_stride=1,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[2, 2, 4, 3],
+          output_sizes=[2, 2, 4, 3],
+          window_rows=1,
+          window_cols=1,
+          row_stride=1,
+          col_stride=1,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradSamePadding2_1(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 4, 3],
-        output_sizes=[2, 2, 4, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[2, 2, 4, 3],
+          output_sizes=[2, 2, 4, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradSamePadding2_2(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 4, 3],
-        output_sizes=[2, 1, 2, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=2,
-        col_stride=2,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+          pool_func,
+          input_sizes=[2, 2, 4, 3],
+          output_sizes=[2, 1, 2, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=2,
+          col_stride=2,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradSamePadding3_1(self, data_format, use_gpu):
-    self._ConstructAndTestGradient(
-        nn_ops.max_pool,
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestGradient(
+        pool_func,
         input_sizes=[1, 7, 7, 1],
         output_sizes=[1, 7, 7, 1],
         window_rows=3,
@@ -927,7 +1080,7 @@
       self._testMaxPoolGradSamePadding3_1(data_format, use_gpu)
 
   def _MaxPoolGrad(self, orig_input, orig_output, grad, window_rows,
-                   window_cols, row_stride, col_stride, padding):
+                   window_cols, row_stride, col_stride, padding, v2):
     """Max Pooling Gradient.
 
     Args:
@@ -944,26 +1097,29 @@
     Returns:
       A Tensor.
     """
-    return gen_nn_ops._max_pool_grad(orig_input, orig_output, grad,
-                                     [1, window_rows, window_cols, 1],
-                                     [1, row_stride, col_stride, 1], padding)
+    pool_func = gen_nn_ops.max_pool_grad_v2 if v2 else gen_nn_ops._max_pool_grad
+    return pool_func(orig_input, orig_output, grad,
+                     [1, window_rows, window_cols, 1],
+                     [1, row_stride, col_stride, 1], padding)
 
   def _testMaxPoolGradDirect(self, input_data, output_backprop,
                              expected_input_backprop, input_sizes, output_sizes,
                              window_rows, window_cols, row_stride, col_stride,
-                             padding, use_gpu):
+                             padding, use_gpu, v2):
+    pool_func = gen_nn_ops._max_pool_v2 if v2 else nn_ops.max_pool
     with self.test_session(use_gpu=use_gpu):
       input_tensor = constant_op.constant(input_data, shape=input_sizes)
-      output_tensor = nn_ops.max_pool(input_tensor,
-                                      [1, window_rows, window_cols, 1],
-                                      [1, row_stride, col_stride, 1], padding)
+      output_tensor = pool_func(input_tensor,
+                                [1, window_rows, window_cols, 1],
+                                [1, row_stride, col_stride, 1], padding)
       output_backprop_tensor = constant_op.constant(
           output_backprop, shape=output_sizes)
 
       input_backprop_tensor = self._MaxPoolGrad(input_tensor, output_tensor,
                                                 output_backprop_tensor,
                                                 window_rows, window_cols,
-                                                row_stride, col_stride, padding)
+                                                row_stride, col_stride,
+                                                padding, v2)
 
       actual_input_backprop = input_backprop_tensor.eval()
       self.assertShapeEqual(actual_input_backprop, input_backprop_tensor)
@@ -988,18 +1144,20 @@
     ]
 
     for use_gpu in True, False:
-      self._testMaxPoolGradDirect(
-          input_data,
-          output_backprop,
-          expected_input_backprop,
-          input_sizes=[1, 4, 4, 1],
-          output_sizes=[1, 3, 3, 1],
-          window_rows=2,
-          window_cols=2,
-          row_stride=1,
-          col_stride=1,
-          padding="VALID",
-          use_gpu=use_gpu)
+      for v2 in [True, False]:
+        self._testMaxPoolGradDirect(
+            input_data,
+            output_backprop,
+            expected_input_backprop,
+            input_sizes=[1, 4, 4, 1],
+            output_sizes=[1, 3, 3, 1],
+            window_rows=2,
+            window_cols=2,
+            row_stride=1,
+            col_stride=1,
+            padding="VALID",
+            use_gpu=use_gpu,
+            v2=v2)
 
   def _testMaxPoolGradDirect1_2(self):
     input_data = [
@@ -1013,18 +1171,20 @@
     ]
 
     for use_gpu in True, False:
-      self._testMaxPoolGradDirect(
-          input_data,
-          output_backprop,
-          expected_input_backprop,
-          input_sizes=[1, 4, 4, 1],
-          output_sizes=[1, 3, 3, 1],
-          window_rows=2,
-          window_cols=2,
-          row_stride=1,
-          col_stride=1,
-          padding="VALID",
-          use_gpu=use_gpu)
+      for v2 in [True, False]:
+        self._testMaxPoolGradDirect(
+            input_data,
+            output_backprop,
+            expected_input_backprop,
+            input_sizes=[1, 4, 4, 1],
+            output_sizes=[1, 3, 3, 1],
+            window_rows=2,
+            window_cols=2,
+            row_stride=1,
+            col_stride=1,
+            padding="VALID",
+            use_gpu=use_gpu,
+            v2=v2)
 
   def _testMaxPoolGradDirect1_3(self):
     input_data = [
@@ -1069,18 +1229,20 @@
     ]
 
     for use_gpu in True, False:
-      self._testMaxPoolGradDirect(
-          input_data,
-          output_backprop,
-          expected_input_backprop,
-          input_sizes=[1, 4, 4, 1],
-          output_sizes=[1, 4, 4, 1],
-          window_rows=3,
-          window_cols=3,
-          row_stride=1,
-          col_stride=1,
-          padding="SAME",
-          use_gpu=use_gpu)
+      for v2 in [True, False]:
+        self._testMaxPoolGradDirect(
+            input_data,
+            output_backprop,
+            expected_input_backprop,
+            input_sizes=[1, 4, 4, 1],
+            output_sizes=[1, 4, 4, 1],
+            window_rows=3,
+            window_cols=3,
+            row_stride=1,
+            col_stride=1,
+            padding="SAME",
+            use_gpu=use_gpu,
+            v2=v2)
 
   def _testMaxPoolGradDirectWithNans2_1(self):
     input_data = [float("nan")] * 16
@@ -1090,18 +1252,20 @@
         11.0, 12.0, 13.0, 0.0, 15.0, 16.0, 17.0, 0.0, 19.0, 20.0, 21.0, 0.0,
         0.0, 0.0, 0.0, 0.0
     ]
-    self._testMaxPoolGradDirect(
-        input_data,
-        output_backprop,
-        expected_input_backprop_tf_cpu,
-        input_sizes=[1, 4, 4, 1],
-        output_sizes=[1, 3, 3, 1],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        use_gpu=False)
+    for v2 in [True, False]:
+      self._testMaxPoolGradDirect(
+          input_data,
+          output_backprop,
+          expected_input_backprop_tf_cpu,
+          input_sizes=[1, 4, 4, 1],
+          output_sizes=[1, 3, 3, 1],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          use_gpu=False,
+          v2=v2)
 
     if not test.is_gpu_available():
       return
@@ -1112,18 +1276,20 @@
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
         0.0, 0.0
     ]
-    self._testMaxPoolGradDirect(
-        input_data,
-        output_backprop,
-        expected_input_backprop_cudnn,
-        input_sizes=[1, 4, 4, 1],
-        output_sizes=[1, 3, 3, 1],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        use_gpu=True)
+    for v2 in [True, False]:
+      self._testMaxPoolGradDirect(
+          input_data,
+          output_backprop,
+          expected_input_backprop_cudnn,
+          input_sizes=[1, 4, 4, 1],
+          output_sizes=[1, 3, 3, 1],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          use_gpu=True,
+          v2=v2)
 
   def _testMaxPoolGradDirectWithNans2_2(self):
     input_data = [float("nan")] * 16
@@ -1136,18 +1302,20 @@
         float("nan"), 12.0, 13.0, 0.0, 15.0, float("nan"), 17.0, 0.0, 19.0,
         20.0, float("nan"), 0.0, 0.0, 0.0, 0.0, 0.0
     ]
-    self._testMaxPoolGradDirect(
-        input_data,
-        output_backprop,
-        expected_input_backprop_tf_cpu,
-        input_sizes=[1, 4, 4, 1],
-        output_sizes=[1, 3, 3, 1],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        use_gpu=False)
+    for v2 in [True, False]:
+      self._testMaxPoolGradDirect(
+          input_data,
+          output_backprop,
+          expected_input_backprop_tf_cpu,
+          input_sizes=[1, 4, 4, 1],
+          output_sizes=[1, 3, 3, 1],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          use_gpu=False,
+          v2=v2)
 
     if not test.is_gpu_available():
       return
@@ -1158,18 +1326,20 @@
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
         0.0, 0.0
     ]
-    self._testMaxPoolGradDirect(
-        input_data,
-        output_backprop,
-        expected_input_backprop_cudnn,
-        input_sizes=[1, 4, 4, 1],
-        output_sizes=[1, 3, 3, 1],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        use_gpu=True)
+    for v2 in [True, False]:
+      self._testMaxPoolGradDirect(
+          input_data,
+          output_backprop,
+          expected_input_backprop_cudnn,
+          input_sizes=[1, 4, 4, 1],
+          output_sizes=[1, 3, 3, 1],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          use_gpu=True,
+          v2=v2)
 
   def testMaxPoolGradDirect(self):
     self._testMaxPoolGradDirect1_1()
@@ -1179,108 +1349,116 @@
     self._testMaxPoolGradDirectWithNans2_2()
 
   def _testMaxPoolGradGradValidPadding1_1(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[1, 3, 3, 1],
-        output_sizes=[1, 3, 3, 1],
-        window_rows=1,
-        window_cols=1,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[1, 3, 3, 1],
+          output_sizes=[1, 3, 3, 1],
+          window_rows=1,
+          window_cols=1,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradValidPadding2_1_6(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 6, 6, 3],
-        output_sizes=[2, 5, 5, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[2, 6, 6, 3],
+          output_sizes=[2, 5, 5, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradValidPadding2_1_7(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 7, 7, 3],
-        output_sizes=[2, 6, 6, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[2, 7, 7, 3],
+          output_sizes=[2, 6, 6, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradValidPadding2_2(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 2, 3],
-        output_sizes=[2, 1, 1, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=2,
-        col_stride=2,
-        padding="VALID",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[2, 2, 2, 3],
+          output_sizes=[2, 1, 1, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=2,
+          col_stride=2,
+          padding="VALID",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradSamePadding1_1(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 4, 3],
-        output_sizes=[2, 2, 4, 3],
-        window_rows=1,
-        window_cols=1,
-        row_stride=1,
-        col_stride=1,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[2, 2, 4, 3],
+          output_sizes=[2, 2, 4, 3],
+          window_rows=1,
+          window_cols=1,
+          row_stride=1,
+          col_stride=1,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradSamePadding2_1(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 4, 3],
-        output_sizes=[2, 2, 4, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=1,
-        col_stride=1,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[2, 2, 4, 3],
+          output_sizes=[2, 2, 4, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=1,
+          col_stride=1,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradSamePadding2_2(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[2, 2, 4, 3],
-        output_sizes=[2, 1, 2, 3],
-        window_rows=2,
-        window_cols=2,
-        row_stride=2,
-        col_stride=2,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[2, 2, 4, 3],
+          output_sizes=[2, 1, 2, 3],
+          window_rows=2,
+          window_cols=2,
+          row_stride=2,
+          col_stride=2,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def _testMaxPoolGradGradSamePadding3_1(self, data_format, use_gpu):
-    self._ConstructAndTestSecondGradient(
-        nn_ops.max_pool,
-        input_sizes=[1, 7, 7, 1],
-        output_sizes=[1, 7, 7, 1],
-        window_rows=3,
-        window_cols=3,
-        row_stride=1,
-        col_stride=1,
-        padding="SAME",
-        data_format=data_format,
-        use_gpu=use_gpu)
+    for pool_func in [gen_nn_ops._max_pool_v2, nn_ops.max_pool]:
+      self._ConstructAndTestSecondGradient(
+          pool_func,
+          input_sizes=[1, 7, 7, 1],
+          output_sizes=[1, 7, 7, 1],
+          window_rows=3,
+          window_cols=3,
+          row_stride=1,
+          col_stride=1,
+          padding="SAME",
+          data_format=data_format,
+          use_gpu=use_gpu)
 
   def testMaxPoolGradGrad(self):
     for (data_format, use_gpu) in GetTestConfigs():
diff --git a/tensorflow/python/kernel_tests/reshape_op_test.py b/tensorflow/python/kernel_tests/reshape_op_test.py
index 67aeb67..9d6e7e6 100644
--- a/tensorflow/python/kernel_tests/reshape_op_test.py
+++ b/tensorflow/python/kernel_tests/reshape_op_test.py
@@ -41,6 +41,10 @@
     self._testReshape(x, y, False)
     self._testReshape(x, y, True)
 
+  def testBoolBasic(self):
+    x = np.arange(1., 7.).reshape([1, 6]) > 3
+    self._testBothReshape(x, [2, 3])
+
   def testFloatBasic(self):
     x = np.arange(1., 7.).reshape([1, 6]).astype(np.float32)
     self._testBothReshape(x, [2, 3])
diff --git a/tensorflow/python/kernel_tests/sparse_tensor_dense_matmul_op_test.py b/tensorflow/python/kernel_tests/sparse_tensor_dense_matmul_op_test.py
index a0bd178..e20c699 100644
--- a/tensorflow/python/kernel_tests/sparse_tensor_dense_matmul_op_test.py
+++ b/tensorflow/python/kernel_tests/sparse_tensor_dense_matmul_op_test.py
@@ -347,7 +347,7 @@
           ops_fn = _sparse_tensor_dense_vs_dense_matmul_benchmark_dense(
               x_t, y_t, adjoint_a, adjoint_b)
       else:
-        with ops.device("/gpu:0"):
+        with ops.device("/device:GPU:0"):
           x_t = constant_op.constant(x)
           y_t = constant_op.constant(y)
           ops_fn = _sparse_tensor_dense_vs_dense_matmul_benchmark_dense(
@@ -365,7 +365,7 @@
         ops_fn = _sparse_tensor_dense_vs_dense_matmul_benchmark_sparse(
             x_ind, x_val, x_shape, y_t, adjoint_a, adjoint_b)
     else:
-      with ops.device("/gpu:0"):
+      with ops.device("/device:GPU:0"):
         x_ind = constant_op.constant(np.vstack(np.where(x)).astype(np.int64).T)
         x_val = constant_op.constant(x[np.where(x)])
         x_shape = constant_op.constant(np.array(x.shape).astype(np.int64))
diff --git a/tensorflow/python/kernel_tests/stack_op_test.py b/tensorflow/python/kernel_tests/stack_op_test.py
index 95ea3a9..8e1f3ed 100644
--- a/tensorflow/python/kernel_tests/stack_op_test.py
+++ b/tensorflow/python/kernel_tests/stack_op_test.py
@@ -45,7 +45,7 @@
     np.random.seed(7)
     with self.test_session(use_gpu=True):
       for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
-        for dtype in [np.float32, np.int32, np.int64]:
+        for dtype in [np.bool, np.float32, np.int32, np.int64]:
           data = np.random.randn(*shape).astype(dtype)
           # Convert [data[0], data[1], ...] separately to tensorflow
           # TODO(irving): Remove list() once we handle maps correctly
@@ -67,7 +67,7 @@
     np.random.seed(7)
     with self.test_session(use_gpu=True):
       for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
-        for dtype in [np.float32, np.int32, np.int64]:
+        for dtype in [np.bool, np.float32, np.int32, np.int64]:
           data = np.random.randn(*shape).astype(dtype)
           # Pack back into a single tensorflow tensor directly using np array
           c = array_ops.stack(data)
diff --git a/tensorflow/python/kernel_tests/tensordot_op_test.py b/tensorflow/python/kernel_tests/tensordot_op_test.py
index 71230ba..f375157 100644
--- a/tensorflow/python/kernel_tests/tensordot_op_test.py
+++ b/tensorflow/python/kernel_tests/tensordot_op_test.py
@@ -20,6 +20,7 @@
 
 import numpy as np
 
+from tensorflow.python.framework import constant_op
 from tensorflow.python.framework import dtypes
 from tensorflow.python.framework import errors_impl
 from tensorflow.python.ops import array_ops
@@ -84,6 +85,22 @@
                                    b_ph: b,
                                    axes_ph: axes_value})
 
+  # Test case for 11950
+  def test_valid_axis(self):
+    for axes_value in [1, 2], [[1], [2]]:
+      with self.test_session() as sess:
+        np_a = np.ones((3,3))
+        np_b = np.array([2, 3, 1])[None, None]
+        np_ans = np.tensordot(np_a, np_b, axes_value)
+
+        tf_a = array_ops.ones((3,3), dtype=dtypes.float32)
+        tf_b = constant_op.constant([2, 3, 1], dtype=dtypes.float32)[None, None]
+        tf_ans = math_ops.tensordot(tf_a, tf_b, axes_value).eval()
+
+        self.assertAllEqual(tf_ans.shape, np_ans.shape)
+        self.assertAllEqual(tf_ans, np_ans)
+
+
   def test_partial_shape_inference(self):
     a = array_ops.placeholder(dtypes.float32)
     b = array_ops.placeholder(dtypes.float32)
diff --git a/tensorflow/python/kernel_tests/unique_op_test.py b/tensorflow/python/kernel_tests/unique_op_test.py
index a190388..a50f53b 100644
--- a/tensorflow/python/kernel_tests/unique_op_test.py
+++ b/tensorflow/python/kernel_tests/unique_op_test.py
@@ -20,6 +20,7 @@
 
 import numpy as np
 
+from tensorflow.python.framework import dtypes
 from tensorflow.python.ops import array_ops
 from tensorflow.python.platform import test
 
@@ -37,6 +38,17 @@
     for i in range(len(x)):
       self.assertEqual(x[i], tf_y[tf_idx[i]])
 
+  def testInt32OutIdxInt64(self):
+    x = np.random.randint(2, high=10, size=7000)
+    with self.test_session() as sess:
+      y, idx = array_ops.unique(x, out_idx=dtypes.int64)
+      tf_y, tf_idx = sess.run([y, idx])
+
+    self.assertEqual(len(x), len(tf_idx))
+    self.assertEqual(len(tf_y), len(np.unique(x)))
+    for i in range(len(x)):
+      self.assertEqual(x[i], tf_y[tf_idx[i]])
+
   def testString(self):
     indx = np.random.randint(65, high=122, size=7000)
     x = [chr(i) for i in indx]
@@ -49,7 +61,6 @@
     for i in range(len(x)):
       self.assertEqual(x[i], tf_y[tf_idx[i]].decode('ascii'))
 
-
 class UniqueWithCountsTest(test.TestCase):
 
   def testInt32(self):
@@ -65,6 +76,19 @@
     for value, count in zip(tf_y, tf_count):
       self.assertEqual(count, np.sum(x == value))
 
+  def testInt32OutIdxInt64(self):
+    x = np.random.randint(2, high=10, size=7000)
+    with self.test_session() as sess:
+      y, idx, count = array_ops.unique_with_counts(x, out_idx=dtypes.int64)
+      tf_y, tf_idx, tf_count = sess.run([y, idx, count])
+
+    self.assertEqual(len(x), len(tf_idx))
+    self.assertEqual(len(tf_y), len(np.unique(x)))
+    for i in range(len(x)):
+      self.assertEqual(x[i], tf_y[tf_idx[i]])
+    for value, count in zip(tf_y, tf_count):
+      self.assertEqual(count, np.sum(x == value))
+
   def testString(self):
     indx = np.random.randint(65, high=122, size=7000)
     x = [chr(i) for i in indx]
diff --git a/tensorflow/python/kernel_tests/variable_scope_test.py b/tensorflow/python/kernel_tests/variable_scope_test.py
index c140bc2..4adc3e5 100644
--- a/tensorflow/python/kernel_tests/variable_scope_test.py
+++ b/tensorflow/python/kernel_tests/variable_scope_test.py
@@ -722,7 +722,7 @@
     def device_func(op):
       if op.type in ["Variable", "VariableV2", "VarHandleOp"]:
         varname_type.append((op.name, op.get_attr("dtype")))
-      return "/gpu:0"
+      return "/device:GPU:0"
 
     with g.as_default():
       with ops.device(device_func):
diff --git a/tensorflow/python/kernel_tests/variables_test.py b/tensorflow/python/kernel_tests/variables_test.py
index e812d1f..12421c1 100644
--- a/tensorflow/python/kernel_tests/variables_test.py
+++ b/tensorflow/python/kernel_tests/variables_test.py
@@ -290,6 +290,21 @@
                        variables.global_variables())
       self.assertEqual([var_x, var_z, var_t], variables.trainable_variables())
 
+  def testCollectionsWithScope(self):
+    with self.test_session():
+      with ops.name_scope("scope_1"):
+        var_x = variables.Variable(2.0)
+      with ops.name_scope("scope_2"):
+        var_y = variables.Variable(2.0)
+
+      self.assertEqual([var_x, var_y], variables.global_variables())
+      self.assertEqual([var_x], variables.global_variables("scope_1"))
+      self.assertEqual([var_y], variables.global_variables("scope_2"))
+
+      self.assertEqual([var_x, var_y], variables.trainable_variables())
+      self.assertEqual([var_x], variables.trainable_variables("scope_1"))
+      self.assertEqual([var_y], variables.trainable_variables("scope_2"))
+
   def testOperators(self):
     with self.test_session():
       var_f = variables.Variable([2.0])
diff --git a/tensorflow/python/layers/base.py b/tensorflow/python/layers/base.py
index 9eea401..5f21a2b 100644
--- a/tensorflow/python/layers/base.py
+++ b/tensorflow/python/layers/base.py
@@ -2119,11 +2119,9 @@
 
   Example:
 
-  ```
-    >>> _unique_layer_name('dense')
-    dense_1
-    >>> _unique_layer_name('dense')
-    dense_2
+  ```python
+  _unique_layer_name('dense')  # dense_1
+  _unique_layer_name('dense')  # dense_2
   ```
   """
   graph = ops.get_default_graph()
diff --git a/tensorflow/python/layers/utils.py b/tensorflow/python/layers/utils.py
index 5e206c3..98c287e 100644
--- a/tensorflow/python/layers/utils.py
+++ b/tensorflow/python/layers/utils.py
@@ -198,7 +198,7 @@
     Tensors returned by the call to either `fn1` or `fn2`.
 
   Raises:
-    TypeError is fn1 or fn2 is not callable.
+    TypeError: If `fn1` or `fn2` is not callable.
   """
   if not callable(fn1):
     raise TypeError('`fn1` must be callable.')
@@ -226,7 +226,7 @@
     True or False if `pred` has a constant boolean value, None otherwise.
 
   Raises:
-    TypeError is pred is not a Variable, Tensor or bool.
+    TypeError: If `pred` is not a Variable, Tensor or bool.
   """
   if isinstance(pred, bool):
     pred_value = pred
diff --git a/tensorflow/python/lib/io/file_io_test.py b/tensorflow/python/lib/io/file_io_test.py
index e60b93b..8265390 100644
--- a/tensorflow/python/lib/io/file_io_test.py
+++ b/tensorflow/python/lib/io/file_io_test.py
@@ -1,3 +1,4 @@
+# This Python file uses the following encoding: utf-8
 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
@@ -451,6 +452,12 @@
     lines = f.readlines()
     self.assertSequenceEqual(lines, data)
 
+  def testUTF8StringPath(self):
+    file_path = os.path.join(self._base_dir, "UTF8测试_file")
+    file_io.write_string_to_file(file_path, "testing")
+    with file_io.FileIO(file_path, mode="rb") as f:
+      self.assertEqual(b"testing", f.read())
+
   def testEof(self):
     """Test that reading past EOF does not raise an exception."""
 
diff --git a/tensorflow/python/ops/array_ops.py b/tensorflow/python/ops/array_ops.py
index 9c9b852..0042f92 100644
--- a/tensorflow/python/ops/array_ops.py
+++ b/tensorflow/python/ops/array_ops.py
@@ -146,14 +146,14 @@
 
   ```python
   # 't' is a tensor of shape [2]
-  shape(expand_dims(t, 0)) ==> [1, 2]
-  shape(expand_dims(t, 1)) ==> [2, 1]
-  shape(expand_dims(t, -1)) ==> [2, 1]
+  tf.shape(tf.expand_dims(t, 0))  # [1, 2]
+  tf.shape(tf.expand_dims(t, 1))  # [2, 1]
+  tf.shape(tf.expand_dims(t, -1))  # [2, 1]
 
   # 't2' is a tensor of shape [2, 3, 5]
-  shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
-  shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
-  shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
+  tf.shape(tf.expand_dims(t2, 0))  # [1, 2, 3, 5]
+  tf.shape(tf.expand_dims(t2, 2))  # [2, 3, 1, 5]
+  tf.shape(tf.expand_dims(t2, 3))  # [2, 3, 5, 1]
   ```
 
   This operation requires that:
@@ -252,8 +252,8 @@
   For example:
 
   ```python
-  # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
-  shape(t) ==> [2, 2, 3]
+  t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
+  tf.shape(t)  # [2, 2, 3]
   ```
 
   Args:
@@ -305,8 +305,8 @@
   For example:
 
   ```python
-  # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
-  size(t) ==> 12
+  t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
+  tf.size(t)  # 12
   ```
 
   Args:
@@ -357,9 +357,9 @@
   For example:
 
   ```python
-  # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
   # shape of tensor 't' is [2, 2, 3]
-  rank(t) ==> 3
+  t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
+  tf.rank(t)  # 3
   ```
 
   **Note**: The rank of a tensor is not the same as the rank of a matrix. The
@@ -424,11 +424,11 @@
   ```python
   # strip leading and trailing 2 elements
   foo = tf.constant([1,2,3,4,5,6])
-  print(foo[2:-2].eval()) # => [3,4]
+  print(foo[2:-2].eval())  # [3,4]
 
   # skip every row and reverse every column
   foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
-  print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]]
+  print(foo[::2,::-1].eval())  # [[3,2,1], [9,8,7]]
 
   # Insert another dimension
   foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
@@ -439,9 +439,9 @@
 
   # Ellipses (3 equivalent operations)
   foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
-  print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
-  print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
-  print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
+  print(foo[tf.newaxis, :, :].eval())  # [[[1,2,3], [4,5,6], [7,8,9]]]
+  print(foo[tf.newaxis, ...].eval())  # [[[1,2,3], [4,5,6], [7,8,9]]]
+  print(foo[tf.newaxis].eval())  # [[[1,2,3], [4,5,6], [7,8,9]]]
   ```
 
   Notes:
@@ -563,14 +563,14 @@
   For example:
 
   ```python
-  # 'input' is [[[1, 1, 1], [2, 2, 2]],
-  #             [[3, 3, 3], [4, 4, 4]],
-  #             [[5, 5, 5], [6, 6, 6]]]
-  tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
-  tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
-                                              [4, 4, 4]]]
-  tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
-                                             [[5, 5, 5]]]
+  t = tf.constant([[[1, 1, 1], [2, 2, 2]],
+                   [[3, 3, 3], [4, 4, 4]],
+                   [[5, 5, 5], [6, 6, 6]]])
+  tf.slice(t, [1, 0, 0], [1, 1, 3])  # [[[3, 3, 3]]]
+  tf.slice(t, [1, 0, 0], [1, 2, 3])  # [[[3, 3, 3],
+                                     #   [4, 4, 4]]]
+  tf.slice(t, [1, 0, 0], [2, 1, 3])  # [[[3, 3, 3]],
+                                     #  [[5, 5, 5]]]
   ```
 
   Args:
@@ -658,14 +658,14 @@
 
 
   ```python
-  # 'input' is [[[1, 1, 1], [2, 2, 2]],
-  #             [[3, 3, 3], [4, 4, 4]],
-  #             [[5, 5, 5], [6, 6, 6]]]
-  tf.strided_slice(input, [1, 0, 0], [2, 1, 3], [1, 1, 1]) ==> [[[3, 3, 3]]]
-  tf.strided_slice(input, [1, 0, 0], [2, 2, 3], [1, 1, 1]) ==> [[[3, 3, 3],
-                                                                 [4, 4, 4]]]
-  tf.strided_slice(input, [1, -1, 0], [2, -3, 3], [1, -1, 1]) ==>[[[4, 4, 4],
-                                                                   [3, 3, 3]]]
+  t = tf.constant([[[1, 1, 1], [2, 2, 2]],
+                   [[3, 3, 3], [4, 4, 4]],
+                   [[5, 5, 5], [6, 6, 6]]])
+  tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1])  # [[[3, 3, 3]]]
+  tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1])  # [[[3, 3, 3],
+                                                        #   [4, 4, 4]]]
+  tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1])  # [[[4, 4, 4],
+                                                           #   [3, 3, 3]]]
   ```
 
   Args:
@@ -788,10 +788,10 @@
   For example:
 
   ```python
-  # 'x' is [1, 4]
-  # 'y' is [2, 5]
-  # 'z' is [3, 6]
-  parallel_stack([x, y, z])  # => [[1, 4], [2, 5], [3, 6]]
+  x = tf.constant([1, 4])
+  y = tf.constant([2, 5])
+  z = tf.constant([3, 6])
+  tf.parallel_stack([x, y, z])  # [[1, 4], [2, 5], [3, 6]]
   ```
 
   The difference between `stack` and `parallel_stack` is that `stack` requires
@@ -839,11 +839,11 @@
   For example:
 
   ```python
-  # 'x' is [1, 4]
-  # 'y' is [2, 5]
-  # 'z' is [3, 6]
-  stack([x, y, z])  # => [[1, 4], [2, 5], [3, 6]] (Pack along first dim.)
-  stack([x, y, z], axis=1)  # => [[1, 2, 3], [4, 5, 6]]
+  x = tf.constant([1, 4])
+  y = tf.constant([2, 5])
+  z = tf.constant([3, 6])
+  tf.stack([x, y, z])  # [[1, 4], [2, 5], [3, 6]] (Pack along first dim.)
+  tf.stack([x, y, z], axis=1)  # [[1, 2, 3], [4, 5, 6]]
   ```
 
   This is the opposite of unstack.  The numpy equivalent is
@@ -1043,13 +1043,13 @@
   ```python
   t1 = [[1, 2, 3], [4, 5, 6]]
   t2 = [[7, 8, 9], [10, 11, 12]]
-  tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
-  tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
+  tf.concat([t1, t2], 0)  # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
+  tf.concat([t1, t2], 1)  # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
 
   # tensor t3 with shape [2, 3]
   # tensor t4 with shape [2, 3]
-  tf.shape(tf.concat([t3, t4], 0)) ==> [4, 3]
-  tf.shape(tf.concat([t3, t4], 1)) ==> [2, 6]
+  tf.shape(tf.concat([t3, t4], 0))  # [4, 3]
+  tf.shape(tf.concat([t3, t4], 1))  # [2, 6]
   ```
 
   Note: If you are concatenating along a new axis consider using stack.
@@ -1098,7 +1098,7 @@
   # 1-D example
   tensor = [0, 1, 2, 3]
   mask = np.array([True, False, True, False])
-  boolean_mask(tensor, mask) ==> [0, 2]
+  boolean_mask(tensor, mask)  # [0, 2]
   ```
 
   In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match
@@ -1124,7 +1124,7 @@
   # 2-D example
   tensor = [[1, 2], [3, 4], [5, 6]]
   mask = np.array([True, False, True])
-  boolean_mask(tensor, mask) ==> [[1, 2], [5, 6]]
+  boolean_mask(tensor, mask)  # [[1, 2], [5, 6]]
   ```
   """
 
@@ -1176,17 +1176,16 @@
   ```python
   # `a` contains slices at indices [12, 26, 37, 45] from a large tensor
   # with shape [1000, 10]
-  a.indices => [12, 26, 37, 45]
-  tf.shape(a.values) => [4, 10]
+  a.indices  # [12, 26, 37, 45]
+  tf.shape(a.values)  # [4, 10]
 
   # `b` will be the subset of `a` slices at its second and third indices, so
   # we want to mask its first and last indices (which are at absolute
   # indices 12, 45)
   b = tf.sparse_mask(a, [12, 45])
 
-  b.indices => [26, 37]
-  tf.shape(b.values) => [2, 10]
-
+  b.indices  # [26, 37]
+  tf.shape(b.values)  # [2, 10]
   ```
 
   Args:
@@ -1222,12 +1221,12 @@
   # 'value' is a tensor with shape [5, 30]
   # Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1
   split0, split1, split2 = tf.split(value, [4, 15, 11], 1)
-  tf.shape(split0) ==> [5, 4]
-  tf.shape(split1) ==> [5, 15]
-  tf.shape(split2) ==> [5, 11]
+  tf.shape(split0)  # [5, 4]
+  tf.shape(split1)  # [5, 15]
+  tf.shape(split2)  # [5, 11]
   # Split 'value' into 3 tensors along dimension 1
   split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1)
-  tf.shape(split0) ==> [5, 10]
+  tf.shape(split0)  # [5, 10]
   ```
 
   Args:
@@ -1281,30 +1280,29 @@
   For example:
 
   ```python
-  # 'x' is [[1 2 3]
-  #         [4 5 6]]
-  tf.transpose(x) ==> [[1 4]
-                       [2 5]
-                       [3 6]]
+  x = tf.constant([[1, 2, 3], [4, 5, 6]])
+  tf.transpose(x)  # [[1, 4]
+                   #  [2, 5]
+                   #  [3, 6]]
 
   # Equivalently
-  tf.transpose(x, perm=[1, 0]) ==> [[1 4]
-                                    [2 5]
-                                    [3 6]]
+  tf.transpose(x, perm=[1, 0])  # [[1, 4]
+                                #  [2, 5]
+                                #  [3, 6]]
 
   # 'perm' is more useful for n-dimensional tensors, for n > 2
-  # 'x' is   [[[1  2  3]
-  #            [4  5  6]]
-  #           [[7  8  9]
-  #            [10 11 12]]]
-  # Take the transpose of the matrices in dimension-0
-  tf.transpose(x, perm=[0, 2, 1]) ==> [[[1  4]
-                                        [2  5]
-                                        [3  6]]
+  x = tf.constant([[[ 1,  2,  3],
+                    [ 4,  5,  6]],
+                   [[ 7,  8,  9],
+                    [10, 11, 12]]])
 
-                                       [[7 10]
-                                        [8 11]
-                                        [9 12]]]
+  # Take the transpose of the matrices in dimension-0
+  tf.transpose(x, perm=[0, 2, 1])  # [[[1,  4],
+                                   #   [2,  5],
+                                   #   [3,  6]],
+                                   #  [[7, 10],
+                                   #   [8, 11],
+                                   #   [9, 12]]]
   ```
 
   Args:
@@ -1337,12 +1335,10 @@
   For example:
 
   ```python
-  # Matrix with no batch dimension.
-  # 'x' is [[1 2 3]
-  #         [4 5 6]]
-  tf.matrix_transpose(x) ==> [[1 4]
-                                   [2 5]
-                                   [3 6]]
+  x = tf.constant([[1, 2, 3], [4, 5, 6]])
+  tf.matrix_transpose(x)  # [[1, 4],
+                          #  [2, 5],
+                          #  [3, 6]]
 
   # Matrix with two batch dimensions.
   # x.shape is [1, 2, 3, 4]
@@ -1352,7 +1348,7 @@
   Note that `tf.matmul` provides kwargs allowing for transpose of arguments.
   This is done with minimal cost, and is preferable to using this function. E.g.
 
-  ```
+  ```python
   # Good!  Transpose is taken at minimal additional cost.
   tf.matmul(matrix, b, transpose_b=True)
 
@@ -1405,7 +1401,7 @@
   For example:
 
   ```python
-  tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
+  tf.zeros([3, 4], tf.int32)  # [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
   ```
 
   Args:
@@ -1445,8 +1441,8 @@
   For example:
 
   ```python
-  # 'tensor' is [[1, 2, 3], [4, 5, 6]]
-  tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]
+  tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
+  tf.zeros_like(tensor)  # [[0, 0, 0], [0, 0, 0]]
   ```
 
   Args:
@@ -1485,8 +1481,8 @@
   For example:
 
   ```python
-  # 'tensor' is [[1, 2, 3], [4, 5, 6]]
-  tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]
+  tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
+  tf.ones_like(tensor)  # [[1, 1, 1], [1, 1, 1]]
   ```
 
   Args:
@@ -1521,7 +1517,7 @@
   For example:
 
   ```python
-  tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]
+  tf.ones([2, 3], tf.int32)  # [[1, 1, 1], [1, 1, 1]]
   ```
 
   Args:
@@ -1668,24 +1664,24 @@
   For example:
 
   ```python
-  # 't' is [[1, 2, 3], [4, 5, 6]].
-  # 'paddings' is [[1, 1,], [2, 2]].
+  t = tf.constant([[1, 2, 3], [4, 5, 6]])
+  paddings = tf.constant([[1, 1,], [2, 2]])
   # 'constant_values' is 0.
   # rank of 't' is 2.
-  pad(t, paddings, "CONSTANT") ==> [[0, 0, 0, 0, 0, 0, 0],
-                                    [0, 0, 1, 2, 3, 0, 0],
-                                    [0, 0, 4, 5, 6, 0, 0],
-                                    [0, 0, 0, 0, 0, 0, 0]]
+  tf.pad(t, paddings, "CONSTANT")  # [[0, 0, 0, 0, 0, 0, 0],
+                                   #  [0, 0, 1, 2, 3, 0, 0],
+                                   #  [0, 0, 4, 5, 6, 0, 0],
+                                   #  [0, 0, 0, 0, 0, 0, 0]]
 
-  pad(t, paddings, "REFLECT") ==> [[6, 5, 4, 5, 6, 5, 4],
-                                   [3, 2, 1, 2, 3, 2, 1],
-                                   [6, 5, 4, 5, 6, 5, 4],
-                                   [3, 2, 1, 2, 3, 2, 1]]
+  tf.pad(t, paddings, "REFLECT")  # [[6, 5, 4, 5, 6, 5, 4],
+                                  #  [3, 2, 1, 2, 3, 2, 1],
+                                  #  [6, 5, 4, 5, 6, 5, 4],
+                                  #  [3, 2, 1, 2, 3, 2, 1]]
 
-  pad(t, paddings, "SYMMETRIC") ==> [[2, 1, 1, 2, 3, 3, 2],
-                                     [2, 1, 1, 2, 3, 3, 2],
-                                     [5, 4, 4, 5, 6, 6, 5],
-                                     [5, 4, 4, 5, 6, 6, 5]]
+  tf.pad(t, paddings, "SYMMETRIC")  # [[2, 1, 1, 2, 3, 3, 2],
+                                    #  [2, 1, 1, 2, 3, 3, 2],
+                                    #  [5, 4, 4, 5, 6, 6, 5],
+                                    #  [5, 4, 4, 5, 6, 6, 5]]
   ```
 
   Args:
@@ -1757,19 +1753,15 @@
   Calling `X, Y = meshgrid(x, y)` with the tensors
 
   ```python
-    x = [1, 2, 3]
-    y = [4, 5, 6]
-  ```
-
-  results in
-
-  ```python
-    X = [[1, 2, 3],
-         [1, 2, 3],
-         [1, 2, 3]]
-    Y = [[4, 4, 4],
-         [5, 5, 5],
-         [6, 6, 6]]
+  x = [1, 2, 3]
+  y = [4, 5, 6]
+  X, Y = tf.meshgrid(x, y)
+  # X = [[1, 2, 3],
+  #      [1, 2, 3],
+  #      [1, 2, 3]]
+  # Y = [[4, 4, 4],
+  #      [5, 5, 5],
+  #      [6, 6, 6]]
   ```
 
   Args:
@@ -2146,66 +2138,35 @@
   Note: If a non-numeric data type output is desired (`tf.string`, `tf.bool`,
   etc.), both `on_value` and `off_value` _must_ be provided to `one_hot`.
 
-  Examples
-  =========
-
-  Suppose that
+  For example:
 
   ```python
-    indices = [0, 2, -1, 1]
-    depth = 3
-    on_value = 5.0
-    off_value = 0.0
-    axis = -1
-  ```
+  indices = [0, 1, 2]
+  depth = 3
+  tf.one_hot(indices, depth)  # output: [3 x 3]
+  # [[1., 0., 0.],
+  #  [0., 1., 0.],
+  #  [0., 0., 1.]]
 
-  Then output is `[4 x 3]`:
+  indices = [0, 2, -1, 1]
+  depth = 3
+  tf.one_hot(indices, depth,
+             on_value=5.0, off_value=0.0,
+             axis=-1)  # output: [4 x 3]
+  # [[5.0, 0.0, 0.0],  # one_hot(0)
+  #  [0.0, 0.0, 5.0],  # one_hot(2)
+  #  [0.0, 0.0, 0.0],  # one_hot(-1)
+  #  [0.0, 5.0, 0.0]]  # one_hot(1)
 
-  ```python
-    output =
-    [5.0 0.0 0.0]  // one_hot(0)
-    [0.0 0.0 5.0]  // one_hot(2)
-    [0.0 0.0 0.0]  // one_hot(-1)
-    [0.0 5.0 0.0]  // one_hot(1)
-  ```
-
-  Suppose that
-
-  ```python
-    indices = [[0, 2], [1, -1]]
-    depth = 3
-    on_value = 1.0
-    off_value = 0.0
-    axis = -1
-  ```
-
-  Then output is `[2 x 2 x 3]`:
-
-  ```python
-    output =
-    [
-      [1.0, 0.0, 0.0]  // one_hot(0)
-      [0.0, 0.0, 1.0]  // one_hot(2)
-    ][
-      [0.0, 1.0, 0.0]  // one_hot(1)
-      [0.0, 0.0, 0.0]  // one_hot(-1)
-    ]
-  ```
-
-  Using default values for `on_value` and `off_value`:
-
-  ```python
-    indices = [0, 1, 2]
-    depth = 3
-  ```
-
-  The output will be
-
-  ```python
-    output =
-    [[1., 0., 0.],
-     [0., 1., 0.],
-     [0., 0., 1.]]
+  indices = [[0, 2], [1, -1]]
+  depth = 3
+  tf.one_hot(indices, depth,
+             on_value=1.0, off_value=0.0,
+             axis=-1)  # output: [2 x 2 x 3]
+  # [[[1.0, 0.0, 0.0],   # one_hot(0)
+  #   [0.0, 0.0, 1.0]],  # one_hot(2)
+  #  [[0.0, 1.0, 0.0],   # one_hot(1)
+  #   [0.0, 0.0, 0.0]]]  # one_hot(-1)
   ```
 
   Args:
@@ -2275,10 +2236,9 @@
   Example:
 
   ```python
-  tf.sequence_mask([1, 3, 2], 5) =
-    [[True, False, False, False, False],
-     [True, True, True, False, False],
-     [True, True, False, False, False]]
+  tf.sequence_mask([1, 3, 2], 5)  # [[True, False, False, False, False],
+                                  #  [True, True, True, False, False],
+                                  #  [True, True, False, False, False]]
   ```
 
   Args:
@@ -2336,14 +2296,14 @@
 
   ```python
   # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
-  shape(squeeze(t))  # => [2, 3]
+  tf.shape(tf.squeeze(t))  # [2, 3]
   ```
 
   Or, to remove specific size 1 dimensions:
 
   ```python
   # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
-  shape(squeeze(t, [2, 4]))  # => [1, 2, 3, 1]
+  tf.shape(tf.squeeze(t, [2, 4]))  # [1, 2, 3, 1]
   ```
 
   Args:
diff --git a/tensorflow/python/ops/control_flow_ops.py b/tensorflow/python/ops/control_flow_ops.py
index 73bd6a6..3797919 100644
--- a/tensorflow/python/ops/control_flow_ops.py
+++ b/tensorflow/python/ops/control_flow_ops.py
@@ -1046,10 +1046,10 @@
     Otherwise, they will enter the backprop loop with None. As an example,
     people often write:
 
-           ```
-           v1, _ = tf.while_loop(p, b, [x1, x2])
-           result = gradients(v1, x1)
-           ```
+    ```python
+    v1, _ = tf.while_loop(p, b, [x1, x2])
+    result = gradients(v1, x1)
+    ```
 
     The exit node for x2 is not included by the betweenness analysis. But we
     need to backprop x2 if x2 is involved in computing v1.
@@ -1779,13 +1779,13 @@
   Example:
 
   ```python
-    x = tf.constant(2)
-    y = tf.constant(5)
-    def f1(): return tf.multiply(x, 17)
-    def f2(): return tf.add(y, 23)
-    r = tf.cond(tf.less(x, y), f1, f2)
-    # r is set to f1().
-    # Operations in f2 (e.g., tf.add) are not executed.
+  x = tf.constant(2)
+  y = tf.constant(5)
+  def f1(): return tf.multiply(x, 17)
+  def f2(): return tf.add(y, 23)
+  r = tf.cond(tf.less(x, y), f1, f2)
+  # r is set to f1().
+  # Operations in f2 (e.g., tf.add) are not executed.
   ```
 
   """
diff --git a/tensorflow/python/ops/data_flow_ops.py b/tensorflow/python/ops/data_flow_ops.py
index fbfbb50..2a2ef58 100644
--- a/tensorflow/python/ops/data_flow_ops.py
+++ b/tensorflow/python/ops/data_flow_ops.py
@@ -1492,7 +1492,7 @@
     # Sanity check number of values
     if not len(vals) <= len(self._dtypes):
       raise ValueError("Unexpected number of inputs '%s' vs '%s'" % (
-                          len(values), len(self._dtypes)))
+                          len(vals), len(self._dtypes)))
 
     tensors = []
 
diff --git a/tensorflow/python/ops/distributions/util.py b/tensorflow/python/ops/distributions/util.py
index 63fb87e..59add19 100644
--- a/tensorflow/python/ops/distributions/util.py
+++ b/tensorflow/python/ops/distributions/util.py
@@ -586,15 +586,15 @@
 
   Example:
 
-    ```python
-    x = ...  # Tensor of shape [1, 2, 3, 4].
-    rotate_transpose(x, -1)  # result shape: [2, 3, 4, 1]
-    rotate_transpose(x, -2)  # result shape: [3, 4, 1, 2]
-    rotate_transpose(x,  1)  # result shape: [4, 1, 2, 3]
-    rotate_transpose(x,  2)  # result shape: [3, 4, 1, 2]
-    rotate_transpose(x, 7) == rotate_transpose(x, 3)
-    rotate_transpose(x, -7) == rotate_transpose(x, -3)
-    ```
+  ```python
+  x = tf.random_normal([1, 2, 3, 4])  # Tensor of shape [1, 2, 3, 4].
+  rotate_transpose(x, -1).shape == [2, 3, 4, 1]
+  rotate_transpose(x, -2).shape == [3, 4, 1, 2]
+  rotate_transpose(x,  1).shape == [4, 1, 2, 3]
+  rotate_transpose(x,  2).shape == [3, 4, 1, 2]
+  rotate_transpose(x,  7).shape == rotate_transpose(x, 3).shape  # [2, 3, 4, 1]
+  rotate_transpose(x, -7).shape == rotate_transpose(x, -3).shape  # [4, 1, 2, 3]
+  ```
 
   Args:
     x: `Tensor`.
@@ -667,10 +667,8 @@
   Example:
 
   ```python
-  pick_vector(tf.less(0, 5), tf.range(10, 12), tf.range(15, 18))
-  # result is tensor: [10, 11].
-  pick_vector(tf.less(5, 0), tf.range(10, 12), tf.range(15, 18))
-  # result is tensor: [15, 16, 17].
+  pick_vector(tf.less(0, 5), tf.range(10, 12), tf.range(15, 18))  # [10, 11]
+  pick_vector(tf.less(5, 0), tf.range(10, 12), tf.range(15, 18))  # [15, 16, 17]
   ```
 
   Returns:
@@ -733,10 +731,9 @@
   Example:
 
   ```python
-  fill_lower_triangular([1, 2, 3, 4, 5, 6])
-  # Returns: [[1, 0, 0],
-  #           [2, 3, 0],
-  #           [4, 5, 6]]
+  fill_lower_triangular([1, 2, 3, 4, 5, 6])  # [[1, 0, 0],
+                                             #  [2, 3, 0],
+                                             #  [4, 5, 6]]
   ```
 
   For comparison, a pure numpy version of this function can be found in
@@ -753,7 +750,7 @@
     tril: `Tensor` with lower triangular elements filled from `x`.
 
   Raises:
-    ValueError: if shape if `x` has static shape which cannot be mapped to a
+    ValueError: if shape of `x` has static shape which cannot be mapped to a
       lower triangular matrix.
   """
   # TODO(jvdillon): Replace this code with dedicated op when it exists.
diff --git a/tensorflow/python/ops/gradients_test.py b/tensorflow/python/ops/gradients_test.py
index aefed34..11c204b 100644
--- a/tensorflow/python/ops/gradients_test.py
+++ b/tensorflow/python/ops/gradients_test.py
@@ -163,20 +163,20 @@
     with ops.Graph().as_default() as g:
       w = constant(1.0, shape=[1, 1])
       x = constant(1.0, shape=[1, 2])
-      with g.device("/gpu:0"):
+      with g.device("/device:GPU:0"):
         wx = math_ops.matmul(w, x)
       gw = gradients.gradients(wx, [w], colocate_gradients_with_ops=True)[0]
     self.assertEqual(gw.op.colocation_groups(), wx.op.colocation_groups())
 
   def testColocateGradientsWithAggregation(self):
     with ops.Graph().as_default() as g:
-      with g.device("/gpu:1"):
+      with g.device("/device:GPU:1"):
         w = constant(1.0, shape=[1, 1])
       x = constant(1.0, shape=[1, 2])
       y = constant(1.0, shape=[1, 2])
       wx = math_ops.matmul(w, x)
       wy = math_ops.matmul(w, y)
-      with g.device("/gpu:0"):
+      with g.device("/device:GPU:0"):
         z = wx + wy
 
       gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
@@ -187,7 +187,7 @@
 
   def testColocateGradientsWithAggregationInMultipleDevices(self):
     with ops.Graph().as_default() as g:
-      with g.device("/gpu:1"):
+      with g.device("/device:GPU:1"):
         w = constant(1.0, shape=[1, 1])
       x = constant(1.0, shape=[1, 2])
       y = constant(1.0, shape=[1, 2])
@@ -195,7 +195,7 @@
         wx = math_ops.matmul(w, x)
       with g.device("/task:2"):
         wy = math_ops.matmul(w, y)
-      with g.device("/gpu:0"):
+      with g.device("/device:GPU:0"):
         z = wx + wy
 
       gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
diff --git a/tensorflow/python/ops/hidden_ops.txt b/tensorflow/python/ops/hidden_ops.txt
index ffa5dc4..eeaf418 100644
--- a/tensorflow/python/ops/hidden_ops.txt
+++ b/tensorflow/python/ops/hidden_ops.txt
@@ -302,6 +302,7 @@
 Relu6
 AvgPool
 MaxPool
+MaxPoolV2
 Softmax
 LogSoftmax
 FractionalAvgPoolGrad
diff --git a/tensorflow/python/ops/histogram_ops.py b/tensorflow/python/ops/histogram_ops.py
index c145b11..c2077d5 100644
--- a/tensorflow/python/ops/histogram_ops.py
+++ b/tensorflow/python/ops/histogram_ops.py
@@ -62,7 +62,7 @@
   value_range = [0.0, 5.0]
   new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]
 
-  with tf.default_session() as sess:
+  with tf.get_default_session() as sess:
     hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
     variables.global_variables_initializer().run()
     sess.run(hist) => [2, 1, 1, 0, 2]
diff --git a/tensorflow/python/ops/init_ops.py b/tensorflow/python/ops/init_ops.py
index 878d6ea..9eea3c2 100644
--- a/tensorflow/python/ops/init_ops.py
+++ b/tensorflow/python/ops/init_ops.py
@@ -65,13 +65,13 @@
 
     Example:
 
-    ```
+    ```python
     initializer = RandomUniform(-1, 1)
     config = initializer.get_config()
     initializer = RandomUniform.from_config(config)
     ```
 
-    Arguments:
+    Args:
       config: A Python dictionary.
         It will typically be the output of `get_config`.
 
@@ -388,7 +388,7 @@
   With `distribution="uniform"`, samples are drawn from a uniform distribution
   within [-limit, limit], with `limit = sqrt(3 * scale / n)`.
 
-  Arguments:
+  Args:
     scale: Scaling factor (positive float).
     mode: One of "fan_in", "fan_out", "fan_avg".
     distribution: Random distribution to use. One of "normal", "uniform".
@@ -570,7 +570,7 @@
 
   Reference: http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
 
-  Arguments:
+  Args:
     seed: A Python integer. Used to create random seeds. See
       @{tf.set_random_seed}
       for behavior.
@@ -593,7 +593,7 @@
 
   Reference: http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
 
-  Arguments:
+  Args:
     seed: A Python integer. Used to create random seeds. See
       @{tf.set_random_seed}
       for behavior.
@@ -612,7 +612,7 @@
 def _compute_fans(shape):
   """Computes the number of input and output units for a weight shape.
 
-  Arguments:
+  Args:
     shape: Integer shape tuple or TF tensor shape.
 
   Returns:
diff --git a/tensorflow/python/ops/math_ops.py b/tensorflow/python/ops/math_ops.py
index 3e91ec0..7ee0957 100644
--- a/tensorflow/python/ops/math_ops.py
+++ b/tensorflow/python/ops/math_ops.py
@@ -233,9 +233,9 @@
   `float32` or `float64` that is the absolute value of each element in `x`. All
   elements in `x` must be complex numbers of the form \\(a + bj\\). The
   absolute value is computed as \\( \sqrt{a^2 + b^2}\\).  For example:
-  ```
-  # tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
-  tf.complex_abs(x) ==> [5.25594902, 6.60492229]
+  ```python
+  x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
+  tf.abs(x)  # [5.25594902, 6.60492229]
   ```
 
   Args:
@@ -524,10 +524,10 @@
   Given a tensor `x` and a tensor `y`, this operation computes \\(x^y\\) for
   corresponding elements in `x` and `y`. For example:
 
-  ```
-  # tensor 'x' is [[2, 2], [3, 3]]
-  # tensor 'y' is [[8, 16], [2, 3]]
-  tf.pow(x, y) ==> [[256, 65536], [9, 27]]
+  ```python
+  x = tf.constant([[2, 2], [3, 3]])
+  y = tf.constant([[8, 16], [2, 3]])
+  tf.pow(x, y)  # [[256, 65536], [9, 27]]
   ```
 
   Args:
@@ -557,10 +557,10 @@
 
   For example:
 
-  ```
-  # tensor 'real' is [2.25, 3.25]
-  # tensor `imag` is [4.75, 5.75]
-  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
+  ```python
+  real = tf.constant([2.25, 3.25])
+  imag = tf.constant([4.75, 5.75])
+  tf.complex(real, imag)  # [[2.25 + 4.75j], [3.25 + 5.75j]]
   ```
 
   Args:
@@ -597,9 +597,9 @@
 
   For example:
 
-  ```
-  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
-  tf.real(input) ==> [-2.25, 3.25]
+  ```python
+  x = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j])
+  tf.real(x)  # [-2.25, 3.25]
   ```
 
   If `input` is already real, it is returned unchanged.
@@ -629,9 +629,9 @@
 
   For example:
 
-  ```
-  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
-  tf.imag(input) ==> [4.75, 5.75]
+  ```python
+  x = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j])
+  tf.imag(x)  # [4.75, 5.75]
   ```
 
   Args:
@@ -657,8 +657,8 @@
   For example:
 
   ```python
-  # 'a' is [0.9, 2.5, 2.3, 1.5, -4.5]
-  tf.round(a) ==> [ 1.0, 2.0, 2.0, 2.0, -4.0 ]
+  x = tf.constant([0.9, 2.5, 2.3, 1.5, -4.5])
+  tf.round(x)  # [ 1.0, 2.0, 2.0, 2.0, -4.0 ]
   ```
 
   Args:
@@ -684,8 +684,8 @@
   For example:
 
   ```python
-  # tensor `a` is [1.8, 2.2], dtype=tf.float
-  tf.cast(a, tf.int32) ==> [1, 2]  # dtype=tf.int32
+  x = tf.constant([1.8, 2.2], dtype=tf.float32)
+  tf.cast(x, tf.int32)  # [1, 2], dtype=tf.int32
   ```
 
   Args:
@@ -1147,18 +1147,18 @@
   For example:
 
   ```python
-  # 'start' is 3
-  # 'limit' is 18
-  # 'delta' is 3
-  tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]
+  start = 3
+  limit = 18
+  delta = 3
+  tf.range(start, limit, delta)  # [3, 6, 9, 12, 15]
 
-  # 'start' is 3
-  # 'limit' is 1
-  # 'delta' is -0.5
-  tf.range(start, limit, delta) ==> [3, 2.5, 2, 1.5]
+  start = 3
+  limit = 1
+  delta = -0.5
+  tf.range(start, limit, delta)  # [3, 2.5, 2, 1.5]
 
-  # 'limit' is 5
-  tf.range(limit) ==> [0, 1, 2, 3, 4]
+  limit = 5
+  tf.range(limit)  # [0, 1, 2, 3, 4]
   ```
 
   Args:
@@ -1247,13 +1247,12 @@
   For example:
 
   ```python
-  # 'x' is [[1, 1, 1]
-  #         [1, 1, 1]]
-  tf.reduce_sum(x) ==> 6
-  tf.reduce_sum(x, 0) ==> [2, 2, 2]
-  tf.reduce_sum(x, 1) ==> [3, 3]
-  tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
-  tf.reduce_sum(x, [0, 1]) ==> 6
+  x = tf.constant([[1, 1, 1], [1, 1, 1]])
+  tf.reduce_sum(x)  # 6
+  tf.reduce_sum(x, 0)  # [2, 2, 2]
+  tf.reduce_sum(x, 1)  # [3, 3]
+  tf.reduce_sum(x, 1, keep_dims=True)  # [[3], [3]]
+  tf.reduce_sum(x, [0, 1])  # 6
   ```
 
   Args:
@@ -1302,13 +1301,12 @@
   For example:
 
   ```python
-  # 'x' is [[0, 1, 0]
-  #         [1, 1, 0]]
-  tf.count_nonzero(x) ==> 3
-  tf.count_nonzero(x, 0) ==> [1, 2, 0]
-  tf.count_nonzero(x, 1) ==> [1, 2]
-  tf.count_nonzero(x, 1, keep_dims=True) ==> [[1], [2]]
-  tf.count_nonzero(x, [0, 1]) ==> 3
+  x = tf.constant([[0, 1, 0], [1, 1, 0]])
+  tf.count_nonzero(x)  # 3
+  tf.count_nonzero(x, 0)  # [1, 2, 0]
+  tf.count_nonzero(x, 1)  # [1, 2]
+  tf.count_nonzero(x, 1, keep_dims=True)  # [[1], [2]]
+  tf.count_nonzero(x, [0, 1])  # 3
   ```
 
   Args:
@@ -1355,11 +1353,10 @@
   For example:
 
   ```python
-  # 'x' is [[1., 1.]
-  #         [2., 2.]]
-  tf.reduce_mean(x) ==> 1.5
-  tf.reduce_mean(x, 0) ==> [1.5, 1.5]
-  tf.reduce_mean(x, 1) ==> [1.,  2.]
+  x = tf.constant([[1., 1.], [2., 2.]])
+  tf.reduce_mean(x)  # 1.5
+  tf.reduce_mean(x, 0)  # [1.5, 1.5]
+  tf.reduce_mean(x, 1)  # [1.,  2.]
   ```
 
   Args:
@@ -1517,11 +1514,10 @@
   For example:
 
   ```python
-  # 'x' is [[True,  True]
-  #         [False, False]]
-  tf.reduce_all(x) ==> False
-  tf.reduce_all(x, 0) ==> [False, False]
-  tf.reduce_all(x, 1) ==> [True, False]
+  x = tf.constant([[True,  True], [False, False]])
+  tf.reduce_all(x)  # False
+  tf.reduce_all(x, 0)  # [False, False]
+  tf.reduce_all(x, 1)  # [True, False]
   ```
 
   Args:
@@ -1565,11 +1561,10 @@
   For example:
 
   ```python
-  # 'x' is [[True,  True]
-  #         [False, False]]
-  tf.reduce_any(x) ==> True
-  tf.reduce_any(x, 0) ==> [True, True]
-  tf.reduce_any(x, 1) ==> [True, False]
+  x = tf.constant([[True,  True], [False, False]])
+  tf.reduce_any(x)  # True
+  tf.reduce_any(x, 0)  # [True, True]
+  tf.reduce_any(x, 1)  # [True, False]
   ```
 
   Args:
@@ -1617,13 +1612,12 @@
   For example:
 
   ```python
-  # 'x' is [[0, 0, 0]]
-  #         [0, 0, 0]]
-  tf.reduce_logsumexp(x) ==> log(6)
-  tf.reduce_logsumexp(x, 0) ==> [log(2), log(2), log(2)]
-  tf.reduce_logsumexp(x, 1) ==> [log(3), log(3)]
-  tf.reduce_logsumexp(x, 1, keep_dims=True) ==> [[log(3)], [log(3)]]
-  tf.reduce_logsumexp(x, [0, 1]) ==> log(6)
+  x = tf.constant([[0., 0., 0.], [0., 0., 0.]])
+  tf.reduce_logsumexp(x)  # log(6)
+  tf.reduce_logsumexp(x, 0)  # [log(2), log(2), log(2)]
+  tf.reduce_logsumexp(x, 1)  # [log(3), log(3)]
+  tf.reduce_logsumexp(x, 1, keep_dims=True)  # [[log(3)], [log(3)]]
+  tf.reduce_logsumexp(x, [0, 1])  # log(6)
   ```
 
   Args:
@@ -1639,12 +1633,16 @@
     The reduced tensor.
   """
   with ops.name_scope(name, "ReduceLogSumExp", [input_tensor]) as name:
+    raw_max = reduce_max(
+        input_tensor,
+        axis=axis,
+        reduction_indices=reduction_indices,
+        keep_dims=True)
     my_max = array_ops.stop_gradient(
-        reduce_max(
-            input_tensor,
-            axis=axis,
-            reduction_indices=reduction_indices,
-            keep_dims=True))
+        array_ops.where(
+            gen_math_ops.is_finite(raw_max),
+            raw_max,
+            array_ops.zeros_like(raw_max)))
     result = gen_math_ops.log(
         reduce_sum(
             gen_math_ops.exp(input_tensor - my_max),
@@ -1670,22 +1668,21 @@
   For example:
 
   ```python
-  # 'x' is [[1, 2],
-  #         [3, 4]]
-  tf.trace(x) ==> 5
+  x = tf.constant([[1, 2], [3, 4]])
+  tf.trace(x)  # 5
 
-  # 'x' is [[1,2,3],
-  #         [4,5,6],
-  #         [7,8,9]]
-  tf.trace(x) ==> 15
+  x = tf.constant([[1, 2, 3],
+                   [4, 5, 6],
+                   [7, 8, 9]])
+  tf.trace(x)  # 15
 
-  # 'x' is [[[1,2,3],
-  #          [4,5,6],
-  #          [7,8,9]],
-  #         [[-1,-2,-3],
-  #          [-4,-5,-6],
-  #          [-7,-8,-9]]]
-  tf.trace(x) ==> [15,-15]
+  x = tf.constant([[[1, 2, 3],
+                    [4, 5, 6],
+                    [7, 8, 9]],
+                   [[-1, -2, -3],
+                    [-4, -5, -6],
+                    [-7, -8, -9]]])
+  tf.trace(x)  # [15, -15]
   ```
 
   Args:
@@ -1732,35 +1729,46 @@
 
   ```python
   # 2-D tensor `a`
-  a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
-                                                        [4. 5. 6.]]
+  # [[1, 2, 3],
+  #  [4, 5, 6]]
+  a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
+
   # 2-D tensor `b`
-  b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
-                                                           [9. 10.]
-                                                           [11. 12.]]
-  c = tf.matmul(a, b) => [[58 64]
-                          [139 154]]
+  # [[ 7,  8],
+  #  [ 9, 10],
+  #  [11, 12]]
+  b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
+
+  # `a` * `b`
+  # [[ 58,  64],
+  #  [139, 154]]
+  c = tf.matmul(a, b)
 
 
   # 3-D tensor `a`
+  # [[[ 1,  2,  3],
+  #   [ 4,  5,  6]],
+  #  [[ 7,  8,  9],
+  #   [10, 11, 12]]]
   a = tf.constant(np.arange(1, 13, dtype=np.int32),
-                  shape=[2, 2, 3])                  => [[[ 1.  2.  3.]
-                                                         [ 4.  5.  6.]],
-                                                        [[ 7.  8.  9.]
-                                                         [10. 11. 12.]]]
+                  shape=[2, 2, 3])
 
   # 3-D tensor `b`
+  # [[[13, 14],
+  #   [15, 16],
+  #   [17, 18]],
+  #  [[19, 20],
+  #   [21, 22],
+  #   [23, 24]]]
   b = tf.constant(np.arange(13, 25, dtype=np.int32),
-                  shape=[2, 3, 2])                   => [[[13. 14.]
-                                                          [15. 16.]
-                                                          [17. 18.]],
-                                                         [[19. 20.]
-                                                          [21. 22.]
-                                                          [23. 24.]]]
-  c = tf.matmul(a, b) => [[[ 94 100]
-                           [229 244]],
-                          [[508 532]
-                           [697 730]]]
+                  shape=[2, 3, 2])
+
+  # `a` * `b`
+  # [[[ 94, 100],
+  #   [229, 244]],
+  #  [[508, 532],
+  #   [697, 730]]]
+  c = tf.matmul(a, b)
 
   # Since python >= 3.5 the @ operator is supported (see PEP 465).
   # In TensorFlow, it simply calls the `tf.matmul()` function, so the
@@ -1980,13 +1988,13 @@
   For example:
 
   ```python
-  # tensor 'a' is [[1, 2], [3, 4]]
-  # tensor `b` is [[5, 0], [0, 6]]
-  tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]
+  a = tf.constant([[1, 2], [3, 4]])
+  b = tf.constant([[5, 0], [0, 6]])
+  tf.accumulate_n([a, b, a])  # [[7, 4], [6, 14]]
 
   # Explicitly pass shape and type
-  tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)
-    ==> [[7, 4], [6, 14]]
+  tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)  # [[7,  4],
+                                                                   #  [6, 14]]
   ```
 
   Args:
@@ -2151,21 +2159,21 @@
   element of the input is identical to the first element of the output:
 
   ```python
-  tf.cumsum([a, b, c])  # => [a, a + b, a + b + c]
+  tf.cumsum([a, b, c])  # [a, a + b, a + b + c]
   ```
 
   By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
   instead:
 
   ```python
-  tf.cumsum([a, b, c], exclusive=True)  # => [0, a, a + b]
+  tf.cumsum([a, b, c], exclusive=True)  # [0, a, a + b]
   ```
 
   By setting the `reverse` kwarg to `True`, the cumsum is performed in the
   opposite direction:
 
   ```python
-  tf.cumsum([a, b, c], reverse=True)  # => [a + b + c, b + c, c]
+  tf.cumsum([a, b, c], reverse=True)  # [a + b + c, b + c, c]
   ```
 
   This is more efficient than using separate `tf.reverse` ops.
@@ -2173,7 +2181,7 @@
   The `reverse` and `exclusive` kwargs can also be combined:
 
   ```python
-  tf.cumsum([a, b, c], exclusive=True, reverse=True)  # => [b + c, c, 0]
+  tf.cumsum([a, b, c], exclusive=True, reverse=True)  # [b + c, c, 0]
   ```
 
   Args:
@@ -2202,7 +2210,7 @@
   first element of the input is identical to the first element of the output:
 
   ```python
-  tf.cumprod([a, b, c])  # => [a, a * b, a * b * c]
+  tf.cumprod([a, b, c])  # [a, a * b, a * b * c]
   ```
 
   By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
@@ -2210,21 +2218,21 @@
   instead:
 
   ```python
-  tf.cumprod([a, b, c], exclusive=True)  # => [1, a, a * b]
+  tf.cumprod([a, b, c], exclusive=True)  # [1, a, a * b]
   ```
 
   By setting the `reverse` kwarg to `True`, the cumprod is performed in the
   opposite direction:
 
   ```python
-  tf.cumprod([a, b, c], reverse=True)  # => [a * b * c, b * c, c]
+  tf.cumprod([a, b, c], reverse=True)  # [a * b * c, b * c, c]
   ```
 
   This is more efficient than using separate `tf.reverse` ops.
   The `reverse` and `exclusive` kwargs can also be combined:
 
   ```python
-  tf.cumprod([a, b, c], exclusive=True, reverse=True)  # => [b * c, c, 1]
+  tf.cumprod([a, b, c], exclusive=True, reverse=True)  # [b * c, c, 1]
   ```
 
   Args:
@@ -2448,6 +2456,10 @@
         raise ValueError("'axes' must be an integer or have length 2.")
       a_axes = axes[0]
       b_axes = axes[1]
+      if isinstance(a_axes, compat.integral_types) and \
+          isinstance(b_axes, compat.integral_types):
+        a_axes = [a_axes]
+        b_axes = [b_axes]
       if len(a_axes) != len(b_axes):
         raise ValueError(
             "Different number of contraction axes 'a' and 'b', %s != %s.",
diff --git a/tensorflow/python/ops/math_ops_test.py b/tensorflow/python/ops/math_ops_test.py
index 617d230..46a5792 100644
--- a/tensorflow/python/ops/math_ops_test.py
+++ b/tensorflow/python/ops/math_ops_test.py
@@ -134,6 +134,11 @@
         y_np = log(np.sum(exp(x_np - max_np))) + max_np
         self.assertAllClose(y_tf_np, y_np)
 
+  def testInfinity(self):
+    with self.test_session(use_gpu=True):
+      res = math_ops.reduce_logsumexp(-np.inf).eval()
+      self.assertEqual(-np.inf, res)
+
 
 class RoundTest(test_util.TensorFlowTestCase):
 
diff --git a/tensorflow/python/ops/matmul_benchmark.py b/tensorflow/python/ops/matmul_benchmark.py
index b777ace..f95cf08 100644
--- a/tensorflow/python/ops/matmul_benchmark.py
+++ b/tensorflow/python/ops/matmul_benchmark.py
@@ -47,7 +47,7 @@
   Returns:
     A matmul operation to run()
   """
-  with ops.device('/%s:0' % device):
+  with ops.device('%s' % device):
     if not transpose_a:
       x = variables.Variable(random_ops.random_uniform([n, m], dtype=dtype))
     else:
@@ -112,7 +112,7 @@
     return duration
 
   def run_test_gpu(self, n, m, k, transpose_a, transpose_b, dtype, num_iters):
-    self.run_graph('gpu', n, m, k, transpose_a, transpose_b, num_iters, dtype)
+    self.run_graph(test.gpu_device_name(), n, m, k, transpose_a, transpose_b, num_iters, dtype)
 
   def test_round(self, num_iters):
     dtypes = [np.float32, np.float64]
diff --git a/tensorflow/python/ops/matmul_benchmark_test.py b/tensorflow/python/ops/matmul_benchmark_test.py
index a7914db..5a9c0a7 100644
--- a/tensorflow/python/ops/matmul_benchmark_test.py
+++ b/tensorflow/python/ops/matmul_benchmark_test.py
@@ -71,37 +71,39 @@
   def _VerifyBuildGraph(self, n, m, k, transpose_a, transpose_b, dtype):
     graph = ops.Graph()
     with graph.as_default():
-      matmul_benchmark.build_graph("gpu", n, m, k, transpose_a, transpose_b,
+      matmul_benchmark.build_graph(googletest.gpu_device_name(), n, m, k, transpose_a, transpose_b,
                                    dtype)
       gd = graph.as_graph_def()
-      self.assertProtoEquals("""
-      node { name: "random_uniform/shape" op: "Const" device: "/device:GPU:0" }
-      node { name: "random_uniform/min" op: "Const" device: "/device:GPU:0" }
-      node { name: "random_uniform/max" op: "Const" device: "/device:GPU:0" }
-      node { name: "random_uniform/RandomUniform" op: "RandomUniform" input: "random_uniform/shape" device: "/device:GPU:0" }
-      node { name: "random_uniform/sub" op: "Sub" input: "random_uniform/max" input: "random_uniform/min" device: "/device:GPU:0" }
-      node { name: "random_uniform/mul" op: "Mul" input: "random_uniform/RandomUniform" input: "random_uniform/sub" device: "/device:GPU:0" }
-      node { name: "random_uniform" op: "Add" input: "random_uniform/mul" input: "random_uniform/min" device: "/device:GPU:0" }
-      node { name: "Variable" op: "VariableV2" device: "/device:GPU:0" }
-      node { name: "Variable/Assign" op: "Assign" input: "Variable" input: "random_uniform" device: "/device:GPU:0" }
-      node { name: "Variable/read" op: "Identity" input: "Variable" device: "/device:GPU:0" }
-      node { name: "random_uniform_1/shape" op: "Const" device: "/device:GPU:0" }
-      node { name: "random_uniform_1/min" op: "Const" device: "/device:GPU:0" }
-      node { name: "random_uniform_1/max" op: "Const" device: "/device:GPU:0" }
-      node { name: "random_uniform_1/RandomUniform" op: "RandomUniform" input: "random_uniform_1/shape" device: "/device:GPU:0" }
-      node { name: "random_uniform_1/sub" op: "Sub" input: "random_uniform_1/max" input: "random_uniform_1/min" device: "/device:GPU:0" }
-      node { name: "random_uniform_1/mul" op: "Mul" input: "random_uniform_1/RandomUniform" input: "random_uniform_1/sub" device: "/device:GPU:0" }
-      node { name: "random_uniform_1" op: "Add" input: "random_uniform_1/mul" input: "random_uniform_1/min" device: "/device:GPU:0" }
-      node { name: "Variable_1" op: "VariableV2" device: "/device:GPU:0" }
-      node { name: "Variable_1/Assign" op: "Assign" input: "Variable_1" input: "random_uniform_1" device: "/device:GPU:0" }
-      node { name: "Variable_1/read" op: "Identity" input: "Variable_1" device: "/device:GPU:0" }
-      node { name: "MatMul" op: "MatMul" input: "Variable/read" input: "Variable_1/read" device: "/device:GPU:0" }
-      node { name: "group_deps" op: "NoOp" input: "^MatMul" device: "/device:GPU:0" }
-                             """, self._StripGraph(gd))
+      dev=googletest.gpu_device_name()
+      proto_expected = """
+      node { name: "random_uniform/shape" op: "Const" device: \""""+ dev +"""\" }
+      node { name: "random_uniform/min" op: "Const" device: \""""+ dev +"""\" }
+      node { name: "random_uniform/max" op: "Const" device: \""""+ dev +"""\" }
+      node { name: "random_uniform/RandomUniform" op: "RandomUniform" input: "random_uniform/shape" device: \""""+ dev +"""\" }
+      node { name: "random_uniform/sub" op: "Sub" input: "random_uniform/max" input: "random_uniform/min" device: \""""+ dev +"""\" }
+      node { name: "random_uniform/mul" op: "Mul" input: "random_uniform/RandomUniform" input: "random_uniform/sub" device: \""""+ dev +"""\" }
+      node { name: "random_uniform" op: "Add" input: "random_uniform/mul" input: "random_uniform/min" device: \""""+ dev +"""\" }
+      node { name: "Variable" op: "VariableV2" device: \""""+ dev +"""\" }
+      node { name: "Variable/Assign" op: "Assign" input: "Variable" input: "random_uniform" device: \""""+ dev +"""\" }
+      node { name: "Variable/read" op: "Identity" input: "Variable" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1/shape" op: "Const" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1/min" op: "Const" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1/max" op: "Const" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1/RandomUniform" op: "RandomUniform" input: "random_uniform_1/shape" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1/sub" op: "Sub" input: "random_uniform_1/max" input: "random_uniform_1/min" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1/mul" op: "Mul" input: "random_uniform_1/RandomUniform" input: "random_uniform_1/sub" device: \""""+ dev +"""\" }
+      node { name: "random_uniform_1" op: "Add" input: "random_uniform_1/mul" input: "random_uniform_1/min" device: \""""+ dev +"""\" }
+      node { name: "Variable_1" op: "VariableV2" device: \""""+ dev +"""\" }
+      node { name: "Variable_1/Assign" op: "Assign" input: "Variable_1" input: "random_uniform_1" device: \""""+ dev +"""\" }
+      node { name: "Variable_1/read" op: "Identity" input: "Variable_1" device: \""""+ dev +"""\" }
+      node { name: "MatMul" op: "MatMul" input: "Variable/read" input: "Variable_1/read" device: \""""+ dev +"""\" }
+      node { name: "group_deps" op: "NoOp" input: "^MatMul" device: \""""+ dev +"""\" }
+                       """
+      self.assertProtoEquals(str(proto_expected), self._StripGraph(gd))
 
   def _VerifyRunGraph(self, n, m, k, transpose_a, transpose_b, dtype):
     benchmark_instance = matmul_benchmark.MatmulBenchmark()
-    duration = benchmark_instance.run_graph("gpu", n, m, k, transpose_a,
+    duration = benchmark_instance.run_graph(googletest.gpu_device_name(), n, m, k, transpose_a,
                                             transpose_b, 1, dtype)
     self.assertTrue(duration > 1e-6)
 
diff --git a/tensorflow/python/ops/nn_grad.py b/tensorflow/python/ops/nn_grad.py
index 094757d..de302a2 100644
--- a/tensorflow/python/ops/nn_grad.py
+++ b/tensorflow/python/ops/nn_grad.py
@@ -541,6 +541,19 @@
                                    data_format=op.get_attr("data_format"))
 
 
+@ops.RegisterGradient("MaxPoolV2")
+def _MaxPoolGradV2(op, grad):
+  ksize = op.inputs[1]
+  strides = op.inputs[2]
+  return gen_nn_ops.max_pool_grad_v2(op.inputs[0],
+                                     op.outputs[0],
+                                     grad,
+                                     ksize,
+                                     strides,
+                                     padding=op.get_attr("padding"),
+                                     data_format=op.get_attr("data_format")), None, None
+
+
 @ops.RegisterGradient("MaxPoolWithArgmax")
 def _MaxPoolGradWithArgmax(op, grad, unused_argmax_grad):
   return gen_nn_ops._max_pool_grad_with_argmax(op.inputs[0],
@@ -567,6 +580,24 @@
               data_format=op.get_attr("data_format")))
 
 
+@ops.RegisterGradient("MaxPoolGradV2")
+def _MaxPoolGradGradV2(op, grad):
+  ksize = op.inputs[3]
+  strides = op.inputs[4]
+  return (array_ops.zeros(
+      shape=array_ops.shape(op.inputs[0]),
+      dtype=op.inputs[0].dtype), array_ops.zeros(
+          shape=array_ops.shape(op.inputs[1]), dtype=op.inputs[1].dtype),
+          gen_nn_ops.max_pool_grad_grad_v2(
+              op.inputs[0],
+              op.inputs[1],
+              grad,
+              ksize,
+              strides,
+              padding=op.get_attr("padding"),
+              data_format=op.get_attr("data_format")), None, None)
+
+
 @ops.RegisterGradient("MaxPoolGradGrad")
 def _MaxPoolGradGradGrad(op, grad):
   return (array_ops.zeros(
diff --git a/tensorflow/python/ops/nn_impl.py b/tensorflow/python/ops/nn_impl.py
index 98ede20..53b8996 100644
--- a/tensorflow/python/ops/nn_impl.py
+++ b/tensorflow/python/ops/nn_impl.py
@@ -417,7 +417,7 @@
 
   In detail,
 
-      output[b, i, j, k] = sum_{di, dj, q, r]
+      output[b, i, j, k] = sum_{di, dj, q, r}
           input[b, strides[1] * i + di, strides[2] * j + dj, q] *
           depthwise_filter[di, dj, q, r] *
           pointwise_filter[0, 0, q * channel_multiplier + r, k]
diff --git a/tensorflow/python/ops/parsing_ops.py b/tensorflow/python/ops/parsing_ops.py
index 0071e7d..06eae12 100644
--- a/tensorflow/python/ops/parsing_ops.py
+++ b/tensorflow/python/ops/parsing_ops.py
@@ -417,7 +417,7 @@
 
   then the output will look like:
 
-  ```
+  ```python
   {"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
                       values=[1.0, 2.0, 3.0],
                       dense_shape=(3, 2)) }
@@ -426,7 +426,7 @@
   If instead a `FixedLenSequenceFeature` with `default_value = -1.0` and
   `shape=[]` is used then the output will look like:
 
-  ```
+  ```python
   {"ft": [[1.0, 2.0], [3.0, -1.0]]}
   ```
 
diff --git a/tensorflow/python/ops/rnn.py b/tensorflow/python/ops/rnn.py
index 932727c..b174956 100644
--- a/tensorflow/python/ops/rnn.py
+++ b/tensorflow/python/ops/rnn.py
@@ -294,10 +294,6 @@
     # Join into (time, batch_size, depth)
     s_joined = array_ops.stack(sequence)
 
-    # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
-    if lengths is not None:
-      lengths = math_ops.to_int64(lengths)
-
     # Reverse along dimension 0
     s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
     # Split again into list
diff --git a/tensorflow/python/ops/special_math_ops.py b/tensorflow/python/ops/special_math_ops.py
index b561203..87561cf 100644
--- a/tensorflow/python/ops/special_math_ops.py
+++ b/tensorflow/python/ops/special_math_ops.py
@@ -82,7 +82,7 @@
     return result
 
 
-def einsum(equation, *inputs):
+def einsum(equation, *inputs, **kwargs):
   """A generalized contraction between tensors of arbitrary dimension.
 
   This function returns a tensor whose elements are defined by `equation`,
@@ -138,6 +138,7 @@
       `numpy.einsum`.
     *inputs: the inputs to contract (each one a `Tensor`), whose shapes should
       be consistent with `equation`.
+    name: A name for the operation (optional).
 
   Returns:
     The contracted `Tensor`, with shape determined by `equation`.
@@ -151,70 +152,76 @@
         indices in its subscript, or
       - the input shapes are inconsistent along a particular axis.
   """
-  if '...' in equation:
-    raise ValueError('Subscripts with ellipses are not yet supported.')
+  name = kwargs.pop("name", None)
+  if kwargs:
+    raise TypeError("invalid keyword arguments for this function: " +
+                    ", ".join([format(key)
+                               for key in sorted(list(kwargs.keys()))]))
+  with ops.name_scope(name, "einsum", [equation, inputs]) as name:
+    if '...' in equation:
+      raise ValueError('Subscripts with ellipses are not yet supported.')
 
-  match = re.match('([a-z,]+)(->[a-z]*)?', equation)
-  if not match:
-    raise ValueError(
-        'Indices have incorrect format: %s' % equation
-    )
+    match = re.match('([a-z,]+)(->[a-z]*)?', equation)
+    if not match:
+      raise ValueError(
+          'Indices have incorrect format: %s' % equation
+      )
 
-  inputs = list(inputs)
-  input_axis_labels = match.group(1).split(',')
+    inputs = list(inputs)
+    input_axis_labels = match.group(1).split(',')
 
-  if len(inputs) != len(input_axis_labels):
-    raise ValueError('Got %d arguments for equation "%s", expecting %d' % (
-        len(inputs), equation, len(input_axis_labels)))
+    if len(inputs) != len(input_axis_labels):
+      raise ValueError('Got %d arguments for equation "%s", expecting %d' % (
+          len(inputs), equation, len(input_axis_labels)))
 
-  axis_labels = set(''.join(input_axis_labels))
-  if match.group(2):
-    output_axis_labels = match.group(2)[2:]
-  else:
-    # infer the output subscripts if not given, assume alphabetical order
-    indices = ''.join(sorted(axis_labels))
-    counts = {ax: 0 for ax in indices}
-    for axes_ in input_axis_labels:
-      for ax in axes_:
-        counts[ax] += 1
+    axis_labels = set(''.join(input_axis_labels))
+    if match.group(2):
+      output_axis_labels = match.group(2)[2:]
+    else:
+      # infer the output subscripts if not given, assume alphabetical order
+      indices = ''.join(sorted(axis_labels))
+      counts = {ax: 0 for ax in indices}
+      for axes_ in input_axis_labels:
+        for ax in axes_:
+          counts[ax] += 1
 
-    output_axis_labels = ''.join(sorted(
-        ax for ax in indices
-        if counts[ax] == 1
-    ))
+      output_axis_labels = ''.join(sorted(
+          ax for ax in indices
+          if counts[ax] == 1
+      ))
 
-  for a in axis_labels:
-    input_count = sum(1 for s in input_axis_labels if a in s)
-    if input_count > 2 and a not in output_axis_labels:
-      logging.warn(
-          'Falling back to exponential-space implementation of einsum() because'
-          ' index "%s" is summed over more than two inputs.', a)
-      return _exponential_space_einsum(equation, *inputs)
+    for a in axis_labels:
+      input_count = sum(1 for s in input_axis_labels if a in s)
+      if input_count > 2 and a not in output_axis_labels:
+        logging.warn(
+            'Falling back to exponential-space implementation of einsum() because'
+            ' index "%s" is summed over more than two inputs.', a)
+        return _exponential_space_einsum(equation, *inputs)
 
-  temp = inputs[0]
-  temp_axis_labels = input_axis_labels[0]
-  for i in xrange(len(inputs)-1):
-    axes_to_sum = (set(temp_axis_labels) & set(input_axis_labels[i+1])
-                   - set(output_axis_labels))
-    temp, temp_axis_labels = _einsum_reduction(temp,
-                                               temp_axis_labels,
-                                               inputs[i+1],
-                                               input_axis_labels[i+1],
-                                               axes_to_sum)
+    temp = inputs[0]
+    temp_axis_labels = input_axis_labels[0]
+    for i in xrange(len(inputs)-1):
+      axes_to_sum = (set(temp_axis_labels) & set(input_axis_labels[i+1])
+                     - set(output_axis_labels))
+      temp, temp_axis_labels = _einsum_reduction(temp,
+                                                 temp_axis_labels,
+                                                 inputs[i+1],
+                                                 input_axis_labels[i+1],
+                                                 axes_to_sum)
 
-  missing_indices = set(temp_axis_labels) - set(output_axis_labels)
-  if missing_indices:
-    reduction_indices = [i for i, a in enumerate(temp_axis_labels)
-                         if a not in output_axis_labels]
-    temp = math_ops.reduce_sum(temp, reduction_indices=reduction_indices)
-    temp_axis_labels = ''.join(a for a in temp_axis_labels
-                               if a in output_axis_labels)
+    missing_indices = set(temp_axis_labels) - set(output_axis_labels)
+    if missing_indices:
+      reduction_indices = [i for i, a in enumerate(temp_axis_labels)
+                           if a not in output_axis_labels]
+      temp = math_ops.reduce_sum(temp, reduction_indices=reduction_indices)
+      temp_axis_labels = ''.join(a for a in temp_axis_labels
+                                 if a in output_axis_labels)
 
-  if sorted(temp_axis_labels) != sorted(output_axis_labels):
-    raise ValueError('Invalid equation: %s' % equation)
+    if sorted(temp_axis_labels) != sorted(output_axis_labels):
+      raise ValueError('Invalid equation: %s' % equation)
 
-  perm = [temp_axis_labels.index(a) for a in output_axis_labels]
-  return _transpose_if_necessary(temp, perm)
+    perm = [temp_axis_labels.index(a) for a in output_axis_labels]
+    return _transpose_if_necessary(temp, perm)
 
 
 def _einsum_reduction(t0, t0_axis_labels, t1, t1_axis_labels, axes_to_sum):
diff --git a/tensorflow/python/ops/special_math_ops_test.py b/tensorflow/python/ops/special_math_ops_test.py
index 13cd9b7..6581e9f 100644
--- a/tensorflow/python/ops/special_math_ops_test.py
+++ b/tensorflow/python/ops/special_math_ops_test.py
@@ -242,6 +242,14 @@
       with self.assertRaises(ValueError):
         _ = special_math_ops.einsum(axes, *inputs)
 
+  def test_invalid_keyword_arguments(self):
+    m0 = array_ops.placeholder(dtypes.int32, shape=(1, None))
+    m1 = array_ops.placeholder(dtypes.int32, shape=(None, 1))
+    with self.assertRaisesRegexp(TypeError,
+        'invalid keyword arguments for this function: invalid1, invalid2'):
+      _ = special_math_ops.einsum('ij,jk->ik', m0, m1, name="name",
+                                  invalid1="value1", invalid2="value2")
+
   def test_dim_mismatch(self):
     for axes, input_shapes in self.dim_mismatch_cases:
       inputs = [
diff --git a/tensorflow/python/ops/variables.py b/tensorflow/python/ops/variables.py
index a706193..f0d2b8b 100644
--- a/tensorflow/python/ops/variables.py
+++ b/tensorflow/python/ops/variables.py
@@ -1198,7 +1198,7 @@
         "assign() has not been implemented for PartitionedVariable.")
 
 
-def global_variables():
+def global_variables(scope=None):
   """Returns global variables.
 
   Global variables are variables that are shared across machines in a
@@ -1210,10 +1210,17 @@
   An alternative to global variables are local variables. See
   @{tf.local_variables}
 
+  Args:
+    scope: (Optional.) A string. If supplied, the resulting list is filtered
+      to include only items whose `name` attribute matches `scope` using
+      `re.match`. Items without a `name` attribute are never returned if a
+      scope is supplied. The choice of `re.match` means that a `scope` without
+      special tokens filters by prefix.
+
   Returns:
     A list of `Variable` objects.
   """
-  return ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)
+  return ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope)
 
 
 @deprecated("2017-03-02", "Please use tf.global_variables instead.")
@@ -1222,18 +1229,25 @@
   return global_variables()
 
 
-def _all_saveable_objects():
+def _all_saveable_objects(scope=None):
   """Returns all variables and `SaveableObject`s that must be checkpointed.
 
+  Args:
+    scope: (Optional.) A string. If supplied, the resulting list is filtered
+      to include only items whose `name` attribute matches `scope` using
+      `re.match`. Items without a `name` attribute are never returned if a
+      scope is supplied. The choice of `re.match` means that a `scope` without
+      special tokens filters by prefix.
+
   Returns:
     A list of `Variable` and `SaveableObject` to be checkpointed
   """
   # TODO(andreasst): make this function public once things are settled.
-  return (ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) +
-          ops.get_collection(ops.GraphKeys.SAVEABLE_OBJECTS))
+  return (ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope) +
+          ops.get_collection(ops.GraphKeys.SAVEABLE_OBJECTS, scope))
 
 
-def local_variables():
+def local_variables(scope=None):
   """Returns local variables.
 
   Local variables - per process variables, usually not saved/restored to
@@ -1247,22 +1261,36 @@
   An alternative to local variables are global variables. See
   @{tf.global_variables}
 
+  Args:
+    scope: (Optional.) A string. If supplied, the resulting list is filtered
+      to include only items whose `name` attribute matches `scope` using
+      `re.match`. Items without a `name` attribute are never returned if a
+      scope is supplied. The choice of `re.match` means that a `scope` without
+      special tokens filters by prefix.
+
   Returns:
     A list of local `Variable` objects.
   """
-  return ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES)
+  return ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES, scope)
 
 
-def model_variables():
+def model_variables(scope=None):
   """Returns all variables in the MODEL_VARIABLES collection.
 
+  Args:
+    scope: (Optional.) A string. If supplied, the resulting list is filtered
+      to include only items whose `name` attribute matches `scope` using
+      `re.match`. Items without a `name` attribute are never returned if a
+      scope is supplied. The choice of `re.match` means that a `scope` without
+      special tokens filters by prefix.
+
   Returns:
     A list of local Variable objects.
   """
-  return ops.get_collection(ops.GraphKeys.MODEL_VARIABLES)
+  return ops.get_collection(ops.GraphKeys.MODEL_VARIABLES, scope)
 
 
-def trainable_variables():
+def trainable_variables(scope=None):
   """Returns all variables created with `trainable=True`.
 
   When passed `trainable=True`, the `Variable()` constructor automatically
@@ -1270,13 +1298,20 @@
   `GraphKeys.TRAINABLE_VARIABLES`. This convenience function returns the
   contents of that collection.
 
+  Args:
+    scope: (Optional.) A string. If supplied, the resulting list is filtered
+      to include only items whose `name` attribute matches `scope` using
+      `re.match`. Items without a `name` attribute are never returned if a
+      scope is supplied. The choice of `re.match` means that a `scope` without
+      special tokens filters by prefix.
+
   Returns:
     A list of Variable objects.
   """
-  return ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)
+  return ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES, scope)
 
 
-def moving_average_variables():
+def moving_average_variables(scope=None):
   """Returns all variables that maintain their moving averages.
 
   If an `ExponentialMovingAverage` object is created and the `apply()`
@@ -1284,10 +1319,17 @@
   be added to the `GraphKeys.MOVING_AVERAGE_VARIABLES` collection.
   This convenience function returns the contents of that collection.
 
+  Args:
+    scope: (Optional.) A string. If supplied, the resulting list is filtered
+      to include only items whose `name` attribute matches `scope` using
+      `re.match`. Items without a `name` attribute are never returned if a
+      scope is supplied. The choice of `re.match` means that a `scope` without
+      special tokens filters by prefix.
+
   Returns:
     A list of Variable objects.
   """
-  return ops.get_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES)
+  return ops.get_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, scope)
 
 
 def variables_initializer(var_list, name="init"):
diff --git a/tensorflow/python/profiler/internal/run_metadata_test.py b/tensorflow/python/profiler/internal/run_metadata_test.py
index 62b2314..b758edf8 100644
--- a/tensorflow/python/profiler/internal/run_metadata_test.py
+++ b/tensorflow/python/profiler/internal/run_metadata_test.py
@@ -97,21 +97,22 @@
     if not test.is_gpu_available(cuda_only=True):
       return
 
+    gpu_dev = test.gpu_device_name()
     ops.reset_default_graph()
-    with ops.device('/gpu:0'):
+    with ops.device(gpu_dev):
       tfprof_node, run_meta = _run_model()
       self.assertEqual(tfprof_node.children[0].name, 'MatMul')
       self.assertGreater(tfprof_node.children[0].exec_micros, 10)
 
     ret = _extract_node(run_meta, ['MatMul', 'MatMul:MatMul'])
     self.assertEqual(len(ret), 3)
-    self.assertTrue('/job:localhost/replica:0/task:0/gpu:0' in ret)
-    del ret['/job:localhost/replica:0/task:0/gpu:0']
+    self.assertTrue('/job:localhost/replica:0/task:0' + gpu_dev in ret)
+    del ret['/job:localhost/replica:0/task:0' + gpu_dev]
 
     has_all_stream = False
     for k, _ in six.iteritems(ret):
-      self.assertTrue('gpu:0/stream' in k)
-      if 'gpu:0/stream:all' in k:
+      self.assertTrue(gpu_dev + '/stream' in k)
+      if gpu_dev + '/stream:all' in k:
         has_all_stream = True
     self.assertTrue(has_all_stream)
 
@@ -159,24 +160,24 @@
       return
 
     ops.reset_default_graph()
-    with ops.device('/gpu:0'):
+    with ops.device('/device:GPU:0'):
       tfprof_node, run_meta = _run_loop_model()
       # The while-loop caused a node to appear 4 times in scheduling.
       ret = _extract_node(run_meta,
                           'rnn/while/rnn/basic_rnn_cell/basic_rnn_cell/MatMul')
-      self.assertEqual(len(ret['/job:localhost/replica:0/task:0/gpu:0']), 4)
+      self.assertEqual(len(ret['/job:localhost/replica:0/task:0/device:GPU:0']), 4)
 
       total_cpu_execs = 0
-      for node in ret['/job:localhost/replica:0/task:0/gpu:0']:
+      for node in ret['/job:localhost/replica:0/task:0/device:GPU:0']:
         total_cpu_execs += node.op_end_rel_micros
 
       ret = _extract_node(
           run_meta,
           'rnn/while/rnn/basic_rnn_cell/basic_rnn_cell/MatMul:MatMul')
-      self.assertGreaterEqual(len(ret['/gpu:0/stream:all']), 4)
+      self.assertGreaterEqual(len(ret['/device:GPU:0/stream:all']), 4)
 
       total_accelerator_execs = 0
-      for node in ret['/gpu:0/stream:all']:
+      for node in ret['/device:GPU:0/stream:all']:
         total_accelerator_execs += node.op_end_rel_micros
 
       mm_node = lib.SearchTFProfNode(
diff --git a/tensorflow/python/profiler/option_builder.py b/tensorflow/python/profiler/option_builder.py
index e2e0224..502fc49 100644
--- a/tensorflow/python/profiler/option_builder.py
+++ b/tensorflow/python/profiler/option_builder.py
@@ -315,7 +315,7 @@
     """Selectively counting statistics based on node types.
 
     Here, 'types' means the profiler nodes' properties. Profiler by default
-    consider device name (e.g. /job:xx/.../gpu:0) and operation type
+    consider device name (e.g. /job:xx/.../device:GPU:0) and operation type
     (e.g. MatMul) as profiler nodes' properties. User can also associate
     customized 'types' to profiler nodes through OpLogProto proto.
 
diff --git a/tensorflow/python/summary/writer/writer.py b/tensorflow/python/summary/writer/writer.py
index 8ce49d6..bd46533 100644
--- a/tensorflow/python/summary/writer/writer.py
+++ b/tensorflow/python/summary/writer/writer.py
@@ -336,6 +336,14 @@
                                    filename_suffix)
     super(FileWriter, self).__init__(event_writer, graph, graph_def)
 
+  def __enter__(self):
+    """Make usable with "with" statement."""
+    return self
+
+  def __exit__(self, unused_type, unused_value, unused_traceback):
+    """Make usable with "with" statement."""
+    self.close()
+
   def get_logdir(self):
     """Returns the directory where event file will be written."""
     return self.event_writer.get_logdir()
diff --git a/tensorflow/python/summary/writer/writer_test.py b/tensorflow/python/summary/writer/writer_test.py
index 56629eb..9d3e20e 100644
--- a/tensorflow/python/summary/writer/writer_test.py
+++ b/tensorflow/python/summary/writer/writer_test.py
@@ -267,6 +267,13 @@
     sw.close()
     self._assertRecent(time_before_close)
 
+  def testWithStatement(self):
+    test_dir = self._CleanTestDir("with_statement")
+    with writer.FileWriter(test_dir) as sw:
+      sw.add_session_log(event_pb2.SessionLog(status=SessionLog.START), 1)
+    event_paths = sorted(glob.glob(os.path.join(test_dir, "event*")))
+    self.assertEquals(1, len(event_paths))
+
   # Checks that values returned from session Run() calls are added correctly to
   # summaries.  These are numpy types so we need to check they fit in the
   # protocol buffers correctly.
diff --git a/tensorflow/python/tools/saved_model_cli.py b/tensorflow/python/tools/saved_model_cli.py
index 9075a70..d2caf2a 100644
--- a/tensorflow/python/tools/saved_model_cli.py
+++ b/tensorflow/python/tools/saved_model_cli.py
@@ -646,6 +646,8 @@
 def main():
   parser = create_parser()
   args = parser.parse_args()
+  if not hasattr(args.func):
+    parser.error("too few arguments")
   args.func(args)
 
 
diff --git a/tensorflow/python/training/optimizer.py b/tensorflow/python/training/optimizer.py
index 4f1237f..f5b5c72 100644
--- a/tensorflow/python/training/optimizer.py
+++ b/tensorflow/python/training/optimizer.py
@@ -575,7 +575,7 @@
       grad: A `Tensor`.
       var: A `Variable` object.
 
-    Return:
+    Returns:
       An `Operation`.
     """
     raise NotImplementedError()
@@ -688,7 +688,7 @@
       grad: `IndexedSlices`, with no repeated indices.
       var: A `Variable` object.
 
-    Return:
+    Returns:
       An `Operation`.
     """
     raise NotImplementedError()
diff --git a/tensorflow/python/training/sync_replicas_optimizer.py b/tensorflow/python/training/sync_replicas_optimizer.py
index f1830bd..dcf1440 100644
--- a/tensorflow/python/training/sync_replicas_optimizer.py
+++ b/tensorflow/python/training/sync_replicas_optimizer.py
@@ -127,7 +127,7 @@
 
   To use SyncReplicasOptimizer with an `Estimator`, you need to send
   sync_replicas_hook while calling the fit.
-  ```
+  ```python
   my_estimator = DNNClassifier(..., optimizer=opt)
   my_estimator.fit(..., hooks=[sync_replicas_hook])
   ```
diff --git a/tensorflow/stream_executor/BUILD b/tensorflow/stream_executor/BUILD
index 00faccc..b1d5cbe 100644
--- a/tensorflow/stream_executor/BUILD
+++ b/tensorflow/stream_executor/BUILD
@@ -46,6 +46,10 @@
             exclude = ["cuda/cuda_platform_id.cc"],
         ),
     ),
+    copts = select({
+        "//tensorflow:windows": ["/DNOGDI"],
+        "//conditions:default": [],
+    }),
     linkopts = select({
         "//tensorflow:freebsd": [],
         "//conditions:default": ["-ldl"],
diff --git a/tensorflow/stream_executor/host/host_stream.h b/tensorflow/stream_executor/host/host_stream.h
index 9894d17..e22f49b 100644
--- a/tensorflow/stream_executor/host/host_stream.h
+++ b/tensorflow/stream_executor/host/host_stream.h
@@ -48,7 +48,7 @@
 
   mutex mu_;
   int pending_tasks_ GUARDED_BY(mu_) = 0;
-  condition_variable completion_condition_;
+  ConditionVariableForMutex completion_condition_;
 };
 
 }  // namespace host
diff --git a/tensorflow/stream_executor/platform/default/mutex.h b/tensorflow/stream_executor/platform/default/mutex.h
index f28a2c9..ac2f123 100644
--- a/tensorflow/stream_executor/platform/default/mutex.h
+++ b/tensorflow/stream_executor/platform/default/mutex.h
@@ -42,8 +42,10 @@
 
 #ifdef STREAM_EXECUTOR_USE_SHARED_MUTEX
 typedef std::shared_timed_mutex BaseMutex;
+typedef std::condition_variable_any ConditionVariableForMutex;
 #else
 typedef std::mutex BaseMutex;
+typedef std::condition_variable ConditionVariableForMutex;
 #endif
 
 // A class that wraps around the std::mutex implementation, only adding an
@@ -82,7 +84,7 @@
 using std::condition_variable;
 
 inline ConditionResult WaitForMilliseconds(mutex_lock* mu,
-                                           condition_variable* cv, int64 ms) {
+                                           ConditionVariableForMutex* cv, int64 ms) {
   std::cv_status s = cv->wait_for(*mu, std::chrono::milliseconds(ms));
   return (s == std::cv_status::timeout) ? kCond_Timeout : kCond_MaybeNotified;
 }
diff --git a/tensorflow/tensorflow.bzl b/tensorflow/tensorflow.bzl
index 902de7b..30068ec 100644
--- a/tensorflow/tensorflow.bzl
+++ b/tensorflow/tensorflow.bzl
@@ -155,6 +155,7 @@
     "/Iexternal/gemmlowp",
     "/wd4018", # -Wno-sign-compare
     "/U_HAS_EXCEPTIONS", "/D_HAS_EXCEPTIONS=1", "/EHsc", # -fno-exceptions
+    "/DNOGDI",
 ]
 
 # LINT.IfChange
diff --git a/tensorflow/tools/api/golden/tensorflow.pbtxt b/tensorflow/tools/api/golden/tensorflow.pbtxt
index fff201b..7f67701 100644
--- a/tensorflow/tools/api/golden/tensorflow.pbtxt
+++ b/tensorflow/tools/api/golden/tensorflow.pbtxt
@@ -910,7 +910,7 @@
   }
   member_method {
     name: "einsum"
-    argspec: "args=[\'equation\'], varargs=inputs, keywords=None, defaults=None"
+    argspec: "args=[\'equation\'], varargs=inputs, keywords=kwargs, defaults=None"
   }
   member_method {
     name: "encode_base64"
@@ -1070,7 +1070,7 @@
   }
   member_method {
     name: "global_variables"
-    argspec: "args=[], varargs=None, keywords=None, defaults=None"
+    argspec: "args=[\'scope\'], varargs=None, keywords=None, defaults=[\'None\'], "
   }
   member_method {
     name: "global_variables_initializer"
@@ -1226,7 +1226,7 @@
   }
   member_method {
     name: "local_variables"
-    argspec: "args=[], varargs=None, keywords=None, defaults=None"
+    argspec: "args=[\'scope\'], varargs=None, keywords=None, defaults=[\'None\'], "
   }
   member_method {
     name: "local_variables_initializer"
@@ -1346,11 +1346,11 @@
   }
   member_method {
     name: "model_variables"
-    argspec: "args=[], varargs=None, keywords=None, defaults=None"
+    argspec: "args=[\'scope\'], varargs=None, keywords=None, defaults=[\'None\'], "
   }
   member_method {
     name: "moving_average_variables"
-    argspec: "args=[], varargs=None, keywords=None, defaults=None"
+    argspec: "args=[\'scope\'], varargs=None, keywords=None, defaults=[\'None\'], "
   }
   member_method {
     name: "multinomial"
@@ -1950,7 +1950,7 @@
   }
   member_method {
     name: "trainable_variables"
-    argspec: "args=[], varargs=None, keywords=None, defaults=None"
+    argspec: "args=[\'scope\'], varargs=None, keywords=None, defaults=[\'None\'], "
   }
   member_method {
     name: "transpose"
diff --git a/tensorflow/tools/ci_build/Dockerfile.pi b/tensorflow/tools/ci_build/Dockerfile.pi
new file mode 100644
index 0000000..9d12ede
--- /dev/null
+++ b/tensorflow/tools/ci_build/Dockerfile.pi
@@ -0,0 +1,20 @@
+FROM ubuntu:14.04
+
+MAINTAINER Jan Prach <jendap@google.com>
+
+# Copy and run the install scripts.
+COPY install/*.sh /install/
+RUN /install/install_bootstrap_deb_packages.sh
+RUN add-apt-repository -y ppa:openjdk-r/ppa && \
+    add-apt-repository -y ppa:george-edison55/cmake-3.x
+RUN /install/install_deb_packages.sh
+RUN /install/install_pip_packages.sh
+RUN /install/install_bazel.sh
+RUN /install/install_proto3.sh
+RUN /install/install_buildifier.sh
+RUN /install/install_auditwheel.sh
+RUN /install/install_golang.sh
+RUN /install/install_pi_toolchain.sh
+
+# Set up the master bazelrc configuration file.
+COPY install/.bazelrc /etc/bazel.bazelrc
diff --git a/tensorflow/tools/ci_build/install/install_pi_toolchain.sh b/tensorflow/tools/ci_build/install/install_pi_toolchain.sh
new file mode 100755
index 0000000..ef30ba5
--- /dev/null
+++ b/tensorflow/tools/ci_build/install/install_pi_toolchain.sh
@@ -0,0 +1,29 @@
+#!/usr/bin/env bash
+# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+dpkg --add-architecture armhf
+echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty-updates main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty-security main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty-backports main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+sed -i 's#deb http://archive.ubuntu.com/ubuntu/#deb [arch=amd64] http://archive.ubuntu.com/ubuntu/#g' /etc/apt/sources.list
+apt-get update
+apt-get install -y libpython-all-dev:armhf
+echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
+curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
+apt-get update
+rm -rf /usr/local/bin/bazel
+apt-get install -y bazel python python-numpy python-dev python-pip
diff --git a/tensorflow/tools/ci_build/pi/build_raspberry_pi.sh b/tensorflow/tools/ci_build/pi/build_raspberry_pi.sh
new file mode 100755
index 0000000..9e6cfc0
--- /dev/null
+++ b/tensorflow/tools/ci_build/pi/build_raspberry_pi.sh
@@ -0,0 +1,84 @@
+#!/usr/bin/env bash
+# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+set -e
+
+# By default this builds packages for the Pi Two and Three only, since the NEON support
+# this allows makes calculations many times faster. To support the Pi One or Zero, pass
+# PI_ONE as the first argument to the script, for example:
+# tensorflow/tools/ci_build/pi/build_raspberry_pi.sh PI_ONE
+#
+# To install the cross-compilation support for Python this script needs on Ubuntu Trusty, run
+# something like these steps, after backing up your original /etc/apt/sources.list file:
+#
+# dpkg --add-architecture armhf
+# echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+# echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty-updates main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+# echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty-security main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+# echo 'deb [arch=armhf] http://ports.ubuntu.com/ trusty-backports main restricted universe multiverse' >> /etc/apt/sources.list.d/armhf.list
+# sed -i 's#deb http://archive.ubuntu.com/ubuntu/#deb [arch=amd64] http://archive.ubuntu.com/ubuntu/#g' /etc/apt/sources.list
+# apt-get update
+# apt-get install -y libpython-all-dev:armhf
+#
+# Make sure you have an up to date version of the Bazel build tool installed too.
+
+yes '' | ./configure
+
+# We need to update the Eigen version, because of compiler failures on ARM when
+# using the version currently (Aug 10th 2017) pulled by mainline TensorFlow. We
+# should be able to get rid of this hack once
+# https://github.com/tensorflow/tensorflow/issues/9697 is addressed.
+sed -i 's/f3a22f35b044/d781c1de9834/g' tensorflow/workspace.bzl
+sed -i 's/ca7beac153d4059c02c8fc59816c82d54ea47fe58365e8aded4082ded0b820c4/a34b208da6ec18fa8da963369e166e4a368612c14d956dd2f9d7072904675d9b/g' tensorflow/workspace.bzl
+
+# Fix for curl build problem in 32-bit, see https://stackoverflow.com/questions/35181744/size-of-array-curl-rule-01-is-negative
+sudo sed -i 's/define CURL_SIZEOF_LONG 8/define CURL_SIZEOF_LONG 4/g' /usr/include/curl/curlbuild.h
+sudo sed -i 's/define CURL_SIZEOF_CURL_OFF_T 8/define CURL_SIZEOF_CURL_OFF_T 4/g' /usr/include/curl/curlbuild.h
+
+if [[ $1 == "PI_ONE" ]]; then
+  PI_COPTS="--copt=-march=armv6 --copt=-mfpu=vfp"
+  echo "Building for the Pi One/Zero, with no NEON support"
+else
+  PI_COPTS='--copt=-march=armv7-a --copt=-mfpu=neon-vfpv4
+  --copt=-U__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
+  --copt=-U__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
+  --copt=-U__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8'
+  echo "Building for the Pi Two/Three, with NEON acceleration"
+fi
+
+bazel build -c opt ${PI_COPTS} \
+  --copt=-funsafe-math-optimizations --copt=-ftree-vectorize \
+  --copt=-fomit-frame-pointer --cpu=armeabi \
+  --crosstool_top=@local_config_arm_compiler//:toolchain \
+  --verbose_failures \
+  //tensorflow/tools/benchmark:benchmark_model \
+  //tensorflow/tools/pip_package:build_pip_package
+
+OUTDIR=bazel-out/pi
+mkdir -p ${OUTDIR}
+echo "Final outputs will go to ${OUTDIR}"
+
+# Build a universal wheel.
+BDIST_OPTS="--universal" \
+  bazel-bin/tensorflow/tools/pip_package/build_pip_package "${OUTDIR}"
+
+OLD_FN=$(ls "${OUTDIR}" | grep \.whl)
+SUB='s/tensorflow-([^-]+)-([^-]+)-.*/tensorflow-\1-\2-none-any.whl/; print'
+NEW_FN=$(echo "${OLD_FN}" | perl -ne "${SUB}")
+mv "${OUTDIR}/${OLD_FN}" "${OUTDIR}/${NEW_FN}"
+cp bazel-bin/tensorflow/tools/benchmark/benchmark_model "${OUTDIR}"
+
+echo "Output can be found here:"
+find "${OUTDIR}"
diff --git a/tensorflow/tools/ci_build/windows/bazel/bazel_test_lib.sh b/tensorflow/tools/ci_build/windows/bazel/bazel_test_lib.sh
index dff4707..7f7bc06 100644
--- a/tensorflow/tools/ci_build/windows/bazel/bazel_test_lib.sh
+++ b/tensorflow/tools/ci_build/windows/bazel/bazel_test_lib.sh
@@ -136,9 +136,9 @@
   export TF_NEED_CUDA=1
   export TF_CUDA_VERSION=8.0
   export CUDA_TOOLKIT_PATH="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0"
-  export TF_CUDNN_VERSION=5
+  export TF_CUDNN_VERSION=6.0
   export CUDNN_INSTALL_PATH="C:/tools/cuda"
-  export TF_CUDA_COMPUTE_CAPABILITIES="3.5,5.2"
+  export TF_CUDA_COMPUTE_CAPABILITIES="3.7"
   if [ -z "$TF_ENABLE_XLA" ]; then
     export TF_ENABLE_XLA=0
   fi
@@ -150,6 +150,11 @@
   export TF_NEED_GCP=0
   export TF_NEED_HDFS=0
   export TF_NEED_OPENCL=0
+
+  # TODO(pcloudy): Remove this after TensorFlow uses its own CRSOOTOOL
+  # for GPU build on Windows
+  export USE_MSVC_WRAPPER=1
+
   echo "" | ./configure
 }
 
diff --git a/tensorflow/tools/ci_build/windows/bazel/common_env.sh b/tensorflow/tools/ci_build/windows/bazel/common_env.sh
index 05392c2..3aa034e 100644
--- a/tensorflow/tools/ci_build/windows/bazel/common_env.sh
+++ b/tensorflow/tools/ci_build/windows/bazel/common_env.sh
@@ -33,11 +33,11 @@
 export BAZEL_SH=${BAZEL_SH:-"C:/tools/msys64/usr/bin/bash"}
 
 # Set Python path for ./configure
-export PYTHON_BIN_PATH="C:/Program Files/Anaconda3/python"
+export PYTHON_BIN_PATH="C:/Program Files/Anaconda3/python.exe"
 export PYTHON_LIB_PATH="C:/Program Files/Anaconda3/lib/site-packages"
 
 # Set Python path for cc_configure.bzl
-export BAZEL_PYTHON="C:/Program Files/Anaconda3/python"
+export BAZEL_PYTHON="C:/Program Files/Anaconda3/python.exe"
 
 # Set Visual Studio path
 export BAZEL_VS="C:/Program Files (x86)/Microsoft Visual Studio 14.0"
diff --git a/tensorflow/tools/ci_build/windows/gpu/pip/build_tf_windows.sh b/tensorflow/tools/ci_build/windows/gpu/pip/build_tf_windows.sh
index 7cb81c2..e1972a3 100644
--- a/tensorflow/tools/ci_build/windows/gpu/pip/build_tf_windows.sh
+++ b/tensorflow/tools/ci_build/windows/gpu/pip/build_tf_windows.sh
@@ -46,7 +46,7 @@
 
 clean_output_base
 
-bazel build -c opt --config=win-cuda $BUILD_OPTS tensorflow/tools/pip_package:build_pip_package || exit $?
+bazel build -c opt $BUILD_OPTS tensorflow/tools/pip_package:build_pip_package || exit $?
 
 # Create a python test directory to avoid package name conflict
 PY_TEST_DIR="py_test_dir"
@@ -61,8 +61,8 @@
 # Define no_tensorflow_py_deps=true so that every py_test has no deps anymore,
 # which will result testing system installed tensorflow
 # GPU tests are very flaky when running concurrently, so set local_test_jobs=1
-bazel test -c opt --config=win-cuda $BUILD_OPTS -k --test_output=errors \
+bazel test -c opt $BUILD_OPTS -k --test_output=errors \
   --define=no_tensorflow_py_deps=true --test_lang_filters=py \
-  --test_tag_filters=-no_pip,-no_windows,-no_windows_gpu \
-  --build_tag_filters=-no_pip,-no_windows,-no_windows_gpu \
+  --test_tag_filters=-no_pip,-no_windows,-no_windows_gpu,-no_gpu,-no_pip_gpu \
+  --build_tag_filters=-no_pip,-no_windows,-no_windows_gpu,-no_gpu,-no_pip_gpu \
   --local_test_jobs=1 --build_tests_only //${PY_TEST_DIR}/tensorflow/python/...
diff --git a/tensorflow/tools/docker/parameterized_docker_build.sh b/tensorflow/tools/docker/parameterized_docker_build.sh
index b320a62..830e3dc 100755
--- a/tensorflow/tools/docker/parameterized_docker_build.sh
+++ b/tensorflow/tools/docker/parameterized_docker_build.sh
@@ -13,7 +13,7 @@
 # See the License for the specific language governing permissions and
 # limitations under the License.
 # ==============================================================================
-# Paramterized build and test for TensorFlow Docker images.
+# Parameterized build and test for TensorFlow Docker images.
 #
 # Usage:
 #   parameterized_docker_build.sh
diff --git a/tensorflow/tools/docs/parser.py b/tensorflow/tools/docs/parser.py
index 563e5be..730afdf 100644
--- a/tensorflow/tools/docs/parser.py
+++ b/tensorflow/tools/docs/parser.py
@@ -1488,7 +1488,7 @@
 def _get_defined_in(py_object, parser_config):
   """Returns a description of where the passed in python object was defined.
 
-  Arguments:
+  Args:
     py_object: The Python object.
     parser_config: A ParserConfig object.
 
diff --git a/tensorflow/tools/graph_transforms/remove_device_test.cc b/tensorflow/tools/graph_transforms/remove_device_test.cc
index 554c5e3..17a87cd 100644
--- a/tensorflow/tools/graph_transforms/remove_device_test.cc
+++ b/tensorflow/tools/graph_transforms/remove_device_test.cc
@@ -50,7 +50,7 @@
     add_node2->set_op("Add");
     add_node2->add_input("const_node1");
     add_node2->add_input("const_node2");
-    add_node2->set_device("//gpu:1");
+    add_node2->set_device("//device:GPU:1");
 
     NodeDef* add_node3 = graph_def.add_node();
     add_node3->set_name("add_node3");
diff --git a/tensorflow/tools/pip_package/build_pip_package.sh b/tensorflow/tools/pip_package/build_pip_package.sh
index 45bb2e9..cdce308 100755
--- a/tensorflow/tools/pip_package/build_pip_package.sh
+++ b/tensorflow/tools/pip_package/build_pip_package.sh
@@ -57,6 +57,8 @@
     fi
     if [[ "$1" == "--gpu" ]]; then
       GPU_BUILD=1
+    elif [[ "$1" == "--gpudirect" ]]; then
+      GPU_FLAG="--project_name tensorflow_gpudirect"
     fi
     shift
 
diff --git a/tensorflow/tools/pip_package/setup.py b/tensorflow/tools/pip_package/setup.py
index 0cac0ee..7a5dbbb 100644
--- a/tensorflow/tools/pip_package/setup.py
+++ b/tensorflow/tools/pip_package/setup.py
@@ -29,7 +29,7 @@
 # This version string is semver compatible, but incompatible with pip.
 # For pip, we will remove all '-' characters from this string, and use the
 # result for pip.
-_VERSION = '1.3.0-rc1'
+_VERSION = '1.3.0-rc2'
 
 REQUIRED_PACKAGES = [
     'numpy >= 1.11.0',
diff --git a/tensorflow/workspace.bzl b/tensorflow/workspace.bzl
index a33b7d2..b80b9d1 100644
--- a/tensorflow/workspace.bzl
+++ b/tensorflow/workspace.bzl
@@ -153,11 +153,11 @@
   mkl_repository(
       name = "mkl",
       urls = [
-          "http://mirror.bazel.build/github.com/01org/mkl-dnn/releases/download/v0.7/mklml_lnx_2018.0.20170425.tgz",
-          "https://github.com/01org/mkl-dnn/releases/download/v0.7/mklml_lnx_2018.0.20170425.tgz",
+          "http://mirror.bazel.build/github.com/01org/mkl-dnn/releases/download/v0.9/mklml_lnx_2018.0.20170720.tgz",
+          "https://github.com/01org/mkl-dnn/releases/download/v0.9/mklml_lnx_2018.0.20170720.tgz",
       ],
-      sha256 = "3cc2501fb209e1fd0960a5f61c919438f9619c68a644dcebf0fdf69b07460c57",
-      strip_prefix = "mklml_lnx_2018.0.20170425",
+      sha256 = "57ba56c4c243f403ff78f417ff854ef50b9eddf4a610a917b7c95e7fa8553a4b",
+      strip_prefix = "mklml_lnx_2018.0.20170720",
       build_file = str(Label("//third_party/mkl:mkl.BUILD")),
       repository = tf_repo_name,
   )
diff --git a/third_party/sycl/crosstool/CROSSTOOL.tpl b/third_party/sycl/crosstool/CROSSTOOL.tpl
index 2a96cdb..32884d7 100755
--- a/third_party/sycl/crosstool/CROSSTOOL.tpl
+++ b/third_party/sycl/crosstool/CROSSTOOL.tpl
@@ -76,6 +76,18 @@
   unfiltered_cxx_flag: "-D__TIMESTAMP__=\"redacted\""
   unfiltered_cxx_flag: "-D__TIME__=\"redacted\""
 
+  compiler_flag: "-fPIE"
+
+  # Keep stack frames for debugging, even in opt mode.
+  compiler_flag: "-fno-omit-frame-pointer"
+
+  # Anticipated future default.
+  linker_flag: "-no-canonical-prefixes"
+  unfiltered_cxx_flag: "-fno-canonical-system-headers"
+
+  # Have gcc return the exit code from ld.
+  linker_flag: "-pass-exit-codes"
+
   # All warnings are enabled. Maybe enable -Werror as well?
   compiler_flag: "-Wall"
 
@@ -105,6 +117,9 @@
     compiler_flag: "-g0"
     compiler_flag: "-O2"
     compiler_flag: "-DNDEBUG"
+    compiler_flag: "-ffunction-sections"
+    compiler_flag: "-fdata-sections"
+    linker_flag: "-Wl,--gc-sections"
   }
 }