Affine expression analysis and simplification.

Outside of IR/
- simplify a MutableAffineMap by flattening the affine expressions
- add a simplify affine expression pass that uses this analysis
- update the FlatAffineConstraints API (to be used in the next CL)

In IR:
- add isMultipleOf and getKnownGCD for AffineExpr, and make the in-IR
  simplication of simplifyMod simpler and more powerful.
- rename the AffineExpr visitor methods to distinguish b/w visiting and
  walking, and to simplify API names based on context.

The next CL will use some of these for the loop unrolling/unroll-jam to make
the detection for the need of cleanup loop powerful/non-trivial.

A future CL will finally move this simplification to FlatAffineConstraints to
make it more powerful. For eg., currently, even if a mod expr appearing in a
part of the expression tree can't be simplified, the whole thing won't be
simplified.

PiperOrigin-RevId: 211012256
diff --git a/lib/Transforms/SimplifyAffineExpr.cpp b/lib/Transforms/SimplifyAffineExpr.cpp
new file mode 100644
index 0000000..3c72887
--- /dev/null
+++ b/lib/Transforms/SimplifyAffineExpr.cpp
@@ -0,0 +1,252 @@
+//===- SimplifyAffineExpr.cpp - MLIR Affine Structures Class-----*- C++ -*-===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements a pass to simplify affine expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/AffineStructures.h"
+#include "mlir/IR/AffineExprVisitor.h"
+#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Attributes.h"
+#include "mlir/IR/StmtVisitor.h"
+
+#include "mlir/Transforms/Pass.h"
+#include "mlir/Transforms/Passes.h"
+
+using namespace mlir;
+using llvm::report_fatal_error;
+
+namespace {
+
+/// Simplify all affine expressions appearing in the operation statements of the
+/// MLFunction.
+//  TODO(someone): Gradually, extend this to all affine map references found in
+//  ML functions and CFG functions.
+struct SimplifyAffineExpr : public FunctionPass {
+  explicit SimplifyAffineExpr() {}
+
+  void runOnMLFunction(MLFunction *f);
+  // Does nothing on CFG functions for now. No reusable walkers/visitors exist
+  // for this yet? TODO(someone).
+  void runOnCFGFunction(CFGFunction *f) {}
+};
+
+// This class is used to flatten a pure affine expression into a sum of products
+// (w.r.t constants) when possible, and in that process accumulating
+// contributions for each dimensional and symbolic identifier together. Note
+// that an affine expression may not always be expressible that way due to the
+// preesnce of modulo, floordiv, and ceildiv expressions. A simplification that
+// this flattening naturally performs is to fold a modulo expression to a zero,
+// if possible. Two examples are below:
+//
+// (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to  d0 + d1
+// (d0 - d0 mod 4 + 4) mod 4  simplified to 0.
+//
+// For modulo and floordiv expressions, an additional variable is introduced to
+// rewrite it as a sum of products (w.r.t constants). For example, for the
+// second example above, d0 % 4 is replaced by d0 - 4*q with q being introduced:
+// the expression simplifies to:
+// (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to zero.
+//
+// This is a linear time post order walk for an affine expression that attempts
+// the above simplifications through visit methods, with partial results being
+// stored in 'operandExprStack'. When a parent expr is visited, the flattened
+// expressions corresponding to its two operands would already be on the stack -
+// the parent expr looks at the two flattened expressions and combines the two.
+// It pops off the operand expressions and pushes the combined result (although
+// this is done in-place on its LHS operand expr. When the walk is completed,
+// the flattened form of the top-level expression would be left on the stack.
+//
+class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> {
+public:
+  std::vector<SmallVector<int64_t, 32>> operandExprStack;
+
+  // The layout of the flattened expressions is dimensions, symbols, locals,
+  // and constant term.
+  unsigned getNumCols() const { return numDims + numSymbols + numLocals + 1; }
+
+  AffineExprFlattener(unsigned numDims, unsigned numSymbols)
+      : numDims(numDims), numSymbols(numSymbols), numLocals(0) {}
+
+  void visitMulExpr(AffineBinaryOpExpr *expr) {
+    assert(expr->isPureAffine());
+    // Get the RHS constant.
+    auto rhsConst = operandExprStack.back()[getNumCols() - 1];
+    operandExprStack.pop_back();
+    // Update the LHS in place instead of pop and push.
+    auto &lhs = operandExprStack.back();
+    for (unsigned i = 0, e = lhs.size(); i < e; i++) {
+      lhs[i] *= rhsConst;
+    }
+  }
+  void visitAddExpr(AffineBinaryOpExpr *expr) {
+    const auto &rhs = operandExprStack.back();
+    auto &lhs = operandExprStack[operandExprStack.size() - 2];
+    assert(lhs.size() == rhs.size());
+    // Update the LHS in place.
+    for (unsigned i = 0; i < rhs.size(); i++) {
+      lhs[i] += rhs[i];
+    }
+    // Pop off the RHS.
+    operandExprStack.pop_back();
+  }
+  void visitModExpr(AffineBinaryOpExpr *expr) {
+    assert(expr->isPureAffine());
+    // This is a pure affine expr; the RHS is a constant.
+    auto rhsConst = operandExprStack.back()[getNumCols() - 1];
+    operandExprStack.pop_back();
+    auto &lhs = operandExprStack.back();
+    assert(rhsConst != 0 && "RHS constant can't be zero");
+    unsigned i;
+    for (i = 0; i < lhs.size(); i++)
+      if (lhs[i] % rhsConst != 0)
+        break;
+    if (i == lhs.size()) {
+      // The modulo expression here simplifies to zero.
+      lhs.assign(lhs.size(), 0);
+      return;
+    }
+    // Add an existential quantifier. expr1 % expr2 is replaced by (expr1 -
+    // q * expr2) where q is the existential quantifier introduced.
+    addExistentialQuantifier();
+    lhs = operandExprStack.back();
+    lhs[numDims + numSymbols + numLocals - 1] = -rhsConst;
+  }
+  void visitConstantExpr(AffineConstantExpr *expr) {
+    operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
+    auto &eq = operandExprStack.back();
+    eq[getNumCols() - 1] = expr->getValue();
+  }
+  void visitDimExpr(AffineDimExpr *expr) {
+    SmallVector<int64_t, 32> eq(getNumCols(), 0);
+    eq[expr->getPosition()] = 1;
+    operandExprStack.push_back(eq);
+  }
+  void visitSymbolExpr(AffineSymbolExpr *expr) {
+    SmallVector<int64_t, 32> eq(getNumCols(), 0);
+    eq[numDims + expr->getPosition()] = 1;
+    operandExprStack.push_back(eq);
+  }
+  void visitCeilDivExpr(AffineBinaryOpExpr *expr) {
+    // TODO(bondhugula): handle ceildiv as well; won't simplify further through
+    // this analysis but will be handled (rest of the expr will simplify).
+    report_fatal_error("ceildiv expr simplification not supported here");
+  }
+  void visitFloorDivExpr(AffineBinaryOpExpr *expr) {
+    // TODO(bondhugula): handle ceildiv as well; won't simplify further through
+    // this analysis but will be handled (rest of the expr will simplify).
+    report_fatal_error("floordiv expr simplification unimplemented");
+  }
+  // Add an existential quantifier (used to flatten a mod or a floordiv expr).
+  void addExistentialQuantifier() {
+    for (auto &subExpr : operandExprStack) {
+      subExpr.insert(subExpr.begin() + numDims + numSymbols + numLocals, 0);
+    }
+    numLocals++;
+  }
+
+  unsigned numDims;
+  unsigned numSymbols;
+  unsigned numLocals;
+};
+
+} // end anonymous namespace
+
+FunctionPass *mlir::createSimplifyAffineExprPass() {
+  return new SimplifyAffineExpr();
+}
+
+AffineMap *MutableAffineMap::getAffineMap() {
+  return AffineMap::get(numDims, numSymbols, results, rangeSizes, context);
+}
+
+void SimplifyAffineExpr::runOnMLFunction(MLFunction *f) {
+  struct MapSimplifier : public StmtWalker<MapSimplifier> {
+    MLIRContext *context;
+    MapSimplifier(MLIRContext *context) : context(context) {}
+
+    void visitOperationStmt(OperationStmt *opStmt) {
+      for (auto attr : opStmt->getAttrs()) {
+        if (auto *mapAttr = dyn_cast<AffineMapAttr>(attr.second)) {
+          MutableAffineMap mMap(mapAttr->getValue(), context);
+          mMap.simplify();
+          auto *map = mMap.getAffineMap();
+          opStmt->setAttr(attr.first, AffineMapAttr::get(map, context));
+        }
+      }
+    }
+  };
+
+  MapSimplifier v(f->getContext());
+  v.walkPostOrder(f);
+}
+
+/// Get an affine expression from a flat ArrayRef. If there are local variables
+/// (existential quantifiers introduced during the flattening) that appear in
+/// the sum of products expression, we can't readily express it as an affine
+/// expression of dimension and symbol id's; return nullptr in such cases.
+static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims,
+                                unsigned numSymbols, MLIRContext *context) {
+  // Check if any local variable has a non-zero coefficient.
+  for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) {
+    if (eq[j] != 0)
+      return nullptr;
+  }
+
+  AffineExpr *expr = AffineConstantExpr::get(0, context);
+  for (unsigned j = 0; j < numDims + numSymbols; j++) {
+    if (eq[j] != 0) {
+      AffineExpr *id =
+          j < numDims
+              ? static_cast<AffineExpr *>(AffineDimExpr::get(j, context))
+              : AffineSymbolExpr::get(j - numDims, context);
+      expr = AffineBinaryOpExpr::get(
+          AffineExpr::Kind::Add, expr,
+          AffineBinaryOpExpr::get(AffineExpr::Kind::Mul,
+                                  AffineConstantExpr::get(eq[j], context), id,
+                                  context),
+          context);
+    }
+  }
+  unsigned constTerm = eq[eq.size() - 1];
+  if (constTerm != 0)
+    expr = AffineBinaryOpExpr::get(AffineExpr::Kind::Add, expr,
+                                   AffineConstantExpr::get(constTerm, context),
+                                   context);
+  return expr;
+}
+
+// Simplify the result affine expressions of this map. The expressions have to
+// be pure for the simplification implemented.
+void MutableAffineMap::simplify() {
+  // Simplify each of the results if possible.
+  for (unsigned i = 0, e = getNumResults(); i < e; i++) {
+    AffineExpr *result = getResult(i);
+    if (!result->isPureAffine())
+      continue;
+
+    AffineExprFlattener flattener(numDims, numSymbols);
+    flattener.walkPostOrder(result);
+    const auto &flattenedExpr = flattener.operandExprStack.back();
+    auto *expr = toAffineExpr(flattenedExpr, numDims, numSymbols, context);
+    if (expr)
+      results[i] = expr;
+    flattener.operandExprStack.pop_back();
+    assert(flattener.operandExprStack.empty());
+  }
+}