blob: ad0a7660ae229abe1d968916cf07cfae516a5e47 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- ---*/
/*--- This file (guest-x86/toIR.c) is ---*/
/*--- Copyright (C) OpenWorks LLP. All rights reserved. ---*/
/*--- ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of LibVEX, a library for dynamic binary
instrumentation and translation.
Copyright (C) 2004-2006 OpenWorks LLP. All rights reserved.
This library is made available under a dual licensing scheme.
If you link LibVEX against other code all of which is itself
licensed under the GNU General Public License, version 2 dated June
1991 ("GPL v2"), then you may use LibVEX under the terms of the GPL
v2, as appearing in the file LICENSE.GPL. If the file LICENSE.GPL
is missing, you can obtain a copy of the GPL v2 from the Free
Software Foundation Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301, USA.
For any other uses of LibVEX, you must first obtain a commercial
license from OpenWorks LLP. Please contact info@open-works.co.uk
for information about commercial licensing.
This software is provided by OpenWorks LLP "as is" and any express
or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose
are disclaimed. In no event shall OpenWorks LLP be liable for any
direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute
goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.
Neither the names of the U.S. Department of Energy nor the
University of California nor the names of its contributors may be
used to endorse or promote products derived from this software
without prior written permission.
*/
/* TODO:
All Puts to CC_OP/CC_DEP1/CC_DEP2/CC_NDEP should really be checked
to ensure a 32-bit value is being written.
FUCOMI(P): what happens to A and S flags? Currently are forced
to zero.
x87 FP Limitations:
* all arithmetic done at 64 bits
* no FP exceptions, except for handling stack over/underflow
* FP rounding mode observed only for float->int conversions
and int->float conversions which could lose accuracy, and
for float-to-float rounding. For all other operations,
round-to-nearest is used, regardless.
* FP sin/cos/tan/sincos: C2 flag is always cleared. IOW the
simulation claims the argument is in-range (-2^63 <= arg <= 2^63)
even when it isn't.
* some of the FCOM cases could do with testing -- not convinced
that the args are the right way round.
* FSAVE does not re-initialise the FPU; it should do
* FINIT not only initialises the FPU environment, it also
zeroes all the FP registers. It should leave the registers
unchanged.
RDTSC returns one, always.
SAHF should cause eflags[1] == 1, and in fact it produces 0. As
per Intel docs this bit has no meaning anyway. Since PUSHF is the
only way to observe eflags[1], a proper fix would be to make that
bit be set by PUSHF.
The state of %eflags.AC (alignment check, bit 18) is recorded by
the simulation (viz, if you set it with popf then a pushf produces
the value you set it to), but it is otherwise ignored. In
particular, setting it to 1 does NOT cause alignment checking to
happen. Programs that set it to 1 and then rely on the resulting
SIGBUSs to inform them of misaligned accesses will not work.
Implementation sysenter is necessarily partial. sysenter is a kind
of system call entry. When doing a sysenter, the return address is
not known -- that is something that is beyond Vex's knowledge. So
the generated IR forces a return to the scheduler, which can do
what it likes to simulate the systemter, but it MUST set this
thread's guest_EIP field with the continuation address before
resuming execution. If that doesn't happen, the thread will jump
to address zero, which is probably fatal.
This module uses global variables and so is not MT-safe (if that
should ever become relevant).
The delta values are 32-bit ints, not 64-bit ints. That means
this module may not work right if run on a 64-bit host. That should
be fixed properly, really -- if anyone ever wants to use Vex to
translate x86 code for execution on a 64-bit host. */
/* Performance holes:
- fcom ; fstsw %ax ; sahf
sahf does not update the O flag (sigh) and so O needs to
be computed. This is done expensively; it would be better
to have a calculate_eflags_o helper.
- emwarns; some FP codes can generate huge numbers of these
if the fpucw is changed in an inner loop. It would be
better for the guest state to have an emwarn-enable reg
which can be set zero or nonzero. If it is zero, emwarns
are not flagged, and instead control just flows all the
way through bbs as usual.
*/
/* "Special" instructions.
This instruction decoder can decode three special instructions
which mean nothing natively (are no-ops as far as regs/mem are
concerned) but have meaning for supporting Valgrind. A special
instruction is flagged by the 12-byte preamble C1C703 C1C70D C1C71D
C1C713 (in the standard interpretation, that means: roll $3, %edi;
roll $13, %edi; roll $29, %edi; roll $19, %edi). Following that,
one of the following 3 are allowed (standard interpretation in
parentheses):
87DB (xchgl %ebx,%ebx) %EDX = client_request ( %EAX )
87C9 (xchgl %ecx,%ecx) %EAX = guest_NRADDR
87D2 (xchgl %edx,%edx) call-noredir *%EAX
Any other bytes following the 12-byte preamble are illegal and
constitute a failure in instruction decoding. This all assumes
that the preamble will never occur except in specific code
fragments designed for Valgrind to catch.
No prefixes may precede a "Special" instruction.
*/
/* Translates x86 code to IR. */
#include "libvex_basictypes.h"
#include "libvex_ir.h"
#include "libvex.h"
#include "libvex_guest_x86.h"
#include "main/vex_util.h"
#include "main/vex_globals.h"
#include "guest-generic/bb_to_IR.h"
#include "guest-generic/g_generic_x87.h"
#include "guest-x86/gdefs.h"
/*------------------------------------------------------------*/
/*--- Globals ---*/
/*------------------------------------------------------------*/
/* These are set at the start of the translation of an insn, right
down in disInstr_X86, so that we don't have to pass them around
endlessly. They are all constant during the translation of any
given insn. */
/* We need to know this to do sub-register accesses correctly. */
static Bool host_is_bigendian;
/* Pointer to the guest code area (points to start of BB, not to the
insn being processed). */
static UChar* guest_code;
/* The guest address corresponding to guest_code[0]. */
static Addr32 guest_EIP_bbstart;
/* The guest address for the instruction currently being
translated. */
static Addr32 guest_EIP_curr_instr;
/* The IRBB* into which we're generating code. */
static IRBB* irbb;
/*------------------------------------------------------------*/
/*--- Debugging output ---*/
/*------------------------------------------------------------*/
#define DIP(format, args...) \
if (vex_traceflags & VEX_TRACE_FE) \
vex_printf(format, ## args)
#define DIS(buf, format, args...) \
if (vex_traceflags & VEX_TRACE_FE) \
vex_sprintf(buf, format, ## args)
/*------------------------------------------------------------*/
/*--- Offsets of various parts of the x86 guest state. ---*/
/*------------------------------------------------------------*/
#define OFFB_EAX offsetof(VexGuestX86State,guest_EAX)
#define OFFB_EBX offsetof(VexGuestX86State,guest_EBX)
#define OFFB_ECX offsetof(VexGuestX86State,guest_ECX)
#define OFFB_EDX offsetof(VexGuestX86State,guest_EDX)
#define OFFB_ESP offsetof(VexGuestX86State,guest_ESP)
#define OFFB_EBP offsetof(VexGuestX86State,guest_EBP)
#define OFFB_ESI offsetof(VexGuestX86State,guest_ESI)
#define OFFB_EDI offsetof(VexGuestX86State,guest_EDI)
#define OFFB_EIP offsetof(VexGuestX86State,guest_EIP)
#define OFFB_CC_OP offsetof(VexGuestX86State,guest_CC_OP)
#define OFFB_CC_DEP1 offsetof(VexGuestX86State,guest_CC_DEP1)
#define OFFB_CC_DEP2 offsetof(VexGuestX86State,guest_CC_DEP2)
#define OFFB_CC_NDEP offsetof(VexGuestX86State,guest_CC_NDEP)
#define OFFB_FPREGS offsetof(VexGuestX86State,guest_FPREG[0])
#define OFFB_FPTAGS offsetof(VexGuestX86State,guest_FPTAG[0])
#define OFFB_DFLAG offsetof(VexGuestX86State,guest_DFLAG)
#define OFFB_IDFLAG offsetof(VexGuestX86State,guest_IDFLAG)
#define OFFB_ACFLAG offsetof(VexGuestX86State,guest_ACFLAG)
#define OFFB_FTOP offsetof(VexGuestX86State,guest_FTOP)
#define OFFB_FC3210 offsetof(VexGuestX86State,guest_FC3210)
#define OFFB_FPROUND offsetof(VexGuestX86State,guest_FPROUND)
#define OFFB_CS offsetof(VexGuestX86State,guest_CS)
#define OFFB_DS offsetof(VexGuestX86State,guest_DS)
#define OFFB_ES offsetof(VexGuestX86State,guest_ES)
#define OFFB_FS offsetof(VexGuestX86State,guest_FS)
#define OFFB_GS offsetof(VexGuestX86State,guest_GS)
#define OFFB_SS offsetof(VexGuestX86State,guest_SS)
#define OFFB_LDT offsetof(VexGuestX86State,guest_LDT)
#define OFFB_GDT offsetof(VexGuestX86State,guest_GDT)
#define OFFB_SSEROUND offsetof(VexGuestX86State,guest_SSEROUND)
#define OFFB_XMM0 offsetof(VexGuestX86State,guest_XMM0)
#define OFFB_XMM1 offsetof(VexGuestX86State,guest_XMM1)
#define OFFB_XMM2 offsetof(VexGuestX86State,guest_XMM2)
#define OFFB_XMM3 offsetof(VexGuestX86State,guest_XMM3)
#define OFFB_XMM4 offsetof(VexGuestX86State,guest_XMM4)
#define OFFB_XMM5 offsetof(VexGuestX86State,guest_XMM5)
#define OFFB_XMM6 offsetof(VexGuestX86State,guest_XMM6)
#define OFFB_XMM7 offsetof(VexGuestX86State,guest_XMM7)
#define OFFB_EMWARN offsetof(VexGuestX86State,guest_EMWARN)
#define OFFB_TISTART offsetof(VexGuestX86State,guest_TISTART)
#define OFFB_TILEN offsetof(VexGuestX86State,guest_TILEN)
#define OFFB_NRADDR offsetof(VexGuestX86State,guest_NRADDR)
/*------------------------------------------------------------*/
/*--- Helper bits and pieces for deconstructing the ---*/
/*--- x86 insn stream. ---*/
/*------------------------------------------------------------*/
/* This is the Intel register encoding -- integer regs. */
#define R_EAX 0
#define R_ECX 1
#define R_EDX 2
#define R_EBX 3
#define R_ESP 4
#define R_EBP 5
#define R_ESI 6
#define R_EDI 7
#define R_AL (0+R_EAX)
#define R_AH (4+R_EAX)
/* This is the Intel register encoding -- segment regs. */
#define R_ES 0
#define R_CS 1
#define R_SS 2
#define R_DS 3
#define R_FS 4
#define R_GS 5
/* Add a statement to the list held by "irbb". */
static void stmt ( IRStmt* st )
{
addStmtToIRBB( irbb, st );
}
/* Generate a new temporary of the given type. */
static IRTemp newTemp ( IRType ty )
{
vassert(isPlausibleIRType(ty));
return newIRTemp( irbb->tyenv, ty );
}
/* Bomb out if we can't handle something. */
__attribute__ ((noreturn))
static void unimplemented ( HChar* str )
{
vex_printf("x86toIR: unimplemented feature\n");
vpanic(str);
}
/* Various simple conversions */
static UInt extend_s_8to32( UInt x )
{
return (UInt)((((Int)x) << 24) >> 24);
}
static UInt extend_s_16to32 ( UInt x )
{
return (UInt)((((Int)x) << 16) >> 16);
}
/* Fetch a byte from the guest insn stream. */
static UChar getIByte ( Int delta )
{
return guest_code[delta];
}
/* Extract the reg field from a modRM byte. */
static Int gregOfRM ( UChar mod_reg_rm )
{
return (Int)( (mod_reg_rm >> 3) & 7 );
}
/* Figure out whether the mod and rm parts of a modRM byte refer to a
register or memory. If so, the byte will have the form 11XXXYYY,
where YYY is the register number. */
static Bool epartIsReg ( UChar mod_reg_rm )
{
return toBool(0xC0 == (mod_reg_rm & 0xC0));
}
/* ... and extract the register number ... */
static Int eregOfRM ( UChar mod_reg_rm )
{
return (Int)(mod_reg_rm & 0x7);
}
/* Get a 8/16/32-bit unsigned value out of the insn stream. */
static UChar getUChar ( Int delta )
{
UChar v = guest_code[delta+0];
return toUChar(v);
}
static UInt getUDisp16 ( Int delta )
{
UInt v = guest_code[delta+1]; v <<= 8;
v |= guest_code[delta+0];
return v & 0xFFFF;
}
static UInt getUDisp32 ( Int delta )
{
UInt v = guest_code[delta+3]; v <<= 8;
v |= guest_code[delta+2]; v <<= 8;
v |= guest_code[delta+1]; v <<= 8;
v |= guest_code[delta+0];
return v;
}
static UInt getUDisp ( Int size, Int delta )
{
switch (size) {
case 4: return getUDisp32(delta);
case 2: return getUDisp16(delta);
case 1: return (UInt)getUChar(delta);
default: vpanic("getUDisp(x86)");
}
return 0; /*notreached*/
}
/* Get a byte value out of the insn stream and sign-extend to 32
bits. */
static UInt getSDisp8 ( Int delta )
{
return extend_s_8to32( (UInt) (guest_code[delta]) );
}
static UInt getSDisp16 ( Int delta0 )
{
UChar* eip = (UChar*)(&guest_code[delta0]);
UInt d = *eip++;
d |= ((*eip++) << 8);
return extend_s_16to32(d);
}
static UInt getSDisp ( Int size, Int delta )
{
switch (size) {
case 4: return getUDisp32(delta);
case 2: return getSDisp16(delta);
case 1: return getSDisp8(delta);
default: vpanic("getSDisp(x86)");
}
return 0; /*notreached*/
}
/*------------------------------------------------------------*/
/*--- Helpers for constructing IR. ---*/
/*------------------------------------------------------------*/
/* Create a 1/2/4 byte read of an x86 integer registers. For 16/8 bit
register references, we need to take the host endianness into
account. Supplied value is 0 .. 7 and in the Intel instruction
encoding. */
static IRType szToITy ( Int n )
{
switch (n) {
case 1: return Ity_I8;
case 2: return Ity_I16;
case 4: return Ity_I32;
default: vpanic("szToITy(x86)");
}
}
/* On a little-endian host, less significant bits of the guest
registers are at lower addresses. Therefore, if a reference to a
register low half has the safe guest state offset as a reference to
the full register.
*/
static Int integerGuestRegOffset ( Int sz, UInt archreg )
{
vassert(archreg < 8);
/* Correct for little-endian host only. */
vassert(!host_is_bigendian);
if (sz == 4 || sz == 2 || (sz == 1 && archreg < 4)) {
switch (archreg) {
case R_EAX: return OFFB_EAX;
case R_EBX: return OFFB_EBX;
case R_ECX: return OFFB_ECX;
case R_EDX: return OFFB_EDX;
case R_ESI: return OFFB_ESI;
case R_EDI: return OFFB_EDI;
case R_ESP: return OFFB_ESP;
case R_EBP: return OFFB_EBP;
default: vpanic("integerGuestRegOffset(x86,le)(4,2)");
}
}
vassert(archreg >= 4 && archreg < 8 && sz == 1);
switch (archreg-4) {
case R_EAX: return 1+ OFFB_EAX;
case R_EBX: return 1+ OFFB_EBX;
case R_ECX: return 1+ OFFB_ECX;
case R_EDX: return 1+ OFFB_EDX;
default: vpanic("integerGuestRegOffset(x86,le)(1h)");
}
/* NOTREACHED */
vpanic("integerGuestRegOffset(x86,le)");
}
static Int segmentGuestRegOffset ( UInt sreg )
{
switch (sreg) {
case R_ES: return OFFB_ES;
case R_CS: return OFFB_CS;
case R_SS: return OFFB_SS;
case R_DS: return OFFB_DS;
case R_FS: return OFFB_FS;
case R_GS: return OFFB_GS;
default: vpanic("segmentGuestRegOffset(x86)");
}
}
static Int xmmGuestRegOffset ( UInt xmmreg )
{
switch (xmmreg) {
case 0: return OFFB_XMM0;
case 1: return OFFB_XMM1;
case 2: return OFFB_XMM2;
case 3: return OFFB_XMM3;
case 4: return OFFB_XMM4;
case 5: return OFFB_XMM5;
case 6: return OFFB_XMM6;
case 7: return OFFB_XMM7;
default: vpanic("xmmGuestRegOffset");
}
}
/* Lanes of vector registers are always numbered from zero being the
least significant lane (rightmost in the register). */
static Int xmmGuestRegLane16offset ( UInt xmmreg, Int laneno )
{
/* Correct for little-endian host only. */
vassert(!host_is_bigendian);
vassert(laneno >= 0 && laneno < 8);
return xmmGuestRegOffset( xmmreg ) + 2 * laneno;
}
static Int xmmGuestRegLane32offset ( UInt xmmreg, Int laneno )
{
/* Correct for little-endian host only. */
vassert(!host_is_bigendian);
vassert(laneno >= 0 && laneno < 4);
return xmmGuestRegOffset( xmmreg ) + 4 * laneno;
}
static Int xmmGuestRegLane64offset ( UInt xmmreg, Int laneno )
{
/* Correct for little-endian host only. */
vassert(!host_is_bigendian);
vassert(laneno >= 0 && laneno < 2);
return xmmGuestRegOffset( xmmreg ) + 8 * laneno;
}
static IRExpr* getIReg ( Int sz, UInt archreg )
{
vassert(sz == 1 || sz == 2 || sz == 4);
vassert(archreg < 8);
return IRExpr_Get( integerGuestRegOffset(sz,archreg),
szToITy(sz) );
}
/* Ditto, but write to a reg instead. */
static void putIReg ( Int sz, UInt archreg, IRExpr* e )
{
IRType ty = typeOfIRExpr(irbb->tyenv, e);
switch (sz) {
case 1: vassert(ty == Ity_I8); break;
case 2: vassert(ty == Ity_I16); break;
case 4: vassert(ty == Ity_I32); break;
default: vpanic("putIReg(x86)");
}
vassert(archreg < 8);
stmt( IRStmt_Put(integerGuestRegOffset(sz,archreg), e) );
}
static IRExpr* getSReg ( UInt sreg )
{
return IRExpr_Get( segmentGuestRegOffset(sreg), Ity_I16 );
}
static void putSReg ( UInt sreg, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_I16);
stmt( IRStmt_Put( segmentGuestRegOffset(sreg), e ) );
}
static IRExpr* getXMMReg ( UInt xmmreg )
{
return IRExpr_Get( xmmGuestRegOffset(xmmreg), Ity_V128 );
}
static IRExpr* getXMMRegLane64 ( UInt xmmreg, Int laneno )
{
return IRExpr_Get( xmmGuestRegLane64offset(xmmreg,laneno), Ity_I64 );
}
static IRExpr* getXMMRegLane64F ( UInt xmmreg, Int laneno )
{
return IRExpr_Get( xmmGuestRegLane64offset(xmmreg,laneno), Ity_F64 );
}
static IRExpr* getXMMRegLane32 ( UInt xmmreg, Int laneno )
{
return IRExpr_Get( xmmGuestRegLane32offset(xmmreg,laneno), Ity_I32 );
}
static IRExpr* getXMMRegLane32F ( UInt xmmreg, Int laneno )
{
return IRExpr_Get( xmmGuestRegLane32offset(xmmreg,laneno), Ity_F32 );
}
static void putXMMReg ( UInt xmmreg, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_V128);
stmt( IRStmt_Put( xmmGuestRegOffset(xmmreg), e ) );
}
static void putXMMRegLane64 ( UInt xmmreg, Int laneno, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_I64);
stmt( IRStmt_Put( xmmGuestRegLane64offset(xmmreg,laneno), e ) );
}
static void putXMMRegLane64F ( UInt xmmreg, Int laneno, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_F64);
stmt( IRStmt_Put( xmmGuestRegLane64offset(xmmreg,laneno), e ) );
}
static void putXMMRegLane32F ( UInt xmmreg, Int laneno, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_F32);
stmt( IRStmt_Put( xmmGuestRegLane32offset(xmmreg,laneno), e ) );
}
static void putXMMRegLane32 ( UInt xmmreg, Int laneno, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_I32);
stmt( IRStmt_Put( xmmGuestRegLane32offset(xmmreg,laneno), e ) );
}
static void putXMMRegLane16 ( UInt xmmreg, Int laneno, IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_I16);
stmt( IRStmt_Put( xmmGuestRegLane16offset(xmmreg,laneno), e ) );
}
static void assign ( IRTemp dst, IRExpr* e )
{
stmt( IRStmt_Tmp(dst, e) );
}
static void storeLE ( IRExpr* addr, IRExpr* data )
{
stmt( IRStmt_Store(Iend_LE,addr,data) );
}
static IRExpr* unop ( IROp op, IRExpr* a )
{
return IRExpr_Unop(op, a);
}
static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 )
{
return IRExpr_Binop(op, a1, a2);
}
static IRExpr* triop ( IROp op, IRExpr* a1, IRExpr* a2, IRExpr* a3 )
{
return IRExpr_Triop(op, a1, a2, a3);
}
static IRExpr* mkexpr ( IRTemp tmp )
{
return IRExpr_Tmp(tmp);
}
static IRExpr* mkU8 ( UInt i )
{
vassert(i < 256);
return IRExpr_Const(IRConst_U8( (UChar)i ));
}
static IRExpr* mkU16 ( UInt i )
{
vassert(i < 65536);
return IRExpr_Const(IRConst_U16( (UShort)i ));
}
static IRExpr* mkU32 ( UInt i )
{
return IRExpr_Const(IRConst_U32(i));
}
static IRExpr* mkU64 ( ULong i )
{
return IRExpr_Const(IRConst_U64(i));
}
static IRExpr* mkU ( IRType ty, UInt i )
{
if (ty == Ity_I8) return mkU8(i);
if (ty == Ity_I16) return mkU16(i);
if (ty == Ity_I32) return mkU32(i);
/* If this panics, it usually means you passed a size (1,2,4)
value as the IRType, rather than a real IRType. */
vpanic("mkU(x86)");
}
static IRExpr* mkV128 ( UShort mask )
{
return IRExpr_Const(IRConst_V128(mask));
}
static IRExpr* loadLE ( IRType ty, IRExpr* data )
{
return IRExpr_Load(Iend_LE,ty,data);
}
static IROp mkSizedOp ( IRType ty, IROp op8 )
{
Int adj;
vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32);
vassert(op8 == Iop_Add8 || op8 == Iop_Sub8
|| op8 == Iop_Mul8
|| op8 == Iop_Or8 || op8 == Iop_And8 || op8 == Iop_Xor8
|| op8 == Iop_Shl8 || op8 == Iop_Shr8 || op8 == Iop_Sar8
|| op8 == Iop_CmpEQ8 || op8 == Iop_CmpNE8
|| op8 == Iop_Not8 || op8 == Iop_Neg8);
adj = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2);
return adj + op8;
}
static IROp mkWidenOp ( Int szSmall, Int szBig, Bool signd )
{
if (szSmall == 1 && szBig == 4) {
return signd ? Iop_8Sto32 : Iop_8Uto32;
}
if (szSmall == 1 && szBig == 2) {
return signd ? Iop_8Sto16 : Iop_8Uto16;
}
if (szSmall == 2 && szBig == 4) {
return signd ? Iop_16Sto32 : Iop_16Uto32;
}
vpanic("mkWidenOp(x86,guest)");
}
static IRExpr* mkAnd1 ( IRExpr* x, IRExpr* y )
{
vassert(typeOfIRExpr(irbb->tyenv,x) == Ity_I1);
vassert(typeOfIRExpr(irbb->tyenv,y) == Ity_I1);
return unop(Iop_32to1,
binop(Iop_And32,
unop(Iop_1Uto32,x),
unop(Iop_1Uto32,y)));
}
/*------------------------------------------------------------*/
/*--- Helpers for %eflags. ---*/
/*------------------------------------------------------------*/
/* -------------- Evaluating the flags-thunk. -------------- */
/* Build IR to calculate all the eflags from stored
CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression ::
Ity_I32. */
static IRExpr* mk_x86g_calculate_eflags_all ( void )
{
IRExpr** args
= mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I32),
IRExpr_Get(OFFB_CC_DEP1, Ity_I32),
IRExpr_Get(OFFB_CC_DEP2, Ity_I32),
IRExpr_Get(OFFB_CC_NDEP, Ity_I32) );
IRExpr* call
= mkIRExprCCall(
Ity_I32,
0/*regparm*/,
"x86g_calculate_eflags_all", &x86g_calculate_eflags_all,
args
);
/* Exclude OP and NDEP from definedness checking. We're only
interested in DEP1 and DEP2. */
call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3);
return call;
}
/* Build IR to calculate some particular condition from stored
CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression ::
Ity_Bit. */
static IRExpr* mk_x86g_calculate_condition ( X86Condcode cond )
{
IRExpr** args
= mkIRExprVec_5( mkU32(cond),
IRExpr_Get(OFFB_CC_OP, Ity_I32),
IRExpr_Get(OFFB_CC_DEP1, Ity_I32),
IRExpr_Get(OFFB_CC_DEP2, Ity_I32),
IRExpr_Get(OFFB_CC_NDEP, Ity_I32) );
IRExpr* call
= mkIRExprCCall(
Ity_I32,
0/*regparm*/,
"x86g_calculate_condition", &x86g_calculate_condition,
args
);
/* Exclude the requested condition, OP and NDEP from definedness
checking. We're only interested in DEP1 and DEP2. */
call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<1) | (1<<4);
return unop(Iop_32to1, call);
}
/* Build IR to calculate just the carry flag from stored
CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: Ity_I32. */
static IRExpr* mk_x86g_calculate_eflags_c ( void )
{
IRExpr** args
= mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I32),
IRExpr_Get(OFFB_CC_DEP1, Ity_I32),
IRExpr_Get(OFFB_CC_DEP2, Ity_I32),
IRExpr_Get(OFFB_CC_NDEP, Ity_I32) );
IRExpr* call
= mkIRExprCCall(
Ity_I32,
3/*regparm*/,
"x86g_calculate_eflags_c", &x86g_calculate_eflags_c,
args
);
/* Exclude OP and NDEP from definedness checking. We're only
interested in DEP1 and DEP2. */
call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3);
return call;
}
/* -------------- Building the flags-thunk. -------------- */
/* The machinery in this section builds the flag-thunk following a
flag-setting operation. Hence the various setFlags_* functions.
*/
static Bool isAddSub ( IROp op8 )
{
return toBool(op8 == Iop_Add8 || op8 == Iop_Sub8);
}
static Bool isLogic ( IROp op8 )
{
return toBool(op8 == Iop_And8 || op8 == Iop_Or8 || op8 == Iop_Xor8);
}
/* U-widen 8/16/32 bit int expr to 32. */
static IRExpr* widenUto32 ( IRExpr* e )
{
switch (typeOfIRExpr(irbb->tyenv,e)) {
case Ity_I32: return e;
case Ity_I16: return unop(Iop_16Uto32,e);
case Ity_I8: return unop(Iop_8Uto32,e);
default: vpanic("widenUto32");
}
}
/* S-widen 8/16/32 bit int expr to 32. */
static IRExpr* widenSto32 ( IRExpr* e )
{
switch (typeOfIRExpr(irbb->tyenv,e)) {
case Ity_I32: return e;
case Ity_I16: return unop(Iop_16Sto32,e);
case Ity_I8: return unop(Iop_8Sto32,e);
default: vpanic("widenSto32");
}
}
/* Narrow 8/16/32 bit int expr to 8/16/32. Clearly only some
of these combinations make sense. */
static IRExpr* narrowTo ( IRType dst_ty, IRExpr* e )
{
IRType src_ty = typeOfIRExpr(irbb->tyenv,e);
if (src_ty == dst_ty)
return e;
if (src_ty == Ity_I32 && dst_ty == Ity_I16)
return unop(Iop_32to16, e);
if (src_ty == Ity_I32 && dst_ty == Ity_I8)
return unop(Iop_32to8, e);
vex_printf("\nsrc, dst tys are: ");
ppIRType(src_ty);
vex_printf(", ");
ppIRType(dst_ty);
vex_printf("\n");
vpanic("narrowTo(x86)");
}
/* Set the flags thunk OP, DEP1 and DEP2 fields. The supplied op is
auto-sized up to the real op. */
static
void setFlags_DEP1_DEP2 ( IROp op8, IRTemp dep1, IRTemp dep2, IRType ty )
{
Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2);
vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32);
switch (op8) {
case Iop_Add8: ccOp += X86G_CC_OP_ADDB; break;
case Iop_Sub8: ccOp += X86G_CC_OP_SUBB; break;
default: ppIROp(op8);
vpanic("setFlags_DEP1_DEP2(x86)");
}
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(ccOp)) );
stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(dep1))) );
stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(mkexpr(dep2))) );
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
}
/* Set the OP and DEP1 fields only, and write zero to DEP2. */
static
void setFlags_DEP1 ( IROp op8, IRTemp dep1, IRType ty )
{
Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2);
vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32);
switch (op8) {
case Iop_Or8:
case Iop_And8:
case Iop_Xor8: ccOp += X86G_CC_OP_LOGICB; break;
default: ppIROp(op8);
vpanic("setFlags_DEP1(x86)");
}
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(ccOp)) );
stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(dep1))) );
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0)) );
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
}
/* For shift operations, we put in the result and the undershifted
result. Except if the shift amount is zero, the thunk is left
unchanged. */
static void setFlags_DEP1_DEP2_shift ( IROp op32,
IRTemp res,
IRTemp resUS,
IRType ty,
IRTemp guard )
{
Int ccOp = ty==Ity_I8 ? 2 : (ty==Ity_I16 ? 1 : 0);
vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32);
vassert(guard);
/* Both kinds of right shifts are handled by the same thunk
operation. */
switch (op32) {
case Iop_Shr32:
case Iop_Sar32: ccOp = X86G_CC_OP_SHRL - ccOp; break;
case Iop_Shl32: ccOp = X86G_CC_OP_SHLL - ccOp; break;
default: ppIROp(op32);
vpanic("setFlags_DEP1_DEP2_shift(x86)");
}
/* DEP1 contains the result, DEP2 contains the undershifted value. */
stmt( IRStmt_Put( OFFB_CC_OP,
IRExpr_Mux0X( mkexpr(guard),
IRExpr_Get(OFFB_CC_OP,Ity_I32),
mkU32(ccOp))) );
stmt( IRStmt_Put( OFFB_CC_DEP1,
IRExpr_Mux0X( mkexpr(guard),
IRExpr_Get(OFFB_CC_DEP1,Ity_I32),
widenUto32(mkexpr(res)))) );
stmt( IRStmt_Put( OFFB_CC_DEP2,
IRExpr_Mux0X( mkexpr(guard),
IRExpr_Get(OFFB_CC_DEP2,Ity_I32),
widenUto32(mkexpr(resUS)))) );
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
}
/* For the inc/dec case, we store in DEP1 the result value and in NDEP
the former value of the carry flag, which unfortunately we have to
compute. */
static void setFlags_INC_DEC ( Bool inc, IRTemp res, IRType ty )
{
Int ccOp = inc ? X86G_CC_OP_INCB : X86G_CC_OP_DECB;
ccOp += ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2);
vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32);
/* This has to come first, because calculating the C flag
may require reading all four thunk fields. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mk_x86g_calculate_eflags_c()) );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(ccOp)) );
stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(res)) );
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0)) );
}
/* Multiplies are pretty much like add and sub: DEP1 and DEP2 hold the
two arguments. */
static
void setFlags_MUL ( IRType ty, IRTemp arg1, IRTemp arg2, UInt base_op )
{
switch (ty) {
case Ity_I8:
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(base_op+0) ) );
break;
case Ity_I16:
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(base_op+1) ) );
break;
case Ity_I32:
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(base_op+2) ) );
break;
default:
vpanic("setFlags_MUL(x86)");
}
stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(arg1)) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(mkexpr(arg2)) ));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
}
/* -------------- Condition codes. -------------- */
/* Condition codes, using the Intel encoding. */
static HChar* name_X86Condcode ( X86Condcode cond )
{
switch (cond) {
case X86CondO: return "o";
case X86CondNO: return "no";
case X86CondB: return "b";
case X86CondNB: return "nb";
case X86CondZ: return "z";
case X86CondNZ: return "nz";
case X86CondBE: return "be";
case X86CondNBE: return "nbe";
case X86CondS: return "s";
case X86CondNS: return "ns";
case X86CondP: return "p";
case X86CondNP: return "np";
case X86CondL: return "l";
case X86CondNL: return "nl";
case X86CondLE: return "le";
case X86CondNLE: return "nle";
case X86CondAlways: return "ALWAYS";
default: vpanic("name_X86Condcode");
}
}
static
X86Condcode positiveIse_X86Condcode ( X86Condcode cond,
Bool* needInvert )
{
vassert(cond >= X86CondO && cond <= X86CondNLE);
if (cond & 1) {
*needInvert = True;
return cond-1;
} else {
*needInvert = False;
return cond;
}
}
/* -------------- Helpers for ADD/SUB with carry. -------------- */
/* Given ta1, ta2 and tres, compute tres = ADC(ta1,ta2) and set flags
appropriately.
*/
static void helper_ADC ( Int sz,
IRTemp tres, IRTemp ta1, IRTemp ta2 )
{
UInt thunkOp;
IRType ty = szToITy(sz);
IRTemp oldc = newTemp(Ity_I32);
IRTemp oldcn = newTemp(ty);
IROp plus = mkSizedOp(ty, Iop_Add8);
IROp xor = mkSizedOp(ty, Iop_Xor8);
vassert(sz == 1 || sz == 2 || sz == 4);
thunkOp = sz==4 ? X86G_CC_OP_ADCL
: (sz==2 ? X86G_CC_OP_ADCW : X86G_CC_OP_ADCB);
/* oldc = old carry flag, 0 or 1 */
assign( oldc, binop(Iop_And32,
mk_x86g_calculate_eflags_c(),
mkU32(1)) );
assign( oldcn, narrowTo(ty, mkexpr(oldc)) );
assign( tres, binop(plus,
binop(plus,mkexpr(ta1),mkexpr(ta2)),
mkexpr(oldcn)) );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(thunkOp) ) );
stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(ta1)) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(binop(xor, mkexpr(ta2),
mkexpr(oldcn)) )) );
stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(oldc) ) );
}
/* Given ta1, ta2 and tres, compute tres = SBB(ta1,ta2) and set flags
appropriately.
*/
static void helper_SBB ( Int sz,
IRTemp tres, IRTemp ta1, IRTemp ta2 )
{
UInt thunkOp;
IRType ty = szToITy(sz);
IRTemp oldc = newTemp(Ity_I32);
IRTemp oldcn = newTemp(ty);
IROp minus = mkSizedOp(ty, Iop_Sub8);
IROp xor = mkSizedOp(ty, Iop_Xor8);
vassert(sz == 1 || sz == 2 || sz == 4);
thunkOp = sz==4 ? X86G_CC_OP_SBBL
: (sz==2 ? X86G_CC_OP_SBBW : X86G_CC_OP_SBBB);
/* oldc = old carry flag, 0 or 1 */
assign( oldc, binop(Iop_And32,
mk_x86g_calculate_eflags_c(),
mkU32(1)) );
assign( oldcn, narrowTo(ty, mkexpr(oldc)) );
assign( tres, binop(minus,
binop(minus,mkexpr(ta1),mkexpr(ta2)),
mkexpr(oldcn)) );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(thunkOp) ) );
stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(ta1) )) );
stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(binop(xor, mkexpr(ta2),
mkexpr(oldcn)) )) );
stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(oldc) ) );
}
/* -------------- Helpers for disassembly printing. -------------- */
static HChar* nameGrp1 ( Int opc_aux )
{
static HChar* grp1_names[8]
= { "add", "or", "adc", "sbb", "and", "sub", "xor", "cmp" };
if (opc_aux < 0 || opc_aux > 7) vpanic("nameGrp1(x86)");
return grp1_names[opc_aux];
}
static HChar* nameGrp2 ( Int opc_aux )
{
static HChar* grp2_names[8]
= { "rol", "ror", "rcl", "rcr", "shl", "shr", "shl", "sar" };
if (opc_aux < 0 || opc_aux > 7) vpanic("nameGrp2(x86)");
return grp2_names[opc_aux];
}
static HChar* nameGrp4 ( Int opc_aux )
{
static HChar* grp4_names[8]
= { "inc", "dec", "???", "???", "???", "???", "???", "???" };
if (opc_aux < 0 || opc_aux > 1) vpanic("nameGrp4(x86)");
return grp4_names[opc_aux];
}
static HChar* nameGrp5 ( Int opc_aux )
{
static HChar* grp5_names[8]
= { "inc", "dec", "call*", "call*", "jmp*", "jmp*", "push", "???" };
if (opc_aux < 0 || opc_aux > 6) vpanic("nameGrp5(x86)");
return grp5_names[opc_aux];
}
static HChar* nameGrp8 ( Int opc_aux )
{
static HChar* grp8_names[8]
= { "???", "???", "???", "???", "bt", "bts", "btr", "btc" };
if (opc_aux < 4 || opc_aux > 7) vpanic("nameGrp8(x86)");
return grp8_names[opc_aux];
}
static HChar* nameIReg ( Int size, Int reg )
{
static HChar* ireg32_names[8]
= { "%eax", "%ecx", "%edx", "%ebx",
"%esp", "%ebp", "%esi", "%edi" };
static HChar* ireg16_names[8]
= { "%ax", "%cx", "%dx", "%bx", "%sp", "%bp", "%si", "%di" };
static HChar* ireg8_names[8]
= { "%al", "%cl", "%dl", "%bl",
"%ah{sp}", "%ch{bp}", "%dh{si}", "%bh{di}" };
if (reg < 0 || reg > 7) goto bad;
switch (size) {
case 4: return ireg32_names[reg];
case 2: return ireg16_names[reg];
case 1: return ireg8_names[reg];
}
bad:
vpanic("nameIReg(X86)");
return NULL; /*notreached*/
}
static HChar* nameSReg ( UInt sreg )
{
switch (sreg) {
case R_ES: return "%es";
case R_CS: return "%cs";
case R_SS: return "%ss";
case R_DS: return "%ds";
case R_FS: return "%fs";
case R_GS: return "%gs";
default: vpanic("nameSReg(x86)");
}
}
static HChar* nameMMXReg ( Int mmxreg )
{
static HChar* mmx_names[8]
= { "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7" };
if (mmxreg < 0 || mmxreg > 7) vpanic("nameMMXReg(x86,guest)");
return mmx_names[mmxreg];
}
static HChar* nameXMMReg ( Int xmmreg )
{
static HChar* xmm_names[8]
= { "%xmm0", "%xmm1", "%xmm2", "%xmm3",
"%xmm4", "%xmm5", "%xmm6", "%xmm7" };
if (xmmreg < 0 || xmmreg > 7) vpanic("name_of_xmm_reg");
return xmm_names[xmmreg];
}
static HChar* nameMMXGran ( Int gran )
{
switch (gran) {
case 0: return "b";
case 1: return "w";
case 2: return "d";
case 3: return "q";
default: vpanic("nameMMXGran(x86,guest)");
}
}
static HChar nameISize ( Int size )
{
switch (size) {
case 4: return 'l';
case 2: return 'w';
case 1: return 'b';
default: vpanic("nameISize(x86)");
}
}
/*------------------------------------------------------------*/
/*--- JMP helpers ---*/
/*------------------------------------------------------------*/
static void jmp_lit( IRJumpKind kind, Addr32 d32 )
{
irbb->next = mkU32(d32);
irbb->jumpkind = kind;
}
static void jmp_treg( IRJumpKind kind, IRTemp t )
{
irbb->next = mkexpr(t);
irbb->jumpkind = kind;
}
static
void jcc_01( X86Condcode cond, Addr32 d32_false, Addr32 d32_true )
{
Bool invert;
X86Condcode condPos;
condPos = positiveIse_X86Condcode ( cond, &invert );
if (invert) {
stmt( IRStmt_Exit( mk_x86g_calculate_condition(condPos),
Ijk_Boring,
IRConst_U32(d32_false) ) );
irbb->next = mkU32(d32_true);
irbb->jumpkind = Ijk_Boring;
} else {
stmt( IRStmt_Exit( mk_x86g_calculate_condition(condPos),
Ijk_Boring,
IRConst_U32(d32_true) ) );
irbb->next = mkU32(d32_false);
irbb->jumpkind = Ijk_Boring;
}
}
/*------------------------------------------------------------*/
/*--- Disassembling addressing modes ---*/
/*------------------------------------------------------------*/
static
HChar* sorbTxt ( UChar sorb )
{
switch (sorb) {
case 0: return ""; /* no override */
case 0x3E: return "%ds";
case 0x26: return "%es:";
case 0x64: return "%fs:";
case 0x65: return "%gs:";
default: vpanic("sorbTxt(x86,guest)");
}
}
/* 'virtual' is an IRExpr* holding a virtual address. Convert it to a
linear address by adding any required segment override as indicated
by sorb. */
static
IRExpr* handleSegOverride ( UChar sorb, IRExpr* virtual )
{
Int sreg;
IRType hWordTy;
IRTemp ldt_ptr, gdt_ptr, seg_selector, r64;
if (sorb == 0)
/* the common case - no override */
return virtual;
switch (sorb) {
case 0x3E: sreg = R_DS; break;
case 0x26: sreg = R_ES; break;
case 0x64: sreg = R_FS; break;
case 0x65: sreg = R_GS; break;
default: vpanic("handleSegOverride(x86,guest)");
}
hWordTy = sizeof(HWord)==4 ? Ity_I32 : Ity_I64;
seg_selector = newTemp(Ity_I32);
ldt_ptr = newTemp(hWordTy);
gdt_ptr = newTemp(hWordTy);
r64 = newTemp(Ity_I64);
assign( seg_selector, unop(Iop_16Uto32, getSReg(sreg)) );
assign( ldt_ptr, IRExpr_Get( OFFB_LDT, hWordTy ));
assign( gdt_ptr, IRExpr_Get( OFFB_GDT, hWordTy ));
/*
Call this to do the translation and limit checks:
ULong x86g_use_seg_selector ( HWord ldt, HWord gdt,
UInt seg_selector, UInt virtual_addr )
*/
assign(
r64,
mkIRExprCCall(
Ity_I64,
0/*regparms*/,
"x86g_use_seg_selector",
&x86g_use_seg_selector,
mkIRExprVec_4( mkexpr(ldt_ptr), mkexpr(gdt_ptr),
mkexpr(seg_selector), virtual)
)
);
/* If the high 32 of the result are non-zero, there was a
failure in address translation. In which case, make a
quick exit.
*/
stmt(
IRStmt_Exit(
binop(Iop_CmpNE32, unop(Iop_64HIto32, mkexpr(r64)), mkU32(0)),
Ijk_MapFail,
IRConst_U32( guest_EIP_curr_instr )
)
);
/* otherwise, here's the translated result. */
return unop(Iop_64to32, mkexpr(r64));
}
/* Generate IR to calculate an address indicated by a ModRM and
following SIB bytes. The expression, and the number of bytes in
the address mode, are returned. Note that this fn should not be
called if the R/M part of the address denotes a register instead of
memory. If print_codegen is true, text of the addressing mode is
placed in buf.
The computed address is stored in a new tempreg, and the
identity of the tempreg is returned. */
static IRTemp disAMode_copy2tmp ( IRExpr* addr32 )
{
IRTemp tmp = newTemp(Ity_I32);
assign( tmp, addr32 );
return tmp;
}
static
IRTemp disAMode ( Int* len, UChar sorb, Int delta, HChar* buf )
{
UChar mod_reg_rm = getIByte(delta);
delta++;
buf[0] = (UChar)0;
/* squeeze out the reg field from mod_reg_rm, since a 256-entry
jump table seems a bit excessive.
*/
mod_reg_rm &= 0xC7; /* is now XX000YYY */
mod_reg_rm = toUChar(mod_reg_rm | (mod_reg_rm >> 3));
/* is now XX0XXYYY */
mod_reg_rm &= 0x1F; /* is now 000XXYYY */
switch (mod_reg_rm) {
/* (%eax) .. (%edi), not including (%esp) or (%ebp).
--> GET %reg, t
*/
case 0x00: case 0x01: case 0x02: case 0x03:
/* ! 04 */ /* ! 05 */ case 0x06: case 0x07:
{ UChar rm = mod_reg_rm;
DIS(buf, "%s(%s)", sorbTxt(sorb), nameIReg(4,rm));
*len = 1;
return disAMode_copy2tmp(
handleSegOverride(sorb, getIReg(4,rm)));
}
/* d8(%eax) ... d8(%edi), not including d8(%esp)
--> GET %reg, t ; ADDL d8, t
*/
case 0x08: case 0x09: case 0x0A: case 0x0B:
/* ! 0C */ case 0x0D: case 0x0E: case 0x0F:
{ UChar rm = toUChar(mod_reg_rm & 7);
UInt d = getSDisp8(delta);
DIS(buf, "%s%d(%s)", sorbTxt(sorb), (Int)d, nameIReg(4,rm));
*len = 2;
return disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32,getIReg(4,rm),mkU32(d))));
}
/* d32(%eax) ... d32(%edi), not including d32(%esp)
--> GET %reg, t ; ADDL d8, t
*/
case 0x10: case 0x11: case 0x12: case 0x13:
/* ! 14 */ case 0x15: case 0x16: case 0x17:
{ UChar rm = toUChar(mod_reg_rm & 7);
UInt d = getUDisp32(delta);
DIS(buf, "%s0x%x(%s)", sorbTxt(sorb), (Int)d, nameIReg(4,rm));
*len = 5;
return disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32,getIReg(4,rm),mkU32(d))));
}
/* a register, %eax .. %edi. This shouldn't happen. */
case 0x18: case 0x19: case 0x1A: case 0x1B:
case 0x1C: case 0x1D: case 0x1E: case 0x1F:
vpanic("disAMode(x86): not an addr!");
/* a 32-bit literal address
--> MOV d32, tmp
*/
case 0x05:
{ UInt d = getUDisp32(delta);
*len = 5;
DIS(buf, "%s(0x%x)", sorbTxt(sorb), d);
return disAMode_copy2tmp(
handleSegOverride(sorb, mkU32(d)));
}
case 0x04: {
/* SIB, with no displacement. Special cases:
-- %esp cannot act as an index value.
If index_r indicates %esp, zero is used for the index.
-- when mod is zero and base indicates EBP, base is instead
a 32-bit literal.
It's all madness, I tell you. Extract %index, %base and
scale from the SIB byte. The value denoted is then:
| %index == %ESP && %base == %EBP
= d32 following SIB byte
| %index == %ESP && %base != %EBP
= %base
| %index != %ESP && %base == %EBP
= d32 following SIB byte + (%index << scale)
| %index != %ESP && %base != %ESP
= %base + (%index << scale)
What happens to the souls of CPU architects who dream up such
horrendous schemes, do you suppose?
*/
UChar sib = getIByte(delta);
UChar scale = toUChar((sib >> 6) & 3);
UChar index_r = toUChar((sib >> 3) & 7);
UChar base_r = toUChar(sib & 7);
delta++;
if (index_r != R_ESP && base_r != R_EBP) {
DIS(buf, "%s(%s,%s,%d)", sorbTxt(sorb),
nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale);
*len = 2;
return
disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32,
getIReg(4,base_r),
binop(Iop_Shl32, getIReg(4,index_r),
mkU8(scale)))));
}
if (index_r != R_ESP && base_r == R_EBP) {
UInt d = getUDisp32(delta);
DIS(buf, "%s0x%x(,%s,%d)", sorbTxt(sorb), d,
nameIReg(4,index_r), 1<<scale);
*len = 6;
return
disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32,
binop(Iop_Shl32, getIReg(4,index_r), mkU8(scale)),
mkU32(d))));
}
if (index_r == R_ESP && base_r != R_EBP) {
DIS(buf, "%s(%s,,)", sorbTxt(sorb), nameIReg(4,base_r));
*len = 2;
return disAMode_copy2tmp(
handleSegOverride(sorb, getIReg(4,base_r)));
}
if (index_r == R_ESP && base_r == R_EBP) {
UInt d = getUDisp32(delta);
DIS(buf, "%s0x%x()", sorbTxt(sorb), d);
*len = 6;
vpanic("disAMode(x86):untested amode: 8");
return disAMode_copy2tmp(
handleSegOverride(sorb, mkU32(d)));
}
/*NOTREACHED*/
vassert(0);
}
/* SIB, with 8-bit displacement. Special cases:
-- %esp cannot act as an index value.
If index_r indicates %esp, zero is used for the index.
Denoted value is:
| %index == %ESP
= d8 + %base
| %index != %ESP
= d8 + %base + (%index << scale)
*/
case 0x0C: {
UChar sib = getIByte(delta);
UChar scale = toUChar((sib >> 6) & 3);
UChar index_r = toUChar((sib >> 3) & 7);
UChar base_r = toUChar(sib & 7);
UInt d = getSDisp8(delta+1);
if (index_r == R_ESP) {
DIS(buf, "%s%d(%s,,)", sorbTxt(sorb),
(Int)d, nameIReg(4,base_r));
*len = 3;
return disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32, getIReg(4,base_r), mkU32(d)) ));
} else {
DIS(buf, "%s%d(%s,%s,%d)", sorbTxt(sorb), (Int)d,
nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale);
*len = 3;
return
disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32,
binop(Iop_Add32,
getIReg(4,base_r),
binop(Iop_Shl32,
getIReg(4,index_r), mkU8(scale))),
mkU32(d))));
}
/*NOTREACHED*/
vassert(0);
}
/* SIB, with 32-bit displacement. Special cases:
-- %esp cannot act as an index value.
If index_r indicates %esp, zero is used for the index.
Denoted value is:
| %index == %ESP
= d32 + %base
| %index != %ESP
= d32 + %base + (%index << scale)
*/
case 0x14: {
UChar sib = getIByte(delta);
UChar scale = toUChar((sib >> 6) & 3);
UChar index_r = toUChar((sib >> 3) & 7);
UChar base_r = toUChar(sib & 7);
UInt d = getUDisp32(delta+1);
if (index_r == R_ESP) {
DIS(buf, "%s%d(%s,,)", sorbTxt(sorb),
(Int)d, nameIReg(4,base_r));
*len = 6;
return disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32, getIReg(4,base_r), mkU32(d)) ));
} else {
DIS(buf, "%s%d(%s,%s,%d)", sorbTxt(sorb), (Int)d,
nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale);
*len = 6;
return
disAMode_copy2tmp(
handleSegOverride(sorb,
binop(Iop_Add32,
binop(Iop_Add32,
getIReg(4,base_r),
binop(Iop_Shl32,
getIReg(4,index_r), mkU8(scale))),
mkU32(d))));
}
/*NOTREACHED*/
vassert(0);
}
default:
vpanic("disAMode(x86)");
return 0; /*notreached*/
}
}
/* Figure out the number of (insn-stream) bytes constituting the amode
beginning at delta. Is useful for getting hold of literals beyond
the end of the amode before it has been disassembled. */
static UInt lengthAMode ( Int delta )
{
UChar mod_reg_rm = getIByte(delta); delta++;
/* squeeze out the reg field from mod_reg_rm, since a 256-entry
jump table seems a bit excessive.
*/
mod_reg_rm &= 0xC7; /* is now XX000YYY */
mod_reg_rm = toUChar(mod_reg_rm | (mod_reg_rm >> 3));
/* is now XX0XXYYY */
mod_reg_rm &= 0x1F; /* is now 000XXYYY */
switch (mod_reg_rm) {
/* (%eax) .. (%edi), not including (%esp) or (%ebp). */
case 0x00: case 0x01: case 0x02: case 0x03:
/* ! 04 */ /* ! 05 */ case 0x06: case 0x07:
return 1;
/* d8(%eax) ... d8(%edi), not including d8(%esp). */
case 0x08: case 0x09: case 0x0A: case 0x0B:
/* ! 0C */ case 0x0D: case 0x0E: case 0x0F:
return 2;
/* d32(%eax) ... d32(%edi), not including d32(%esp). */
case 0x10: case 0x11: case 0x12: case 0x13:
/* ! 14 */ case 0x15: case 0x16: case 0x17:
return 5;
/* a register, %eax .. %edi. (Not an addr, but still handled.) */
case 0x18: case 0x19: case 0x1A: case 0x1B:
case 0x1C: case 0x1D: case 0x1E: case 0x1F:
return 1;
/* a 32-bit literal address. */
case 0x05: return 5;
/* SIB, no displacement. */
case 0x04: {
UChar sib = getIByte(delta);
UChar base_r = toUChar(sib & 7);
if (base_r == R_EBP) return 6; else return 2;
}
/* SIB, with 8-bit displacement. */
case 0x0C: return 3;
/* SIB, with 32-bit displacement. */
case 0x14: return 6;
default:
vpanic("lengthAMode");
return 0; /*notreached*/
}
}
/*------------------------------------------------------------*/
/*--- Disassembling common idioms ---*/
/*------------------------------------------------------------*/
/* Handle binary integer instructions of the form
op E, G meaning
op reg-or-mem, reg
Is passed the a ptr to the modRM byte, the actual operation, and the
data size. Returns the address advanced completely over this
instruction.
E(src) is reg-or-mem
G(dst) is reg.
If E is reg, --> GET %G, tmp
OP %E, tmp
PUT tmp, %G
If E is mem and OP is not reversible,
--> (getAddr E) -> tmpa
LD (tmpa), tmpa
GET %G, tmp2
OP tmpa, tmp2
PUT tmp2, %G
If E is mem and OP is reversible
--> (getAddr E) -> tmpa
LD (tmpa), tmpa
OP %G, tmpa
PUT tmpa, %G
*/
static
UInt dis_op2_E_G ( UChar sorb,
Bool addSubCarry,
IROp op8,
Bool keep,
Int size,
Int delta0,
HChar* t_x86opc )
{
HChar dis_buf[50];
Int len;
IRType ty = szToITy(size);
IRTemp dst1 = newTemp(ty);
IRTemp src = newTemp(ty);
IRTemp dst0 = newTemp(ty);
UChar rm = getUChar(delta0);
IRTemp addr = IRTemp_INVALID;
/* addSubCarry == True indicates the intended operation is
add-with-carry or subtract-with-borrow. */
if (addSubCarry) {
vassert(op8 == Iop_Add8 || op8 == Iop_Sub8);
vassert(keep);
}
if (epartIsReg(rm)) {
/* Specially handle XOR reg,reg, because that doesn't really
depend on reg, and doing the obvious thing potentially
generates a spurious value check failure due to the bogus
dependency. Ditto SBB reg,reg. */
if ((op8 == Iop_Xor8 || (op8 == Iop_Sub8 && addSubCarry))
&& gregOfRM(rm) == eregOfRM(rm)) {
putIReg(size, gregOfRM(rm), mkU(ty,0));
}
assign( dst0, getIReg(size,gregOfRM(rm)) );
assign( src, getIReg(size,eregOfRM(rm)) );
if (addSubCarry && op8 == Iop_Add8) {
helper_ADC( size, dst1, dst0, src );
putIReg(size, gregOfRM(rm), mkexpr(dst1));
} else
if (addSubCarry && op8 == Iop_Sub8) {
helper_SBB( size, dst1, dst0, src );
putIReg(size, gregOfRM(rm), mkexpr(dst1));
} else {
assign( dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) );
if (isAddSub(op8))
setFlags_DEP1_DEP2(op8, dst0, src, ty);
else
setFlags_DEP1(op8, dst1, ty);
if (keep)
putIReg(size, gregOfRM(rm), mkexpr(dst1));
}
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+delta0;
} else {
/* E refers to memory */
addr = disAMode ( &len, sorb, delta0, dis_buf);
assign( dst0, getIReg(size,gregOfRM(rm)) );
assign( src, loadLE(szToITy(size), mkexpr(addr)) );
if (addSubCarry && op8 == Iop_Add8) {
helper_ADC( size, dst1, dst0, src );
putIReg(size, gregOfRM(rm), mkexpr(dst1));
} else
if (addSubCarry && op8 == Iop_Sub8) {
helper_SBB( size, dst1, dst0, src );
putIReg(size, gregOfRM(rm), mkexpr(dst1));
} else {
assign( dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) );
if (isAddSub(op8))
setFlags_DEP1_DEP2(op8, dst0, src, ty);
else
setFlags_DEP1(op8, dst1, ty);
if (keep)
putIReg(size, gregOfRM(rm), mkexpr(dst1));
}
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
dis_buf,nameIReg(size,gregOfRM(rm)));
return len+delta0;
}
}
/* Handle binary integer instructions of the form
op G, E meaning
op reg, reg-or-mem
Is passed the a ptr to the modRM byte, the actual operation, and the
data size. Returns the address advanced completely over this
instruction.
G(src) is reg.
E(dst) is reg-or-mem
If E is reg, --> GET %E, tmp
OP %G, tmp
PUT tmp, %E
If E is mem, --> (getAddr E) -> tmpa
LD (tmpa), tmpv
OP %G, tmpv
ST tmpv, (tmpa)
*/
static
UInt dis_op2_G_E ( UChar sorb,
Bool addSubCarry,
IROp op8,
Bool keep,
Int size,
Int delta0,
HChar* t_x86opc )
{
HChar dis_buf[50];
Int len;
IRType ty = szToITy(size);
IRTemp dst1 = newTemp(ty);
IRTemp src = newTemp(ty);
IRTemp dst0 = newTemp(ty);
UChar rm = getIByte(delta0);
IRTemp addr = IRTemp_INVALID;
/* addSubCarry == True indicates the intended operation is
add-with-carry or subtract-with-borrow. */
if (addSubCarry) {
vassert(op8 == Iop_Add8 || op8 == Iop_Sub8);
vassert(keep);
}
if (epartIsReg(rm)) {
/* Specially handle XOR reg,reg, because that doesn't really
depend on reg, and doing the obvious thing potentially
generates a spurious value check failure due to the bogus
dependency. Ditto SBB reg,reg.*/
if ((op8 == Iop_Xor8 || (op8 == Iop_Sub8 && addSubCarry))
&& gregOfRM(rm) == eregOfRM(rm)) {
putIReg(size, eregOfRM(rm), mkU(ty,0));
}
assign(dst0, getIReg(size,eregOfRM(rm)));
assign(src, getIReg(size,gregOfRM(rm)));
if (addSubCarry && op8 == Iop_Add8) {
helper_ADC( size, dst1, dst0, src );
putIReg(size, eregOfRM(rm), mkexpr(dst1));
} else
if (addSubCarry && op8 == Iop_Sub8) {
helper_SBB( size, dst1, dst0, src );
putIReg(size, eregOfRM(rm), mkexpr(dst1));
} else {
assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)));
if (isAddSub(op8))
setFlags_DEP1_DEP2(op8, dst0, src, ty);
else
setFlags_DEP1(op8, dst1, ty);
if (keep)
putIReg(size, eregOfRM(rm), mkexpr(dst1));
}
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
nameIReg(size,gregOfRM(rm)),
nameIReg(size,eregOfRM(rm)));
return 1+delta0;
}
/* E refers to memory */
{
addr = disAMode ( &len, sorb, delta0, dis_buf);
assign(dst0, loadLE(ty,mkexpr(addr)));
assign(src, getIReg(size,gregOfRM(rm)));
if (addSubCarry && op8 == Iop_Add8) {
helper_ADC( size, dst1, dst0, src );
storeLE(mkexpr(addr), mkexpr(dst1));
} else
if (addSubCarry && op8 == Iop_Sub8) {
helper_SBB( size, dst1, dst0, src );
storeLE(mkexpr(addr), mkexpr(dst1));
} else {
assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)));
if (isAddSub(op8))
setFlags_DEP1_DEP2(op8, dst0, src, ty);
else
setFlags_DEP1(op8, dst1, ty);
if (keep)
storeLE(mkexpr(addr), mkexpr(dst1));
}
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
nameIReg(size,gregOfRM(rm)), dis_buf);
return len+delta0;
}
}
/* Handle move instructions of the form
mov E, G meaning
mov reg-or-mem, reg
Is passed the a ptr to the modRM byte, and the data size. Returns
the address advanced completely over this instruction.
E(src) is reg-or-mem
G(dst) is reg.
If E is reg, --> GET %E, tmpv
PUT tmpv, %G
If E is mem --> (getAddr E) -> tmpa
LD (tmpa), tmpb
PUT tmpb, %G
*/
static
UInt dis_mov_E_G ( UChar sorb,
Int size,
Int delta0 )
{
Int len;
UChar rm = getIByte(delta0);
HChar dis_buf[50];
if (epartIsReg(rm)) {
putIReg(size, gregOfRM(rm), getIReg(size, eregOfRM(rm)));
DIP("mov%c %s,%s\n", nameISize(size),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+delta0;
}
/* E refers to memory */
{
IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf );
putIReg(size, gregOfRM(rm), loadLE(szToITy(size), mkexpr(addr)));
DIP("mov%c %s,%s\n", nameISize(size),
dis_buf,nameIReg(size,gregOfRM(rm)));
return delta0+len;
}
}
/* Handle move instructions of the form
mov G, E meaning
mov reg, reg-or-mem
Is passed the a ptr to the modRM byte, and the data size. Returns
the address advanced completely over this instruction.
G(src) is reg.
E(dst) is reg-or-mem
If E is reg, --> GET %G, tmp
PUT tmp, %E
If E is mem, --> (getAddr E) -> tmpa
GET %G, tmpv
ST tmpv, (tmpa)
*/
static
UInt dis_mov_G_E ( UChar sorb,
Int size,
Int delta0 )
{
Int len;
UChar rm = getIByte(delta0);
HChar dis_buf[50];
if (epartIsReg(rm)) {
putIReg(size, eregOfRM(rm), getIReg(size, gregOfRM(rm)));
DIP("mov%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)),
nameIReg(size,eregOfRM(rm)));
return 1+delta0;
}
/* E refers to memory */
{
IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf);
storeLE( mkexpr(addr), getIReg(size, gregOfRM(rm)) );
DIP("mov%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)), dis_buf);
return len+delta0;
}
}
/* op $immediate, AL/AX/EAX. */
static
UInt dis_op_imm_A ( Int size,
Bool carrying,
IROp op8,
Bool keep,
Int delta,
HChar* t_x86opc )
{
IRType ty = szToITy(size);
IRTemp dst0 = newTemp(ty);
IRTemp src = newTemp(ty);
IRTemp dst1 = newTemp(ty);
UInt lit = getUDisp(size,delta);
assign(dst0, getIReg(size,R_EAX));
assign(src, mkU(ty,lit));
if (isAddSub(op8) && !carrying) {
assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) );
setFlags_DEP1_DEP2(op8, dst0, src, ty);
}
else
if (isLogic(op8)) {
vassert(!carrying);
assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) );
setFlags_DEP1(op8, dst1, ty);
}
else
if (op8 == Iop_Add8 && carrying) {
helper_ADC( size, dst1, dst0, src );
}
else
if (op8 == Iop_Sub8 && carrying) {
helper_SBB( size, dst1, dst0, src );
}
else
vpanic("dis_op_imm_A(x86,guest)");
if (keep)
putIReg(size, R_EAX, mkexpr(dst1));
DIP("%s%c $0x%x, %s\n", t_x86opc, nameISize(size),
lit, nameIReg(size,R_EAX));
return delta+size;
}
/* Sign- and Zero-extending moves. */
static
UInt dis_movx_E_G ( UChar sorb,
Int delta, Int szs, Int szd, Bool sign_extend )
{
UChar rm = getIByte(delta);
if (epartIsReg(rm)) {
putIReg(szd, gregOfRM(rm),
unop(mkWidenOp(szs,szd,sign_extend),
getIReg(szs,eregOfRM(rm))));
DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z',
nameISize(szs), nameISize(szd),
nameIReg(szs,eregOfRM(rm)),
nameIReg(szd,gregOfRM(rm)));
return 1+delta;
}
/* E refers to memory */
{
Int len;
HChar dis_buf[50];
IRTemp addr = disAMode ( &len, sorb, delta, dis_buf );
putIReg(szd, gregOfRM(rm),
unop(mkWidenOp(szs,szd,sign_extend),
loadLE(szToITy(szs),mkexpr(addr))));
DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z',
nameISize(szs), nameISize(szd),
dis_buf, nameIReg(szd,gregOfRM(rm)));
return len+delta;
}
}
/* Generate code to divide ArchRegs EDX:EAX / DX:AX / AX by the 32 /
16 / 8 bit quantity in the given IRTemp. */
static
void codegen_div ( Int sz, IRTemp t, Bool signed_divide )
{
IROp op = signed_divide ? Iop_DivModS64to32 : Iop_DivModU64to32;
IRTemp src64 = newTemp(Ity_I64);
IRTemp dst64 = newTemp(Ity_I64);
switch (sz) {
case 4:
assign( src64, binop(Iop_32HLto64,
getIReg(4,R_EDX), getIReg(4,R_EAX)) );
assign( dst64, binop(op, mkexpr(src64), mkexpr(t)) );
putIReg( 4, R_EAX, unop(Iop_64to32,mkexpr(dst64)) );
putIReg( 4, R_EDX, unop(Iop_64HIto32,mkexpr(dst64)) );
break;
case 2: {
IROp widen3264 = signed_divide ? Iop_32Sto64 : Iop_32Uto64;
IROp widen1632 = signed_divide ? Iop_16Sto32 : Iop_16Uto32;
assign( src64, unop(widen3264,
binop(Iop_16HLto32,
getIReg(2,R_EDX), getIReg(2,R_EAX))) );
assign( dst64, binop(op, mkexpr(src64), unop(widen1632,mkexpr(t))) );
putIReg( 2, R_EAX, unop(Iop_32to16,unop(Iop_64to32,mkexpr(dst64))) );
putIReg( 2, R_EDX, unop(Iop_32to16,unop(Iop_64HIto32,mkexpr(dst64))) );
break;
}
case 1: {
IROp widen3264 = signed_divide ? Iop_32Sto64 : Iop_32Uto64;
IROp widen1632 = signed_divide ? Iop_16Sto32 : Iop_16Uto32;
IROp widen816 = signed_divide ? Iop_8Sto16 : Iop_8Uto16;
assign( src64, unop(widen3264, unop(widen1632, getIReg(2,R_EAX))) );
assign( dst64,
binop(op, mkexpr(src64),
unop(widen1632, unop(widen816, mkexpr(t)))) );
putIReg( 1, R_AL, unop(Iop_16to8, unop(Iop_32to16,
unop(Iop_64to32,mkexpr(dst64)))) );
putIReg( 1, R_AH, unop(Iop_16to8, unop(Iop_32to16,
unop(Iop_64HIto32,mkexpr(dst64)))) );
break;
}
default: vpanic("codegen_div(x86)");
}
}
static
UInt dis_Grp1 ( UChar sorb,
Int delta, UChar modrm,
Int am_sz, Int d_sz, Int sz, UInt d32 )
{
Int len;
HChar dis_buf[50];
IRType ty = szToITy(sz);
IRTemp dst1 = newTemp(ty);
IRTemp src = newTemp(ty);
IRTemp dst0 = newTemp(ty);
IRTemp addr = IRTemp_INVALID;
IROp op8 = Iop_INVALID;
UInt mask = sz==1 ? 0xFF : (sz==2 ? 0xFFFF : 0xFFFFFFFF);
switch (gregOfRM(modrm)) {
case 0: op8 = Iop_Add8; break; case 1: op8 = Iop_Or8; break;
case 2: break; // ADC
case 3: break; // SBB
case 4: op8 = Iop_And8; break; case 5: op8 = Iop_Sub8; break;
case 6: op8 = Iop_Xor8; break; case 7: op8 = Iop_Sub8; break;
default: vpanic("dis_Grp1: unhandled case");
}
if (epartIsReg(modrm)) {
vassert(am_sz == 1);
assign(dst0, getIReg(sz,eregOfRM(modrm)));
assign(src, mkU(ty,d32 & mask));
if (gregOfRM(modrm) == 2 /* ADC */) {
helper_ADC( sz, dst1, dst0, src );
} else
if (gregOfRM(modrm) == 3 /* SBB */) {
helper_SBB( sz, dst1, dst0, src );
} else {
assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)));
if (isAddSub(op8))
setFlags_DEP1_DEP2(op8, dst0, src, ty);
else
setFlags_DEP1(op8, dst1, ty);
}
if (gregOfRM(modrm) < 7)
putIReg(sz, eregOfRM(modrm), mkexpr(dst1));
delta += (am_sz + d_sz);
DIP("%s%c $0x%x, %s\n", nameGrp1(gregOfRM(modrm)), nameISize(sz), d32,
nameIReg(sz,eregOfRM(modrm)));
} else {
addr = disAMode ( &len, sorb, delta, dis_buf);
assign(dst0, loadLE(ty,mkexpr(addr)));
assign(src, mkU(ty,d32 & mask));
if (gregOfRM(modrm) == 2 /* ADC */) {
helper_ADC( sz, dst1, dst0, src );
} else
if (gregOfRM(modrm) == 3 /* SBB */) {
helper_SBB( sz, dst1, dst0, src );
} else {
assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)));
if (isAddSub(op8))
setFlags_DEP1_DEP2(op8, dst0, src, ty);
else
setFlags_DEP1(op8, dst1, ty);
}
if (gregOfRM(modrm) < 7)
storeLE(mkexpr(addr), mkexpr(dst1));
delta += (len+d_sz);
DIP("%s%c $0x%x, %s\n", nameGrp1(gregOfRM(modrm)), nameISize(sz),
d32, dis_buf);
}
return delta;
}
/* Group 2 extended opcodes. shift_expr must be an 8-bit typed
expression. */
static
UInt dis_Grp2 ( UChar sorb,
Int delta, UChar modrm,
Int am_sz, Int d_sz, Int sz, IRExpr* shift_expr,
HChar* shift_expr_txt )
{
/* delta on entry points at the modrm byte. */
HChar dis_buf[50];
Int len;
Bool isShift, isRotate, isRotateC;
IRType ty = szToITy(sz);
IRTemp dst0 = newTemp(ty);
IRTemp dst1 = newTemp(ty);
IRTemp addr = IRTemp_INVALID;
vassert(sz == 1 || sz == 2 || sz == 4);
/* Put value to shift/rotate in dst0. */
if (epartIsReg(modrm)) {
assign(dst0, getIReg(sz, eregOfRM(modrm)));
delta += (am_sz + d_sz);
} else {
addr = disAMode ( &len, sorb, delta, dis_buf);
assign(dst0, loadLE(ty,mkexpr(addr)));
delta += len + d_sz;
}
isShift = False;
switch (gregOfRM(modrm)) { case 4: case 5: case 7: isShift = True; }
isRotate = False;
switch (gregOfRM(modrm)) { case 0: case 1: isRotate = True; }
isRotateC = False;
switch (gregOfRM(modrm)) { case 2: case 3: isRotateC = True; }
if (!isShift && !isRotate && !isRotateC) {
vex_printf("\ncase %d\n", gregOfRM(modrm));
vpanic("dis_Grp2(Reg): unhandled case(x86)");
}
if (isRotateC) {
/* call a helper; these insns are so ridiculous they do not
deserve better */
Bool left = toBool(gregOfRM(modrm) == 2);
IRTemp r64 = newTemp(Ity_I64);
IRExpr** args
= mkIRExprVec_4( widenUto32(mkexpr(dst0)), /* thing to rotate */
widenUto32(shift_expr), /* rotate amount */
widenUto32(mk_x86g_calculate_eflags_all()),
mkU32(sz) );
assign( r64, mkIRExprCCall(
Ity_I64,
0/*regparm*/,
left ? "x86g_calculate_RCL" : "x86g_calculate_RCR",
left ? &x86g_calculate_RCL : &x86g_calculate_RCR,
args
)
);
/* new eflags in hi half r64; new value in lo half r64 */
assign( dst1, narrowTo(ty, unop(Iop_64to32, mkexpr(r64))) );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP1, unop(Iop_64HIto32, mkexpr(r64)) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
}
if (isShift) {
IRTemp pre32 = newTemp(Ity_I32);
IRTemp res32 = newTemp(Ity_I32);
IRTemp res32ss = newTemp(Ity_I32);
IRTemp shift_amt = newTemp(Ity_I8);
IROp op32;
switch (gregOfRM(modrm)) {
case 4: op32 = Iop_Shl32; break;
case 5: op32 = Iop_Shr32; break;
case 7: op32 = Iop_Sar32; break;
default: vpanic("dis_Grp2:shift"); break;
}
/* Widen the value to be shifted to 32 bits, do the shift, and
narrow back down. This seems surprisingly long-winded, but
unfortunately the Intel semantics requires that 8/16-bit
shifts give defined results for shift values all the way up
to 31, and this seems the simplest way to do it. It has the
advantage that the only IR level shifts generated are of 32
bit values, and the shift amount is guaranteed to be in the
range 0 .. 31, thereby observing the IR semantics requiring
all shift values to be in the range 0 .. 2^word_size-1. */
/* shift_amt = shift_expr & 31, regardless of operation size */
assign( shift_amt, binop(Iop_And8, shift_expr, mkU8(31)) );
/* suitably widen the value to be shifted to 32 bits. */
assign( pre32, op32==Iop_Sar32 ? widenSto32(mkexpr(dst0))
: widenUto32(mkexpr(dst0)) );
/* res32 = pre32 `shift` shift_amt */
assign( res32, binop(op32, mkexpr(pre32), mkexpr(shift_amt)) );
/* res32ss = pre32 `shift` ((shift_amt - 1) & 31) */
assign( res32ss,
binop(op32,
mkexpr(pre32),
binop(Iop_And8,
binop(Iop_Sub8,
mkexpr(shift_amt), mkU8(1)),
mkU8(31))) );
/* Build the flags thunk. */
setFlags_DEP1_DEP2_shift(op32, res32, res32ss, ty, shift_amt);
/* Narrow the result back down. */
assign( dst1, narrowTo(ty, mkexpr(res32)) );
} /* if (isShift) */
else
if (isRotate) {
Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2);
Bool left = toBool(gregOfRM(modrm) == 0);
IRTemp rot_amt = newTemp(Ity_I8);
IRTemp rot_amt32 = newTemp(Ity_I8);
IRTemp oldFlags = newTemp(Ity_I32);
/* rot_amt = shift_expr & mask */
/* By masking the rotate amount thusly, the IR-level Shl/Shr
expressions never shift beyond the word size and thus remain
well defined. */
assign(rot_amt32, binop(Iop_And8, shift_expr, mkU8(31)));
if (ty == Ity_I32)
assign(rot_amt, mkexpr(rot_amt32));
else
assign(rot_amt, binop(Iop_And8, mkexpr(rot_amt32), mkU8(8*sz-1)));
if (left) {
/* dst1 = (dst0 << rot_amt) | (dst0 >>u (wordsize-rot_amt)) */
assign(dst1,
binop( mkSizedOp(ty,Iop_Or8),
binop( mkSizedOp(ty,Iop_Shl8),
mkexpr(dst0),
mkexpr(rot_amt)
),
binop( mkSizedOp(ty,Iop_Shr8),
mkexpr(dst0),
binop(Iop_Sub8,mkU8(8*sz), mkexpr(rot_amt))
)
)
);
ccOp += X86G_CC_OP_ROLB;
} else { /* right */
/* dst1 = (dst0 >>u rot_amt) | (dst0 << (wordsize-rot_amt)) */
assign(dst1,
binop( mkSizedOp(ty,Iop_Or8),
binop( mkSizedOp(ty,Iop_Shr8),
mkexpr(dst0),
mkexpr(rot_amt)
),
binop( mkSizedOp(ty,Iop_Shl8),
mkexpr(dst0),
binop(Iop_Sub8,mkU8(8*sz), mkexpr(rot_amt))
)
)
);
ccOp += X86G_CC_OP_RORB;
}
/* dst1 now holds the rotated value. Build flag thunk. We
need the resulting value for this, and the previous flags.
Except don't set it if the rotate count is zero. */
assign(oldFlags, mk_x86g_calculate_eflags_all());
/* CC_DEP1 is the rotated value. CC_NDEP is flags before. */
stmt( IRStmt_Put( OFFB_CC_OP,
IRExpr_Mux0X( mkexpr(rot_amt32),
IRExpr_Get(OFFB_CC_OP,Ity_I32),
mkU32(ccOp))) );
stmt( IRStmt_Put( OFFB_CC_DEP1,
IRExpr_Mux0X( mkexpr(rot_amt32),
IRExpr_Get(OFFB_CC_DEP1,Ity_I32),
widenUto32(mkexpr(dst1)))) );
stmt( IRStmt_Put( OFFB_CC_DEP2,
IRExpr_Mux0X( mkexpr(rot_amt32),
IRExpr_Get(OFFB_CC_DEP2,Ity_I32),
mkU32(0))) );
stmt( IRStmt_Put( OFFB_CC_NDEP,
IRExpr_Mux0X( mkexpr(rot_amt32),
IRExpr_Get(OFFB_CC_NDEP,Ity_I32),
mkexpr(oldFlags))) );
} /* if (isRotate) */
/* Save result, and finish up. */
if (epartIsReg(modrm)) {
putIReg(sz, eregOfRM(modrm), mkexpr(dst1));
if (vex_traceflags & VEX_TRACE_FE) {
vex_printf("%s%c ",
nameGrp2(gregOfRM(modrm)), nameISize(sz) );
if (shift_expr_txt)
vex_printf("%s", shift_expr_txt);
else
ppIRExpr(shift_expr);
vex_printf(", %s\n", nameIReg(sz,eregOfRM(modrm)));
}
} else {
storeLE(mkexpr(addr), mkexpr(dst1));
if (vex_traceflags & VEX_TRACE_FE) {
vex_printf("%s%c ",
nameGrp2(gregOfRM(modrm)), nameISize(sz) );
if (shift_expr_txt)
vex_printf("%s", shift_expr_txt);
else
ppIRExpr(shift_expr);
vex_printf(", %s\n", dis_buf);
}
}
return delta;
}
/* Group 8 extended opcodes (but BT/BTS/BTC/BTR only). */
static
UInt dis_Grp8_Imm ( UChar sorb,
Int delta, UChar modrm,
Int am_sz, Int sz, UInt src_val,
Bool* decode_OK )
{
/* src_val denotes a d8.
And delta on entry points at the modrm byte. */
IRType ty = szToITy(sz);
IRTemp t2 = newTemp(Ity_I32);
IRTemp t2m = newTemp(Ity_I32);
IRTemp t_addr = IRTemp_INVALID;
HChar dis_buf[50];
UInt mask;
/* we're optimists :-) */
*decode_OK = True;
/* Limit src_val -- the bit offset -- to something within a word.
The Intel docs say that literal offsets larger than a word are
masked in this way. */
switch (sz) {
case 2: src_val &= 15; break;
case 4: src_val &= 31; break;
default: *decode_OK = False; return delta;
}
/* Invent a mask suitable for the operation. */
switch (gregOfRM(modrm)) {
case 4: /* BT */ mask = 0; break;
case 5: /* BTS */ mask = 1 << src_val; break;
case 6: /* BTR */ mask = ~(1 << src_val); break;
case 7: /* BTC */ mask = 1 << src_val; break;
/* If this needs to be extended, probably simplest to make a
new function to handle the other cases (0 .. 3). The
Intel docs do however not indicate any use for 0 .. 3, so
we don't expect this to happen. */
default: *decode_OK = False; return delta;
}
/* Fetch the value to be tested and modified into t2, which is
32-bits wide regardless of sz. */
if (epartIsReg(modrm)) {
vassert(am_sz == 1);
assign( t2, widenUto32(getIReg(sz, eregOfRM(modrm))) );
delta += (am_sz + 1);
DIP("%s%c $0x%x, %s\n", nameGrp8(gregOfRM(modrm)), nameISize(sz),
src_val, nameIReg(sz,eregOfRM(modrm)));
} else {
Int len;
t_addr = disAMode ( &len, sorb, delta, dis_buf);
delta += (len+1);
assign( t2, widenUto32(loadLE(ty, mkexpr(t_addr))) );
DIP("%s%c $0x%x, %s\n", nameGrp8(gregOfRM(modrm)), nameISize(sz),
src_val, dis_buf);
}
/* Copy relevant bit from t2 into the carry flag. */
/* Flags: C=selected bit, O,S,Z,A,P undefined, so are set to zero. */
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put(
OFFB_CC_DEP1,
binop(Iop_And32,
binop(Iop_Shr32, mkexpr(t2), mkU8(src_val)),
mkU32(1))
));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
/* Compute the new value into t2m, if non-BT. */
switch (gregOfRM(modrm)) {
case 4: /* BT */
break;
case 5: /* BTS */
assign( t2m, binop(Iop_Or32, mkU32(mask), mkexpr(t2)) );
break;
case 6: /* BTR */
assign( t2m, binop(Iop_And32, mkU32(mask), mkexpr(t2)) );
break;
case 7: /* BTC */
assign( t2m, binop(Iop_Xor32, mkU32(mask), mkexpr(t2)) );
break;
default:
/*NOTREACHED*/ /*the previous switch guards this*/
vassert(0);
}
/* Write the result back, if non-BT. */
if (gregOfRM(modrm) != 4 /* BT */) {
if (epartIsReg(modrm)) {
putIReg(sz, eregOfRM(modrm), narrowTo(ty, mkexpr(t2m)));
} else {
storeLE(mkexpr(t_addr), narrowTo(ty, mkexpr(t2m)));
}
}
return delta;
}
/* Signed/unsigned widening multiply. Generate IR to multiply the
value in EAX/AX/AL by the given IRTemp, and park the result in
EDX:EAX/DX:AX/AX.
*/
static void codegen_mulL_A_D ( Int sz, Bool syned,
IRTemp tmp, HChar* tmp_txt )
{
IRType ty = szToITy(sz);
IRTemp t1 = newTemp(ty);
assign( t1, getIReg(sz, R_EAX) );
switch (ty) {
case Ity_I32: {
IRTemp res64 = newTemp(Ity_I64);
IRTemp resHi = newTemp(Ity_I32);
IRTemp resLo = newTemp(Ity_I32);
IROp mulOp = syned ? Iop_MullS32 : Iop_MullU32;
UInt tBaseOp = syned ? X86G_CC_OP_SMULB : X86G_CC_OP_UMULB;
setFlags_MUL ( Ity_I32, t1, tmp, tBaseOp );
assign( res64, binop(mulOp, mkexpr(t1), mkexpr(tmp)) );
assign( resHi, unop(Iop_64HIto32,mkexpr(res64)));
assign( resLo, unop(Iop_64to32,mkexpr(res64)));
putIReg(4, R_EDX, mkexpr(resHi));
putIReg(4, R_EAX, mkexpr(resLo));
break;
}
case Ity_I16: {
IRTemp res32 = newTemp(Ity_I32);
IRTemp resHi = newTemp(Ity_I16);
IRTemp resLo = newTemp(Ity_I16);
IROp mulOp = syned ? Iop_MullS16 : Iop_MullU16;
UInt tBaseOp = syned ? X86G_CC_OP_SMULB : X86G_CC_OP_UMULB;
setFlags_MUL ( Ity_I16, t1, tmp, tBaseOp );
assign( res32, binop(mulOp, mkexpr(t1), mkexpr(tmp)) );
assign( resHi, unop(Iop_32HIto16,mkexpr(res32)));
assign( resLo, unop(Iop_32to16,mkexpr(res32)));
putIReg(2, R_EDX, mkexpr(resHi));
putIReg(2, R_EAX, mkexpr(resLo));
break;
}
case Ity_I8: {
IRTemp res16 = newTemp(Ity_I16);
IRTemp resHi = newTemp(Ity_I8);
IRTemp resLo = newTemp(Ity_I8);
IROp mulOp = syned ? Iop_MullS8 : Iop_MullU8;
UInt tBaseOp = syned ? X86G_CC_OP_SMULB : X86G_CC_OP_UMULB;
setFlags_MUL ( Ity_I8, t1, tmp, tBaseOp );
assign( res16, binop(mulOp, mkexpr(t1), mkexpr(tmp)) );
assign( resHi, unop(Iop_16HIto8,mkexpr(res16)));
assign( resLo, unop(Iop_16to8,mkexpr(res16)));
putIReg(2, R_EAX, mkexpr(res16));
break;
}
default:
vpanic("codegen_mulL_A_D(x86)");
}
DIP("%s%c %s\n", syned ? "imul" : "mul", nameISize(sz), tmp_txt);
}
/* Group 3 extended opcodes. */
static
UInt dis_Grp3 ( UChar sorb, Int sz, Int delta )
{
UInt d32;
UChar modrm;
HChar dis_buf[50];
Int len;
IRTemp addr;
IRType ty = szToITy(sz);
IRTemp t1 = newTemp(ty);
// IRTemp t2 = IRTemp_INVALID;
IRTemp dst1, src, dst0;
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
switch (gregOfRM(modrm)) {
case 0: { /* TEST */
delta++; d32 = getUDisp(sz, delta); delta += sz;
dst1 = newTemp(ty);
assign(dst1, binop(mkSizedOp(ty,Iop_And8),
getIReg(sz,eregOfRM(modrm)),
mkU(ty,d32)));
setFlags_DEP1( Iop_And8, dst1, ty );
DIP("test%c $0x%x, %s\n", nameISize(sz), d32,
nameIReg(sz, eregOfRM(modrm)));
break;
}
case 2: /* NOT */
delta++;
putIReg(sz, eregOfRM(modrm),
unop(mkSizedOp(ty,Iop_Not8),
getIReg(sz, eregOfRM(modrm))));
DIP("not%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
case 3: /* NEG */
delta++;
dst0 = newTemp(ty);
src = newTemp(ty);
dst1 = newTemp(ty);
assign(dst0, mkU(ty,0));
assign(src, getIReg(sz,eregOfRM(modrm)));
assign(dst1, unop(mkSizedOp(ty,Iop_Neg8), mkexpr(src)));
setFlags_DEP1_DEP2(Iop_Sub8, dst0, src, ty);
putIReg(sz, eregOfRM(modrm), mkexpr(dst1));
DIP("neg%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
case 4: /* MUL (unsigned widening) */
delta++;
src = newTemp(ty);
assign(src, getIReg(sz,eregOfRM(modrm)));
codegen_mulL_A_D ( sz, False, src, nameIReg(sz,eregOfRM(modrm)) );
break;
case 5: /* IMUL (signed widening) */
delta++;
src = newTemp(ty);
assign(src, getIReg(sz,eregOfRM(modrm)));
codegen_mulL_A_D ( sz, True, src, nameIReg(sz,eregOfRM(modrm)) );
break;
case 6: /* DIV */
delta++;
assign( t1, getIReg(sz, eregOfRM(modrm)) );
codegen_div ( sz, t1, False );
DIP("div%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
case 7: /* IDIV */
delta++;
assign( t1, getIReg(sz, eregOfRM(modrm)) );
codegen_div ( sz, t1, True );
DIP("idiv%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
default:
vex_printf(
"unhandled Grp3(R) case %d\n", (Int)gregOfRM(modrm));
vpanic("Grp3(x86)");
}
} else {
addr = disAMode ( &len, sorb, delta, dis_buf );
t1 = newTemp(ty);
delta += len;
assign(t1, loadLE(ty,mkexpr(addr)));
switch (gregOfRM(modrm)) {
case 0: { /* TEST */
d32 = getUDisp(sz, delta); delta += sz;
dst1 = newTemp(ty);
assign(dst1, binop(mkSizedOp(ty,Iop_And8),
mkexpr(t1), mkU(ty,d32)));
setFlags_DEP1( Iop_And8, dst1, ty );
DIP("test%c $0x%x, %s\n", nameISize(sz), d32, dis_buf);
break;
}
case 2: /* NOT */
storeLE( mkexpr(addr), unop(mkSizedOp(ty,Iop_Not8), mkexpr(t1)));
DIP("not%c %s\n", nameISize(sz), dis_buf);
break;
case 3: /* NEG */
dst0 = newTemp(ty);
src = newTemp(ty);
dst1 = newTemp(ty);
assign(dst0, mkU(ty,0));
assign(src, mkexpr(t1));
assign(dst1, unop(mkSizedOp(ty,Iop_Neg8), mkexpr(src)));
setFlags_DEP1_DEP2(Iop_Sub8, dst0, src, ty);
storeLE( mkexpr(addr), mkexpr(dst1) );
DIP("neg%c %s\n", nameISize(sz), dis_buf);
break;
case 4: /* MUL */
codegen_mulL_A_D ( sz, False, t1, dis_buf );
break;
case 5: /* IMUL */
codegen_mulL_A_D ( sz, True, t1, dis_buf );
break;
case 6: /* DIV */
codegen_div ( sz, t1, False );
DIP("div%c %s\n", nameISize(sz), dis_buf);
break;
case 7: /* IDIV */
codegen_div ( sz, t1, True );
DIP("idiv%c %s\n", nameISize(sz), dis_buf);
break;
default:
vex_printf(
"unhandled Grp3(M) case %d\n", (Int)gregOfRM(modrm));
vpanic("Grp3(x86)");
}
}
return delta;
}
/* Group 4 extended opcodes. */
static
UInt dis_Grp4 ( UChar sorb, Int delta )
{
Int alen;
UChar modrm;
HChar dis_buf[50];
IRType ty = Ity_I8;
IRTemp t1 = newTemp(ty);
IRTemp t2 = newTemp(ty);
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
assign(t1, getIReg(1, eregOfRM(modrm)));
switch (gregOfRM(modrm)) {
case 0: /* INC */
assign(t2, binop(Iop_Add8, mkexpr(t1), mkU8(1)));
putIReg(1, eregOfRM(modrm), mkexpr(t2));
setFlags_INC_DEC( True, t2, ty );
break;
case 1: /* DEC */
assign(t2, binop(Iop_Sub8, mkexpr(t1), mkU8(1)));
putIReg(1, eregOfRM(modrm), mkexpr(t2));
setFlags_INC_DEC( False, t2, ty );
break;
default:
vex_printf(
"unhandled Grp4(R) case %d\n", (Int)gregOfRM(modrm));
vpanic("Grp4(x86,R)");
}
delta++;
DIP("%sb %s\n", nameGrp4(gregOfRM(modrm)),
nameIReg(1, eregOfRM(modrm)));
} else {
IRTemp addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( t1, loadLE(ty, mkexpr(addr)) );
switch (gregOfRM(modrm)) {
case 0: /* INC */
assign(t2, binop(Iop_Add8, mkexpr(t1), mkU8(1)));
storeLE( mkexpr(addr), mkexpr(t2) );
setFlags_INC_DEC( True, t2, ty );
break;
case 1: /* DEC */
assign(t2, binop(Iop_Sub8, mkexpr(t1), mkU8(1)));
storeLE( mkexpr(addr), mkexpr(t2) );
setFlags_INC_DEC( False, t2, ty );
break;
default:
vex_printf(
"unhandled Grp4(M) case %d\n", (Int)gregOfRM(modrm));
vpanic("Grp4(x86,M)");
}
delta += alen;
DIP("%sb %s\n", nameGrp4(gregOfRM(modrm)), dis_buf);
}
return delta;
}
/* Group 5 extended opcodes. */
static
UInt dis_Grp5 ( UChar sorb, Int sz, Int delta, DisResult* dres )
{
Int len;
UChar modrm;
HChar dis_buf[50];
IRTemp addr = IRTemp_INVALID;
IRType ty = szToITy(sz);
IRTemp t1 = newTemp(ty);
IRTemp t2 = IRTemp_INVALID;
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
assign(t1, getIReg(sz,eregOfRM(modrm)));
switch (gregOfRM(modrm)) {
case 0: /* INC */
vassert(sz == 2 || sz == 4);
t2 = newTemp(ty);
assign(t2, binop(mkSizedOp(ty,Iop_Add8),
mkexpr(t1), mkU(ty,1)));
setFlags_INC_DEC( True, t2, ty );
putIReg(sz,eregOfRM(modrm),mkexpr(t2));
break;
case 1: /* DEC */
vassert(sz == 2 || sz == 4);
t2 = newTemp(ty);
assign(t2, binop(mkSizedOp(ty,Iop_Sub8),
mkexpr(t1), mkU(ty,1)));
setFlags_INC_DEC( False, t2, ty );
putIReg(sz,eregOfRM(modrm),mkexpr(t2));
break;
case 2: /* call Ev */
vassert(sz == 4);
t2 = newTemp(Ity_I32);
assign(t2, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4)));
putIReg(4, R_ESP, mkexpr(t2));
storeLE( mkexpr(t2), mkU32(guest_EIP_bbstart+delta+1));
jmp_treg(Ijk_Call,t1);
dres->whatNext = Dis_StopHere;
break;
case 4: /* jmp Ev */
vassert(sz == 4);
jmp_treg(Ijk_Boring,t1);
dres->whatNext = Dis_StopHere;
break;
default:
vex_printf(
"unhandled Grp5(R) case %d\n", (Int)gregOfRM(modrm));
vpanic("Grp5(x86)");
}
delta++;
DIP("%s%c %s\n", nameGrp5(gregOfRM(modrm)),
nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
} else {
addr = disAMode ( &len, sorb, delta, dis_buf );
assign(t1, loadLE(ty,mkexpr(addr)));
switch (gregOfRM(modrm)) {
case 0: /* INC */
t2 = newTemp(ty);
assign(t2, binop(mkSizedOp(ty,Iop_Add8),
mkexpr(t1), mkU(ty,1)));
setFlags_INC_DEC( True, t2, ty );
storeLE(mkexpr(addr),mkexpr(t2));
break;
case 1: /* DEC */
t2 = newTemp(ty);
assign(t2, binop(mkSizedOp(ty,Iop_Sub8),
mkexpr(t1), mkU(ty,1)));
setFlags_INC_DEC( False, t2, ty );
storeLE(mkexpr(addr),mkexpr(t2));
break;
case 2: /* call Ev */
vassert(sz == 4);
t2 = newTemp(Ity_I32);
assign(t2, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4)));
putIReg(4, R_ESP, mkexpr(t2));
storeLE( mkexpr(t2), mkU32(guest_EIP_bbstart+delta+len));
jmp_treg(Ijk_Call,t1);
dres->whatNext = Dis_StopHere;
break;
case 4: /* JMP Ev */
vassert(sz == 4);
jmp_treg(Ijk_Boring,t1);
dres->whatNext = Dis_StopHere;
break;
case 6: /* PUSH Ev */
vassert(sz == 4 || sz == 2);
t2 = newTemp(Ity_I32);
assign( t2, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) );
putIReg(4, R_ESP, mkexpr(t2) );
storeLE( mkexpr(t2), mkexpr(t1) );
break;
default:
vex_printf(
"unhandled Grp5(M) case %d\n", (Int)gregOfRM(modrm));
vpanic("Grp5(x86)");
}
delta += len;
DIP("%s%c %s\n", nameGrp5(gregOfRM(modrm)),
nameISize(sz), dis_buf);
}
return delta;
}
/*------------------------------------------------------------*/
/*--- Disassembling string ops (including REP prefixes) ---*/
/*------------------------------------------------------------*/
/* Code shared by all the string ops */
static
void dis_string_op_increment(Int sz, Int t_inc)
{
if (sz == 4 || sz == 2) {
assign( t_inc,
binop(Iop_Shl32, IRExpr_Get( OFFB_DFLAG, Ity_I32 ),
mkU8(sz/2) ) );
} else {
assign( t_inc,
IRExpr_Get( OFFB_DFLAG, Ity_I32 ) );
}
}
static
void dis_string_op( void (*dis_OP)( Int, IRTemp ),
Int sz, HChar* name, UChar sorb )
{
IRTemp t_inc = newTemp(Ity_I32);
vassert(sorb == 0);
dis_string_op_increment(sz, t_inc);
dis_OP( sz, t_inc );
DIP("%s%c\n", name, nameISize(sz));
}
static
void dis_MOVS ( Int sz, IRTemp t_inc )
{
IRType ty = szToITy(sz);
IRTemp td = newTemp(Ity_I32); /* EDI */
IRTemp ts = newTemp(Ity_I32); /* ESI */
assign( td, getIReg(4, R_EDI) );
assign( ts, getIReg(4, R_ESI) );
storeLE( mkexpr(td), loadLE(ty,mkexpr(ts)) );
putIReg( 4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) );
putIReg( 4, R_ESI, binop(Iop_Add32, mkexpr(ts), mkexpr(t_inc)) );
}
static
void dis_LODS ( Int sz, IRTemp t_inc )
{
IRType ty = szToITy(sz);
IRTemp ts = newTemp(Ity_I32); /* ESI */
assign( ts, getIReg(4, R_ESI) );
putIReg( sz, R_EAX, loadLE(ty, mkexpr(ts)) );
putIReg( 4, R_ESI, binop(Iop_Add32, mkexpr(ts), mkexpr(t_inc)) );
}
static
void dis_STOS ( Int sz, IRTemp t_inc )
{
IRType ty = szToITy(sz);
IRTemp ta = newTemp(ty); /* EAX */
IRTemp td = newTemp(Ity_I32); /* EDI */
assign( ta, getIReg(sz, R_EAX) );
assign( td, getIReg(4, R_EDI) );
storeLE( mkexpr(td), mkexpr(ta) );
putIReg( 4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) );
}
static
void dis_CMPS ( Int sz, IRTemp t_inc )
{
IRType ty = szToITy(sz);
IRTemp tdv = newTemp(ty); /* (EDI) */
IRTemp tsv = newTemp(ty); /* (ESI) */
IRTemp td = newTemp(Ity_I32); /* EDI */
IRTemp ts = newTemp(Ity_I32); /* ESI */
assign( td, getIReg(4, R_EDI) );
assign( ts, getIReg(4, R_ESI) );
assign( tdv, loadLE(ty,mkexpr(td)) );
assign( tsv, loadLE(ty,mkexpr(ts)) );
setFlags_DEP1_DEP2 ( Iop_Sub8, tsv, tdv, ty );
putIReg(4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) );
putIReg(4, R_ESI, binop(Iop_Add32, mkexpr(ts), mkexpr(t_inc)) );
}
static
void dis_SCAS ( Int sz, IRTemp t_inc )
{
IRType ty = szToITy(sz);
IRTemp ta = newTemp(ty); /* EAX */
IRTemp td = newTemp(Ity_I32); /* EDI */
IRTemp tdv = newTemp(ty); /* (EDI) */
assign( ta, getIReg(sz, R_EAX) );
assign( td, getIReg(4, R_EDI) );
assign( tdv, loadLE(ty,mkexpr(td)) );
setFlags_DEP1_DEP2 ( Iop_Sub8, ta, tdv, ty );
putIReg(4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) );
}
/* Wrap the appropriate string op inside a REP/REPE/REPNE.
We assume the insn is the last one in the basic block, and so emit a jump
to the next insn, rather than just falling through. */
static
void dis_REP_op ( X86Condcode cond,
void (*dis_OP)(Int, IRTemp),
Int sz, Addr32 eip, Addr32 eip_next, HChar* name )
{
IRTemp t_inc = newTemp(Ity_I32);
IRTemp tc = newTemp(Ity_I32); /* ECX */
assign( tc, getIReg(4,R_ECX) );
stmt( IRStmt_Exit( binop(Iop_CmpEQ32,mkexpr(tc),mkU32(0)),
Ijk_Boring,
IRConst_U32(eip_next) ) );
putIReg(4, R_ECX, binop(Iop_Sub32, mkexpr(tc), mkU32(1)) );
dis_string_op_increment(sz, t_inc);
dis_OP (sz, t_inc);
if (cond == X86CondAlways) {
jmp_lit(Ijk_Boring,eip);
} else {
stmt( IRStmt_Exit( mk_x86g_calculate_condition(cond),
Ijk_Boring,
IRConst_U32(eip) ) );
jmp_lit(Ijk_Boring,eip_next);
}
DIP("%s%c\n", name, nameISize(sz));
}
/*------------------------------------------------------------*/
/*--- Arithmetic, etc. ---*/
/*------------------------------------------------------------*/
/* IMUL E, G. Supplied eip points to the modR/M byte. */
static
UInt dis_mul_E_G ( UChar sorb,
Int size,
Int delta0 )
{
Int alen;
HChar dis_buf[50];
UChar rm = getIByte(delta0);
IRType ty = szToITy(size);
IRTemp te = newTemp(ty);
IRTemp tg = newTemp(ty);
IRTemp resLo = newTemp(ty);
assign( tg, getIReg(size, gregOfRM(rm)) );
if (epartIsReg(rm)) {
assign( te, getIReg(size, eregOfRM(rm)) );
} else {
IRTemp addr = disAMode( &alen, sorb, delta0, dis_buf );
assign( te, loadLE(ty,mkexpr(addr)) );
}
setFlags_MUL ( ty, te, tg, X86G_CC_OP_SMULB );
assign( resLo, binop( mkSizedOp(ty, Iop_Mul8), mkexpr(te), mkexpr(tg) ) );
putIReg(size, gregOfRM(rm), mkexpr(resLo) );
if (epartIsReg(rm)) {
DIP("imul%c %s, %s\n", nameISize(size),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+delta0;
} else {
DIP("imul%c %s, %s\n", nameISize(size),
dis_buf, nameIReg(size,gregOfRM(rm)));
return alen+delta0;
}
}
/* IMUL I * E -> G. Supplied eip points to the modR/M byte. */
static
UInt dis_imul_I_E_G ( UChar sorb,
Int size,
Int delta,
Int litsize )
{
Int d32, alen;
HChar dis_buf[50];
UChar rm = getIByte(delta);
IRType ty = szToITy(size);
IRTemp te = newTemp(ty);
IRTemp tl = newTemp(ty);
IRTemp resLo = newTemp(ty);
vassert(size == 1 || size == 2 || size == 4);
if (epartIsReg(rm)) {
assign(te, getIReg(size, eregOfRM(rm)));
delta++;
} else {
IRTemp addr = disAMode( &alen, sorb, delta, dis_buf );
assign(te, loadLE(ty, mkexpr(addr)));
delta += alen;
}
d32 = getSDisp(litsize,delta);
delta += litsize;
if (size == 1) d32 &= 0xFF;
if (size == 2) d32 &= 0xFFFF;
assign(tl, mkU(ty,d32));
assign( resLo, binop( mkSizedOp(ty, Iop_Mul8), mkexpr(te), mkexpr(tl) ));
setFlags_MUL ( ty, te, tl, X86G_CC_OP_SMULB );
putIReg(size, gregOfRM(rm), mkexpr(resLo));
DIP("imul %d, %s, %s\n", d32,
( epartIsReg(rm) ? nameIReg(size,eregOfRM(rm)) : dis_buf ),
nameIReg(size,gregOfRM(rm)) );
return delta;
}
/*------------------------------------------------------------*/
/*--- ---*/
/*--- x87 FLOATING POINT INSTRUCTIONS ---*/
/*--- ---*/
/*------------------------------------------------------------*/
/* --- Helper functions for dealing with the register stack. --- */
/* --- Set the emulation-warning pseudo-register. --- */
static void put_emwarn ( IRExpr* e /* :: Ity_I32 */ )
{
vassert(typeOfIRExpr(irbb->tyenv, e) == Ity_I32);
stmt( IRStmt_Put( OFFB_EMWARN, e ) );
}
/* --- Produce an IRExpr* denoting a 64-bit QNaN. --- */
static IRExpr* mkQNaN64 ( void )
{
/* QNaN is 0 2047 1 0(51times)
== 0b 11111111111b 1 0(51times)
== 0x7FF8 0000 0000 0000
*/
return IRExpr_Const(IRConst_F64i(0x7FF8000000000000ULL));
}
/* --------- Get/put the top-of-stack pointer. --------- */
static IRExpr* get_ftop ( void )
{
return IRExpr_Get( OFFB_FTOP, Ity_I32 );
}
static void put_ftop ( IRExpr* e )
{
vassert(typeOfIRExpr(irbb->tyenv, e) == Ity_I32);
stmt( IRStmt_Put( OFFB_FTOP, e ) );
}
/* --------- Get/put the C3210 bits. --------- */
static IRExpr* get_C3210 ( void )
{
return IRExpr_Get( OFFB_FC3210, Ity_I32 );
}
static void put_C3210 ( IRExpr* e )
{
stmt( IRStmt_Put( OFFB_FC3210, e ) );
}
/* --------- Get/put the FPU rounding mode. --------- */
static IRExpr* /* :: Ity_I32 */ get_fpround ( void )
{
return IRExpr_Get( OFFB_FPROUND, Ity_I32 );
}
static void put_fpround ( IRExpr* /* :: Ity_I32 */ e )
{
stmt( IRStmt_Put( OFFB_FPROUND, e ) );
}
/* --------- Synthesise a 2-bit FPU rounding mode. --------- */
/* Produces a value in 0 .. 3, which is encoded as per the type
IRRoundingMode. Since the guest_FPROUND value is also encoded as
per IRRoundingMode, we merely need to get it and mask it for
safety.
*/
static IRExpr* /* :: Ity_I32 */ get_roundingmode ( void )
{
return binop( Iop_And32, get_fpround(), mkU32(3) );
}
static IRExpr* /* :: Ity_I32 */ get_FAKE_roundingmode ( void )
{
return mkU32(Irrm_NEAREST);
}
/* --------- Get/set FP register tag bytes. --------- */
/* Given i, and some expression e, generate 'ST_TAG(i) = e'. */
static void put_ST_TAG ( Int i, IRExpr* value )
{
IRArray* descr;
vassert(typeOfIRExpr(irbb->tyenv, value) == Ity_I8);
descr = mkIRArray( OFFB_FPTAGS, Ity_I8, 8 );
stmt( IRStmt_PutI( descr, get_ftop(), i, value ) );
}
/* Given i, generate an expression yielding 'ST_TAG(i)'. This will be
zero to indicate "Empty" and nonzero to indicate "NonEmpty". */
static IRExpr* get_ST_TAG ( Int i )
{
IRArray* descr = mkIRArray( OFFB_FPTAGS, Ity_I8, 8 );
return IRExpr_GetI( descr, get_ftop(), i );
}
/* --------- Get/set FP registers. --------- */
/* Given i, and some expression e, emit 'ST(i) = e' and set the
register's tag to indicate the register is full. The previous
state of the register is not checked. */
static void put_ST_UNCHECKED ( Int i, IRExpr* value )
{
IRArray* descr;
vassert(typeOfIRExpr(irbb->tyenv, value) == Ity_F64);
descr = mkIRArray( OFFB_FPREGS, Ity_F64, 8 );
stmt( IRStmt_PutI( descr, get_ftop(), i, value ) );
/* Mark the register as in-use. */
put_ST_TAG(i, mkU8(1));
}
/* Given i, and some expression e, emit
ST(i) = is_full(i) ? NaN : e
and set the tag accordingly.
*/
static void put_ST ( Int i, IRExpr* value )
{
put_ST_UNCHECKED( i,
IRExpr_Mux0X( get_ST_TAG(i),
/* 0 means empty */
value,
/* non-0 means full */
mkQNaN64()
)
);
}
/* Given i, generate an expression yielding 'ST(i)'. */
static IRExpr* get_ST_UNCHECKED ( Int i )
{
IRArray* descr = mkIRArray( OFFB_FPREGS, Ity_F64, 8 );
return IRExpr_GetI( descr, get_ftop(), i );
}
/* Given i, generate an expression yielding
is_full(i) ? ST(i) : NaN
*/
static IRExpr* get_ST ( Int i )
{
return
IRExpr_Mux0X( get_ST_TAG(i),
/* 0 means empty */
mkQNaN64(),
/* non-0 means full */
get_ST_UNCHECKED(i));
}
/* Adjust FTOP downwards by one register. */
static void fp_push ( void )
{
put_ftop( binop(Iop_Sub32, get_ftop(), mkU32(1)) );
}
/* Adjust FTOP upwards by one register, and mark the vacated register
as empty. */
static void fp_pop ( void )
{
put_ST_TAG(0, mkU8(0));
put_ftop( binop(Iop_Add32, get_ftop(), mkU32(1)) );
}
/* Clear the C2 bit of the FPU status register, for
sin/cos/tan/sincos. */
static void clear_C2 ( void )
{
put_C3210( binop(Iop_And32, get_C3210(), mkU32(~X86G_FC_MASK_C2)) );
}
/* Invent a plausible-looking FPU status word value:
((ftop & 7) << 11) | (c3210 & 0x4700)
*/
static IRExpr* get_FPU_sw ( void )
{
return
unop(Iop_32to16,
binop(Iop_Or32,
binop(Iop_Shl32,
binop(Iop_And32, get_ftop(), mkU32(7)),
mkU8(11)),
binop(Iop_And32, get_C3210(), mkU32(0x4700))
));
}
/* ------------------------------------------------------- */
/* Given all that stack-mangling junk, we can now go ahead
and describe FP instructions.
*/
/* ST(0) = ST(0) `op` mem64/32(addr)
Need to check ST(0)'s tag on read, but not on write.
*/
static
void fp_do_op_mem_ST_0 ( IRTemp addr, HChar* op_txt, HChar* dis_buf,
IROp op, Bool dbl )
{
DIP("f%s%c %s\n", op_txt, dbl?'l':'s', dis_buf);
if (dbl) {
put_ST_UNCHECKED(0,
triop( op,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0),
loadLE(Ity_F64,mkexpr(addr))
));
} else {
put_ST_UNCHECKED(0,
triop( op,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0),
unop(Iop_F32toF64, loadLE(Ity_F32,mkexpr(addr)))
));
}
}
/* ST(0) = mem64/32(addr) `op` ST(0)
Need to check ST(0)'s tag on read, but not on write.
*/
static
void fp_do_oprev_mem_ST_0 ( IRTemp addr, HChar* op_txt, HChar* dis_buf,
IROp op, Bool dbl )
{
DIP("f%s%c %s\n", op_txt, dbl?'l':'s', dis_buf);
if (dbl) {
put_ST_UNCHECKED(0,
triop( op,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
loadLE(Ity_F64,mkexpr(addr)),
get_ST(0)
));
} else {
put_ST_UNCHECKED(0,
triop( op,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
unop(Iop_F32toF64, loadLE(Ity_F32,mkexpr(addr))),
get_ST(0)
));
}
}
/* ST(dst) = ST(dst) `op` ST(src).
Check dst and src tags when reading but not on write.
*/
static
void fp_do_op_ST_ST ( HChar* op_txt, IROp op, UInt st_src, UInt st_dst,
Bool pop_after )
{
DIP("f%s%s st(%d), st(%d)\n", op_txt, pop_after?"p":"",
(Int)st_src, (Int)st_dst );
put_ST_UNCHECKED(
st_dst,
triop( op,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(st_dst),
get_ST(st_src) )
);
if (pop_after)
fp_pop();
}
/* ST(dst) = ST(src) `op` ST(dst).
Check dst and src tags when reading but not on write.
*/
static
void fp_do_oprev_ST_ST ( HChar* op_txt, IROp op, UInt st_src, UInt st_dst,
Bool pop_after )
{
DIP("f%s%s st(%d), st(%d)\n", op_txt, pop_after?"p":"",
(Int)st_src, (Int)st_dst );
put_ST_UNCHECKED(
st_dst,
triop( op,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(st_src),
get_ST(st_dst) )
);
if (pop_after)
fp_pop();
}
/* %eflags(Z,P,C) = UCOMI( st(0), st(i) ) */
static void fp_do_ucomi_ST0_STi ( UInt i, Bool pop_after )
{
DIP("fucomi%s %%st(0),%%st(%d)\n", pop_after ? "p" : "", (Int)i );
/* This is a bit of a hack (and isn't really right). It sets
Z,P,C,O correctly, but forces A and S to zero, whereas the Intel
documentation implies A and S are unchanged.
*/
/* It's also fishy in that it is used both for COMIP and
UCOMIP, and they aren't the same (although similar). */
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put( OFFB_CC_DEP1,
binop( Iop_And32,
binop(Iop_CmpF64, get_ST(0), get_ST(i)),
mkU32(0x45)
)));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
if (pop_after)
fp_pop();
}
static
UInt dis_FPU ( Bool* decode_ok, UChar sorb, Int delta )
{
Int len;
UInt r_src, r_dst;
HChar dis_buf[50];
IRTemp t1, t2;
/* On entry, delta points at the second byte of the insn (the modrm
byte).*/
UChar first_opcode = getIByte(delta-1);
UChar modrm = getIByte(delta+0);
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xD8 opcodes +-+-+-+-+-+-+-+ */
if (first_opcode == 0xD8) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FADD single-real */
fp_do_op_mem_ST_0 ( addr, "add", dis_buf, Iop_AddF64, False );
break;
case 1: /* FMUL single-real */
fp_do_op_mem_ST_0 ( addr, "mul", dis_buf, Iop_MulF64, False );
break;
case 2: /* FCOM single-real */
DIP("fcoms %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
unop(Iop_F32toF64,
loadLE(Ity_F32,mkexpr(addr)))),
mkU8(8)),
mkU32(0x4500)
));
break;
case 3: /* FCOMP single-real */
DIP("fcomps %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
unop(Iop_F32toF64,
loadLE(Ity_F32,mkexpr(addr)))),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
break;
case 4: /* FSUB single-real */
fp_do_op_mem_ST_0 ( addr, "sub", dis_buf, Iop_SubF64, False );
break;
case 5: /* FSUBR single-real */
fp_do_oprev_mem_ST_0 ( addr, "subr", dis_buf, Iop_SubF64, False );
break;
case 6: /* FDIV single-real */
fp_do_op_mem_ST_0 ( addr, "div", dis_buf, Iop_DivF64, False );
break;
case 7: /* FDIVR single-real */
fp_do_oprev_mem_ST_0 ( addr, "divr", dis_buf, Iop_DivF64, False );
break;
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xD8\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FADD %st(?),%st(0) */
fp_do_op_ST_ST ( "add", Iop_AddF64, modrm - 0xC0, 0, False );
break;
case 0xC8 ... 0xCF: /* FMUL %st(?),%st(0) */
fp_do_op_ST_ST ( "mul", Iop_MulF64, modrm - 0xC8, 0, False );
break;
/* Dunno if this is right */
case 0xD0 ... 0xD7: /* FCOM %st(?),%st(0) */
r_dst = (UInt)modrm - 0xD0;
DIP("fcom %%st(0),%%st(%d)\n", (Int)r_dst);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)),
mkU8(8)),
mkU32(0x4500)
));
break;
/* Dunno if this is right */
case 0xD8 ... 0xDF: /* FCOMP %st(?),%st(0) */
r_dst = (UInt)modrm - 0xD8;
DIP("fcomp %%st(0),%%st(%d)\n", (Int)r_dst);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
break;
case 0xE0 ... 0xE7: /* FSUB %st(?),%st(0) */
fp_do_op_ST_ST ( "sub", Iop_SubF64, modrm - 0xE0, 0, False );
break;
case 0xE8 ... 0xEF: /* FSUBR %st(?),%st(0) */
fp_do_oprev_ST_ST ( "subr", Iop_SubF64, modrm - 0xE8, 0, False );
break;
case 0xF0 ... 0xF7: /* FDIV %st(?),%st(0) */
fp_do_op_ST_ST ( "div", Iop_DivF64, modrm - 0xF0, 0, False );
break;
case 0xF8 ... 0xFF: /* FDIVR %st(?),%st(0) */
fp_do_oprev_ST_ST ( "divr", Iop_DivF64, modrm - 0xF8, 0, False );
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xD9 opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xD9) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FLD single-real */
DIP("flds %s\n", dis_buf);
fp_push();
put_ST(0, unop(Iop_F32toF64,
loadLE(Ity_F32, mkexpr(addr))));
break;
case 2: /* FST single-real */
DIP("fsts %s\n", dis_buf);
storeLE(mkexpr(addr),
binop(Iop_F64toF32, get_roundingmode(), get_ST(0)));
break;
case 3: /* FSTP single-real */
DIP("fstps %s\n", dis_buf);
storeLE(mkexpr(addr),
binop(Iop_F64toF32, get_roundingmode(), get_ST(0)));
fp_pop();
break;
case 4: { /* FLDENV m28 */
/* Uses dirty helper:
VexEmWarn x86g_do_FLDENV ( VexGuestX86State*, HWord ) */
IRTemp ew = newTemp(Ity_I32);
IRDirty* d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_FLDENV",
&x86g_dirtyhelper_FLDENV,
mkIRExprVec_1( mkexpr(addr) )
);
d->needsBBP = True;
d->tmp = ew;
/* declare we're reading memory */
d->mFx = Ifx_Read;
d->mAddr = mkexpr(addr);
d->mSize = 28;
/* declare we're writing guest state */
d->nFxState = 4;
d->fxState[0].fx = Ifx_Write;
d->fxState[0].offset = OFFB_FTOP;
d->fxState[0].size = sizeof(UInt);
d->fxState[1].fx = Ifx_Write;
d->fxState[1].offset = OFFB_FPTAGS;
d->fxState[1].size = 8 * sizeof(UChar);
d->fxState[2].fx = Ifx_Write;
d->fxState[2].offset = OFFB_FPROUND;
d->fxState[2].size = sizeof(UInt);
d->fxState[3].fx = Ifx_Write;
d->fxState[3].offset = OFFB_FC3210;
d->fxState[3].size = sizeof(UInt);
stmt( IRStmt_Dirty(d) );
/* ew contains any emulation warning we may need to
issue. If needed, side-exit to the next insn,
reporting the warning, so that Valgrind's dispatcher
sees the warning. */
put_emwarn( mkexpr(ew) );
stmt(
IRStmt_Exit(
binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)),
Ijk_EmWarn,
IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta)
)
);
DIP("fldenv %s\n", dis_buf);
break;
}
case 5: {/* FLDCW */
/* The only thing we observe in the control word is the
rounding mode. Therefore, pass the 16-bit value
(x87 native-format control word) to a clean helper,
getting back a 64-bit value, the lower half of which
is the FPROUND value to store, and the upper half of
which is the emulation-warning token which may be
generated.
*/
/* ULong x86h_check_fldcw ( UInt ); */
IRTemp t64 = newTemp(Ity_I64);
IRTemp ew = newTemp(Ity_I32);
DIP("fldcw %s\n", dis_buf);
assign( t64, mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86g_check_fldcw",
&x86g_check_fldcw,
mkIRExprVec_1(
unop( Iop_16Uto32,
loadLE(Ity_I16, mkexpr(addr)))
)
)
);
put_fpround( unop(Iop_64to32, mkexpr(t64)) );
assign( ew, unop(Iop_64HIto32, mkexpr(t64) ) );
put_emwarn( mkexpr(ew) );
/* Finally, if an emulation warning was reported,
side-exit to the next insn, reporting the warning,
so that Valgrind's dispatcher sees the warning. */
stmt(
IRStmt_Exit(
binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)),
Ijk_EmWarn,
IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta)
)
);
break;
}
case 6: { /* FNSTENV m28 */
/* Uses dirty helper:
void x86g_do_FSTENV ( VexGuestX86State*, HWord ) */
IRDirty* d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_FSTENV",
&x86g_dirtyhelper_FSTENV,
mkIRExprVec_1( mkexpr(addr) )
);
d->needsBBP = True;
/* declare we're writing memory */
d->mFx = Ifx_Write;
d->mAddr = mkexpr(addr);
d->mSize = 28;
/* declare we're reading guest state */
d->nFxState = 4;
d->fxState[0].fx = Ifx_Read;
d->fxState[0].offset = OFFB_FTOP;
d->fxState[0].size = sizeof(UInt);
d->fxState[1].fx = Ifx_Read;
d->fxState[1].offset = OFFB_FPTAGS;
d->fxState[1].size = 8 * sizeof(UChar);
d->fxState[2].fx = Ifx_Read;
d->fxState[2].offset = OFFB_FPROUND;
d->fxState[2].size = sizeof(UInt);
d->fxState[3].fx = Ifx_Read;
d->fxState[3].offset = OFFB_FC3210;
d->fxState[3].size = sizeof(UInt);
stmt( IRStmt_Dirty(d) );
DIP("fnstenv %s\n", dis_buf);
break;
}
case 7: /* FNSTCW */
/* Fake up a native x87 FPU control word. The only
thing it depends on is FPROUND[1:0], so call a clean
helper to cook it up. */
/* UInt x86h_create_fpucw ( UInt fpround ) */
DIP("fnstcw %s\n", dis_buf);
storeLE(
mkexpr(addr),
unop( Iop_32to16,
mkIRExprCCall(
Ity_I32, 0/*regp*/,
"x86g_create_fpucw", &x86g_create_fpucw,
mkIRExprVec_1( get_fpround() )
)
)
);
break;
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xD9\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FLD %st(?) */
r_src = (UInt)modrm - 0xC0;
DIP("fld %%st(%d)\n", (Int)r_src);
t1 = newTemp(Ity_F64);
assign(t1, get_ST(r_src));
fp_push();
put_ST(0, mkexpr(t1));
break;
case 0xC8 ... 0xCF: /* FXCH %st(?) */
r_src = (UInt)modrm - 0xC8;
DIP("fxch %%st(%d)\n", (Int)r_src);
t1 = newTemp(Ity_F64);
t2 = newTemp(Ity_F64);
assign(t1, get_ST(0));
assign(t2, get_ST(r_src));
put_ST_UNCHECKED(0, mkexpr(t2));
put_ST_UNCHECKED(r_src, mkexpr(t1));
break;
case 0xE0: /* FCHS */
DIP("fchs\n");
put_ST_UNCHECKED(0, unop(Iop_NegF64, get_ST(0)));
break;
case 0xE1: /* FABS */
DIP("fabs\n");
put_ST_UNCHECKED(0, unop(Iop_AbsF64, get_ST(0)));
break;
case 0xE4: /* FTST */
DIP("ftst\n");
/* This forces C1 to zero, which isn't right. */
/* Well, in fact the Intel docs say (bizarrely): "C1 is
set to 0 if stack underflow occurred; otherwise, set
to 0" which is pretty nonsensical. I guess it's a
typo. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
IRExpr_Const(IRConst_F64i(0x0ULL))),
mkU8(8)),
mkU32(0x4500)
));
break;
case 0xE5: { /* FXAM */
/* This is an interesting one. It examines %st(0),
regardless of whether the tag says it's empty or not.
Here, just pass both the tag (in our format) and the
value (as a double, actually a ULong) to a helper
function. */
IRExpr** args
= mkIRExprVec_2( unop(Iop_8Uto32, get_ST_TAG(0)),
unop(Iop_ReinterpF64asI64,
get_ST_UNCHECKED(0)) );
put_C3210(mkIRExprCCall(
Ity_I32,
0/*regparm*/,
"x86g_calculate_FXAM", &x86g_calculate_FXAM,
args
));
DIP("fxam\n");
break;
}
case 0xE8: /* FLD1 */
DIP("fld1\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(1.0))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x3ff0000000000000ULL)));
break;
case 0xE9: /* FLDL2T */
DIP("fldl2t\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(3.32192809488736234781))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x400a934f0979a371ULL)));
break;
case 0xEA: /* FLDL2E */
DIP("fldl2e\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(1.44269504088896340739))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x3ff71547652b82feULL)));
break;
case 0xEB: /* FLDPI */
DIP("fldpi\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(3.14159265358979323851))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x400921fb54442d18ULL)));
break;
case 0xEC: /* FLDLG2 */
DIP("fldlg2\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(0.301029995663981143))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x3fd34413509f79ffULL)));
break;
case 0xED: /* FLDLN2 */
DIP("fldln2\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(0.69314718055994530942))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x3fe62e42fefa39efULL)));
break;
case 0xEE: /* FLDZ */
DIP("fldz\n");
fp_push();
/* put_ST(0, IRExpr_Const(IRConst_F64(0.0))); */
put_ST(0, IRExpr_Const(IRConst_F64i(0x0000000000000000ULL)));
break;
case 0xF0: /* F2XM1 */
DIP("f2xm1\n");
put_ST_UNCHECKED(0,
binop(Iop_2xm1F64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0)));
break;
case 0xF1: /* FYL2X */
DIP("fyl2x\n");
put_ST_UNCHECKED(1,
triop(Iop_Yl2xF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(1),
get_ST(0)));
fp_pop();
break;
case 0xF2: /* FPTAN */
DIP("ftan\n");
put_ST_UNCHECKED(0,
binop(Iop_TanF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0)));
fp_push();
put_ST(0, IRExpr_Const(IRConst_F64(1.0)));
clear_C2(); /* HACK */
break;
case 0xF3: /* FPATAN */
DIP("fpatan\n");
put_ST_UNCHECKED(1,
triop(Iop_AtanF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(1),
get_ST(0)));
fp_pop();
break;
case 0xF4: { /* FXTRACT */
IRTemp argF = newTemp(Ity_F64);
IRTemp sigF = newTemp(Ity_F64);
IRTemp expF = newTemp(Ity_F64);
IRTemp argI = newTemp(Ity_I64);
IRTemp sigI = newTemp(Ity_I64);
IRTemp expI = newTemp(Ity_I64);
DIP("fxtract\n");
assign( argF, get_ST(0) );
assign( argI, unop(Iop_ReinterpF64asI64, mkexpr(argF)));
assign( sigI,
mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86amd64g_calculate_FXTRACT",
&x86amd64g_calculate_FXTRACT,
mkIRExprVec_2( mkexpr(argI),
mkIRExpr_HWord(0)/*sig*/ ))
);
assign( expI,
mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86amd64g_calculate_FXTRACT",
&x86amd64g_calculate_FXTRACT,
mkIRExprVec_2( mkexpr(argI),
mkIRExpr_HWord(1)/*exp*/ ))
);
assign( sigF, unop(Iop_ReinterpI64asF64, mkexpr(sigI)) );
assign( expF, unop(Iop_ReinterpI64asF64, mkexpr(expI)) );
/* exponent */
put_ST_UNCHECKED(0, mkexpr(expF) );
fp_push();
/* significand */
put_ST(0, mkexpr(sigF) );
break;
}
case 0xF5: { /* FPREM1 -- IEEE compliant */
IRTemp a1 = newTemp(Ity_F64);
IRTemp a2 = newTemp(Ity_F64);
DIP("fprem1\n");
/* Do FPREM1 twice, once to get the remainder, and once
to get the C3210 flag values. */
assign( a1, get_ST(0) );
assign( a2, get_ST(1) );
put_ST_UNCHECKED(0,
triop(Iop_PRem1F64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
mkexpr(a1),
mkexpr(a2)));
put_C3210(
triop(Iop_PRem1C3210F64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
mkexpr(a1),
mkexpr(a2)) );
break;
}
case 0xF7: /* FINCSTP */
DIP("fprem\n");
put_ftop( binop(Iop_Add32, get_ftop(), mkU32(1)) );
break;
case 0xF8: { /* FPREM -- not IEEE compliant */
IRTemp a1 = newTemp(Ity_F64);
IRTemp a2 = newTemp(Ity_F64);
DIP("fprem\n");
/* Do FPREM twice, once to get the remainder, and once
to get the C3210 flag values. */
assign( a1, get_ST(0) );
assign( a2, get_ST(1) );
put_ST_UNCHECKED(0,
triop(Iop_PRemF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
mkexpr(a1),
mkexpr(a2)));
put_C3210(
triop(Iop_PRemC3210F64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
mkexpr(a1),
mkexpr(a2)) );
break;
}
case 0xF9: /* FYL2XP1 */
DIP("fyl2xp1\n");
put_ST_UNCHECKED(1,
triop(Iop_Yl2xp1F64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(1),
get_ST(0)));
fp_pop();
break;
case 0xFA: /* FSQRT */
DIP("fsqrt\n");
put_ST_UNCHECKED(0,
binop(Iop_SqrtF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0)));
break;
case 0xFB: { /* FSINCOS */
IRTemp a1 = newTemp(Ity_F64);
assign( a1, get_ST(0) );
DIP("fsincos\n");
put_ST_UNCHECKED(0,
binop(Iop_SinF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
mkexpr(a1)));
fp_push();
put_ST(0,
binop(Iop_CosF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
mkexpr(a1)));
clear_C2(); /* HACK */
break;
}
case 0xFC: /* FRNDINT */
DIP("frndint\n");
put_ST_UNCHECKED(0,
binop(Iop_RoundF64toInt, get_roundingmode(), get_ST(0)) );
break;
case 0xFD: /* FSCALE */
DIP("fscale\n");
put_ST_UNCHECKED(0,
triop(Iop_ScaleF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0),
get_ST(1)));
break;
case 0xFE: /* FSIN */
DIP("fsin\n");
put_ST_UNCHECKED(0,
binop(Iop_SinF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0)));
clear_C2(); /* HACK */
break;
case 0xFF: /* FCOS */
DIP("fcos\n");
put_ST_UNCHECKED(0,
binop(Iop_CosF64,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0)));
clear_C2(); /* HACK */
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDA opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xDA) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IROp fop;
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FIADD m32int */ /* ST(0) += m32int */
DIP("fiaddl %s\n", dis_buf);
fop = Iop_AddF64;
goto do_fop_m32;
case 1: /* FIMUL m32int */ /* ST(0) *= m32int */
DIP("fimull %s\n", dis_buf);
fop = Iop_MulF64;
goto do_fop_m32;
case 2: /* FICOM m32int */
DIP("ficoml %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
unop(Iop_I32toF64,
loadLE(Ity_I32,mkexpr(addr)))),
mkU8(8)),
mkU32(0x4500)
));
break;
case 3: /* FICOMP m32int */
DIP("ficompl %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
unop(Iop_I32toF64,
loadLE(Ity_I32,mkexpr(addr)))),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
break;
case 4: /* FISUB m32int */ /* ST(0) -= m32int */
DIP("fisubl %s\n", dis_buf);
fop = Iop_SubF64;
goto do_fop_m32;
case 5: /* FISUBR m32int */ /* ST(0) = m32int - ST(0) */
DIP("fisubrl %s\n", dis_buf);
fop = Iop_SubF64;
goto do_foprev_m32;
case 6: /* FIDIV m32int */ /* ST(0) /= m32int */
DIP("fidivl %s\n", dis_buf);
fop = Iop_DivF64;
goto do_fop_m32;
case 7: /* FIDIVR m32int */ /* ST(0) = m32int / ST(0) */
DIP("fidivrl %s\n", dis_buf);
fop = Iop_DivF64;
goto do_foprev_m32;
do_fop_m32:
put_ST_UNCHECKED(0,
triop(fop,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0),
unop(Iop_I32toF64,
loadLE(Ity_I32, mkexpr(addr)))));
break;
do_foprev_m32:
put_ST_UNCHECKED(0,
triop(fop,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
unop(Iop_I32toF64,
loadLE(Ity_I32, mkexpr(addr))),
get_ST(0)));
break;
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xDA\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FCMOVB ST(i), ST(0) */
r_src = (UInt)modrm - 0xC0;
DIP("fcmovb %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondB)),
get_ST(0), get_ST(r_src)) );
break;
case 0xC8 ... 0xCF: /* FCMOVE(Z) ST(i), ST(0) */
r_src = (UInt)modrm - 0xC8;
DIP("fcmovz %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondZ)),
get_ST(0), get_ST(r_src)) );
break;
case 0xD0 ... 0xD7: /* FCMOVBE ST(i), ST(0) */
r_src = (UInt)modrm - 0xD0;
DIP("fcmovbe %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondBE)),
get_ST(0), get_ST(r_src)) );
break;
case 0xD8 ... 0xDF: /* FCMOVU ST(i), ST(0) */
r_src = (UInt)modrm - 0xD8;
DIP("fcmovu %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondP)),
get_ST(0), get_ST(r_src)) );
break;
case 0xE9: /* FUCOMPP %st(0),%st(1) */
DIP("fucompp %%st(0),%%st(1)\n");
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64, get_ST(0), get_ST(1)),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
fp_pop();
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDB opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xDB) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FILD m32int */
DIP("fildl %s\n", dis_buf);
fp_push();
put_ST(0, unop(Iop_I32toF64,
loadLE(Ity_I32, mkexpr(addr))));
break;
case 2: /* FIST m32 */
DIP("fistl %s\n", dis_buf);
storeLE( mkexpr(addr),
binop(Iop_F64toI32, get_roundingmode(), get_ST(0)) );
break;
case 3: /* FISTP m32 */
DIP("fistpl %s\n", dis_buf);
storeLE( mkexpr(addr),
binop(Iop_F64toI32, get_roundingmode(), get_ST(0)) );
fp_pop();
break;
case 5: { /* FLD extended-real */
/* Uses dirty helper:
ULong x86g_loadF80le ( UInt )
addr holds the address. First, do a dirty call to
get hold of the data. */
IRTemp val = newTemp(Ity_I64);
IRExpr** args = mkIRExprVec_1 ( mkexpr(addr) );
IRDirty* d = unsafeIRDirty_1_N (
val,
0/*regparms*/,
"x86g_dirtyhelper_loadF80le",
&x86g_dirtyhelper_loadF80le,
args
);
/* declare that we're reading memory */
d->mFx = Ifx_Read;
d->mAddr = mkexpr(addr);
d->mSize = 10;
/* execute the dirty call, dumping the result in val. */
stmt( IRStmt_Dirty(d) );
fp_push();
put_ST(0, unop(Iop_ReinterpI64asF64, mkexpr(val)));
DIP("fldt %s\n", dis_buf);
break;
}
case 7: { /* FSTP extended-real */
/* Uses dirty helper: void x86g_storeF80le ( UInt, ULong ) */
IRExpr** args
= mkIRExprVec_2( mkexpr(addr),
unop(Iop_ReinterpF64asI64, get_ST(0)) );
IRDirty* d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_storeF80le",
&x86g_dirtyhelper_storeF80le,
args
);
/* declare we're writing memory */
d->mFx = Ifx_Write;
d->mAddr = mkexpr(addr);
d->mSize = 10;
/* execute the dirty call. */
stmt( IRStmt_Dirty(d) );
fp_pop();
DIP("fstpt\n %s", dis_buf);
break;
}
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xDB\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FCMOVNB ST(i), ST(0) */
r_src = (UInt)modrm - 0xC0;
DIP("fcmovnb %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondNB)),
get_ST(0), get_ST(r_src)) );
break;
case 0xC8 ... 0xCF: /* FCMOVNE(NZ) ST(i), ST(0) */
r_src = (UInt)modrm - 0xC8;
DIP("fcmovnz %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondNZ)),
get_ST(0), get_ST(r_src)) );
break;
case 0xD0 ... 0xD7: /* FCMOVNBE ST(i), ST(0) */
r_src = (UInt)modrm - 0xD0;
DIP("fcmovnbe %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondNBE)),
get_ST(0), get_ST(r_src)) );
break;
case 0xD8 ... 0xDF: /* FCMOVNU ST(i), ST(0) */
r_src = (UInt)modrm - 0xD8;
DIP("fcmovnu %%st(%d), %%st(0)\n", (Int)r_src);
put_ST_UNCHECKED(0,
IRExpr_Mux0X(
unop(Iop_1Uto8,
mk_x86g_calculate_condition(X86CondNP)),
get_ST(0), get_ST(r_src)) );
break;
case 0xE2:
DIP("fnclex\n");
break;
case 0xE3: {
/* Uses dirty helper:
void x86g_do_FINIT ( VexGuestX86State* ) */
IRDirty* d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_FINIT",
&x86g_dirtyhelper_FINIT,
mkIRExprVec_0()
);
d->needsBBP = True;
/* declare we're writing guest state */
d->nFxState = 5;
d->fxState[0].fx = Ifx_Write;
d->fxState[0].offset = OFFB_FTOP;
d->fxState[0].size = sizeof(UInt);
d->fxState[1].fx = Ifx_Write;
d->fxState[1].offset = OFFB_FPREGS;
d->fxState[1].size = 8 * sizeof(ULong);
d->fxState[2].fx = Ifx_Write;
d->fxState[2].offset = OFFB_FPTAGS;
d->fxState[2].size = 8 * sizeof(UChar);
d->fxState[3].fx = Ifx_Write;
d->fxState[3].offset = OFFB_FPROUND;
d->fxState[3].size = sizeof(UInt);
d->fxState[4].fx = Ifx_Write;
d->fxState[4].offset = OFFB_FC3210;
d->fxState[4].size = sizeof(UInt);
stmt( IRStmt_Dirty(d) );
DIP("fninit\n");
break;
}
case 0xE8 ... 0xEF: /* FUCOMI %st(0),%st(?) */
fp_do_ucomi_ST0_STi( (UInt)modrm - 0xE8, False );
break;
case 0xF0 ... 0xF7: /* FCOMI %st(0),%st(?) */
fp_do_ucomi_ST0_STi( (UInt)modrm - 0xF0, False );
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDC opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xDC) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FADD double-real */
fp_do_op_mem_ST_0 ( addr, "add", dis_buf, Iop_AddF64, True );
break;
case 1: /* FMUL double-real */
fp_do_op_mem_ST_0 ( addr, "mul", dis_buf, Iop_MulF64, True );
break;
case 2: /* FCOM double-real */
DIP("fcoml %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
loadLE(Ity_F64,mkexpr(addr))),
mkU8(8)),
mkU32(0x4500)
));
break;
case 3: /* FCOMP double-real */
DIP("fcompl %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
loadLE(Ity_F64,mkexpr(addr))),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
break;
case 4: /* FSUB double-real */
fp_do_op_mem_ST_0 ( addr, "sub", dis_buf, Iop_SubF64, True );
break;
case 5: /* FSUBR double-real */
fp_do_oprev_mem_ST_0 ( addr, "subr", dis_buf, Iop_SubF64, True );
break;
case 6: /* FDIV double-real */
fp_do_op_mem_ST_0 ( addr, "div", dis_buf, Iop_DivF64, True );
break;
case 7: /* FDIVR double-real */
fp_do_oprev_mem_ST_0 ( addr, "divr", dis_buf, Iop_DivF64, True );
break;
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xDC\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FADD %st(0),%st(?) */
fp_do_op_ST_ST ( "add", Iop_AddF64, 0, modrm - 0xC0, False );
break;
case 0xC8 ... 0xCF: /* FMUL %st(0),%st(?) */
fp_do_op_ST_ST ( "mul", Iop_MulF64, 0, modrm - 0xC8, False );
break;
case 0xE0 ... 0xE7: /* FSUBR %st(0),%st(?) */
fp_do_oprev_ST_ST ( "subr", Iop_SubF64, 0, modrm - 0xE0, False );
break;
case 0xE8 ... 0xEF: /* FSUB %st(0),%st(?) */
fp_do_op_ST_ST ( "sub", Iop_SubF64, 0, modrm - 0xE8, False );
break;
case 0xF0 ... 0xF7: /* FDIVR %st(0),%st(?) */
fp_do_oprev_ST_ST ( "divr", Iop_DivF64, 0, modrm - 0xF0, False );
break;
case 0xF8 ... 0xFF: /* FDIV %st(0),%st(?) */
fp_do_op_ST_ST ( "div", Iop_DivF64, 0, modrm - 0xF8, False );
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDD opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xDD) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FLD double-real */
DIP("fldl %s\n", dis_buf);
fp_push();
put_ST(0, loadLE(Ity_F64, mkexpr(addr)));
break;
case 2: /* FST double-real */
DIP("fstl %s\n", dis_buf);
storeLE(mkexpr(addr), get_ST(0));
break;
case 3: /* FSTP double-real */
DIP("fstpl %s\n", dis_buf);
storeLE(mkexpr(addr), get_ST(0));
fp_pop();
break;
case 4: { /* FRSTOR m108 */
/* Uses dirty helper:
VexEmWarn x86g_do_FRSTOR ( VexGuestX86State*, Addr32 ) */
IRTemp ew = newTemp(Ity_I32);
IRDirty* d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_FRSTOR",
&x86g_dirtyhelper_FRSTOR,
mkIRExprVec_1( mkexpr(addr) )
);
d->needsBBP = True;
d->tmp = ew;
/* declare we're reading memory */
d->mFx = Ifx_Read;
d->mAddr = mkexpr(addr);
d->mSize = 108;
/* declare we're writing guest state */
d->nFxState = 5;
d->fxState[0].fx = Ifx_Write;
d->fxState[0].offset = OFFB_FTOP;
d->fxState[0].size = sizeof(UInt);
d->fxState[1].fx = Ifx_Write;
d->fxState[1].offset = OFFB_FPREGS;
d->fxState[1].size = 8 * sizeof(ULong);
d->fxState[2].fx = Ifx_Write;
d->fxState[2].offset = OFFB_FPTAGS;
d->fxState[2].size = 8 * sizeof(UChar);
d->fxState[3].fx = Ifx_Write;
d->fxState[3].offset = OFFB_FPROUND;
d->fxState[3].size = sizeof(UInt);
d->fxState[4].fx = Ifx_Write;
d->fxState[4].offset = OFFB_FC3210;
d->fxState[4].size = sizeof(UInt);
stmt( IRStmt_Dirty(d) );
/* ew contains any emulation warning we may need to
issue. If needed, side-exit to the next insn,
reporting the warning, so that Valgrind's dispatcher
sees the warning. */
put_emwarn( mkexpr(ew) );
stmt(
IRStmt_Exit(
binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)),
Ijk_EmWarn,
IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta)
)
);
DIP("frstor %s\n", dis_buf);
break;
}
case 6: { /* FNSAVE m108 */
/* Uses dirty helper:
void x86g_do_FSAVE ( VexGuestX86State*, UInt ) */
IRDirty* d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_FSAVE",
&x86g_dirtyhelper_FSAVE,
mkIRExprVec_1( mkexpr(addr) )
);
d->needsBBP = True;
/* declare we're writing memory */
d->mFx = Ifx_Write;
d->mAddr = mkexpr(addr);
d->mSize = 108;
/* declare we're reading guest state */
d->nFxState = 5;
d->fxState[0].fx = Ifx_Read;
d->fxState[0].offset = OFFB_FTOP;
d->fxState[0].size = sizeof(UInt);
d->fxState[1].fx = Ifx_Read;
d->fxState[1].offset = OFFB_FPREGS;
d->fxState[1].size = 8 * sizeof(ULong);
d->fxState[2].fx = Ifx_Read;
d->fxState[2].offset = OFFB_FPTAGS;
d->fxState[2].size = 8 * sizeof(UChar);
d->fxState[3].fx = Ifx_Read;
d->fxState[3].offset = OFFB_FPROUND;
d->fxState[3].size = sizeof(UInt);
d->fxState[4].fx = Ifx_Read;
d->fxState[4].offset = OFFB_FC3210;
d->fxState[4].size = sizeof(UInt);
stmt( IRStmt_Dirty(d) );
DIP("fnsave %s\n", dis_buf);
break;
}
case 7: { /* FNSTSW m16 */
IRExpr* sw = get_FPU_sw();
vassert(typeOfIRExpr(irbb->tyenv, sw) == Ity_I16);
storeLE( mkexpr(addr), sw );
DIP("fnstsw %s\n", dis_buf);
break;
}
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xDD\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FFREE %st(?) */
r_dst = (UInt)modrm - 0xC0;
DIP("ffree %%st(%d)\n", (Int)r_dst);
put_ST_TAG ( r_dst, mkU8(0) );
break;
case 0xD0 ... 0xD7: /* FST %st(0),%st(?) */
r_dst = (UInt)modrm - 0xD0;
DIP("fst %%st(0),%%st(%d)\n", (Int)r_dst);
/* P4 manual says: "If the destination operand is a
non-empty register, the invalid-operation exception
is not generated. Hence put_ST_UNCHECKED. */
put_ST_UNCHECKED(r_dst, get_ST(0));
break;
case 0xD8 ... 0xDF: /* FSTP %st(0),%st(?) */
r_dst = (UInt)modrm - 0xD8;
DIP("fstp %%st(0),%%st(%d)\n", (Int)r_dst);
/* P4 manual says: "If the destination operand is a
non-empty register, the invalid-operation exception
is not generated. Hence put_ST_UNCHECKED. */
put_ST_UNCHECKED(r_dst, get_ST(0));
fp_pop();
break;
case 0xE0 ... 0xE7: /* FUCOM %st(0),%st(?) */
r_dst = (UInt)modrm - 0xE0;
DIP("fucom %%st(0),%%st(%d)\n", (Int)r_dst);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)),
mkU8(8)),
mkU32(0x4500)
));
break;
case 0xE8 ... 0xEF: /* FUCOMP %st(0),%st(?) */
r_dst = (UInt)modrm - 0xE8;
DIP("fucomp %%st(0),%%st(%d)\n", (Int)r_dst);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDE opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xDE) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IROp fop;
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FIADD m16int */ /* ST(0) += m16int */
DIP("fiaddw %s\n", dis_buf);
fop = Iop_AddF64;
goto do_fop_m16;
case 1: /* FIMUL m16int */ /* ST(0) *= m16int */
DIP("fimulw %s\n", dis_buf);
fop = Iop_MulF64;
goto do_fop_m16;
case 2: /* FICOM m16int */
DIP("ficomw %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
unop(Iop_I32toF64,
unop(Iop_16Sto32,
loadLE(Ity_I16,mkexpr(addr))))),
mkU8(8)),
mkU32(0x4500)
));
break;
case 3: /* FICOMP m16int */
DIP("ficompw %s\n", dis_buf);
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64,
get_ST(0),
unop(Iop_I32toF64,
unop(Iop_16Sto32,
loadLE(Ity_I16,mkexpr(addr))))),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
break;
case 4: /* FISUB m16int */ /* ST(0) -= m16int */
DIP("fisubw %s\n", dis_buf);
fop = Iop_SubF64;
goto do_fop_m16;
case 5: /* FISUBR m16int */ /* ST(0) = m16int - ST(0) */
DIP("fisubrw %s\n", dis_buf);
fop = Iop_SubF64;
goto do_foprev_m16;
case 6: /* FIDIV m16int */ /* ST(0) /= m16int */
DIP("fisubw %s\n", dis_buf);
fop = Iop_DivF64;
goto do_fop_m16;
case 7: /* FIDIVR m16int */ /* ST(0) = m16int / ST(0) */
DIP("fidivrw %s\n", dis_buf);
fop = Iop_DivF64;
goto do_foprev_m16;
do_fop_m16:
put_ST_UNCHECKED(0,
triop(fop,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
get_ST(0),
unop(Iop_I32toF64,
unop(Iop_16Sto32,
loadLE(Ity_I16, mkexpr(addr))))));
break;
do_foprev_m16:
put_ST_UNCHECKED(0,
triop(fop,
get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */
unop(Iop_I32toF64,
unop(Iop_16Sto32,
loadLE(Ity_I16, mkexpr(addr)))),
get_ST(0)));
break;
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xDE\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0 ... 0xC7: /* FADDP %st(0),%st(?) */
fp_do_op_ST_ST ( "add", Iop_AddF64, 0, modrm - 0xC0, True );
break;
case 0xC8 ... 0xCF: /* FMULP %st(0),%st(?) */
fp_do_op_ST_ST ( "mul", Iop_MulF64, 0, modrm - 0xC8, True );
break;
case 0xD9: /* FCOMPP %st(0),%st(1) */
DIP("fuompp %%st(0),%%st(1)\n");
/* This forces C1 to zero, which isn't right. */
put_C3210(
binop( Iop_And32,
binop(Iop_Shl32,
binop(Iop_CmpF64, get_ST(0), get_ST(1)),
mkU8(8)),
mkU32(0x4500)
));
fp_pop();
fp_pop();
break;
case 0xE0 ... 0xE7: /* FSUBRP %st(0),%st(?) */
fp_do_oprev_ST_ST ( "subr", Iop_SubF64, 0, modrm - 0xE0, True );
break;
case 0xE8 ... 0xEF: /* FSUBP %st(0),%st(?) */
fp_do_op_ST_ST ( "sub", Iop_SubF64, 0, modrm - 0xE8, True );
break;
case 0xF0 ... 0xF7: /* FDIVRP %st(0),%st(?) */
fp_do_oprev_ST_ST ( "divr", Iop_DivF64, 0, modrm - 0xF0, True );
break;
case 0xF8 ... 0xFF: /* FDIVP %st(0),%st(?) */
fp_do_op_ST_ST ( "div", Iop_DivF64, 0, modrm - 0xF8, True );
break;
default:
goto decode_fail;
}
}
}
/* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDF opcodes +-+-+-+-+-+-+-+ */
else
if (first_opcode == 0xDF) {
if (modrm < 0xC0) {
/* bits 5,4,3 are an opcode extension, and the modRM also
specifies an address. */
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
switch (gregOfRM(modrm)) {
case 0: /* FILD m16int */
DIP("fildw %s\n", dis_buf);
fp_push();
put_ST(0, unop(Iop_I32toF64,
unop(Iop_16Sto32,
loadLE(Ity_I16, mkexpr(addr)))));
break;
case 2: /* FIST m16 */
DIP("fistp %s\n", dis_buf);
storeLE( mkexpr(addr),
binop(Iop_F64toI16, get_roundingmode(), get_ST(0)) );
break;
case 3: /* FISTP m16 */
DIP("fistps %s\n", dis_buf);
storeLE( mkexpr(addr),
binop(Iop_F64toI16, get_roundingmode(), get_ST(0)) );
fp_pop();
break;
case 5: /* FILD m64 */
DIP("fildll %s\n", dis_buf);
fp_push();
put_ST(0, binop(Iop_I64toF64,
get_roundingmode(),
loadLE(Ity_I64, mkexpr(addr))));
break;
case 7: /* FISTP m64 */
DIP("fistpll %s\n", dis_buf);
storeLE( mkexpr(addr),
binop(Iop_F64toI64, get_roundingmode(), get_ST(0)) );
fp_pop();
break;
default:
vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm));
vex_printf("first_opcode == 0xDF\n");
goto decode_fail;
}
} else {
delta++;
switch (modrm) {
case 0xC0: /* FFREEP %st(0) */
DIP("ffreep %%st(%d)\n", 0);
put_ST_TAG ( 0, mkU8(0) );
fp_pop();
break;
case 0xE0: /* FNSTSW %ax */
DIP("fnstsw %%ax\n");
/* Get the FPU status word value and dump it in %AX. */
putIReg(2, R_EAX, get_FPU_sw());
break;
case 0xE8 ... 0xEF: /* FUCOMIP %st(0),%st(?) */
fp_do_ucomi_ST0_STi( (UInt)modrm - 0xE8, True );
break;
case 0xF0 ... 0xF7: /* FCOMIP %st(0),%st(?) */
/* not really right since COMIP != UCOMIP */
fp_do_ucomi_ST0_STi( (UInt)modrm - 0xF0, True );
break;
default:
goto decode_fail;
}
}
}
else
vpanic("dis_FPU(x86): invalid primary opcode");
*decode_ok = True;
return delta;
decode_fail:
*decode_ok = False;
return delta;
}
/*------------------------------------------------------------*/
/*--- ---*/
/*--- MMX INSTRUCTIONS ---*/
/*--- ---*/
/*------------------------------------------------------------*/
/* Effect of MMX insns on x87 FPU state (table 11-2 of
IA32 arch manual, volume 3):
Read from, or write to MMX register (viz, any insn except EMMS):
* All tags set to Valid (non-empty) -- FPTAGS[i] := nonzero
* FP stack pointer set to zero
EMMS:
* All tags set to Invalid (empty) -- FPTAGS[i] := zero
* FP stack pointer set to zero
*/
static void do_MMX_preamble ( void )
{
Int i;
IRArray* descr = mkIRArray( OFFB_FPTAGS, Ity_I8, 8 );
IRExpr* zero = mkU32(0);
IRExpr* tag1 = mkU8(1);
put_ftop(zero);
for (i = 0; i < 8; i++)
stmt( IRStmt_PutI( descr, zero, i, tag1 ) );
}
static void do_EMMS_preamble ( void )
{
Int i;
IRArray* descr = mkIRArray( OFFB_FPTAGS, Ity_I8, 8 );
IRExpr* zero = mkU32(0);
IRExpr* tag0 = mkU8(0);
put_ftop(zero);
for (i = 0; i < 8; i++)
stmt( IRStmt_PutI( descr, zero, i, tag0 ) );
}
static IRExpr* getMMXReg ( UInt archreg )
{
vassert(archreg < 8);
return IRExpr_Get( OFFB_FPREGS + 8 * archreg, Ity_I64 );
}
static void putMMXReg ( UInt archreg, IRExpr* e )
{
vassert(archreg < 8);
vassert(typeOfIRExpr(irbb->tyenv,e) == Ity_I64);
stmt( IRStmt_Put( OFFB_FPREGS + 8 * archreg, e ) );
}
/* Helper for non-shift MMX insns. Note this is incomplete in the
sense that it does not first call do_MMX_preamble() -- that is the
responsibility of its caller. */
static
UInt dis_MMXop_regmem_to_reg ( UChar sorb,
Int delta,
UChar opc,
HChar* name,
Bool show_granularity )
{
HChar dis_buf[50];
UChar modrm = getIByte(delta);
Bool isReg = epartIsReg(modrm);
IRExpr* argL = NULL;
IRExpr* argR = NULL;
IRExpr* argG = NULL;
IRExpr* argE = NULL;
IRTemp res = newTemp(Ity_I64);
Bool invG = False;
IROp op = Iop_INVALID;
void* hAddr = NULL;
HChar* hName = NULL;
Bool eLeft = False;
# define XXX(_name) do { hAddr = &_name; hName = #_name; } while (0)
switch (opc) {
/* Original MMX ones */
case 0xFC: op = Iop_Add8x8; break;
case 0xFD: op = Iop_Add16x4; break;
case 0xFE: op = Iop_Add32x2; break;
case 0xEC: op = Iop_QAdd8Sx8; break;
case 0xED: op = Iop_QAdd16Sx4; break;
case 0xDC: op = Iop_QAdd8Ux8; break;
case 0xDD: op = Iop_QAdd16Ux4; break;
case 0xF8: op = Iop_Sub8x8; break;
case 0xF9: op = Iop_Sub16x4; break;
case 0xFA: op = Iop_Sub32x2; break;
case 0xE8: op = Iop_QSub8Sx8; break;
case 0xE9: op = Iop_QSub16Sx4; break;
case 0xD8: op = Iop_QSub8Ux8; break;
case 0xD9: op = Iop_QSub16Ux4; break;
case 0xE5: op = Iop_MulHi16Sx4; break;
case 0xD5: op = Iop_Mul16x4; break;
case 0xF5: XXX(x86g_calculate_mmx_pmaddwd); break;
case 0x74: op = Iop_CmpEQ8x8; break;
case 0x75: op = Iop_CmpEQ16x4; break;
case 0x76: op = Iop_CmpEQ32x2; break;
case 0x64: op = Iop_CmpGT8Sx8; break;
case 0x65: op = Iop_CmpGT16Sx4; break;
case 0x66: op = Iop_CmpGT32Sx2; break;
case 0x6B: op = Iop_QNarrow32Sx2; eLeft = True; break;
case 0x63: op = Iop_QNarrow16Sx4; eLeft = True; break;
case 0x67: op = Iop_QNarrow16Ux4; eLeft = True; break;
case 0x68: op = Iop_InterleaveHI8x8; eLeft = True; break;
case 0x69: op = Iop_InterleaveHI16x4; eLeft = True; break;
case 0x6A: op = Iop_InterleaveHI32x2; eLeft = True; break;
case 0x60: op = Iop_InterleaveLO8x8; eLeft = True; break;
case 0x61: op = Iop_InterleaveLO16x4; eLeft = True; break;
case 0x62: op = Iop_InterleaveLO32x2; eLeft = True; break;
case 0xDB: op = Iop_And64; break;
case 0xDF: op = Iop_And64; invG = True; break;
case 0xEB: op = Iop_Or64; break;
case 0xEF: /* Possibly do better here if argL and argR are the
same reg */
op = Iop_Xor64; break;
/* Introduced in SSE1 */
case 0xE0: op = Iop_Avg8Ux8; break;
case 0xE3: op = Iop_Avg16Ux4; break;
case 0xEE: op = Iop_Max16Sx4; break;
case 0xDE: op = Iop_Max8Ux8; break;
case 0xEA: op = Iop_Min16Sx4; break;
case 0xDA: op = Iop_Min8Ux8; break;
case 0xE4: op = Iop_MulHi16Ux4; break;
case 0xF6: XXX(x86g_calculate_mmx_psadbw); break;
/* Introduced in SSE2 */
case 0xD4: op = Iop_Add64; break;
case 0xFB: op = Iop_Sub64; break;
default:
vex_printf("\n0x%x\n", (Int)opc);
vpanic("dis_MMXop_regmem_to_reg");
}
# undef XXX
argG = getMMXReg(gregOfRM(modrm));
if (invG)
argG = unop(Iop_Not64, argG);
if (isReg) {
delta++;
argE = getMMXReg(eregOfRM(modrm));
} else {
Int len;
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
argE = loadLE(Ity_I64, mkexpr(addr));
}
if (eLeft) {
argL = argE;
argR = argG;
} else {
argL = argG;
argR = argE;
}
if (op != Iop_INVALID) {
vassert(hName == NULL);
vassert(hAddr == NULL);
assign(res, binop(op, argL, argR));
} else {
vassert(hName != NULL);
vassert(hAddr != NULL);
assign( res,
mkIRExprCCall(
Ity_I64,
0/*regparms*/, hName, hAddr,
mkIRExprVec_2( argL, argR )
)
);
}
putMMXReg( gregOfRM(modrm), mkexpr(res) );
DIP("%s%s %s, %s\n",
name, show_granularity ? nameMMXGran(opc & 3) : "",
( isReg ? nameMMXReg(eregOfRM(modrm)) : dis_buf ),
nameMMXReg(gregOfRM(modrm)) );
return delta;
}
/* Vector by scalar shift of G by the amount specified at the bottom
of E. This is a straight copy of dis_SSE_shiftG_byE. */
static UInt dis_MMX_shiftG_byE ( UChar sorb, Int delta,
HChar* opname, IROp op )
{
HChar dis_buf[50];
Int alen, size;
IRTemp addr;
Bool shl, shr, sar;
UChar rm = getIByte(delta);
IRTemp g0 = newTemp(Ity_I64);
IRTemp g1 = newTemp(Ity_I64);
IRTemp amt = newTemp(Ity_I32);
IRTemp amt8 = newTemp(Ity_I8);
if (epartIsReg(rm)) {
assign( amt, unop(Iop_64to32, getMMXReg(eregOfRM(rm))) );
DIP("%s %s,%s\n", opname,
nameMMXReg(eregOfRM(rm)),
nameMMXReg(gregOfRM(rm)) );
delta++;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( amt, loadLE(Ity_I32, mkexpr(addr)) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameMMXReg(gregOfRM(rm)) );
delta += alen;
}
assign( g0, getMMXReg(gregOfRM(rm)) );
assign( amt8, unop(Iop_32to8, mkexpr(amt)) );
shl = shr = sar = False;
size = 0;
switch (op) {
case Iop_ShlN16x4: shl = True; size = 32; break;
case Iop_ShlN32x2: shl = True; size = 32; break;
case Iop_Shl64: shl = True; size = 64; break;
case Iop_ShrN16x4: shr = True; size = 16; break;
case Iop_ShrN32x2: shr = True; size = 32; break;
case Iop_Shr64: shr = True; size = 64; break;
case Iop_SarN16x4: sar = True; size = 16; break;
case Iop_SarN32x2: sar = True; size = 32; break;
default: vassert(0);
}
if (shl || shr) {
assign(
g1,
IRExpr_Mux0X(
unop(Iop_1Uto8,binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size))),
mkU64(0),
binop(op, mkexpr(g0), mkexpr(amt8))
)
);
} else
if (sar) {
assign(
g1,
IRExpr_Mux0X(
unop(Iop_1Uto8,binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size))),
binop(op, mkexpr(g0), mkU8(size-1)),
binop(op, mkexpr(g0), mkexpr(amt8))
)
);
} else {
/*NOTREACHED*/
vassert(0);
}
putMMXReg( gregOfRM(rm), mkexpr(g1) );
return delta;
}
/* Vector by scalar shift of E by an immediate byte. This is a
straight copy of dis_SSE_shiftE_imm. */
static
UInt dis_MMX_shiftE_imm ( Int delta, HChar* opname, IROp op )
{
Bool shl, shr, sar;
UChar rm = getIByte(delta);
IRTemp e0 = newTemp(Ity_I64);
IRTemp e1 = newTemp(Ity_I64);
UChar amt, size;
vassert(epartIsReg(rm));
vassert(gregOfRM(rm) == 2
|| gregOfRM(rm) == 4 || gregOfRM(rm) == 6);
amt = getIByte(delta+1);
delta += 2;
DIP("%s $%d,%s\n", opname,
(Int)amt,
nameMMXReg(eregOfRM(rm)) );
assign( e0, getMMXReg(eregOfRM(rm)) );
shl = shr = sar = False;
size = 0;
switch (op) {
case Iop_ShlN16x4: shl = True; size = 16; break;
case Iop_ShlN32x2: shl = True; size = 32; break;
case Iop_Shl64: shl = True; size = 64; break;
case Iop_SarN16x4: sar = True; size = 16; break;
case Iop_SarN32x2: sar = True; size = 32; break;
case Iop_ShrN16x4: shr = True; size = 16; break;
case Iop_ShrN32x2: shr = True; size = 32; break;
case Iop_Shr64: shr = True; size = 64; break;
default: vassert(0);
}
if (shl || shr) {
assign( e1, amt >= size
? mkU64(0)
: binop(op, mkexpr(e0), mkU8(amt))
);
} else
if (sar) {
assign( e1, amt >= size
? binop(op, mkexpr(e0), mkU8(size-1))
: binop(op, mkexpr(e0), mkU8(amt))
);
} else {
/*NOTREACHED*/
vassert(0);
}
putMMXReg( eregOfRM(rm), mkexpr(e1) );
return delta;
}
/* Completely handle all MMX instructions except emms. */
static
UInt dis_MMX ( Bool* decode_ok, UChar sorb, Int sz, Int delta )
{
Int len;
UChar modrm;
HChar dis_buf[50];
UChar opc = getIByte(delta);
delta++;
/* dis_MMX handles all insns except emms. */
do_MMX_preamble();
switch (opc) {
case 0x6E:
/* MOVD (src)ireg-or-mem (E), (dst)mmxreg (G)*/
if (sz != 4)
goto mmx_decode_failure;
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
delta++;
putMMXReg(
gregOfRM(modrm),
binop( Iop_32HLto64,
mkU32(0),
getIReg(4, eregOfRM(modrm)) ) );
DIP("movd %s, %s\n",
nameIReg(4,eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm)));
} else {
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
putMMXReg(
gregOfRM(modrm),
binop( Iop_32HLto64,
mkU32(0),
loadLE(Ity_I32, mkexpr(addr)) ) );
DIP("movd %s, %s\n", dis_buf, nameMMXReg(gregOfRM(modrm)));
}
break;
case 0x7E: /* MOVD (src)mmxreg (G), (dst)ireg-or-mem (E) */
if (sz != 4)
goto mmx_decode_failure;
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
delta++;
putIReg( 4, eregOfRM(modrm),
unop(Iop_64to32, getMMXReg(gregOfRM(modrm)) ) );
DIP("movd %s, %s\n",
nameMMXReg(gregOfRM(modrm)), nameIReg(4,eregOfRM(modrm)));
} else {
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
storeLE( mkexpr(addr),
unop(Iop_64to32, getMMXReg(gregOfRM(modrm)) ) );
DIP("movd %s, %s\n", nameMMXReg(gregOfRM(modrm)), dis_buf);
}
break;
case 0x6F:
/* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
delta++;
putMMXReg( gregOfRM(modrm), getMMXReg(eregOfRM(modrm)) );
DIP("movq %s, %s\n",
nameMMXReg(eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm)));
} else {
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
putMMXReg( gregOfRM(modrm), loadLE(Ity_I64, mkexpr(addr)) );
DIP("movq %s, %s\n",
dis_buf, nameMMXReg(gregOfRM(modrm)));
}
break;
case 0x7F:
/* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */
if (sz != 4)
goto mmx_decode_failure;
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
delta++;
putMMXReg( eregOfRM(modrm), getMMXReg(gregOfRM(modrm)) );
DIP("movq %s, %s\n",
nameMMXReg(gregOfRM(modrm)), nameMMXReg(eregOfRM(modrm)));
} else {
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
storeLE( mkexpr(addr), getMMXReg(gregOfRM(modrm)) );
DIP("mov(nt)q %s, %s\n",
nameMMXReg(gregOfRM(modrm)), dis_buf);
}
break;
case 0xFC:
case 0xFD:
case 0xFE: /* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "padd", True );
break;
case 0xEC:
case 0xED: /* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "padds", True );
break;
case 0xDC:
case 0xDD: /* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "paddus", True );
break;
case 0xF8:
case 0xF9:
case 0xFA: /* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "psub", True );
break;
case 0xE8:
case 0xE9: /* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "psubs", True );
break;
case 0xD8:
case 0xD9: /* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "psubus", True );
break;
case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pmulhw", False );
break;
case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pmullw", False );
break;
case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */
vassert(sz == 4);
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pmaddwd", False );
break;
case 0x74:
case 0x75:
case 0x76: /* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pcmpeq", True );
break;
case 0x64:
case 0x65:
case 0x66: /* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pcmpgt", True );
break;
case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "packssdw", False );
break;
case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "packsswb", False );
break;
case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "packuswb", False );
break;
case 0x68:
case 0x69:
case 0x6A: /* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "punpckh", True );
break;
case 0x60:
case 0x61:
case 0x62: /* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "punpckl", True );
break;
case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pand", False );
break;
case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pandn", False );
break;
case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "por", False );
break;
case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */
if (sz != 4)
goto mmx_decode_failure;
delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pxor", False );
break;
# define SHIFT_BY_REG(_name,_op) \
delta = dis_MMX_shiftG_byE(sorb, delta, _name, _op); \
break;
/* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xF1: SHIFT_BY_REG("psllw", Iop_ShlN16x4);
case 0xF2: SHIFT_BY_REG("pslld", Iop_ShlN32x2);
case 0xF3: SHIFT_BY_REG("psllq", Iop_Shl64);
/* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xD1: SHIFT_BY_REG("psrlw", Iop_ShrN16x4);
case 0xD2: SHIFT_BY_REG("psrld", Iop_ShrN32x2);
case 0xD3: SHIFT_BY_REG("psrlq", Iop_Shr64);
/* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xE1: SHIFT_BY_REG("psraw", Iop_SarN16x4);
case 0xE2: SHIFT_BY_REG("psrad", Iop_SarN32x2);
# undef SHIFT_BY_REG
case 0x71:
case 0x72:
case 0x73: {
/* (sz==4): PSLLgg/PSRAgg/PSRLgg mmxreg by imm8 */
UChar byte2, subopc;
if (sz != 4)
goto mmx_decode_failure;
byte2 = getIByte(delta); /* amode / sub-opcode */
subopc = toUChar( (byte2 >> 3) & 7 );
# define SHIFT_BY_IMM(_name,_op) \
do { delta = dis_MMX_shiftE_imm(delta,_name,_op); \
} while (0)
if (subopc == 2 /*SRL*/ && opc == 0x71)
SHIFT_BY_IMM("psrlw", Iop_ShrN16x4);
else if (subopc == 2 /*SRL*/ && opc == 0x72)
SHIFT_BY_IMM("psrld", Iop_ShrN32x2);
else if (subopc == 2 /*SRL*/ && opc == 0x73)
SHIFT_BY_IMM("psrlq", Iop_Shr64);
else if (subopc == 4 /*SAR*/ && opc == 0x71)
SHIFT_BY_IMM("psraw", Iop_SarN16x4);
else if (subopc == 4 /*SAR*/ && opc == 0x72)
SHIFT_BY_IMM("psrad", Iop_SarN32x2);
else if (subopc == 6 /*SHL*/ && opc == 0x71)
SHIFT_BY_IMM("psllw", Iop_ShlN16x4);
else if (subopc == 6 /*SHL*/ && opc == 0x72)
SHIFT_BY_IMM("pslld", Iop_ShlN32x2);
else if (subopc == 6 /*SHL*/ && opc == 0x73)
SHIFT_BY_IMM("psllq", Iop_Shl64);
else goto mmx_decode_failure;
# undef SHIFT_BY_IMM
break;
}
/* --- MMX decode failure --- */
default:
mmx_decode_failure:
*decode_ok = False;
return delta; /* ignored */
}
*decode_ok = True;
return delta;
}
/*------------------------------------------------------------*/
/*--- More misc arithmetic and other obscure insns. ---*/
/*------------------------------------------------------------*/
/* Double length left and right shifts. Apparently only required in
v-size (no b- variant). */
static
UInt dis_SHLRD_Gv_Ev ( UChar sorb,
Int delta, UChar modrm,
Int sz,
IRExpr* shift_amt,
Bool amt_is_literal,
HChar* shift_amt_txt,
Bool left_shift )
{
/* shift_amt :: Ity_I8 is the amount to shift. shift_amt_txt is used
for printing it. And eip on entry points at the modrm byte. */
Int len;
HChar dis_buf[50];
IRType ty = szToITy(sz);
IRTemp gsrc = newTemp(ty);
IRTemp esrc = newTemp(ty);
IRTemp addr = IRTemp_INVALID;
IRTemp tmpSH = newTemp(Ity_I8);
IRTemp tmpL = IRTemp_INVALID;
IRTemp tmpRes = IRTemp_INVALID;
IRTemp tmpSubSh = IRTemp_INVALID;
IROp mkpair;
IROp getres;
IROp shift;
IRExpr* mask = NULL;
vassert(sz == 2 || sz == 4);
/* The E-part is the destination; this is shifted. The G-part
supplies bits to be shifted into the E-part, but is not
changed.
If shifting left, form a double-length word with E at the top
and G at the bottom, and shift this left. The result is then in
the high part.
If shifting right, form a double-length word with G at the top
and E at the bottom, and shift this right. The result is then
at the bottom. */
/* Fetch the operands. */
assign( gsrc, getIReg(sz, gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
delta++;
assign( esrc, getIReg(sz, eregOfRM(modrm)) );
DIP("sh%cd%c %s, %s, %s\n",
( left_shift ? 'l' : 'r' ), nameISize(sz),
shift_amt_txt,
nameIReg(sz, gregOfRM(modrm)), nameIReg(sz, eregOfRM(modrm)));
} else {
addr = disAMode ( &len, sorb, delta, dis_buf );
delta += len;
assign( esrc, loadLE(ty, mkexpr(addr)) );
DIP("sh%cd%c %s, %s, %s\n",
( left_shift ? 'l' : 'r' ), nameISize(sz),
shift_amt_txt,
nameIReg(sz, gregOfRM(modrm)), dis_buf);
}
/* Round up the relevant primops. */
if (sz == 4) {
tmpL = newTemp(Ity_I64);
tmpRes = newTemp(Ity_I32);
tmpSubSh = newTemp(Ity_I32);
mkpair = Iop_32HLto64;
getres = left_shift ? Iop_64HIto32 : Iop_64to32;
shift = left_shift ? Iop_Shl64 : Iop_Shr64;
mask = mkU8(31);
} else {
/* sz == 2 */
tmpL = newTemp(Ity_I32);
tmpRes = newTemp(Ity_I16);
tmpSubSh = newTemp(Ity_I16);
mkpair = Iop_16HLto32;
getres = left_shift ? Iop_32HIto16 : Iop_32to16;
shift = left_shift ? Iop_Shl32 : Iop_Shr32;
mask = mkU8(15);
}
/* Do the shift, calculate the subshift value, and set
the flag thunk. */
assign( tmpSH, binop(Iop_And8, shift_amt, mask) );
if (left_shift)
assign( tmpL, binop(mkpair, mkexpr(esrc), mkexpr(gsrc)) );
else
assign( tmpL, binop(mkpair, mkexpr(gsrc), mkexpr(esrc)) );
assign( tmpRes, unop(getres, binop(shift, mkexpr(tmpL), mkexpr(tmpSH)) ) );
assign( tmpSubSh,
unop(getres,
binop(shift,
mkexpr(tmpL),
binop(Iop_And8,
binop(Iop_Sub8, mkexpr(tmpSH), mkU8(1) ),
mask))) );
setFlags_DEP1_DEP2_shift ( left_shift ? Iop_Shl32 : Iop_Sar32,
tmpRes, tmpSubSh, ty, tmpSH );
/* Put result back. */
if (epartIsReg(modrm)) {
putIReg(sz, eregOfRM(modrm), mkexpr(tmpRes));
} else {
storeLE( mkexpr(addr), mkexpr(tmpRes) );
}
if (amt_is_literal) delta++;
return delta;
}
/* Handle BT/BTS/BTR/BTC Gv, Ev. Apparently b-size is not
required. */
typedef enum { BtOpNone, BtOpSet, BtOpReset, BtOpComp } BtOp;
static HChar* nameBtOp ( BtOp op )
{
switch (op) {
case BtOpNone: return "";
case BtOpSet: return "s";
case BtOpReset: return "r";
case BtOpComp: return "c";
default: vpanic("nameBtOp(x86)");
}
}
static
UInt dis_bt_G_E ( UChar sorb, Int sz, Int delta, BtOp op )
{
HChar dis_buf[50];
UChar modrm;
Int len;
IRTemp t_fetched, t_bitno0, t_bitno1, t_bitno2, t_addr0,
t_addr1, t_esp, t_mask;
vassert(sz == 2 || sz == 4);
t_fetched = t_bitno0 = t_bitno1 = t_bitno2
= t_addr0 = t_addr1 = t_esp = t_mask = IRTemp_INVALID;
t_fetched = newTemp(Ity_I8);
t_bitno0 = newTemp(Ity_I32);
t_bitno1 = newTemp(Ity_I32);
t_bitno2 = newTemp(Ity_I8);
t_addr1 = newTemp(Ity_I32);
modrm = getIByte(delta);
assign( t_bitno0, widenSto32(getIReg(sz, gregOfRM(modrm))) );
if (epartIsReg(modrm)) {
delta++;
/* Get it onto the client's stack. */
t_esp = newTemp(Ity_I32);
t_addr0 = newTemp(Ity_I32);
assign( t_esp, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(sz)) );
putIReg(4, R_ESP, mkexpr(t_esp));
storeLE( mkexpr(t_esp), getIReg(sz, eregOfRM(modrm)) );
/* Make t_addr0 point at it. */
assign( t_addr0, mkexpr(t_esp) );
/* Mask out upper bits of the shift amount, since we're doing a
reg. */
assign( t_bitno1, binop(Iop_And32,
mkexpr(t_bitno0),
mkU32(sz == 4 ? 31 : 15)) );
} else {
t_addr0 = disAMode ( &len, sorb, delta, dis_buf );
delta += len;
assign( t_bitno1, mkexpr(t_bitno0) );
}
/* At this point: t_addr0 is the address being operated on. If it
was a reg, we will have pushed it onto the client's stack.
t_bitno1 is the bit number, suitably masked in the case of a
reg. */
/* Now the main sequence. */
assign( t_addr1,
binop(Iop_Add32,
mkexpr(t_addr0),
binop(Iop_Sar32, mkexpr(t_bitno1), mkU8(3))) );
/* t_addr1 now holds effective address */
assign( t_bitno2,
unop(Iop_32to8,
binop(Iop_And32, mkexpr(t_bitno1), mkU32(7))) );
/* t_bitno2 contains offset of bit within byte */
if (op != BtOpNone) {
t_mask = newTemp(Ity_I8);
assign( t_mask, binop(Iop_Shl8, mkU8(1), mkexpr(t_bitno2)) );
}
/* t_mask is now a suitable byte mask */
assign( t_fetched, loadLE(Ity_I8, mkexpr(t_addr1)) );
if (op != BtOpNone) {
switch (op) {
case BtOpSet:
storeLE( mkexpr(t_addr1),
binop(Iop_Or8, mkexpr(t_fetched),
mkexpr(t_mask)) );
break;
case BtOpComp:
storeLE( mkexpr(t_addr1),
binop(Iop_Xor8, mkexpr(t_fetched),
mkexpr(t_mask)) );
break;
case BtOpReset:
storeLE( mkexpr(t_addr1),
binop(Iop_And8, mkexpr(t_fetched),
unop(Iop_Not8, mkexpr(t_mask))) );
break;
default:
vpanic("dis_bt_G_E(x86)");
}
}
/* Side effect done; now get selected bit into Carry flag */
/* Flags: C=selected bit, O,S,Z,A,P undefined, so are set to zero. */
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put(
OFFB_CC_DEP1,
binop(Iop_And32,
binop(Iop_Shr32,
unop(Iop_8Uto32, mkexpr(t_fetched)),
mkexpr(t_bitno2)),
mkU32(1)))
);
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
/* Move reg operand from stack back to reg */
if (epartIsReg(modrm)) {
/* t_esp still points at it. */
putIReg(sz, eregOfRM(modrm), loadLE(szToITy(sz), mkexpr(t_esp)) );
putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t_esp), mkU32(sz)) );
}
DIP("bt%s%c %s, %s\n",
nameBtOp(op), nameISize(sz), nameIReg(sz, gregOfRM(modrm)),
( epartIsReg(modrm) ? nameIReg(sz, eregOfRM(modrm)) : dis_buf ) );
return delta;
}
/* Handle BSF/BSR. Only v-size seems necessary. */
static
UInt dis_bs_E_G ( UChar sorb, Int sz, Int delta, Bool fwds )
{
Bool isReg;
UChar modrm;
HChar dis_buf[50];
IRType ty = szToITy(sz);
IRTemp src = newTemp(ty);
IRTemp dst = newTemp(ty);
IRTemp src32 = newTemp(Ity_I32);
IRTemp dst32 = newTemp(Ity_I32);
IRTemp src8 = newTemp(Ity_I8);
vassert(sz == 4 || sz == 2);
modrm = getIByte(delta);
isReg = epartIsReg(modrm);
if (isReg) {
delta++;
assign( src, getIReg(sz, eregOfRM(modrm)) );
} else {
Int len;
IRTemp addr = disAMode( &len, sorb, delta, dis_buf );
delta += len;
assign( src, loadLE(ty, mkexpr(addr)) );
}
DIP("bs%c%c %s, %s\n",
fwds ? 'f' : 'r', nameISize(sz),
( isReg ? nameIReg(sz, eregOfRM(modrm)) : dis_buf ),
nameIReg(sz, gregOfRM(modrm)));
/* Generate an 8-bit expression which is zero iff the
original is zero, and nonzero otherwise */
assign( src8,
unop(Iop_1Uto8, binop(mkSizedOp(ty,Iop_CmpNE8),
mkexpr(src), mkU(ty,0))) );
/* Flags: Z is 1 iff source value is zero. All others
are undefined -- we force them to zero. */
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put(
OFFB_CC_DEP1,
IRExpr_Mux0X( mkexpr(src8),
/* src==0 */
mkU32(X86G_CC_MASK_Z),
/* src!=0 */
mkU32(0)
)
));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
/* Result: iff source value is zero, we can't use
Iop_Clz32/Iop_Ctz32 as they have no defined result in that case.
But anyway, Intel x86 semantics say the result is undefined in
such situations. Hence handle the zero case specially. */
/* Bleh. What we compute:
bsf32: if src == 0 then 0 else Ctz32(src)
bsr32: if src == 0 then 0 else 31 - Clz32(src)
bsf16: if src == 0 then 0 else Ctz32(16Uto32(src))
bsr16: if src == 0 then 0 else 31 - Clz32(16Uto32(src))
First, widen src to 32 bits if it is not already.
Postscript 15 Oct 04: it seems that at least VIA Nehemiah leaves the
dst register unchanged when src == 0. Hence change accordingly.
*/
if (sz == 2)
assign( src32, unop(Iop_16Uto32, mkexpr(src)) );
else
assign( src32, mkexpr(src) );
/* The main computation, guarding against zero. */
assign( dst32,
IRExpr_Mux0X(
mkexpr(src8),
/* src == 0 -- leave dst unchanged */
widenUto32( getIReg( sz, gregOfRM(modrm) ) ),
/* src != 0 */
fwds ? unop(Iop_Ctz32, mkexpr(src32))
: binop(Iop_Sub32,
mkU32(31),
unop(Iop_Clz32, mkexpr(src32)))
)
);
if (sz == 2)
assign( dst, unop(Iop_32to16, mkexpr(dst32)) );
else
assign( dst, mkexpr(dst32) );
/* dump result back */
putIReg( sz, gregOfRM(modrm), mkexpr(dst) );
return delta;
}
static
void codegen_xchg_eAX_Reg ( Int sz, Int reg )
{
IRType ty = szToITy(sz);
IRTemp t1 = newTemp(ty);
IRTemp t2 = newTemp(ty);
vassert(sz == 2 || sz == 4);
assign( t1, getIReg(sz, R_EAX) );
assign( t2, getIReg(sz, reg) );
putIReg( sz, R_EAX, mkexpr(t2) );
putIReg( sz, reg, mkexpr(t1) );
DIP("xchg%c %s, %s\n",
nameISize(sz), nameIReg(sz, R_EAX), nameIReg(sz, reg));
}
static
void codegen_SAHF ( void )
{
/* Set the flags to:
(x86g_calculate_flags_all() & X86G_CC_MASK_O) -- retain the old O flag
| (%AH & (X86G_CC_MASK_S|X86G_CC_MASK_Z|X86G_CC_MASK_A
|X86G_CC_MASK_P|X86G_CC_MASK_C)
*/
UInt mask_SZACP = X86G_CC_MASK_S|X86G_CC_MASK_Z|X86G_CC_MASK_A
|X86G_CC_MASK_C|X86G_CC_MASK_P;
IRTemp oldflags = newTemp(Ity_I32);
assign( oldflags, mk_x86g_calculate_eflags_all() );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put( OFFB_CC_DEP1,
binop(Iop_Or32,
binop(Iop_And32, mkexpr(oldflags), mkU32(X86G_CC_MASK_O)),
binop(Iop_And32,
binop(Iop_Shr32, getIReg(4, R_EAX), mkU8(8)),
mkU32(mask_SZACP))
)
));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
}
static
void codegen_LAHF ( void )
{
/* AH <- EFLAGS(SF:ZF:0:AF:0:PF:1:CF) */
IRExpr* eax_with_hole;
IRExpr* new_byte;
IRExpr* new_eax;
UInt mask_SZACP = X86G_CC_MASK_S|X86G_CC_MASK_Z|X86G_CC_MASK_A
|X86G_CC_MASK_C|X86G_CC_MASK_P;
IRTemp flags = newTemp(Ity_I32);
assign( flags, mk_x86g_calculate_eflags_all() );
eax_with_hole
= binop(Iop_And32, getIReg(4, R_EAX), mkU32(0xFFFF00FF));
new_byte
= binop(Iop_Or32, binop(Iop_And32, mkexpr(flags), mkU32(mask_SZACP)),
mkU32(1<<1));
new_eax
= binop(Iop_Or32, eax_with_hole,
binop(Iop_Shl32, new_byte, mkU8(8)));
putIReg(4, R_EAX, new_eax);
}
static
UInt dis_cmpxchg_G_E ( UChar sorb,
Int size,
Int delta0 )
{
HChar dis_buf[50];
Int len;
IRType ty = szToITy(size);
IRTemp acc = newTemp(ty);
IRTemp src = newTemp(ty);
//IRTemp res = newTemp(ty);
IRTemp dest = newTemp(ty);
IRTemp dest2 = newTemp(ty);
IRTemp acc2 = newTemp(ty);
IRTemp cond8 = newTemp(Ity_I8);
IRTemp addr = IRTemp_INVALID;
UChar rm = getUChar(delta0);
if (epartIsReg(rm)) {
assign( dest, getIReg(size, eregOfRM(rm)) );
delta0++;
DIP("cmpxchg%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)),
nameIReg(size,eregOfRM(rm)) );
} else {
addr = disAMode ( &len, sorb, delta0, dis_buf );
assign( dest, loadLE(ty, mkexpr(addr)) );
delta0 += len;
DIP("cmpxchg%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)), dis_buf);
}
assign( src, getIReg(size, gregOfRM(rm)) );
assign( acc, getIReg(size, R_EAX) );
//assign( res, binop( mkSizedOp(ty,Iop_Sub8), mkexpr(acc), mkexpr(dest) ));
setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty);
assign( cond8, unop(Iop_1Uto8, mk_x86g_calculate_condition(X86CondZ)) );
assign( dest2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(src)) );
assign( acc2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(acc)) );
putIReg(size, R_EAX, mkexpr(acc2));
if (epartIsReg(rm)) {
putIReg(size, eregOfRM(rm), mkexpr(dest2));
} else {
storeLE( mkexpr(addr), mkexpr(dest2) );
}
return delta0;
}
//-- static
//-- Addr dis_cmpxchg8b ( UCodeBlock* cb,
//-- UChar sorb,
//-- Addr eip0 )
//-- {
//-- Int tal, tah, junkl, junkh, destl, desth, srcl, srch, accl, acch;
//-- HChar dis_buf[50];
//-- UChar rm;
//-- UInt pair;
//--
//-- rm = getUChar(eip0);
//-- accl = newTemp(cb);
//-- acch = newTemp(cb);
//-- srcl = newTemp(cb);
//-- srch = newTemp(cb);
//-- destl = newTemp(cb);
//-- desth = newTemp(cb);
//-- junkl = newTemp(cb);
//-- junkh = newTemp(cb);
//--
//-- vg_assert(!epartIsReg(rm));
//--
//-- pair = disAMode ( cb, sorb, eip0, dis_buf );
//-- tal = LOW24(pair);
//-- tah = newTemp(cb);
//-- uInstr2(cb, MOV, 4, TempReg, tal, TempReg, tah);
//-- uInstr2(cb, ADD, 4, Literal, 0, TempReg, tah);
//-- uLiteral(cb, 4);
//-- eip0 += HI8(pair);
//-- DIP("cmpxchg8b %s\n", dis_buf);
//--
//-- uInstr0(cb, CALLM_S, 0);
//--
//-- uInstr2(cb, LOAD, 4, TempReg, tah, TempReg, desth);
//-- uInstr1(cb, PUSH, 4, TempReg, desth);
//-- uInstr2(cb, LOAD, 4, TempReg, tal, TempReg, destl);
//-- uInstr1(cb, PUSH, 4, TempReg, destl);
//-- uInstr2(cb, GET, 4, ArchReg, R_ECX, TempReg, srch);
//-- uInstr1(cb, PUSH, 4, TempReg, srch);
//-- uInstr2(cb, GET, 4, ArchReg, R_EBX, TempReg, srcl);
//-- uInstr1(cb, PUSH, 4, TempReg, srcl);
//-- uInstr2(cb, GET, 4, ArchReg, R_EDX, TempReg, acch);
//-- uInstr1(cb, PUSH, 4, TempReg, acch);
//-- uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, accl);
//-- uInstr1(cb, PUSH, 4, TempReg, accl);
//--
//-- uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_cmpxchg8b));
//-- uFlagsRWU(cb, FlagsEmpty, FlagZ, FlagsEmpty);
//--
//-- uInstr1(cb, POP, 4, TempReg, accl);
//-- uInstr2(cb, PUT, 4, TempReg, accl, ArchReg, R_EAX);
//-- uInstr1(cb, POP, 4, TempReg, acch);
//-- uInstr2(cb, PUT, 4, TempReg, acch, ArchReg, R_EDX);
//-- uInstr1(cb, POP, 4, TempReg, srcl);
//-- uInstr2(cb, PUT, 4, TempReg, srcl, ArchReg, R_EBX);
//-- uInstr1(cb, POP, 4, TempReg, srch);
//-- uInstr2(cb, PUT, 4, TempReg, srch, ArchReg, R_ECX);
//-- uInstr1(cb, POP, 4, TempReg, destl);
//-- uInstr2(cb, STORE, 4, TempReg, destl, TempReg, tal);
//-- uInstr1(cb, POP, 4, TempReg, desth);
//-- uInstr2(cb, STORE, 4, TempReg, desth, TempReg, tah);
//--
//-- uInstr0(cb, CALLM_E, 0);
//--
//-- return eip0;
//-- }
/* Handle conditional move instructions of the form
cmovcc E(reg-or-mem), G(reg)
E(src) is reg-or-mem
G(dst) is reg.
If E is reg, --> GET %E, tmps
GET %G, tmpd
CMOVcc tmps, tmpd
PUT tmpd, %G
If E is mem --> (getAddr E) -> tmpa
LD (tmpa), tmps
GET %G, tmpd
CMOVcc tmps, tmpd
PUT tmpd, %G
*/
static
UInt dis_cmov_E_G ( UChar sorb,
Int sz,
X86Condcode cond,
Int delta0 )
{
UChar rm = getIByte(delta0);
HChar dis_buf[50];
Int len;
IRType ty = szToITy(sz);
IRTemp tmps = newTemp(ty);
IRTemp tmpd = newTemp(ty);
if (epartIsReg(rm)) {
assign( tmps, getIReg(sz, eregOfRM(rm)) );
assign( tmpd, getIReg(sz, gregOfRM(rm)) );
putIReg(sz, gregOfRM(rm),
IRExpr_Mux0X( unop(Iop_1Uto8,
mk_x86g_calculate_condition(cond)),
mkexpr(tmpd),
mkexpr(tmps) )
);
DIP("cmov%c%s %s,%s\n", nameISize(sz),
name_X86Condcode(cond),
nameIReg(sz,eregOfRM(rm)),
nameIReg(sz,gregOfRM(rm)));
return 1+delta0;
}
/* E refers to memory */
{
IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf );
assign( tmps, loadLE(ty, mkexpr(addr)) );
assign( tmpd, getIReg(sz, gregOfRM(rm)) );
putIReg(sz, gregOfRM(rm),
IRExpr_Mux0X( unop(Iop_1Uto8,
mk_x86g_calculate_condition(cond)),
mkexpr(tmpd),
mkexpr(tmps) )
);
DIP("cmov%c%s %s,%s\n", nameISize(sz),
name_X86Condcode(cond),
dis_buf,
nameIReg(sz,gregOfRM(rm)));
return len+delta0;
}
}
static
UInt dis_xadd_G_E ( UChar sorb, Int sz, Int delta0, Bool* decodeOK )
{
Int len;
UChar rm = getIByte(delta0);
HChar dis_buf[50];
// Int tmpd = newTemp(cb);
//Int tmpt = newTemp(cb);
IRType ty = szToITy(sz);
IRTemp tmpd = newTemp(ty);
IRTemp tmpt0 = newTemp(ty);
IRTemp tmpt1 = newTemp(ty);
if (epartIsReg(rm)) {
*decodeOK = False;
return delta0;
/* Currently we don't handle xadd_G_E with register operand. */
#if 0
uInstr2(cb, GET, sz, ArchReg, eregOfRM(rm), TempReg, tmpd);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(rm), TempReg, tmpt);
uInstr2(cb, ADD, sz, TempReg, tmpd, TempReg, tmpt);
setFlagsFromUOpcode(cb, ADD);
uInstr2(cb, PUT, sz, TempReg, tmpd, ArchReg, gregOfRM(rm));
uInstr2(cb, PUT, sz, TempReg, tmpt, ArchReg, eregOfRM(rm));
DIP("xadd%c %s, %s\n",
nameISize(sz), nameIReg(sz,gregOfRM(rm)), nameIReg(sz,eregOfRM(rm)));
return 1+eip0;
#endif
} else {
IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf );
assign( tmpd, loadLE(ty, mkexpr(addr)) );
assign( tmpt0, getIReg(sz, gregOfRM(rm)) );
assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), mkexpr(tmpd), mkexpr(tmpt0)) );
setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty );
storeLE( mkexpr(addr), mkexpr(tmpt1) );
putIReg(sz, gregOfRM(rm), mkexpr(tmpd));
DIP("xadd%c %s, %s\n",
nameISize(sz), nameIReg(sz,gregOfRM(rm)), dis_buf);
*decodeOK = True;
return len+delta0;
}
}
/* Move 16 bits from Ew (ireg or mem) to G (a segment register). */
static
UInt dis_mov_Ew_Sw ( UChar sorb, Int delta0 )
{
Int len;
IRTemp addr;
UChar rm = getIByte(delta0);
HChar dis_buf[50];
if (epartIsReg(rm)) {
putSReg( gregOfRM(rm), getIReg(2, eregOfRM(rm)) );
DIP("movw %s,%s\n", nameIReg(2,eregOfRM(rm)), nameSReg(gregOfRM(rm)));
return 1+delta0;
} else {
addr = disAMode ( &len, sorb, delta0, dis_buf );
putSReg( gregOfRM(rm), loadLE(Ity_I16, mkexpr(addr)) );
DIP("movw %s,%s\n", dis_buf, nameSReg(gregOfRM(rm)));
return len+delta0;
}
}
/* Move 16 bits from G (a segment register) to Ew (ireg or mem). If
dst is ireg and sz==4, zero out top half of it. */
static
UInt dis_mov_Sw_Ew ( UChar sorb,
Int sz,
Int delta0 )
{
Int len;
IRTemp addr;
UChar rm = getIByte(delta0);
HChar dis_buf[50];
vassert(sz == 2 || sz == 4);
if (epartIsReg(rm)) {
if (sz == 4)
putIReg(4, eregOfRM(rm), unop(Iop_16Uto32, getSReg(gregOfRM(rm))));
else
putIReg(2, eregOfRM(rm), getSReg(gregOfRM(rm)));
DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), nameIReg(sz,eregOfRM(rm)));
return 1+delta0;
} else {
addr = disAMode ( &len, sorb, delta0, dis_buf );
storeLE( mkexpr(addr), getSReg(gregOfRM(rm)) );
DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), dis_buf);
return len+delta0;
}
}
static
void dis_push_segreg ( UInt sreg, Int sz )
{
IRTemp t1 = newTemp(Ity_I16);
IRTemp ta = newTemp(Ity_I32);
vassert(sz == 2 || sz == 4);
assign( t1, getSReg(sreg) );
assign( ta, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(sz)) );
putIReg(4, R_ESP, mkexpr(ta));
storeLE( mkexpr(ta), mkexpr(t1) );
DIP("push%c %s\n", sz==2 ? 'w' : 'l', nameSReg(sreg));
}
static
void dis_pop_segreg ( UInt sreg, Int sz )
{
IRTemp t1 = newTemp(Ity_I16);
IRTemp ta = newTemp(Ity_I32);
vassert(sz == 2 || sz == 4);
assign( ta, getIReg(4, R_ESP) );
assign( t1, loadLE(Ity_I16, mkexpr(ta)) );
putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(ta), mkU32(sz)) );
putSReg( sreg, mkexpr(t1) );
DIP("pop%c %s\n", sz==2 ? 'w' : 'l', nameSReg(sreg));
}
static
void dis_ret ( UInt d32 )
{
IRTemp t1 = newTemp(Ity_I32), t2 = newTemp(Ity_I32);
assign(t1, getIReg(4,R_ESP));
assign(t2, loadLE(Ity_I32,mkexpr(t1)));
putIReg(4, R_ESP,binop(Iop_Add32, mkexpr(t1), mkU32(4+d32)));
jmp_treg(Ijk_Ret,t2);
}
/*------------------------------------------------------------*/
/*--- SSE/SSE2/SSE3 helpers ---*/
/*------------------------------------------------------------*/
/* Worker function; do not call directly.
Handles full width G = G `op` E and G = (not G) `op` E.
*/
static UInt dis_SSE_E_to_G_all_wrk (
UChar sorb, Int delta,
HChar* opname, IROp op,
Bool invertG
)
{
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
IRExpr* gpart
= invertG ? unop(Iop_NotV128, getXMMReg(gregOfRM(rm)))
: getXMMReg(gregOfRM(rm));
if (epartIsReg(rm)) {
putXMMReg( gregOfRM(rm),
binop(op, gpart,
getXMMReg(eregOfRM(rm))) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
return delta+1;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
putXMMReg( gregOfRM(rm),
binop(op, gpart,
loadLE(Ity_V128, mkexpr(addr))) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
return delta+alen;
}
}
/* All lanes SSE binary operation, G = G `op` E. */
static
UInt dis_SSE_E_to_G_all ( UChar sorb, Int delta, HChar* opname, IROp op )
{
return dis_SSE_E_to_G_all_wrk( sorb, delta, opname, op, False );
}
/* All lanes SSE binary operation, G = (not G) `op` E. */
static
UInt dis_SSE_E_to_G_all_invG ( UChar sorb, Int delta,
HChar* opname, IROp op )
{
return dis_SSE_E_to_G_all_wrk( sorb, delta, opname, op, True );
}
/* Lowest 32-bit lane only SSE binary operation, G = G `op` E. */
static UInt dis_SSE_E_to_G_lo32 ( UChar sorb, Int delta,
HChar* opname, IROp op )
{
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
IRExpr* gpart = getXMMReg(gregOfRM(rm));
if (epartIsReg(rm)) {
putXMMReg( gregOfRM(rm),
binop(op, gpart,
getXMMReg(eregOfRM(rm))) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
return delta+1;
} else {
/* We can only do a 32-bit memory read, so the upper 3/4 of the
E operand needs to be made simply of zeroes. */
IRTemp epart = newTemp(Ity_V128);
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( epart, unop( Iop_32UtoV128,
loadLE(Ity_I32, mkexpr(addr))) );
putXMMReg( gregOfRM(rm),
binop(op, gpart, mkexpr(epart)) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
return delta+alen;
}
}
/* Lower 64-bit lane only SSE binary operation, G = G `op` E. */
static UInt dis_SSE_E_to_G_lo64 ( UChar sorb, Int delta,
HChar* opname, IROp op )
{
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
IRExpr* gpart = getXMMReg(gregOfRM(rm));
if (epartIsReg(rm)) {
putXMMReg( gregOfRM(rm),
binop(op, gpart,
getXMMReg(eregOfRM(rm))) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
return delta+1;
} else {
/* We can only do a 64-bit memory read, so the upper half of the
E operand needs to be made simply of zeroes. */
IRTemp epart = newTemp(Ity_V128);
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( epart, unop( Iop_64UtoV128,
loadLE(Ity_I64, mkexpr(addr))) );
putXMMReg( gregOfRM(rm),
binop(op, gpart, mkexpr(epart)) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
return delta+alen;
}
}
/* All lanes unary SSE operation, G = op(E). */
static UInt dis_SSE_E_to_G_unary_all (
UChar sorb, Int delta,
HChar* opname, IROp op
)
{
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
if (epartIsReg(rm)) {
putXMMReg( gregOfRM(rm),
unop(op, getXMMReg(eregOfRM(rm))) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
return delta+1;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
putXMMReg( gregOfRM(rm),
unop(op, loadLE(Ity_V128, mkexpr(addr))) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
return delta+alen;
}
}
/* Lowest 32-bit lane only unary SSE operation, G = op(E). */
static UInt dis_SSE_E_to_G_unary_lo32 (
UChar sorb, Int delta,
HChar* opname, IROp op
)
{
/* First we need to get the old G value and patch the low 32 bits
of the E operand into it. Then apply op and write back to G. */
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
IRTemp oldG0 = newTemp(Ity_V128);
IRTemp oldG1 = newTemp(Ity_V128);
assign( oldG0, getXMMReg(gregOfRM(rm)) );
if (epartIsReg(rm)) {
assign( oldG1,
binop( Iop_SetV128lo32,
mkexpr(oldG0),
getXMMRegLane32(eregOfRM(rm), 0)) );
putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
return delta+1;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( oldG1,
binop( Iop_SetV128lo32,
mkexpr(oldG0),
loadLE(Ity_I32, mkexpr(addr)) ));
putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
return delta+alen;
}
}
/* Lowest 64-bit lane only unary SSE operation, G = op(E). */
static UInt dis_SSE_E_to_G_unary_lo64 (
UChar sorb, Int delta,
HChar* opname, IROp op
)
{
/* First we need to get the old G value and patch the low 64 bits
of the E operand into it. Then apply op and write back to G. */
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
IRTemp oldG0 = newTemp(Ity_V128);
IRTemp oldG1 = newTemp(Ity_V128);
assign( oldG0, getXMMReg(gregOfRM(rm)) );
if (epartIsReg(rm)) {
assign( oldG1,
binop( Iop_SetV128lo64,
mkexpr(oldG0),
getXMMRegLane64(eregOfRM(rm), 0)) );
putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
return delta+1;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( oldG1,
binop( Iop_SetV128lo64,
mkexpr(oldG0),
loadLE(Ity_I64, mkexpr(addr)) ));
putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
return delta+alen;
}
}
/* SSE integer binary operation:
G = G `op` E (eLeft == False)
G = E `op` G (eLeft == True)
*/
static UInt dis_SSEint_E_to_G(
UChar sorb, Int delta,
HChar* opname, IROp op,
Bool eLeft
)
{
HChar dis_buf[50];
Int alen;
IRTemp addr;
UChar rm = getIByte(delta);
IRExpr* gpart = getXMMReg(gregOfRM(rm));
IRExpr* epart = NULL;
if (epartIsReg(rm)) {
epart = getXMMReg(eregOfRM(rm));
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
delta += 1;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
epart = loadLE(Ity_V128, mkexpr(addr));
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
delta += alen;
}
putXMMReg( gregOfRM(rm),
eLeft ? binop(op, epart, gpart)
: binop(op, gpart, epart) );
return delta;
}
/* Helper for doing SSE FP comparisons. */
static void findSSECmpOp ( Bool* needNot, IROp* op,
Int imm8, Bool all_lanes, Int sz )
{
imm8 &= 7;
*needNot = False;
*op = Iop_INVALID;
if (imm8 >= 4) {
*needNot = True;
imm8 -= 4;
}
if (sz == 4 && all_lanes) {
switch (imm8) {
case 0: *op = Iop_CmpEQ32Fx4; return;
case 1: *op = Iop_CmpLT32Fx4; return;
case 2: *op = Iop_CmpLE32Fx4; return;
case 3: *op = Iop_CmpUN32Fx4; return;
default: break;
}
}
if (sz == 4 && !all_lanes) {
switch (imm8) {
case 0: *op = Iop_CmpEQ32F0x4; return;
case 1: *op = Iop_CmpLT32F0x4; return;
case 2: *op = Iop_CmpLE32F0x4; return;
case 3: *op = Iop_CmpUN32F0x4; return;
default: break;
}
}
if (sz == 8 && all_lanes) {
switch (imm8) {
case 0: *op = Iop_CmpEQ64Fx2; return;
case 1: *op = Iop_CmpLT64Fx2; return;
case 2: *op = Iop_CmpLE64Fx2; return;
case 3: *op = Iop_CmpUN64Fx2; return;
default: break;
}
}
if (sz == 8 && !all_lanes) {
switch (imm8) {
case 0: *op = Iop_CmpEQ64F0x2; return;
case 1: *op = Iop_CmpLT64F0x2; return;
case 2: *op = Iop_CmpLE64F0x2; return;
case 3: *op = Iop_CmpUN64F0x2; return;
default: break;
}
}
vpanic("findSSECmpOp(x86,guest)");
}
/* Handles SSE 32F/64F comparisons. */
static UInt dis_SSEcmp_E_to_G ( UChar sorb, Int delta,
HChar* opname, Bool all_lanes, Int sz )
{
HChar dis_buf[50];
Int alen, imm8;
IRTemp addr;
Bool needNot = False;
IROp op = Iop_INVALID;
IRTemp plain = newTemp(Ity_V128);
UChar rm = getIByte(delta);
UShort mask = 0;
vassert(sz == 4 || sz == 8);
if (epartIsReg(rm)) {
imm8 = getIByte(delta+1);
findSSECmpOp(&needNot, &op, imm8, all_lanes, sz);
assign( plain, binop(op, getXMMReg(gregOfRM(rm)),
getXMMReg(eregOfRM(rm))) );
delta += 2;
DIP("%s $%d,%s,%s\n", opname,
(Int)imm8,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
imm8 = getIByte(delta+alen);
findSSECmpOp(&needNot, &op, imm8, all_lanes, sz);
assign( plain,
binop(
op,
getXMMReg(gregOfRM(rm)),
all_lanes ? loadLE(Ity_V128, mkexpr(addr))
: sz == 8 ? unop( Iop_64UtoV128, loadLE(Ity_I64, mkexpr(addr)))
: /*sz==4*/ unop( Iop_32UtoV128, loadLE(Ity_I32, mkexpr(addr)))
)
);
delta += alen+1;
DIP("%s $%d,%s,%s\n", opname,
(Int)imm8,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
}
if (needNot && all_lanes) {
putXMMReg( gregOfRM(rm),
unop(Iop_NotV128, mkexpr(plain)) );
}
else
if (needNot && !all_lanes) {
mask = toUShort( sz==4 ? 0x000F : 0x00FF );
putXMMReg( gregOfRM(rm),
binop(Iop_XorV128, mkexpr(plain), mkV128(mask)) );
}
else {
putXMMReg( gregOfRM(rm), mkexpr(plain) );
}
return delta;
}
/* Vector by scalar shift of G by the amount specified at the bottom
of E. */
static UInt dis_SSE_shiftG_byE ( UChar sorb, Int delta,
HChar* opname, IROp op )
{
HChar dis_buf[50];
Int alen, size;
IRTemp addr;
Bool shl, shr, sar;
UChar rm = getIByte(delta);
IRTemp g0 = newTemp(Ity_V128);
IRTemp g1 = newTemp(Ity_V128);
IRTemp amt = newTemp(Ity_I32);
IRTemp amt8 = newTemp(Ity_I8);
if (epartIsReg(rm)) {
assign( amt, getXMMRegLane32(eregOfRM(rm), 0) );
DIP("%s %s,%s\n", opname,
nameXMMReg(eregOfRM(rm)),
nameXMMReg(gregOfRM(rm)) );
delta++;
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( amt, loadLE(Ity_I32, mkexpr(addr)) );
DIP("%s %s,%s\n", opname,
dis_buf,
nameXMMReg(gregOfRM(rm)) );
delta += alen;
}
assign( g0, getXMMReg(gregOfRM(rm)) );
assign( amt8, unop(Iop_32to8, mkexpr(amt)) );
shl = shr = sar = False;
size = 0;
switch (op) {
case Iop_ShlN16x8: shl = True; size = 32; break;
case Iop_ShlN32x4: shl = True; size = 32; break;
case Iop_ShlN64x2: shl = True; size = 64; break;
case Iop_SarN16x8: sar = True; size = 16; break;
case Iop_SarN32x4: sar = True; size = 32; break;
case Iop_ShrN16x8: shr = True; size = 16; break;
case Iop_ShrN32x4: shr = True; size = 32; break;
case Iop_ShrN64x2: shr = True; size = 64; break;
default: vassert(0);
}
if (shl || shr) {
assign(
g1,
IRExpr_Mux0X(
unop(Iop_1Uto8,binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size))),
mkV128(0x0000),
binop(op, mkexpr(g0), mkexpr(amt8))
)
);
} else
if (sar) {
assign(
g1,
IRExpr_Mux0X(
unop(Iop_1Uto8,binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size))),
binop(op, mkexpr(g0), mkU8(size-1)),
binop(op, mkexpr(g0), mkexpr(amt8))
)
);
} else {
/*NOTREACHED*/
vassert(0);
}
putXMMReg( gregOfRM(rm), mkexpr(g1) );
return delta;
}
/* Vector by scalar shift of E by an immediate byte. */
static
UInt dis_SSE_shiftE_imm ( Int delta, HChar* opname, IROp op )
{
Bool shl, shr, sar;
UChar rm = getIByte(delta);
IRTemp e0 = newTemp(Ity_V128);
IRTemp e1 = newTemp(Ity_V128);
UChar amt, size;
vassert(epartIsReg(rm));
vassert(gregOfRM(rm) == 2
|| gregOfRM(rm) == 4 || gregOfRM(rm) == 6);
amt = getIByte(delta+1);
delta += 2;
DIP("%s $%d,%s\n", opname,
(Int)amt,
nameXMMReg(eregOfRM(rm)) );
assign( e0, getXMMReg(eregOfRM(rm)) );
shl = shr = sar = False;
size = 0;
switch (op) {
case Iop_ShlN16x8: shl = True; size = 16; break;
case Iop_ShlN32x4: shl = True; size = 32; break;
case Iop_ShlN64x2: shl = True; size = 64; break;
case Iop_SarN16x8: sar = True; size = 16; break;
case Iop_SarN32x4: sar = True; size = 32; break;
case Iop_ShrN16x8: shr = True; size = 16; break;
case Iop_ShrN32x4: shr = True; size = 32; break;
case Iop_ShrN64x2: shr = True; size = 64; break;
default: vassert(0);
}
if (shl || shr) {
assign( e1, amt >= size
? mkV128(0x0000)
: binop(op, mkexpr(e0), mkU8(amt))
);
} else
if (sar) {
assign( e1, amt >= size
? binop(op, mkexpr(e0), mkU8(size-1))
: binop(op, mkexpr(e0), mkU8(amt))
);
} else {
/*NOTREACHED*/
vassert(0);
}
putXMMReg( eregOfRM(rm), mkexpr(e1) );
return delta;
}
/* Get the current SSE rounding mode. */
static IRExpr* /* :: Ity_I32 */ get_sse_roundingmode ( void )
{
return binop( Iop_And32,
IRExpr_Get( OFFB_SSEROUND, Ity_I32 ),
mkU32(3) );
}
static void put_sse_roundingmode ( IRExpr* sseround )
{
vassert(typeOfIRExpr(irbb->tyenv, sseround) == Ity_I32);
stmt( IRStmt_Put( OFFB_SSEROUND, sseround ) );
}
/* Break a 128-bit value up into four 32-bit ints. */
static void breakup128to32s ( IRTemp t128,
/*OUTs*/
IRTemp* t3, IRTemp* t2,
IRTemp* t1, IRTemp* t0 )
{
IRTemp hi64 = newTemp(Ity_I64);
IRTemp lo64 = newTemp(Ity_I64);
assign( hi64, unop(Iop_V128HIto64, mkexpr(t128)) );
assign( lo64, unop(Iop_V128to64, mkexpr(t128)) );
vassert(t0 && *t0 == IRTemp_INVALID);
vassert(t1 && *t1 == IRTemp_INVALID);
vassert(t2 && *t2 == IRTemp_INVALID);
vassert(t3 && *t3 == IRTemp_INVALID);
*t0 = newTemp(Ity_I32);
*t1 = newTemp(Ity_I32);
*t2 = newTemp(Ity_I32);
*t3 = newTemp(Ity_I32);
assign( *t0, unop(Iop_64to32, mkexpr(lo64)) );
assign( *t1, unop(Iop_64HIto32, mkexpr(lo64)) );
assign( *t2, unop(Iop_64to32, mkexpr(hi64)) );
assign( *t3, unop(Iop_64HIto32, mkexpr(hi64)) );
}
/* Construct a 128-bit value from four 32-bit ints. */
static IRExpr* mk128from32s ( IRTemp t3, IRTemp t2,
IRTemp t1, IRTemp t0 )
{
return
binop( Iop_64HLtoV128,
binop(Iop_32HLto64, mkexpr(t3), mkexpr(t2)),
binop(Iop_32HLto64, mkexpr(t1), mkexpr(t0))
);
}
/* Break a 64-bit value up into four 16-bit ints. */
static void breakup64to16s ( IRTemp t64,
/*OUTs*/
IRTemp* t3, IRTemp* t2,
IRTemp* t1, IRTemp* t0 )
{
IRTemp hi32 = newTemp(Ity_I32);
IRTemp lo32 = newTemp(Ity_I32);
assign( hi32, unop(Iop_64HIto32, mkexpr(t64)) );
assign( lo32, unop(Iop_64to32, mkexpr(t64)) );
vassert(t0 && *t0 == IRTemp_INVALID);
vassert(t1 && *t1 == IRTemp_INVALID);
vassert(t2 && *t2 == IRTemp_INVALID);
vassert(t3 && *t3 == IRTemp_INVALID);
*t0 = newTemp(Ity_I16);
*t1 = newTemp(Ity_I16);
*t2 = newTemp(Ity_I16);
*t3 = newTemp(Ity_I16);
assign( *t0, unop(Iop_32to16, mkexpr(lo32)) );
assign( *t1, unop(Iop_32HIto16, mkexpr(lo32)) );
assign( *t2, unop(Iop_32to16, mkexpr(hi32)) );
assign( *t3, unop(Iop_32HIto16, mkexpr(hi32)) );
}
/* Construct a 64-bit value from four 16-bit ints. */
static IRExpr* mk64from16s ( IRTemp t3, IRTemp t2,
IRTemp t1, IRTemp t0 )
{
return
binop( Iop_32HLto64,
binop(Iop_16HLto32, mkexpr(t3), mkexpr(t2)),
binop(Iop_16HLto32, mkexpr(t1), mkexpr(t0))
);
}
/*------------------------------------------------------------*/
/*--- Disassemble a single instruction ---*/
/*------------------------------------------------------------*/
/* Disassemble a single instruction into IR. The instruction
is located in host memory at &guest_code[delta]. */
static
DisResult disInstr_X86_WRK (
Bool put_IP,
Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ),
void* callback_opaque,
Long delta64,
VexArchInfo* archinfo
)
{
IRType ty;
IRTemp addr, t0, t1, t2, t3, t4, t5, t6;
Int alen;
UChar opc, modrm, abyte;
UInt d32;
HChar dis_buf[50];
Int am_sz, d_sz;
DisResult dres;
UChar* insn; /* used in SSE decoders */
/* The running delta */
Int delta = (Int)delta64;
/* Holds eip at the start of the insn, so that we can print
consistent error messages for unimplemented insns. */
Int delta_start = delta;
/* sz denotes the nominal data-op size of the insn; we change it to
2 if an 0x66 prefix is seen */
Int sz = 4;
/* sorb holds the segment-override-prefix byte, if any. Zero if no
prefix has been seen, else one of {0x26, 0x3E, 0x64, 0x65}
indicating the prefix. */
UChar sorb = 0;
/* Set result defaults. */
dres.whatNext = Dis_Continue;
dres.len = 0;
dres.continueAt = 0;
addr = t0 = t1 = t2 = t3 = t4 = t5 = t6 = IRTemp_INVALID;
DIP("\t0x%x: ", guest_EIP_bbstart+delta);
/* We may be asked to update the guest EIP before going further. */
if (put_IP)
stmt( IRStmt_Put( OFFB_EIP, mkU32(guest_EIP_curr_instr)) );
/* Spot "Special" instructions (see comment at top of file). */
{
UChar* code = (UChar*)(guest_code + delta);
/* Spot the 12-byte preamble:
C1C703 roll $3, %edi
C1C70D roll $13, %edi
C1C71D roll $29, %edi
C1C713 roll $19, %edi
*/
if (code[ 0] == 0xC1 && code[ 1] == 0xC7 && code[ 2] == 0x03 &&
code[ 3] == 0xC1 && code[ 4] == 0xC7 && code[ 5] == 0x0D &&
code[ 6] == 0xC1 && code[ 7] == 0xC7 && code[ 8] == 0x1D &&
code[ 9] == 0xC1 && code[10] == 0xC7 && code[11] == 0x13) {
/* Got a "Special" instruction preamble. Which one is it? */
if (code[12] == 0x87 && code[13] == 0xDB /* xchgl %ebx,%ebx */) {
/* %EDX = client_request ( %EAX ) */
DIP("%%edx = client_request ( %%eax )\n");
delta += 14;
jmp_lit(Ijk_ClientReq, guest_EIP_bbstart+delta);
dres.whatNext = Dis_StopHere;
goto decode_success;
}
else
if (code[12] == 0x87 && code[13] == 0xC9 /* xchgl %ecx,%ecx */) {
/* %EAX = guest_NRADDR */
DIP("%%eax = guest_NRADDR\n");
delta += 14;
putIReg(4, R_EAX, IRExpr_Get( OFFB_NRADDR, Ity_I32 ));
goto decode_success;
}
else
if (code[12] == 0x87 && code[13] == 0xD2 /* xchgl %edx,%edx */) {
/* call-noredir *%EAX */
DIP("call-noredir *%%eax\n");
delta += 14;
t1 = newTemp(Ity_I32);
assign(t1, getIReg(4,R_EAX));
t2 = newTemp(Ity_I32);
assign(t2, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4)));
putIReg(4, R_ESP, mkexpr(t2));
storeLE( mkexpr(t2), mkU32(guest_EIP_bbstart+delta));
jmp_treg(Ijk_NoRedir,t1);
dres.whatNext = Dis_StopHere;
goto decode_success;
}
/* We don't know what it is. */
goto decode_failure;
/*NOTREACHED*/
}
}
/* Deal with prefixes. */
/* Skip a LOCK prefix. */
/* 2005 Jan 06: the following insns are observed to sometimes
have a LOCK prefix:
cmpxchgl %ecx,(%edx)
cmpxchgl %edx,0x278(%ebx) etc
xchgl %eax, (%ecx)
xaddl %eax, (%ecx)
We need to catch any such which appear to be being used as
a memory barrier, for example lock addl $0,0(%esp)
and emit an IR MFence construct.
*/
if (getIByte(delta) == 0xF0) {
UChar* code = (UChar*)(guest_code + delta);
/* Various bits of kernel headers use the following as a memory
barrier. Hence, first emit an MFence and then let the insn
go through as usual. */
/* F08344240000: lock addl $0, 0(%esp) */
if (code[0] == 0xF0 && code[1] == 0x83 && code[2] == 0x44 &&
code[3] == 0x24 && code[4] == 0x00 && code[5] == 0x00) {
stmt( IRStmt_MFence() );
}
else
if (0) {
vex_printf("vex x86->IR: ignoring LOCK prefix on: ");
/* insn_verbose = True; */
}
/* In any case, skip the prefix. */
delta++;
}
/* Detect operand-size overrides. It is possible for more than one
0x66 to appear. */
while (getIByte(delta) == 0x66) { sz = 2; delta++; };
/* segment override prefixes come after the operand-size override,
it seems */
switch (getIByte(delta)) {
case 0x3E: /* %DS: */
case 0x26: /* %ES: */
case 0x64: /* %FS: */
case 0x65: /* %GS: */
sorb = getIByte(delta); delta++;
break;
case 0x2E: /* %CS: */
/* 2E prefix on a conditional branch instruction is a
branch-prediction hint, which can safely be ignored. */
{
UChar op1 = getIByte(delta+1);
UChar op2 = getIByte(delta+2);
if ((op1 >= 0x70 && op1 <= 0x7F)
|| (op1 == 0xE3)
|| (op1 == 0x0F && op2 >= 0x80 && op2 <= 0x8F)) {
if (0) vex_printf("vex x86->IR: ignoring branch hint\n");
sorb = getIByte(delta); delta++;
break;
}
}
unimplemented("x86 segment override (SEG=CS) prefix");
/*NOTREACHED*/
break;
case 0x36: /* %SS: */
unimplemented("x86 segment override (SEG=SS) prefix");
/*NOTREACHED*/
break;
default:
break;
}
/* ---------------------------------------------------- */
/* --- The SSE decoder. --- */
/* ---------------------------------------------------- */
/* What did I do to deserve SSE ? Perhaps I was really bad in a
previous life? */
/* Note, this doesn't handle SSE2 or SSE3. That is handled in a
later section, further on. */
insn = (UChar*)&guest_code[delta];
/* Treat fxsave specially. It should be doable even on an SSE0
(Pentium-II class) CPU. Hence be prepared to handle it on
any subarchitecture variant.
*/
/* 0F AE /0 = FXSAVE m512 -- write x87 and SSE state to memory */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xAE
&& !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 0) {
IRDirty* d;
modrm = getIByte(delta+2);
vassert(sz == 4);
vassert(!epartIsReg(modrm));
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
DIP("fxsave %s\n", dis_buf);
/* Uses dirty helper:
void x86g_do_FXSAVE ( VexGuestX86State*, UInt ) */
d = unsafeIRDirty_0_N (
0/*regparms*/,
"x86g_dirtyhelper_FXSAVE",
&x86g_dirtyhelper_FXSAVE,
mkIRExprVec_1( mkexpr(addr) )
);
d->needsBBP = True;
/* declare we're writing memory */
d->mFx = Ifx_Write;
d->mAddr = mkexpr(addr);
d->mSize = 512;
/* declare we're reading guest state */
d->nFxState = 7;
d->fxState[0].fx = Ifx_Read;
d->fxState[0].offset = OFFB_FTOP;
d->fxState[0].size = sizeof(UInt);
d->fxState[1].fx = Ifx_Read;
d->fxState[1].offset = OFFB_FPREGS;
d->fxState[1].size = 8 * sizeof(ULong);
d->fxState[2].fx = Ifx_Read;
d->fxState[2].offset = OFFB_FPTAGS;
d->fxState[2].size = 8 * sizeof(UChar);
d->fxState[3].fx = Ifx_Read;
d->fxState[3].offset = OFFB_FPROUND;
d->fxState[3].size = sizeof(UInt);
d->fxState[4].fx = Ifx_Read;
d->fxState[4].offset = OFFB_FC3210;
d->fxState[4].size = sizeof(UInt);
d->fxState[5].fx = Ifx_Read;
d->fxState[5].offset = OFFB_XMM0;
d->fxState[5].size = 8 * sizeof(U128);
d->fxState[6].fx = Ifx_Read;
d->fxState[6].offset = OFFB_SSEROUND;
d->fxState[6].size = sizeof(UInt);
/* Be paranoid ... this assertion tries to ensure the 8 %xmm
images are packed back-to-back. If not, the value of
d->fxState[5].size is wrong. */
vassert(16 == sizeof(U128));
vassert(OFFB_XMM7 == (OFFB_XMM0 + 7 * 16));
stmt( IRStmt_Dirty(d) );
goto decode_success;
}
/* ------ SSE decoder main ------ */
/* Skip parts of the decoder which don't apply given the stated
guest subarchitecture. */
if (archinfo->hwcaps == 0/*baseline, no sse at all*/)
goto after_sse_decoders;
/* Otherwise we must be doing sse1 or sse2, so we can at least try
for SSE1 here. */
/* 0F 58 = ADDPS -- add 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x58) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "addps", Iop_Add32Fx4 );
goto decode_success;
}
/* F3 0F 58 = ADDSS -- add 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x58) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "addss", Iop_Add32F0x4 );
goto decode_success;
}
/* 0F 55 = ANDNPS -- G = (not G) and E */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x55) {
delta = dis_SSE_E_to_G_all_invG( sorb, delta+2, "andnps", Iop_AndV128 );
goto decode_success;
}
/* 0F 54 = ANDPS -- G = G and E */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x54) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "andps", Iop_AndV128 );
goto decode_success;
}
/* 0F C2 = CMPPS -- 32Fx4 comparison from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xC2) {
delta = dis_SSEcmp_E_to_G( sorb, delta+2, "cmpps", True, 4 );
goto decode_success;
}
/* F3 0F C2 = CMPSS -- 32F0x4 comparison from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xC2) {
vassert(sz == 4);
delta = dis_SSEcmp_E_to_G( sorb, delta+3, "cmpss", False, 4 );
goto decode_success;
}
/* 0F 2F = COMISS -- 32F0x4 comparison G,E, and set ZCP */
/* 0F 2E = UCOMISS -- 32F0x4 comparison G,E, and set ZCP */
if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x2F || insn[1] == 0x2E)) {
IRTemp argL = newTemp(Ity_F32);
IRTemp argR = newTemp(Ity_F32);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( argR, getXMMRegLane32F( eregOfRM(modrm), 0/*lowest lane*/ ) );
delta += 2+1;
DIP("[u]comiss %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)) );
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( argR, loadLE(Ity_F32, mkexpr(addr)) );
delta += 2+alen;
DIP("[u]comiss %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( argL, getXMMRegLane32F( gregOfRM(modrm), 0/*lowest lane*/ ) );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put(
OFFB_CC_DEP1,
binop( Iop_And32,
binop(Iop_CmpF64,
unop(Iop_F32toF64,mkexpr(argL)),
unop(Iop_F32toF64,mkexpr(argR))),
mkU32(0x45)
)));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
goto decode_success;
}
/* 0F 2A = CVTPI2PS -- convert 2 x I32 in mem/mmx to 2 x F32 in low
half xmm */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x2A) {
IRTemp arg64 = newTemp(Ity_I64);
IRTemp rmode = newTemp(Ity_I32);
vassert(sz == 4);
modrm = getIByte(delta+2);
do_MMX_preamble();
if (epartIsReg(modrm)) {
assign( arg64, getMMXReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("cvtpi2ps %s,%s\n", nameMMXReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( arg64, loadLE(Ity_I64, mkexpr(addr)) );
delta += 2+alen;
DIP("cvtpi2ps %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, get_sse_roundingmode() );
putXMMRegLane32F(
gregOfRM(modrm), 0,
binop(Iop_F64toF32,
mkexpr(rmode),
unop(Iop_I32toF64,
unop(Iop_64to32, mkexpr(arg64)) )) );
putXMMRegLane32F(
gregOfRM(modrm), 1,
binop(Iop_F64toF32,
mkexpr(rmode),
unop(Iop_I32toF64,
unop(Iop_64HIto32, mkexpr(arg64)) )) );
goto decode_success;
}
/* F3 0F 2A = CVTSI2SS -- convert I32 in mem/ireg to F32 in low
quarter xmm */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x2A) {
IRTemp arg32 = newTemp(Ity_I32);
IRTemp rmode = newTemp(Ity_I32);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
assign( arg32, getIReg(4, eregOfRM(modrm)) );
delta += 3+1;
DIP("cvtsi2ss %s,%s\n", nameIReg(4, eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( arg32, loadLE(Ity_I32, mkexpr(addr)) );
delta += 3+alen;
DIP("cvtsi2ss %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, get_sse_roundingmode() );
putXMMRegLane32F(
gregOfRM(modrm), 0,
binop(Iop_F64toF32,
mkexpr(rmode),
unop(Iop_I32toF64, mkexpr(arg32)) ) );
goto decode_success;
}
/* 0F 2D = CVTPS2PI -- convert 2 x F32 in mem/low half xmm to 2 x
I32 in mmx, according to prevailing SSE rounding mode */
/* 0F 2C = CVTTPS2PI -- convert 2 x F32 in mem/low half xmm to 2 x
I32 in mmx, rounding towards zero */
if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x2D || insn[1] == 0x2C)) {
IRTemp dst64 = newTemp(Ity_I64);
IRTemp rmode = newTemp(Ity_I32);
IRTemp f32lo = newTemp(Ity_F32);
IRTemp f32hi = newTemp(Ity_F32);
Bool r2zero = toBool(insn[1] == 0x2C);
do_MMX_preamble();
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
assign(f32lo, getXMMRegLane32F(eregOfRM(modrm), 0));
assign(f32hi, getXMMRegLane32F(eregOfRM(modrm), 1));
DIP("cvt%sps2pi %s,%s\n", r2zero ? "t" : "",
nameXMMReg(eregOfRM(modrm)),
nameMMXReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign(f32lo, loadLE(Ity_F32, mkexpr(addr)));
assign(f32hi, loadLE(Ity_F32, binop( Iop_Add32,
mkexpr(addr),
mkU32(4) )));
delta += 2+alen;
DIP("cvt%sps2pi %s,%s\n", r2zero ? "t" : "",
dis_buf,
nameMMXReg(gregOfRM(modrm)));
}
if (r2zero) {
assign(rmode, mkU32((UInt)Irrm_ZERO) );
} else {
assign( rmode, get_sse_roundingmode() );
}
assign(
dst64,
binop( Iop_32HLto64,
binop( Iop_F64toI32,
mkexpr(rmode),
unop( Iop_F32toF64, mkexpr(f32hi) ) ),
binop( Iop_F64toI32,
mkexpr(rmode),
unop( Iop_F32toF64, mkexpr(f32lo) ) )
)
);
putMMXReg(gregOfRM(modrm), mkexpr(dst64));
goto decode_success;
}
/* F3 0F 2D = CVTSS2SI -- convert F32 in mem/low quarter xmm to
I32 in ireg, according to prevailing SSE rounding mode */
/* F3 0F 2C = CVTTSS2SI -- convert F32 in mem/low quarter xmm to
I32 in ireg, rounding towards zero */
if (insn[0] == 0xF3 && insn[1] == 0x0F
&& (insn[2] == 0x2D || insn[2] == 0x2C)) {
IRTemp rmode = newTemp(Ity_I32);
IRTemp f32lo = newTemp(Ity_F32);
Bool r2zero = toBool(insn[2] == 0x2C);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
delta += 3+1;
assign(f32lo, getXMMRegLane32F(eregOfRM(modrm), 0));
DIP("cvt%sss2si %s,%s\n", r2zero ? "t" : "",
nameXMMReg(eregOfRM(modrm)),
nameIReg(4, gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign(f32lo, loadLE(Ity_F32, mkexpr(addr)));
delta += 3+alen;
DIP("cvt%sss2si %s,%s\n", r2zero ? "t" : "",
dis_buf,
nameIReg(4, gregOfRM(modrm)));
}
if (r2zero) {
assign( rmode, mkU32((UInt)Irrm_ZERO) );
} else {
assign( rmode, get_sse_roundingmode() );
}
putIReg(4, gregOfRM(modrm),
binop( Iop_F64toI32,
mkexpr(rmode),
unop( Iop_F32toF64, mkexpr(f32lo) ) )
);
goto decode_success;
}
/* 0F 5E = DIVPS -- div 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5E) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "divps", Iop_Div32Fx4 );
goto decode_success;
}
/* F3 0F 5E = DIVSS -- div 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5E) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "divss", Iop_Div32F0x4 );
goto decode_success;
}
/* 0F AE /2 = LDMXCSR m32 -- load %mxcsr */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 2) {
IRTemp t64 = newTemp(Ity_I64);
IRTemp ew = newTemp(Ity_I32);
modrm = getIByte(delta+2);
vassert(!epartIsReg(modrm));
vassert(sz == 4);
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
DIP("ldmxcsr %s\n", dis_buf);
/* The only thing we observe in %mxcsr is the rounding mode.
Therefore, pass the 32-bit value (SSE native-format control
word) to a clean helper, getting back a 64-bit value, the
lower half of which is the SSEROUND value to store, and the
upper half of which is the emulation-warning token which may
be generated.
*/
/* ULong x86h_check_ldmxcsr ( UInt ); */
assign( t64, mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86g_check_ldmxcsr",
&x86g_check_ldmxcsr,
mkIRExprVec_1( loadLE(Ity_I32, mkexpr(addr)) )
)
);
put_sse_roundingmode( unop(Iop_64to32, mkexpr(t64)) );
assign( ew, unop(Iop_64HIto32, mkexpr(t64) ) );
put_emwarn( mkexpr(ew) );
/* Finally, if an emulation warning was reported, side-exit to
the next insn, reporting the warning, so that Valgrind's
dispatcher sees the warning. */
stmt(
IRStmt_Exit(
binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)),
Ijk_EmWarn,
IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta)
)
);
goto decode_success;
}
/* 0F 5F = MAXPS -- max 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5F) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "maxps", Iop_Max32Fx4 );
goto decode_success;
}
/* F3 0F 5F = MAXSS -- max 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5F) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "maxss", Iop_Max32F0x4 );
goto decode_success;
}
/* 0F 5D = MINPS -- min 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5D) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "minps", Iop_Min32Fx4 );
goto decode_success;
}
/* F3 0F 5D = MINSS -- min 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5D) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "minss", Iop_Min32F0x4 );
goto decode_success;
}
/* 0F 28 = MOVAPS -- move from E (mem or xmm) to G (xmm). */
/* 0F 10 = MOVUPS -- move from E (mem or xmm) to G (xmm). */
if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x28 || insn[1] == 0x10)) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
putXMMReg( gregOfRM(modrm),
getXMMReg( eregOfRM(modrm) ));
DIP("mov[ua]ps %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 2+1;
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
putXMMReg( gregOfRM(modrm),
loadLE(Ity_V128, mkexpr(addr)) );
DIP("mov[ua]ps %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 2+alen;
}
goto decode_success;
}
/* 0F 29 = MOVAPS -- move from G (xmm) to E (mem or xmm). */
/* 0F 11 = MOVUPS -- move from G (xmm) to E (mem or xmm). */
if (sz == 4 && insn[0] == 0x0F
&& (insn[1] == 0x29 || insn[1] == 0x11)) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
/* fall through; awaiting test case */
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) );
DIP("mov[ua]ps %s,%s\n", nameXMMReg(gregOfRM(modrm)),
dis_buf );
delta += 2+alen;
goto decode_success;
}
}
/* 0F 16 = MOVHPS -- move from mem to high half of XMM. */
/* 0F 16 = MOVLHPS -- move from lo half to hi half of XMM. */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x16) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
putXMMRegLane64( gregOfRM(modrm), 1/*upper lane*/,
getXMMRegLane64( eregOfRM(modrm), 0 ) );
DIP("movhps %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
putXMMRegLane64( gregOfRM(modrm), 1/*upper lane*/,
loadLE(Ity_I64, mkexpr(addr)) );
DIP("movhps %s,%s\n", dis_buf,
nameXMMReg( gregOfRM(modrm) ));
}
goto decode_success;
}
/* 0F 17 = MOVHPS -- move from high half of XMM to mem. */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x17) {
if (!epartIsReg(insn[2])) {
delta += 2;
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
storeLE( mkexpr(addr),
getXMMRegLane64( gregOfRM(insn[2]),
1/*upper lane*/ ) );
DIP("movhps %s,%s\n", nameXMMReg( gregOfRM(insn[2]) ),
dis_buf);
goto decode_success;
}
/* else fall through */
}
/* 0F 12 = MOVLPS -- move from mem to low half of XMM. */
/* OF 12 = MOVHLPS -- from from hi half to lo half of XMM. */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x12) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
putXMMRegLane64( gregOfRM(modrm),
0/*lower lane*/,
getXMMRegLane64( eregOfRM(modrm), 1 ));
DIP("movhlps %s, %s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
putXMMRegLane64( gregOfRM(modrm), 0/*lower lane*/,
loadLE(Ity_I64, mkexpr(addr)) );
DIP("movlps %s, %s\n",
dis_buf, nameXMMReg( gregOfRM(modrm) ));
}
goto decode_success;
}
/* 0F 13 = MOVLPS -- move from low half of XMM to mem. */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x13) {
if (!epartIsReg(insn[2])) {
delta += 2;
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
storeLE( mkexpr(addr),
getXMMRegLane64( gregOfRM(insn[2]),
0/*lower lane*/ ) );
DIP("movlps %s, %s\n", nameXMMReg( gregOfRM(insn[2]) ),
dis_buf);
goto decode_success;
}
/* else fall through */
}
/* 0F 50 = MOVMSKPS - move 4 sign bits from 4 x F32 in xmm(E)
to 4 lowest bits of ireg(G) */
if (insn[0] == 0x0F && insn[1] == 0x50) {
modrm = getIByte(delta+2);
if (sz == 4 && epartIsReg(modrm)) {
Int src;
t0 = newTemp(Ity_I32);
t1 = newTemp(Ity_I32);
t2 = newTemp(Ity_I32);
t3 = newTemp(Ity_I32);
delta += 2+1;
src = eregOfRM(modrm);
assign( t0, binop( Iop_And32,
binop(Iop_Shr32, getXMMRegLane32(src,0), mkU8(31)),
mkU32(1) ));
assign( t1, binop( Iop_And32,
binop(Iop_Shr32, getXMMRegLane32(src,1), mkU8(30)),
mkU32(2) ));
assign( t2, binop( Iop_And32,
binop(Iop_Shr32, getXMMRegLane32(src,2), mkU8(29)),
mkU32(4) ));
assign( t3, binop( Iop_And32,
binop(Iop_Shr32, getXMMRegLane32(src,3), mkU8(28)),
mkU32(8) ));
putIReg(4, gregOfRM(modrm),
binop(Iop_Or32,
binop(Iop_Or32, mkexpr(t0), mkexpr(t1)),
binop(Iop_Or32, mkexpr(t2), mkexpr(t3))
)
);
DIP("movmskps %s,%s\n", nameXMMReg(src),
nameIReg(4, gregOfRM(modrm)));
goto decode_success;
}
/* else fall through */
}
/* 0F 2B = MOVNTPS -- for us, just a plain SSE store. */
/* 66 0F 2B = MOVNTPD -- for us, just a plain SSE store. */
if (insn[0] == 0x0F && insn[1] == 0x2B) {
modrm = getIByte(delta+2);
if (!epartIsReg(modrm)) {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) );
DIP("movntp%s %s,%s\n", sz==2 ? "d" : "s",
dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 2+alen;
goto decode_success;
}
/* else fall through */
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F E7 = MOVNTQ -- for us, just a plain MMX store. Note, the
Intel manual does not say anything about the usual business of
the FP reg tags getting trashed whenever an MMX insn happens.
So we just leave them alone.
*/
if (insn[0] == 0x0F && insn[1] == 0xE7) {
modrm = getIByte(delta+2);
if (sz == 4 && !epartIsReg(modrm)) {
/* do_MMX_preamble(); Intel docs don't specify this */
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr), getMMXReg(gregOfRM(modrm)) );
DIP("movntq %s,%s\n", dis_buf,
nameMMXReg(gregOfRM(modrm)));
delta += 2+alen;
goto decode_success;
}
/* else fall through */
}
/* F3 0F 10 = MOVSS -- move 32 bits from E (mem or lo 1/4 xmm) to G
(lo 1/4 xmm). If E is mem, upper 3/4 of G is zeroed out. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x10) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
putXMMRegLane32( gregOfRM(modrm), 0,
getXMMRegLane32( eregOfRM(modrm), 0 ));
DIP("movss %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 3+1;
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
/* zero bits 127:64 */
putXMMRegLane64( gregOfRM(modrm), 1, mkU64(0) );
/* zero bits 63:32 */
putXMMRegLane32( gregOfRM(modrm), 1, mkU32(0) );
/* write bits 31:0 */
putXMMRegLane32( gregOfRM(modrm), 0,
loadLE(Ity_I32, mkexpr(addr)) );
DIP("movss %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 3+alen;
}
goto decode_success;
}
/* F3 0F 11 = MOVSS -- move 32 bits from G (lo 1/4 xmm) to E (mem
or lo 1/4 xmm). */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x11) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
/* fall through, we don't yet have a test case */
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
storeLE( mkexpr(addr),
getXMMRegLane32(gregOfRM(modrm), 0) );
DIP("movss %s,%s\n", nameXMMReg(gregOfRM(modrm)),
dis_buf);
delta += 3+alen;
goto decode_success;
}
}
/* 0F 59 = MULPS -- mul 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x59) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "mulps", Iop_Mul32Fx4 );
goto decode_success;
}
/* F3 0F 59 = MULSS -- mul 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x59) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "mulss", Iop_Mul32F0x4 );
goto decode_success;
}
/* 0F 56 = ORPS -- G = G and E */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x56) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "orps", Iop_OrV128 );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F E0 = PAVGB -- 8x8 unsigned Packed Average, with rounding */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xE0) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pavgb", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F E3 = PAVGW -- 16x4 unsigned Packed Average, with rounding */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xE3) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pavgw", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F C5 = PEXTRW -- extract 16-bit field from mmx(E) and put
zero-extend of it in ireg(G). */
if (insn[0] == 0x0F && insn[1] == 0xC5) {
modrm = insn[2];
if (sz == 4 && epartIsReg(modrm)) {
IRTemp sV = newTemp(Ity_I64);
t5 = newTemp(Ity_I16);
do_MMX_preamble();
assign(sV, getMMXReg(eregOfRM(modrm)));
breakup64to16s( sV, &t3, &t2, &t1, &t0 );
switch (insn[3] & 3) {
case 0: assign(t5, mkexpr(t0)); break;
case 1: assign(t5, mkexpr(t1)); break;
case 2: assign(t5, mkexpr(t2)); break;
case 3: assign(t5, mkexpr(t3)); break;
default: vassert(0); /*NOTREACHED*/
}
putIReg(4, gregOfRM(modrm), unop(Iop_16Uto32, mkexpr(t5)));
DIP("pextrw $%d,%s,%s\n",
(Int)insn[3], nameMMXReg(eregOfRM(modrm)),
nameIReg(4,gregOfRM(modrm)));
delta += 4;
goto decode_success;
}
/* else fall through */
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F C4 = PINSRW -- get 16 bits from E(mem or low half ireg) and
put it into the specified lane of mmx(G). */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xC4) {
/* Use t0 .. t3 to hold the 4 original 16-bit lanes of the
mmx reg. t4 is the new lane value. t5 is the original
mmx value. t6 is the new mmx value. */
Int lane;
t4 = newTemp(Ity_I16);
t5 = newTemp(Ity_I64);
t6 = newTemp(Ity_I64);
modrm = insn[2];
do_MMX_preamble();
assign(t5, getMMXReg(gregOfRM(modrm)));
breakup64to16s( t5, &t3, &t2, &t1, &t0 );
if (epartIsReg(modrm)) {
assign(t4, getIReg(2, eregOfRM(modrm)));
delta += 3+1;
lane = insn[3+1-1];
DIP("pinsrw $%d,%s,%s\n", (Int)lane,
nameIReg(2,eregOfRM(modrm)),
nameMMXReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 3+alen;
lane = insn[3+alen-1];
assign(t4, loadLE(Ity_I16, mkexpr(addr)));
DIP("pinsrw $%d,%s,%s\n", (Int)lane,
dis_buf,
nameMMXReg(gregOfRM(modrm)));
}
switch (lane & 3) {
case 0: assign(t6, mk64from16s(t3,t2,t1,t4)); break;
case 1: assign(t6, mk64from16s(t3,t2,t4,t0)); break;
case 2: assign(t6, mk64from16s(t3,t4,t1,t0)); break;
case 3: assign(t6, mk64from16s(t4,t2,t1,t0)); break;
default: vassert(0); /*NOTREACHED*/
}
putMMXReg(gregOfRM(modrm), mkexpr(t6));
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F EE = PMAXSW -- 16x4 signed max */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xEE) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pmaxsw", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F DE = PMAXUB -- 8x8 unsigned max */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xDE) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pmaxub", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F EA = PMINSW -- 16x4 signed min */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xEA) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pminsw", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F DA = PMINUB -- 8x8 unsigned min */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xDA) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pminub", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F D7 = PMOVMSKB -- extract sign bits from each of 8 lanes in
mmx(G), turn them into a byte, and put zero-extend of it in
ireg(G). */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xD7) {
modrm = insn[2];
if (epartIsReg(modrm)) {
do_MMX_preamble();
t0 = newTemp(Ity_I64);
t1 = newTemp(Ity_I32);
assign(t0, getMMXReg(eregOfRM(modrm)));
assign(t1, mkIRExprCCall(
Ity_I32, 0/*regparms*/,
"x86g_calculate_mmx_pmovmskb",
&x86g_calculate_mmx_pmovmskb,
mkIRExprVec_1(mkexpr(t0))));
putIReg(4, gregOfRM(modrm), mkexpr(t1));
DIP("pmovmskb %s,%s\n", nameMMXReg(eregOfRM(modrm)),
nameIReg(4,gregOfRM(modrm)));
delta += 3;
goto decode_success;
}
/* else fall through */
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F E4 = PMULUH -- 16x4 hi-half of unsigned widening multiply */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xE4) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "pmuluh", False );
goto decode_success;
}
/* 0F 18 /0 = PREFETCHNTA -- prefetch into caches, */
/* 0F 18 /1 = PREFETCH0 -- with various different hints */
/* 0F 18 /2 = PREFETCH1 */
/* 0F 18 /3 = PREFETCH2 */
if (insn[0] == 0x0F && insn[1] == 0x18
&& !epartIsReg(insn[2])
&& gregOfRM(insn[2]) >= 0 && gregOfRM(insn[2]) <= 3) {
HChar* hintstr = "??";
modrm = getIByte(delta+2);
vassert(!epartIsReg(modrm));
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
switch (gregOfRM(modrm)) {
case 0: hintstr = "nta"; break;
case 1: hintstr = "t0"; break;
case 2: hintstr = "t1"; break;
case 3: hintstr = "t2"; break;
default: vassert(0); /*NOTREACHED*/
}
DIP("prefetch%s %s\n", hintstr, dis_buf);
goto decode_success;
}
/* 0F 0D /0 = PREFETCH m8 -- 3DNow! prefetch */
/* 0F 0D /1 = PREFETCHW m8 -- ditto, with some other hint */
if (insn[0] == 0x0F && insn[1] == 0x0D
&& !epartIsReg(insn[2])
&& gregOfRM(insn[2]) >= 0 && gregOfRM(insn[2]) <= 1) {
HChar* hintstr = "??";
modrm = getIByte(delta+2);
vassert(!epartIsReg(modrm));
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
switch (gregOfRM(modrm)) {
case 0: hintstr = ""; break;
case 1: hintstr = "w"; break;
default: vassert(0); /*NOTREACHED*/
}
DIP("prefetch%s %s\n", hintstr, dis_buf);
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F F6 = PSADBW -- sum of 8Ux8 absolute differences */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xF6) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "psadbw", False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE1 ---*** */
/* 0F 70 = PSHUFW -- rearrange 4x16 from E(mmx or mem) to G(mmx) */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x70) {
Int order;
IRTemp sV, dV, s3, s2, s1, s0;
s3 = s2 = s1 = s0 = IRTemp_INVALID;
sV = newTemp(Ity_I64);
dV = newTemp(Ity_I64);
do_MMX_preamble();
modrm = insn[2];
if (epartIsReg(modrm)) {
assign( sV, getMMXReg(eregOfRM(modrm)) );
order = (Int)insn[3];
delta += 2+2;
DIP("pshufw $%d,%s,%s\n", order,
nameMMXReg(eregOfRM(modrm)),
nameMMXReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_I64, mkexpr(addr)) );
order = (Int)insn[2+alen];
delta += 3+alen;
DIP("pshufw $%d,%s,%s\n", order,
dis_buf,
nameMMXReg(gregOfRM(modrm)));
}
breakup64to16s( sV, &s3, &s2, &s1, &s0 );
# define SEL(n) \
((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3)))
assign(dV,
mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3),
SEL((order>>2)&3), SEL((order>>0)&3) )
);
putMMXReg(gregOfRM(modrm), mkexpr(dV));
# undef SEL
goto decode_success;
}
/* 0F 53 = RCPPS -- approx reciprocal 32Fx4 from R/M to R */
if (insn[0] == 0x0F && insn[1] == 0x53) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_unary_all( sorb, delta+2,
"rcpps", Iop_Recip32Fx4 );
goto decode_success;
}
/* F3 0F 53 = RCPSS -- approx reciprocal 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x53) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_unary_lo32( sorb, delta+3,
"rcpss", Iop_Recip32F0x4 );
goto decode_success;
}
/* 0F 52 = RSQRTPS -- approx reciprocal sqrt 32Fx4 from R/M to R */
if (insn[0] == 0x0F && insn[1] == 0x52) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_unary_all( sorb, delta+2,
"rsqrtps", Iop_RSqrt32Fx4 );
goto decode_success;
}
/* F3 0F 52 = RSQRTSS -- approx reciprocal sqrt 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x52) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_unary_lo32( sorb, delta+3,
"rsqrtss", Iop_RSqrt32F0x4 );
goto decode_success;
}
/* 0F AE /7 = SFENCE -- flush pending operations to memory */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& epartIsReg(insn[2]) && gregOfRM(insn[2]) == 7) {
vassert(sz == 4);
delta += 3;
/* Insert a memory fence. It's sometimes important that these
are carried through to the generated code. */
stmt( IRStmt_MFence() );
DIP("sfence\n");
goto decode_success;
}
/* 0F C6 /r ib = SHUFPS -- shuffle packed F32s */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xC6) {
Int select;
IRTemp sV, dV;
IRTemp s3, s2, s1, s0, d3, d2, d1, d0;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID;
modrm = insn[2];
assign( dV, getXMMReg(gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
select = (Int)insn[3];
delta += 2+2;
DIP("shufps $%d,%s,%s\n", select,
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
select = (Int)insn[2+alen];
delta += 3+alen;
DIP("shufps $%d,%s,%s\n", select,
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
breakup128to32s( dV, &d3, &d2, &d1, &d0 );
breakup128to32s( sV, &s3, &s2, &s1, &s0 );
# define SELD(n) ((n)==0 ? d0 : ((n)==1 ? d1 : ((n)==2 ? d2 : d3)))
# define SELS(n) ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3)))
putXMMReg(
gregOfRM(modrm),
mk128from32s( SELS((select>>6)&3), SELS((select>>4)&3),
SELD((select>>2)&3), SELD((select>>0)&3) )
);
# undef SELD
# undef SELS
goto decode_success;
}
/* 0F 51 = SQRTPS -- approx sqrt 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x51) {
delta = dis_SSE_E_to_G_unary_all( sorb, delta+2,
"sqrtps", Iop_Sqrt32Fx4 );
goto decode_success;
}
/* F3 0F 51 = SQRTSS -- approx sqrt 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x51) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_unary_lo32( sorb, delta+3,
"sqrtss", Iop_Sqrt32F0x4 );
goto decode_success;
}
/* 0F AE /3 = STMXCSR m32 -- store %mxcsr */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 3) {
modrm = getIByte(delta+2);
vassert(sz == 4);
vassert(!epartIsReg(modrm));
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
/* Fake up a native SSE mxcsr word. The only thing it depends
on is SSEROUND[1:0], so call a clean helper to cook it up.
*/
/* UInt x86h_create_mxcsr ( UInt sseround ) */
DIP("stmxcsr %s\n", dis_buf);
storeLE( mkexpr(addr),
mkIRExprCCall(
Ity_I32, 0/*regp*/,
"x86g_create_mxcsr", &x86g_create_mxcsr,
mkIRExprVec_1( get_sse_roundingmode() )
)
);
goto decode_success;
}
/* 0F 5C = SUBPS -- sub 32Fx4 from R/M to R */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5C) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "subps", Iop_Sub32Fx4 );
goto decode_success;
}
/* F3 0F 5C = SUBSS -- sub 32F0x4 from R/M to R */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5C) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "subss", Iop_Sub32F0x4 );
goto decode_success;
}
/* 0F 15 = UNPCKHPS -- unpack and interleave high part F32s */
/* 0F 14 = UNPCKLPS -- unpack and interleave low part F32s */
/* These just appear to be special cases of SHUFPS */
if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x15 || insn[1] == 0x14)) {
IRTemp sV, dV;
IRTemp s3, s2, s1, s0, d3, d2, d1, d0;
Bool hi = toBool(insn[1] == 0x15);
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID;
modrm = insn[2];
assign( dV, getXMMReg(gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("unpck%sps %s,%s\n", hi ? "h" : "l",
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("unpck%sps %s,%s\n", hi ? "h" : "l",
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
breakup128to32s( dV, &d3, &d2, &d1, &d0 );
breakup128to32s( sV, &s3, &s2, &s1, &s0 );
if (hi) {
putXMMReg( gregOfRM(modrm), mk128from32s( s3, d3, s2, d2 ) );
} else {
putXMMReg( gregOfRM(modrm), mk128from32s( s1, d1, s0, d0 ) );
}
goto decode_success;
}
/* 0F 57 = XORPS -- G = G and E */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x57) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "xorps", Iop_XorV128 );
goto decode_success;
}
/* ---------------------------------------------------- */
/* --- end of the SSE decoder. --- */
/* ---------------------------------------------------- */
/* ---------------------------------------------------- */
/* --- start of the SSE2 decoder. --- */
/* ---------------------------------------------------- */
/* Skip parts of the decoder which don't apply given the stated
guest subarchitecture. */
if (0 == (archinfo->hwcaps & VEX_HWCAPS_X86_SSE2))
goto after_sse_decoders; /* no SSE2 capabilities */
insn = (UChar*)&guest_code[delta];
/* 66 0F 58 = ADDPD -- add 32Fx4 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x58) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "addpd", Iop_Add64Fx2 );
goto decode_success;
}
/* F2 0F 58 = ADDSD -- add 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x58) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "addsd", Iop_Add64F0x2 );
goto decode_success;
}
/* 66 0F 55 = ANDNPD -- G = (not G) and E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x55) {
delta = dis_SSE_E_to_G_all_invG( sorb, delta+2, "andnpd", Iop_AndV128 );
goto decode_success;
}
/* 66 0F 54 = ANDPD -- G = G and E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x54) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "andpd", Iop_AndV128 );
goto decode_success;
}
/* 66 0F C2 = CMPPD -- 64Fx2 comparison from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC2) {
delta = dis_SSEcmp_E_to_G( sorb, delta+2, "cmppd", True, 8 );
goto decode_success;
}
/* F2 0F C2 = CMPSD -- 64F0x2 comparison from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xC2) {
vassert(sz == 4);
delta = dis_SSEcmp_E_to_G( sorb, delta+3, "cmpsd", False, 8 );
goto decode_success;
}
/* 66 0F 2F = COMISD -- 64F0x2 comparison G,E, and set ZCP */
/* 66 0F 2E = UCOMISD -- 64F0x2 comparison G,E, and set ZCP */
if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x2F || insn[1] == 0x2E)) {
IRTemp argL = newTemp(Ity_F64);
IRTemp argR = newTemp(Ity_F64);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( argR, getXMMRegLane64F( eregOfRM(modrm), 0/*lowest lane*/ ) );
delta += 2+1;
DIP("[u]comisd %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)) );
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( argR, loadLE(Ity_F64, mkexpr(addr)) );
delta += 2+alen;
DIP("[u]comisd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( argL, getXMMRegLane64F( gregOfRM(modrm), 0/*lowest lane*/ ) );
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put(
OFFB_CC_DEP1,
binop( Iop_And32,
binop(Iop_CmpF64, mkexpr(argL), mkexpr(argR)),
mkU32(0x45)
)));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
goto decode_success;
}
/* F3 0F E6 = CVTDQ2PD -- convert 2 x I32 in mem/lo half xmm to 2 x
F64 in xmm(G) */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xE6) {
IRTemp arg64 = newTemp(Ity_I64);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
assign( arg64, getXMMRegLane64(eregOfRM(modrm), 0) );
delta += 3+1;
DIP("cvtdq2pd %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( arg64, loadLE(Ity_I64, mkexpr(addr)) );
delta += 3+alen;
DIP("cvtdq2pd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
putXMMRegLane64F(
gregOfRM(modrm), 0,
unop(Iop_I32toF64, unop(Iop_64to32, mkexpr(arg64)))
);
putXMMRegLane64F(
gregOfRM(modrm), 1,
unop(Iop_I32toF64, unop(Iop_64HIto32, mkexpr(arg64)))
);
goto decode_success;
}
/* 0F 5B = CVTDQ2PS -- convert 4 x I32 in mem/xmm to 4 x F32 in
xmm(G) */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5B) {
IRTemp argV = newTemp(Ity_V128);
IRTemp rmode = newTemp(Ity_I32);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( argV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("cvtdq2ps %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( argV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("cvtdq2ps %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, get_sse_roundingmode() );
breakup128to32s( argV, &t3, &t2, &t1, &t0 );
# define CVT(_t) binop( Iop_F64toF32, \
mkexpr(rmode), \
unop(Iop_I32toF64,mkexpr(_t)))
putXMMRegLane32F( gregOfRM(modrm), 3, CVT(t3) );
putXMMRegLane32F( gregOfRM(modrm), 2, CVT(t2) );
putXMMRegLane32F( gregOfRM(modrm), 1, CVT(t1) );
putXMMRegLane32F( gregOfRM(modrm), 0, CVT(t0) );
# undef CVT
goto decode_success;
}
/* F2 0F E6 = CVTPD2DQ -- convert 2 x F64 in mem/xmm to 2 x I32 in
lo half xmm(G), and zero upper half */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xE6) {
IRTemp argV = newTemp(Ity_V128);
IRTemp rmode = newTemp(Ity_I32);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
assign( argV, getXMMReg(eregOfRM(modrm)) );
delta += 3+1;
DIP("cvtpd2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( argV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 3+alen;
DIP("cvtpd2dq %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, get_sse_roundingmode() );
t0 = newTemp(Ity_F64);
t1 = newTemp(Ity_F64);
assign( t0, unop(Iop_ReinterpI64asF64,
unop(Iop_V128to64, mkexpr(argV))) );
assign( t1, unop(Iop_ReinterpI64asF64,
unop(Iop_V128HIto64, mkexpr(argV))) );
# define CVT(_t) binop( Iop_F64toI32, \
mkexpr(rmode), \
mkexpr(_t) )
putXMMRegLane32( gregOfRM(modrm), 3, mkU32(0) );
putXMMRegLane32( gregOfRM(modrm), 2, mkU32(0) );
putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) );
putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) );
# undef CVT
goto decode_success;
}
/* 66 0F 2D = CVTPD2PI -- convert 2 x F64 in mem/xmm to 2 x
I32 in mmx, according to prevailing SSE rounding mode */
/* 66 0F 2C = CVTTPD2PI -- convert 2 x F64 in mem/xmm to 2 x
I32 in mmx, rounding towards zero */
if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x2D || insn[1] == 0x2C)) {
IRTemp dst64 = newTemp(Ity_I64);
IRTemp rmode = newTemp(Ity_I32);
IRTemp f64lo = newTemp(Ity_F64);
IRTemp f64hi = newTemp(Ity_F64);
Bool r2zero = toBool(insn[1] == 0x2C);
do_MMX_preamble();
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
assign(f64lo, getXMMRegLane64F(eregOfRM(modrm), 0));
assign(f64hi, getXMMRegLane64F(eregOfRM(modrm), 1));
DIP("cvt%spd2pi %s,%s\n", r2zero ? "t" : "",
nameXMMReg(eregOfRM(modrm)),
nameMMXReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign(f64lo, loadLE(Ity_F64, mkexpr(addr)));
assign(f64hi, loadLE(Ity_F64, binop( Iop_Add32,
mkexpr(addr),
mkU32(8) )));
delta += 2+alen;
DIP("cvt%spf2pi %s,%s\n", r2zero ? "t" : "",
dis_buf,
nameMMXReg(gregOfRM(modrm)));
}
if (r2zero) {
assign(rmode, mkU32((UInt)Irrm_ZERO) );
} else {
assign( rmode, get_sse_roundingmode() );
}
assign(
dst64,
binop( Iop_32HLto64,
binop( Iop_F64toI32, mkexpr(rmode), mkexpr(f64hi) ),
binop( Iop_F64toI32, mkexpr(rmode), mkexpr(f64lo) )
)
);
putMMXReg(gregOfRM(modrm), mkexpr(dst64));
goto decode_success;
}
/* 66 0F 5A = CVTPD2PS -- convert 2 x F64 in mem/xmm to 2 x F32 in
lo half xmm(G), and zero upper half */
/* Note, this is practically identical to CVTPD2DQ. It would have
been nicer to merge them together, but the insn[] offsets differ
by one. */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5A) {
IRTemp argV = newTemp(Ity_V128);
IRTemp rmode = newTemp(Ity_I32);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( argV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("cvtpd2ps %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( argV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("cvtpd2ps %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, get_sse_roundingmode() );
t0 = newTemp(Ity_F64);
t1 = newTemp(Ity_F64);
assign( t0, unop(Iop_ReinterpI64asF64,
unop(Iop_V128to64, mkexpr(argV))) );
assign( t1, unop(Iop_ReinterpI64asF64,
unop(Iop_V128HIto64, mkexpr(argV))) );
# define CVT(_t) binop( Iop_F64toF32, \
mkexpr(rmode), \
mkexpr(_t) )
putXMMRegLane32( gregOfRM(modrm), 3, mkU32(0) );
putXMMRegLane32( gregOfRM(modrm), 2, mkU32(0) );
putXMMRegLane32F( gregOfRM(modrm), 1, CVT(t1) );
putXMMRegLane32F( gregOfRM(modrm), 0, CVT(t0) );
# undef CVT
goto decode_success;
}
/* 66 0F 2A = CVTPI2PD -- convert 2 x I32 in mem/mmx to 2 x F64 in
xmm(G) */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x2A) {
IRTemp arg64 = newTemp(Ity_I64);
modrm = getIByte(delta+2);
do_MMX_preamble();
if (epartIsReg(modrm)) {
assign( arg64, getMMXReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("cvtpi2pd %s,%s\n", nameMMXReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( arg64, loadLE(Ity_I64, mkexpr(addr)) );
delta += 2+alen;
DIP("cvtpi2pd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
putXMMRegLane64F(
gregOfRM(modrm), 0,
unop(Iop_I32toF64, unop(Iop_64to32, mkexpr(arg64)) )
);
putXMMRegLane64F(
gregOfRM(modrm), 1,
unop(Iop_I32toF64, unop(Iop_64HIto32, mkexpr(arg64)) )
);
goto decode_success;
}
/* 66 0F 5B = CVTPS2DQ -- convert 4 x F32 in mem/xmm to 4 x I32 in
xmm(G) */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5B) {
IRTemp argV = newTemp(Ity_V128);
IRTemp rmode = newTemp(Ity_I32);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( argV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("cvtps2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( argV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("cvtps2dq %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, get_sse_roundingmode() );
breakup128to32s( argV, &t3, &t2, &t1, &t0 );
/* This is less than ideal. If it turns out to be a performance
bottleneck it can be improved. */
# define CVT(_t) \
binop( Iop_F64toI32, \
mkexpr(rmode), \
unop( Iop_F32toF64, \
unop( Iop_ReinterpI32asF32, mkexpr(_t))) )
putXMMRegLane32( gregOfRM(modrm), 3, CVT(t3) );
putXMMRegLane32( gregOfRM(modrm), 2, CVT(t2) );
putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) );
putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) );
# undef CVT
goto decode_success;
}
/* 0F 5A = CVTPS2PD -- convert 2 x F32 in low half mem/xmm to 2 x
F64 in xmm(G). */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5A) {
IRTemp f32lo = newTemp(Ity_F32);
IRTemp f32hi = newTemp(Ity_F32);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( f32lo, getXMMRegLane32F(eregOfRM(modrm), 0) );
assign( f32hi, getXMMRegLane32F(eregOfRM(modrm), 1) );
delta += 2+1;
DIP("cvtps2pd %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( f32lo, loadLE(Ity_F32, mkexpr(addr)) );
assign( f32hi, loadLE(Ity_F32,
binop(Iop_Add32,mkexpr(addr),mkU32(4))) );
delta += 2+alen;
DIP("cvtps2pd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
putXMMRegLane64F( gregOfRM(modrm), 1,
unop(Iop_F32toF64, mkexpr(f32hi)) );
putXMMRegLane64F( gregOfRM(modrm), 0,
unop(Iop_F32toF64, mkexpr(f32lo)) );
goto decode_success;
}
/* F2 0F 2D = CVTSD2SI -- convert F64 in mem/low half xmm to
I32 in ireg, according to prevailing SSE rounding mode */
/* F2 0F 2C = CVTTSD2SI -- convert F64 in mem/low half xmm to
I32 in ireg, rounding towards zero */
if (insn[0] == 0xF2 && insn[1] == 0x0F
&& (insn[2] == 0x2D || insn[2] == 0x2C)) {
IRTemp rmode = newTemp(Ity_I32);
IRTemp f64lo = newTemp(Ity_F64);
Bool r2zero = toBool(insn[2] == 0x2C);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
delta += 3+1;
assign(f64lo, getXMMRegLane64F(eregOfRM(modrm), 0));
DIP("cvt%ssd2si %s,%s\n", r2zero ? "t" : "",
nameXMMReg(eregOfRM(modrm)),
nameIReg(4, gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign(f64lo, loadLE(Ity_F64, mkexpr(addr)));
delta += 3+alen;
DIP("cvt%ssd2si %s,%s\n", r2zero ? "t" : "",
dis_buf,
nameIReg(4, gregOfRM(modrm)));
}
if (r2zero) {
assign( rmode, mkU32((UInt)Irrm_ZERO) );
} else {
assign( rmode, get_sse_roundingmode() );
}
putIReg(4, gregOfRM(modrm),
binop( Iop_F64toI32, mkexpr(rmode), mkexpr(f64lo)) );
goto decode_success;
}
/* F2 0F 5A = CVTSD2SS -- convert F64 in mem/low half xmm to F32 in
low 1/4 xmm(G), according to prevailing SSE rounding mode */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5A) {
IRTemp rmode = newTemp(Ity_I32);
IRTemp f64lo = newTemp(Ity_F64);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
delta += 3+1;
assign(f64lo, getXMMRegLane64F(eregOfRM(modrm), 0));
DIP("cvtsd2ss %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign(f64lo, loadLE(Ity_F64, mkexpr(addr)));
delta += 3+alen;
DIP("cvtsd2ss %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( rmode, get_sse_roundingmode() );
putXMMRegLane32F(
gregOfRM(modrm), 0,
binop( Iop_F64toF32, mkexpr(rmode), mkexpr(f64lo) )
);
goto decode_success;
}
/* F2 0F 2A = CVTSI2SD -- convert I32 in mem/ireg to F64 in low
half xmm */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x2A) {
IRTemp arg32 = newTemp(Ity_I32);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
assign( arg32, getIReg(4, eregOfRM(modrm)) );
delta += 3+1;
DIP("cvtsi2sd %s,%s\n", nameIReg(4, eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( arg32, loadLE(Ity_I32, mkexpr(addr)) );
delta += 3+alen;
DIP("cvtsi2sd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
putXMMRegLane64F(
gregOfRM(modrm), 0,
unop(Iop_I32toF64, mkexpr(arg32)) );
goto decode_success;
}
/* F3 0F 5A = CVTSS2SD -- convert F32 in mem/low 1/4 xmm to F64 in
low half xmm(G) */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5A) {
IRTemp f32lo = newTemp(Ity_F32);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
delta += 3+1;
assign(f32lo, getXMMRegLane32F(eregOfRM(modrm), 0));
DIP("cvtss2sd %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign(f32lo, loadLE(Ity_F32, mkexpr(addr)));
delta += 3+alen;
DIP("cvtss2sd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
putXMMRegLane64F( gregOfRM(modrm), 0,
unop( Iop_F32toF64, mkexpr(f32lo) ) );
goto decode_success;
}
/* 66 0F E6 = CVTTPD2DQ -- convert 2 x F64 in mem/xmm to 2 x I32 in
lo half xmm(G), and zero upper half, rounding towards zero */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE6) {
IRTemp argV = newTemp(Ity_V128);
IRTemp rmode = newTemp(Ity_I32);
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
assign( argV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("cvttpd2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( argV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("cvttpd2dq %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, mkU32((UInt)Irrm_ZERO) );
t0 = newTemp(Ity_F64);
t1 = newTemp(Ity_F64);
assign( t0, unop(Iop_ReinterpI64asF64,
unop(Iop_V128to64, mkexpr(argV))) );
assign( t1, unop(Iop_ReinterpI64asF64,
unop(Iop_V128HIto64, mkexpr(argV))) );
# define CVT(_t) binop( Iop_F64toI32, \
mkexpr(rmode), \
mkexpr(_t) )
putXMMRegLane32( gregOfRM(modrm), 3, mkU32(0) );
putXMMRegLane32( gregOfRM(modrm), 2, mkU32(0) );
putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) );
putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) );
# undef CVT
goto decode_success;
}
/* F3 0F 5B = CVTTPS2DQ -- convert 4 x F32 in mem/xmm to 4 x I32 in
xmm(G), rounding towards zero */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5B) {
IRTemp argV = newTemp(Ity_V128);
IRTemp rmode = newTemp(Ity_I32);
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
assign( argV, getXMMReg(eregOfRM(modrm)) );
delta += 3+1;
DIP("cvttps2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( argV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 3+alen;
DIP("cvttps2dq %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)) );
}
assign( rmode, mkU32((UInt)Irrm_ZERO) );
breakup128to32s( argV, &t3, &t2, &t1, &t0 );
/* This is less than ideal. If it turns out to be a performance
bottleneck it can be improved. */
# define CVT(_t) \
binop( Iop_F64toI32, \
mkexpr(rmode), \
unop( Iop_F32toF64, \
unop( Iop_ReinterpI32asF32, mkexpr(_t))) )
putXMMRegLane32( gregOfRM(modrm), 3, CVT(t3) );
putXMMRegLane32( gregOfRM(modrm), 2, CVT(t2) );
putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) );
putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) );
# undef CVT
goto decode_success;
}
/* 66 0F 5E = DIVPD -- div 64Fx2 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5E) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "divpd", Iop_Div64Fx2 );
goto decode_success;
}
/* F2 0F 5E = DIVSD -- div 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5E) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "divsd", Iop_Div64F0x2 );
goto decode_success;
}
/* 0F AE /5 = LFENCE -- flush pending operations to memory */
/* 0F AE /6 = MFENCE -- flush pending operations to memory */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& epartIsReg(insn[2])
&& (gregOfRM(insn[2]) == 5 || gregOfRM(insn[2]) == 6)) {
vassert(sz == 4);
delta += 3;
/* Insert a memory fence. It's sometimes important that these
are carried through to the generated code. */
stmt( IRStmt_MFence() );
DIP("%sfence\n", gregOfRM(insn[2])==5 ? "l" : "m");
goto decode_success;
}
/* 66 0F 5F = MAXPD -- max 64Fx2 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5F) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "maxpd", Iop_Max64Fx2 );
goto decode_success;
}
/* F2 0F 5F = MAXSD -- max 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5F) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "maxsd", Iop_Max64F0x2 );
goto decode_success;
}
/* 66 0F 5D = MINPD -- min 64Fx2 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5D) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "minpd", Iop_Min64Fx2 );
goto decode_success;
}
/* F2 0F 5D = MINSD -- min 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5D) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "minsd", Iop_Min64F0x2 );
goto decode_success;
}
/* 66 0F 28 = MOVAPD -- move from E (mem or xmm) to G (xmm). */
/* 66 0F 10 = MOVUPD -- move from E (mem or xmm) to G (xmm). */
/* 66 0F 6F = MOVDQA -- move from E (mem or xmm) to G (xmm). */
if (sz == 2 && insn[0] == 0x0F
&& (insn[1] == 0x28 || insn[1] == 0x10 || insn[1] == 0x6F)) {
HChar* wot = insn[1]==0x28 ? "apd" :
insn[1]==0x10 ? "upd" : "dqa";
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
putXMMReg( gregOfRM(modrm),
getXMMReg( eregOfRM(modrm) ));
DIP("mov%s %s,%s\n", wot, nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 2+1;
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
putXMMReg( gregOfRM(modrm),
loadLE(Ity_V128, mkexpr(addr)) );
DIP("mov%s %s,%s\n", wot, dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 2+alen;
}
goto decode_success;
}
/* 66 0F 29 = MOVAPD -- move from G (xmm) to E (mem or xmm). */
/* 66 0F 11 = MOVUPD -- move from G (xmm) to E (mem or xmm). */
if (sz == 2 && insn[0] == 0x0F
&& (insn[1] == 0x29 || insn[1] == 0x11)) {
HChar* wot = insn[1]==0x29 ? "apd" : "upd";
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
/* fall through; awaiting test case */
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) );
DIP("mov%s %s,%s\n", wot, nameXMMReg(gregOfRM(modrm)),
dis_buf );
delta += 2+alen;
goto decode_success;
}
}
/* 66 0F 6E = MOVD from r/m32 to xmm, zeroing high 3/4 of xmm. */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6E) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
putXMMReg(
gregOfRM(modrm),
unop( Iop_32UtoV128, getIReg(4, eregOfRM(modrm)) )
);
DIP("movd %s, %s\n",
nameIReg(4,eregOfRM(modrm)), nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
putXMMReg(
gregOfRM(modrm),
unop( Iop_32UtoV128,loadLE(Ity_I32, mkexpr(addr)) )
);
DIP("movd %s, %s\n", dis_buf, nameXMMReg(gregOfRM(modrm)));
}
goto decode_success;
}
/* 66 0F 7E = MOVD from xmm low 1/4 to r/m32. */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x7E) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
putIReg( 4, eregOfRM(modrm),
getXMMRegLane32(gregOfRM(modrm), 0) );
DIP("movd %s, %s\n",
nameXMMReg(gregOfRM(modrm)), nameIReg(4,eregOfRM(modrm)));
} else {
addr = disAMode( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
storeLE( mkexpr(addr),
getXMMRegLane32(gregOfRM(modrm), 0) );
DIP("movd %s, %s\n", nameXMMReg(gregOfRM(modrm)), dis_buf);
}
goto decode_success;
}
/* 66 0F 7F = MOVDQA -- move from G (xmm) to E (mem or xmm). */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x7F) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
delta += 2+1;
putXMMReg( eregOfRM(modrm),
getXMMReg(gregOfRM(modrm)) );
DIP("movdqa %s, %s\n", nameXMMReg(gregOfRM(modrm)),
nameXMMReg(eregOfRM(modrm)));
} else {
addr = disAMode( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) );
DIP("movdqa %s, %s\n", nameXMMReg(gregOfRM(modrm)), dis_buf);
}
goto decode_success;
}
/* F3 0F 6F = MOVDQU -- move from E (mem or xmm) to G (xmm). */
/* Unfortunately can't simply use the MOVDQA case since the
prefix lengths are different (66 vs F3) */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x6F) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
putXMMReg( gregOfRM(modrm),
getXMMReg( eregOfRM(modrm) ));
DIP("movdqu %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 3+1;
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
putXMMReg( gregOfRM(modrm),
loadLE(Ity_V128, mkexpr(addr)) );
DIP("movdqu %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 3+alen;
}
goto decode_success;
}
/* F3 0F 7F = MOVDQU -- move from G (xmm) to E (mem or xmm). */
/* Unfortunately can't simply use the MOVDQA case since the
prefix lengths are different (66 vs F3) */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x7F) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
delta += 3+1;
putXMMReg( eregOfRM(modrm),
getXMMReg(gregOfRM(modrm)) );
DIP("movdqu %s, %s\n", nameXMMReg(gregOfRM(modrm)),
nameXMMReg(eregOfRM(modrm)));
} else {
addr = disAMode( &alen, sorb, delta+3, dis_buf );
delta += 3+alen;
storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) );
DIP("movdqu %s, %s\n", nameXMMReg(gregOfRM(modrm)), dis_buf);
}
goto decode_success;
}
/* F2 0F D6 = MOVDQ2Q -- move from E (lo half xmm, not mem) to G (mmx). */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xD6) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
do_MMX_preamble();
putMMXReg( gregOfRM(modrm),
getXMMRegLane64( eregOfRM(modrm), 0 ));
DIP("movdq2q %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameMMXReg(gregOfRM(modrm)));
delta += 3+1;
goto decode_success;
} else {
/* fall through, apparently no mem case for this insn */
}
}
/* 66 0F 16 = MOVHPD -- move from mem to high half of XMM. */
/* These seems identical to MOVHPS. This instruction encoding is
completely crazy. */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x16) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
/* fall through; apparently reg-reg is not possible */
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
putXMMRegLane64( gregOfRM(modrm), 1/*upper lane*/,
loadLE(Ity_I64, mkexpr(addr)) );
DIP("movhpd %s,%s\n", dis_buf,
nameXMMReg( gregOfRM(modrm) ));
goto decode_success;
}
}
/* 66 0F 17 = MOVHPD -- move from high half of XMM to mem. */
/* Again, this seems identical to MOVHPS. */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x17) {
if (!epartIsReg(insn[2])) {
delta += 2;
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
storeLE( mkexpr(addr),
getXMMRegLane64( gregOfRM(insn[2]),
1/*upper lane*/ ) );
DIP("movhpd %s,%s\n", nameXMMReg( gregOfRM(insn[2]) ),
dis_buf);
goto decode_success;
}
/* else fall through */
}
/* 66 0F 12 = MOVLPD -- move from mem to low half of XMM. */
/* Identical to MOVLPS ? */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x12) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
/* fall through; apparently reg-reg is not possible */
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
putXMMRegLane64( gregOfRM(modrm), 0/*lower lane*/,
loadLE(Ity_I64, mkexpr(addr)) );
DIP("movlpd %s, %s\n",
dis_buf, nameXMMReg( gregOfRM(modrm) ));
goto decode_success;
}
}
/* 66 0F 13 = MOVLPD -- move from low half of XMM to mem. */
/* Identical to MOVLPS ? */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x13) {
if (!epartIsReg(insn[2])) {
delta += 2;
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
storeLE( mkexpr(addr),
getXMMRegLane64( gregOfRM(insn[2]),
0/*lower lane*/ ) );
DIP("movlpd %s, %s\n", nameXMMReg( gregOfRM(insn[2]) ),
dis_buf);
goto decode_success;
}
/* else fall through */
}
/* 66 0F 50 = MOVMSKPD - move 2 sign bits from 2 x F64 in xmm(E) to
2 lowest bits of ireg(G) */
if (insn[0] == 0x0F && insn[1] == 0x50) {
modrm = getIByte(delta+2);
if (sz == 2 && epartIsReg(modrm)) {
Int src;
t0 = newTemp(Ity_I32);
t1 = newTemp(Ity_I32);
delta += 2+1;
src = eregOfRM(modrm);
assign( t0, binop( Iop_And32,
binop(Iop_Shr32, getXMMRegLane32(src,1), mkU8(31)),
mkU32(1) ));
assign( t1, binop( Iop_And32,
binop(Iop_Shr32, getXMMRegLane32(src,3), mkU8(30)),
mkU32(2) ));
putIReg(4, gregOfRM(modrm),
binop(Iop_Or32, mkexpr(t0), mkexpr(t1))
);
DIP("movmskpd %s,%s\n", nameXMMReg(src),
nameIReg(4, gregOfRM(modrm)));
goto decode_success;
}
/* else fall through */
}
/* 66 0F E7 = MOVNTDQ -- for us, just a plain SSE store. */
if (insn[0] == 0x0F && insn[1] == 0xE7) {
modrm = getIByte(delta+2);
if (sz == 2 && !epartIsReg(modrm)) {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) );
DIP("movntdq %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 2+alen;
goto decode_success;
}
/* else fall through */
}
/* 0F C3 = MOVNTI -- for us, just a plain ireg store. */
if (insn[0] == 0x0F && insn[1] == 0xC3) {
vassert(sz == 4);
modrm = getIByte(delta+2);
if (!epartIsReg(modrm)) {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr), getIReg(4, gregOfRM(modrm)) );
DIP("movnti %s,%s\n", dis_buf,
nameIReg(4, gregOfRM(modrm)));
delta += 2+alen;
goto decode_success;
}
/* else fall through */
}
/* 66 0F D6 = MOVQ -- move 64 bits from G (lo half xmm) to E (mem
or lo half xmm). */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD6) {
modrm = getIByte(delta+2);
if (epartIsReg(modrm)) {
/* fall through, awaiting test case */
/* dst: lo half copied, hi half zeroed */
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
storeLE( mkexpr(addr),
getXMMRegLane64( gregOfRM(modrm), 0 ));
DIP("movq %s,%s\n", nameXMMReg(gregOfRM(modrm)), dis_buf );
delta += 2+alen;
goto decode_success;
}
}
/* F3 0F D6 = MOVQ2DQ -- move from E (mmx) to G (lo half xmm, zero
hi half). */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xD6) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
do_MMX_preamble();
putXMMReg( gregOfRM(modrm),
unop(Iop_64UtoV128, getMMXReg( eregOfRM(modrm) )) );
DIP("movq2dq %s,%s\n", nameMMXReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 3+1;
goto decode_success;
} else {
/* fall through, apparently no mem case for this insn */
}
}
/* F3 0F 7E = MOVQ -- move 64 bits from E (mem or lo half xmm) to
G (lo half xmm). Upper half of G is zeroed out. */
/* F2 0F 10 = MOVSD -- move 64 bits from E (mem or lo half xmm) to
G (lo half xmm). If E is mem, upper half of G is zeroed out.
If E is reg, upper half of G is unchanged. */
if ((insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x10)
|| (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x7E)) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
putXMMRegLane64( gregOfRM(modrm), 0,
getXMMRegLane64( eregOfRM(modrm), 0 ));
if (insn[0] == 0xF3/*MOVQ*/) {
/* zero bits 127:64 */
putXMMRegLane64( gregOfRM(modrm), 1, mkU64(0) );
}
DIP("movsd %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 3+1;
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
/* zero bits 127:64 */
putXMMRegLane64( gregOfRM(modrm), 1, mkU64(0) );
/* write bits 63:0 */
putXMMRegLane64( gregOfRM(modrm), 0,
loadLE(Ity_I64, mkexpr(addr)) );
DIP("movsd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 3+alen;
}
goto decode_success;
}
/* F2 0F 11 = MOVSD -- move 64 bits from G (lo half xmm) to E (mem
or lo half xmm). */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x11) {
vassert(sz == 4);
modrm = getIByte(delta+3);
if (epartIsReg(modrm)) {
/* fall through, we don't yet have a test case */
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
storeLE( mkexpr(addr),
getXMMRegLane64(gregOfRM(modrm), 0) );
DIP("movsd %s,%s\n", nameXMMReg(gregOfRM(modrm)),
dis_buf);
delta += 3+alen;
goto decode_success;
}
}
/* 66 0F 59 = MULPD -- mul 64Fx2 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x59) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "mulpd", Iop_Mul64Fx2 );
goto decode_success;
}
/* F2 0F 59 = MULSD -- mul 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x59) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "mulsd", Iop_Mul64F0x2 );
goto decode_success;
}
/* 66 0F 56 = ORPD -- G = G and E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x56) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "orpd", Iop_OrV128 );
goto decode_success;
}
/* 66 0F C6 /r ib = SHUFPD -- shuffle packed F64s */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC6) {
Int select;
IRTemp sV = newTemp(Ity_V128);
IRTemp dV = newTemp(Ity_V128);
IRTemp s1 = newTemp(Ity_I64);
IRTemp s0 = newTemp(Ity_I64);
IRTemp d1 = newTemp(Ity_I64);
IRTemp d0 = newTemp(Ity_I64);
modrm = insn[2];
assign( dV, getXMMReg(gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
select = (Int)insn[3];
delta += 2+2;
DIP("shufpd $%d,%s,%s\n", select,
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
select = (Int)insn[2+alen];
delta += 3+alen;
DIP("shufpd $%d,%s,%s\n", select,
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( d1, unop(Iop_V128HIto64, mkexpr(dV)) );
assign( d0, unop(Iop_V128to64, mkexpr(dV)) );
assign( s1, unop(Iop_V128HIto64, mkexpr(sV)) );
assign( s0, unop(Iop_V128to64, mkexpr(sV)) );
# define SELD(n) mkexpr((n)==0 ? d0 : d1)
# define SELS(n) mkexpr((n)==0 ? s0 : s1)
putXMMReg(
gregOfRM(modrm),
binop(Iop_64HLtoV128, SELS((select>>1)&1), SELD((select>>0)&1) )
);
# undef SELD
# undef SELS
goto decode_success;
}
/* 66 0F 51 = SQRTPD -- approx sqrt 64Fx2 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x51) {
delta = dis_SSE_E_to_G_unary_all( sorb, delta+2,
"sqrtpd", Iop_Sqrt64Fx2 );
goto decode_success;
}
/* F2 0F 51 = SQRTSD -- approx sqrt 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x51) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_unary_lo64( sorb, delta+3,
"sqrtsd", Iop_Sqrt64F0x2 );
goto decode_success;
}
/* 66 0F 5C = SUBPD -- sub 64Fx2 from R/M to R */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5C) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "subpd", Iop_Sub64Fx2 );
goto decode_success;
}
/* F2 0F 5C = SUBSD -- sub 64F0x2 from R/M to R */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5C) {
vassert(sz == 4);
delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "subsd", Iop_Sub64F0x2 );
goto decode_success;
}
/* 66 0F 15 = UNPCKHPD -- unpack and interleave high part F64s */
/* 66 0F 14 = UNPCKLPD -- unpack and interleave low part F64s */
/* These just appear to be special cases of SHUFPS */
if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x15 || insn[1] == 0x14)) {
IRTemp s1 = newTemp(Ity_I64);
IRTemp s0 = newTemp(Ity_I64);
IRTemp d1 = newTemp(Ity_I64);
IRTemp d0 = newTemp(Ity_I64);
IRTemp sV = newTemp(Ity_V128);
IRTemp dV = newTemp(Ity_V128);
Bool hi = toBool(insn[1] == 0x15);
modrm = insn[2];
assign( dV, getXMMReg(gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("unpck%sps %s,%s\n", hi ? "h" : "l",
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("unpck%sps %s,%s\n", hi ? "h" : "l",
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( d1, unop(Iop_V128HIto64, mkexpr(dV)) );
assign( d0, unop(Iop_V128to64, mkexpr(dV)) );
assign( s1, unop(Iop_V128HIto64, mkexpr(sV)) );
assign( s0, unop(Iop_V128to64, mkexpr(sV)) );
if (hi) {
putXMMReg( gregOfRM(modrm),
binop(Iop_64HLtoV128, mkexpr(s1), mkexpr(d1)) );
} else {
putXMMReg( gregOfRM(modrm),
binop(Iop_64HLtoV128, mkexpr(s0), mkexpr(d0)) );
}
goto decode_success;
}
/* 66 0F 57 = XORPD -- G = G and E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x57) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "xorpd", Iop_XorV128 );
goto decode_success;
}
/* 66 0F 6B = PACKSSDW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6B) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"packssdw", Iop_QNarrow32Sx4, True );
goto decode_success;
}
/* 66 0F 63 = PACKSSWB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x63) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"packsswb", Iop_QNarrow16Sx8, True );
goto decode_success;
}
/* 66 0F 67 = PACKUSWB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x67) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"packuswb", Iop_QNarrow16Ux8, True );
goto decode_success;
}
/* 66 0F FC = PADDB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFC) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddb", Iop_Add8x16, False );
goto decode_success;
}
/* 66 0F FE = PADDD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFE) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddd", Iop_Add32x4, False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE2 ---*** */
/* 0F D4 = PADDQ -- add 64x1 */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xD4) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "paddq", False );
goto decode_success;
}
/* 66 0F D4 = PADDQ */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD4) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddq", Iop_Add64x2, False );
goto decode_success;
}
/* 66 0F FD = PADDW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFD) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddw", Iop_Add16x8, False );
goto decode_success;
}
/* 66 0F EC = PADDSB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEC) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddsb", Iop_QAdd8Sx16, False );
goto decode_success;
}
/* 66 0F ED = PADDSW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xED) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddsw", Iop_QAdd16Sx8, False );
goto decode_success;
}
/* 66 0F DC = PADDUSB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDC) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddusb", Iop_QAdd8Ux16, False );
goto decode_success;
}
/* 66 0F DD = PADDUSW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDD) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"paddusw", Iop_QAdd16Ux8, False );
goto decode_success;
}
/* 66 0F DB = PAND */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDB) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "pand", Iop_AndV128 );
goto decode_success;
}
/* 66 0F DF = PANDN */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDF) {
delta = dis_SSE_E_to_G_all_invG( sorb, delta+2, "pandn", Iop_AndV128 );
goto decode_success;
}
/* 66 0F E0 = PAVGB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE0) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pavgb", Iop_Avg8Ux16, False );
goto decode_success;
}
/* 66 0F E3 = PAVGW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE3) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pavgw", Iop_Avg16Ux8, False );
goto decode_success;
}
/* 66 0F 74 = PCMPEQB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x74) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pcmpeqb", Iop_CmpEQ8x16, False );
goto decode_success;
}
/* 66 0F 76 = PCMPEQD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x76) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pcmpeqd", Iop_CmpEQ32x4, False );
goto decode_success;
}
/* 66 0F 75 = PCMPEQW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x75) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pcmpeqw", Iop_CmpEQ16x8, False );
goto decode_success;
}
/* 66 0F 64 = PCMPGTB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x64) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pcmpgtb", Iop_CmpGT8Sx16, False );
goto decode_success;
}
/* 66 0F 66 = PCMPGTD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x66) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pcmpgtd", Iop_CmpGT32Sx4, False );
goto decode_success;
}
/* 66 0F 65 = PCMPGTW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x65) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pcmpgtw", Iop_CmpGT16Sx8, False );
goto decode_success;
}
/* 66 0F C5 = PEXTRW -- extract 16-bit field from xmm(E) and put
zero-extend of it in ireg(G). */
if (insn[0] == 0x0F && insn[1] == 0xC5) {
modrm = insn[2];
if (sz == 2 && epartIsReg(modrm)) {
t5 = newTemp(Ity_V128);
t4 = newTemp(Ity_I16);
assign(t5, getXMMReg(eregOfRM(modrm)));
breakup128to32s( t5, &t3, &t2, &t1, &t0 );
switch (insn[3] & 7) {
case 0: assign(t4, unop(Iop_32to16, mkexpr(t0))); break;
case 1: assign(t4, unop(Iop_32HIto16, mkexpr(t0))); break;
case 2: assign(t4, unop(Iop_32to16, mkexpr(t1))); break;
case 3: assign(t4, unop(Iop_32HIto16, mkexpr(t1))); break;
case 4: assign(t4, unop(Iop_32to16, mkexpr(t2))); break;
case 5: assign(t4, unop(Iop_32HIto16, mkexpr(t2))); break;
case 6: assign(t4, unop(Iop_32to16, mkexpr(t3))); break;
case 7: assign(t4, unop(Iop_32HIto16, mkexpr(t3))); break;
default: vassert(0); /*NOTREACHED*/
}
putIReg(4, gregOfRM(modrm), unop(Iop_16Uto32, mkexpr(t4)));
DIP("pextrw $%d,%s,%s\n",
(Int)insn[3], nameXMMReg(eregOfRM(modrm)),
nameIReg(4,gregOfRM(modrm)));
delta += 4;
goto decode_success;
}
/* else fall through */
}
/* 66 0F C4 = PINSRW -- get 16 bits from E(mem or low half ireg) and
put it into the specified lane of xmm(G). */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC4) {
Int lane;
t4 = newTemp(Ity_I16);
modrm = insn[2];
if (epartIsReg(modrm)) {
assign(t4, getIReg(2, eregOfRM(modrm)));
delta += 3+1;
lane = insn[3+1-1];
DIP("pinsrw $%d,%s,%s\n", (Int)lane,
nameIReg(2,eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 3+alen;
lane = insn[3+alen-1];
assign(t4, loadLE(Ity_I16, mkexpr(addr)));
DIP("pinsrw $%d,%s,%s\n", (Int)lane,
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
putXMMRegLane16( gregOfRM(modrm), lane & 7, mkexpr(t4) );
goto decode_success;
}
/* 66 0F F5 = PMADDWD -- Multiply and add packed integers from
E(xmm or mem) to G(xmm) */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF5) {
IRTemp s1V = newTemp(Ity_V128);
IRTemp s2V = newTemp(Ity_V128);
IRTemp dV = newTemp(Ity_V128);
IRTemp s1Hi = newTemp(Ity_I64);
IRTemp s1Lo = newTemp(Ity_I64);
IRTemp s2Hi = newTemp(Ity_I64);
IRTemp s2Lo = newTemp(Ity_I64);
IRTemp dHi = newTemp(Ity_I64);
IRTemp dLo = newTemp(Ity_I64);
modrm = insn[2];
if (epartIsReg(modrm)) {
assign( s1V, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("pmaddwd %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( s1V, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("pmaddwd %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( s2V, getXMMReg(gregOfRM(modrm)) );
assign( s1Hi, unop(Iop_V128HIto64, mkexpr(s1V)) );
assign( s1Lo, unop(Iop_V128to64, mkexpr(s1V)) );
assign( s2Hi, unop(Iop_V128HIto64, mkexpr(s2V)) );
assign( s2Lo, unop(Iop_V128to64, mkexpr(s2V)) );
assign( dHi, mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86g_calculate_mmx_pmaddwd",
&x86g_calculate_mmx_pmaddwd,
mkIRExprVec_2( mkexpr(s1Hi), mkexpr(s2Hi))
));
assign( dLo, mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86g_calculate_mmx_pmaddwd",
&x86g_calculate_mmx_pmaddwd,
mkIRExprVec_2( mkexpr(s1Lo), mkexpr(s2Lo))
));
assign( dV, binop(Iop_64HLtoV128, mkexpr(dHi), mkexpr(dLo))) ;
putXMMReg(gregOfRM(modrm), mkexpr(dV));
goto decode_success;
}
/* 66 0F EE = PMAXSW -- 16x8 signed max */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEE) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pmaxsw", Iop_Max16Sx8, False );
goto decode_success;
}
/* 66 0F DE = PMAXUB -- 8x16 unsigned max */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDE) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pmaxub", Iop_Max8Ux16, False );
goto decode_success;
}
/* 66 0F EA = PMINSW -- 16x8 signed min */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEA) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pminsw", Iop_Min16Sx8, False );
goto decode_success;
}
/* 66 0F DA = PMINUB -- 8x16 unsigned min */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDA) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pminub", Iop_Min8Ux16, False );
goto decode_success;
}
/* 66 0F D7 = PMOVMSKB -- extract sign bits from each of 16 lanes in
xmm(G), turn them into a byte, and put zero-extend of it in
ireg(G). Doing this directly is just too cumbersome; give up
therefore and call a helper. */
/* UInt x86g_calculate_sse_pmovmskb ( ULong w64hi, ULong w64lo ); */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD7) {
modrm = insn[2];
if (epartIsReg(modrm)) {
t0 = newTemp(Ity_I64);
t1 = newTemp(Ity_I64);
assign(t0, getXMMRegLane64(eregOfRM(modrm), 0));
assign(t1, getXMMRegLane64(eregOfRM(modrm), 1));
t5 = newTemp(Ity_I32);
assign(t5, mkIRExprCCall(
Ity_I32, 0/*regparms*/,
"x86g_calculate_sse_pmovmskb",
&x86g_calculate_sse_pmovmskb,
mkIRExprVec_2( mkexpr(t1), mkexpr(t0) )));
putIReg(4, gregOfRM(modrm), mkexpr(t5));
DIP("pmovmskb %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameIReg(4,gregOfRM(modrm)));
delta += 3;
goto decode_success;
}
/* else fall through */
}
/* 66 0F E4 = PMULHUW -- 16x8 hi-half of unsigned widening multiply */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE4) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pmulhuw", Iop_MulHi16Ux8, False );
goto decode_success;
}
/* 66 0F E5 = PMULHW -- 16x8 hi-half of signed widening multiply */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE5) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pmulhw", Iop_MulHi16Sx8, False );
goto decode_success;
}
/* 66 0F D5 = PMULHL -- 16x8 multiply */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD5) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"pmullw", Iop_Mul16x8, False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE2 ---*** */
/* 0F F4 = PMULUDQ -- unsigned widening multiply of 32-lanes 0 x
0 to form 64-bit result */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xF4) {
IRTemp sV = newTemp(Ity_I64);
IRTemp dV = newTemp(Ity_I64);
t1 = newTemp(Ity_I32);
t0 = newTemp(Ity_I32);
modrm = insn[2];
do_MMX_preamble();
assign( dV, getMMXReg(gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
assign( sV, getMMXReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("pmuludq %s,%s\n", nameMMXReg(eregOfRM(modrm)),
nameMMXReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_I64, mkexpr(addr)) );
delta += 2+alen;
DIP("pmuludq %s,%s\n", dis_buf,
nameMMXReg(gregOfRM(modrm)));
}
assign( t0, unop(Iop_64to32, mkexpr(dV)) );
assign( t1, unop(Iop_64to32, mkexpr(sV)) );
putMMXReg( gregOfRM(modrm),
binop( Iop_MullU32, mkexpr(t0), mkexpr(t1) ) );
goto decode_success;
}
/* 66 0F F4 = PMULUDQ -- unsigned widening multiply of 32-lanes 0 x
0 to form lower 64-bit half and lanes 2 x 2 to form upper 64-bit
half */
/* This is a really poor translation -- could be improved if
performance critical */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF4) {
IRTemp sV, dV;
IRTemp s3, s2, s1, s0, d3, d2, d1, d0;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID;
t1 = newTemp(Ity_I64);
t0 = newTemp(Ity_I64);
modrm = insn[2];
assign( dV, getXMMReg(gregOfRM(modrm)) );
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("pmuludq %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("pmuludq %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
breakup128to32s( dV, &d3, &d2, &d1, &d0 );
breakup128to32s( sV, &s3, &s2, &s1, &s0 );
assign( t0, binop( Iop_MullU32, mkexpr(d0), mkexpr(s0)) );
putXMMRegLane64( gregOfRM(modrm), 0, mkexpr(t0) );
assign( t1, binop( Iop_MullU32, mkexpr(d2), mkexpr(s2)) );
putXMMRegLane64( gregOfRM(modrm), 1, mkexpr(t1) );
goto decode_success;
}
/* 66 0F EB = POR */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEB) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "por", Iop_OrV128 );
goto decode_success;
}
/* 66 0F F6 = PSADBW -- 2 x (8x8 -> 48 zeroes ++ u16) Sum Abs Diffs
from E(xmm or mem) to G(xmm) */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF6) {
IRTemp s1V = newTemp(Ity_V128);
IRTemp s2V = newTemp(Ity_V128);
IRTemp dV = newTemp(Ity_V128);
IRTemp s1Hi = newTemp(Ity_I64);
IRTemp s1Lo = newTemp(Ity_I64);
IRTemp s2Hi = newTemp(Ity_I64);
IRTemp s2Lo = newTemp(Ity_I64);
IRTemp dHi = newTemp(Ity_I64);
IRTemp dLo = newTemp(Ity_I64);
modrm = insn[2];
if (epartIsReg(modrm)) {
assign( s1V, getXMMReg(eregOfRM(modrm)) );
delta += 2+1;
DIP("psadbw %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( s1V, loadLE(Ity_V128, mkexpr(addr)) );
delta += 2+alen;
DIP("psadbw %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( s2V, getXMMReg(gregOfRM(modrm)) );
assign( s1Hi, unop(Iop_V128HIto64, mkexpr(s1V)) );
assign( s1Lo, unop(Iop_V128to64, mkexpr(s1V)) );
assign( s2Hi, unop(Iop_V128HIto64, mkexpr(s2V)) );
assign( s2Lo, unop(Iop_V128to64, mkexpr(s2V)) );
assign( dHi, mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86g_calculate_mmx_psadbw",
&x86g_calculate_mmx_psadbw,
mkIRExprVec_2( mkexpr(s1Hi), mkexpr(s2Hi))
));
assign( dLo, mkIRExprCCall(
Ity_I64, 0/*regparms*/,
"x86g_calculate_mmx_psadbw",
&x86g_calculate_mmx_psadbw,
mkIRExprVec_2( mkexpr(s1Lo), mkexpr(s2Lo))
));
assign( dV, binop(Iop_64HLtoV128, mkexpr(dHi), mkexpr(dLo))) ;
putXMMReg(gregOfRM(modrm), mkexpr(dV));
goto decode_success;
}
/* 66 0F 70 = PSHUFD -- rearrange 4x32 from E(xmm or mem) to G(xmm) */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x70) {
Int order;
IRTemp sV, dV, s3, s2, s1, s0;
s3 = s2 = s1 = s0 = IRTemp_INVALID;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
modrm = insn[2];
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
order = (Int)insn[3];
delta += 2+2;
DIP("pshufd $%d,%s,%s\n", order,
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
order = (Int)insn[2+alen];
delta += 3+alen;
DIP("pshufd $%d,%s,%s\n", order,
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
breakup128to32s( sV, &s3, &s2, &s1, &s0 );
# define SEL(n) \
((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3)))
assign(dV,
mk128from32s( SEL((order>>6)&3), SEL((order>>4)&3),
SEL((order>>2)&3), SEL((order>>0)&3) )
);
putXMMReg(gregOfRM(modrm), mkexpr(dV));
# undef SEL
goto decode_success;
}
/* F3 0F 70 = PSHUFHW -- rearrange upper half 4x16 from E(xmm or
mem) to G(xmm), and copy lower half */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x70) {
Int order;
IRTemp sVhi, dVhi, sV, dV, s3, s2, s1, s0;
s3 = s2 = s1 = s0 = IRTemp_INVALID;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
sVhi = newTemp(Ity_I64);
dVhi = newTemp(Ity_I64);
modrm = insn[3];
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
order = (Int)insn[4];
delta += 4+1;
DIP("pshufhw $%d,%s,%s\n", order,
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
order = (Int)insn[3+alen];
delta += 4+alen;
DIP("pshufhw $%d,%s,%s\n", order,
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( sVhi, unop(Iop_V128HIto64, mkexpr(sV)) );
breakup64to16s( sVhi, &s3, &s2, &s1, &s0 );
# define SEL(n) \
((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3)))
assign(dVhi,
mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3),
SEL((order>>2)&3), SEL((order>>0)&3) )
);
assign(dV, binop( Iop_64HLtoV128,
mkexpr(dVhi),
unop(Iop_V128to64, mkexpr(sV))) );
putXMMReg(gregOfRM(modrm), mkexpr(dV));
# undef SEL
goto decode_success;
}
/* F2 0F 70 = PSHUFLW -- rearrange lower half 4x16 from E(xmm or
mem) to G(xmm), and copy upper half */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x70) {
Int order;
IRTemp sVlo, dVlo, sV, dV, s3, s2, s1, s0;
s3 = s2 = s1 = s0 = IRTemp_INVALID;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
sVlo = newTemp(Ity_I64);
dVlo = newTemp(Ity_I64);
modrm = insn[3];
if (epartIsReg(modrm)) {
assign( sV, getXMMReg(eregOfRM(modrm)) );
order = (Int)insn[4];
delta += 4+1;
DIP("pshuflw $%d,%s,%s\n", order,
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
order = (Int)insn[3+alen];
delta += 4+alen;
DIP("pshuflw $%d,%s,%s\n", order,
dis_buf,
nameXMMReg(gregOfRM(modrm)));
}
assign( sVlo, unop(Iop_V128to64, mkexpr(sV)) );
breakup64to16s( sVlo, &s3, &s2, &s1, &s0 );
# define SEL(n) \
((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3)))
assign(dVlo,
mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3),
SEL((order>>2)&3), SEL((order>>0)&3) )
);
assign(dV, binop( Iop_64HLtoV128,
unop(Iop_V128HIto64, mkexpr(sV)),
mkexpr(dVlo) ) );
putXMMReg(gregOfRM(modrm), mkexpr(dV));
# undef SEL
goto decode_success;
}
/* 66 0F 72 /6 ib = PSLLD by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x72
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 6) {
delta = dis_SSE_shiftE_imm( delta+2, "pslld", Iop_ShlN32x4 );
goto decode_success;
}
/* 66 0F F2 = PSLLD by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF2) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "pslld", Iop_ShlN32x4 );
goto decode_success;
}
/* 66 0F 73 /7 ib = PSLLDQ by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 7) {
IRTemp sV, dV, hi64, lo64, hi64r, lo64r;
Int imm = (Int)insn[3];
Int reg = eregOfRM(insn[2]);
DIP("pslldq $%d,%s\n", imm, nameXMMReg(reg));
vassert(imm >= 0 && imm <= 255);
delta += 4;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
hi64 = newTemp(Ity_I64);
lo64 = newTemp(Ity_I64);
hi64r = newTemp(Ity_I64);
lo64r = newTemp(Ity_I64);
if (imm >= 16) {
putXMMReg(reg, mkV128(0x0000));
goto decode_success;
}
assign( sV, getXMMReg(reg) );
assign( hi64, unop(Iop_V128HIto64, mkexpr(sV)) );
assign( lo64, unop(Iop_V128to64, mkexpr(sV)) );
if (imm == 0) {
assign( lo64r, mkexpr(lo64) );
assign( hi64r, mkexpr(hi64) );
}
else
if (imm == 8) {
assign( lo64r, mkU64(0) );
assign( hi64r, mkexpr(lo64) );
}
else
if (imm > 8) {
assign( lo64r, mkU64(0) );
assign( hi64r, binop( Iop_Shl64,
mkexpr(lo64),
mkU8( 8*(imm-8) ) ));
} else {
assign( lo64r, binop( Iop_Shl64,
mkexpr(lo64),
mkU8(8 * imm) ));
assign( hi64r,
binop( Iop_Or64,
binop(Iop_Shl64, mkexpr(hi64),
mkU8(8 * imm)),
binop(Iop_Shr64, mkexpr(lo64),
mkU8(8 * (8 - imm)) )
)
);
}
assign( dV, binop(Iop_64HLtoV128, mkexpr(hi64r), mkexpr(lo64r)) );
putXMMReg(reg, mkexpr(dV));
goto decode_success;
}
/* 66 0F 73 /6 ib = PSLLQ by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 6) {
delta = dis_SSE_shiftE_imm( delta+2, "psllq", Iop_ShlN64x2 );
goto decode_success;
}
/* 66 0F F3 = PSLLQ by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF3) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psllq", Iop_ShlN64x2 );
goto decode_success;
}
/* 66 0F 71 /6 ib = PSLLW by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x71
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 6) {
delta = dis_SSE_shiftE_imm( delta+2, "psllw", Iop_ShlN16x8 );
goto decode_success;
}
/* 66 0F F1 = PSLLW by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF1) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psllw", Iop_ShlN16x8 );
goto decode_success;
}
/* 66 0F 72 /4 ib = PSRAD by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x72
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 4) {
delta = dis_SSE_shiftE_imm( delta+2, "psrad", Iop_SarN32x4 );
goto decode_success;
}
/* 66 0F E2 = PSRAD by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE2) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrad", Iop_SarN32x4 );
goto decode_success;
}
/* 66 0F 71 /4 ib = PSRAW by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x71
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 4) {
delta = dis_SSE_shiftE_imm( delta+2, "psraw", Iop_SarN16x8 );
goto decode_success;
}
/* 66 0F E1 = PSRAW by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE1) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psraw", Iop_SarN16x8 );
goto decode_success;
}
/* 66 0F 72 /2 ib = PSRLD by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x72
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 2) {
delta = dis_SSE_shiftE_imm( delta+2, "psrld", Iop_ShrN32x4 );
goto decode_success;
}
/* 66 0F D2 = PSRLD by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD2) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrld", Iop_ShrN32x4 );
goto decode_success;
}
/* 66 0F 73 /3 ib = PSRLDQ by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 3) {
IRTemp sV, dV, hi64, lo64, hi64r, lo64r;
Int imm = (Int)insn[3];
Int reg = eregOfRM(insn[2]);
DIP("psrldq $%d,%s\n", imm, nameXMMReg(reg));
vassert(imm >= 0 && imm <= 255);
delta += 4;
sV = newTemp(Ity_V128);
dV = newTemp(Ity_V128);
hi64 = newTemp(Ity_I64);
lo64 = newTemp(Ity_I64);
hi64r = newTemp(Ity_I64);
lo64r = newTemp(Ity_I64);
if (imm >= 16) {
putXMMReg(reg, mkV128(0x0000));
goto decode_success;
}
assign( sV, getXMMReg(reg) );
assign( hi64, unop(Iop_V128HIto64, mkexpr(sV)) );
assign( lo64, unop(Iop_V128to64, mkexpr(sV)) );
if (imm == 0) {
assign( lo64r, mkexpr(lo64) );
assign( hi64r, mkexpr(hi64) );
}
else
if (imm == 8) {
assign( hi64r, mkU64(0) );
assign( lo64r, mkexpr(hi64) );
}
else
if (imm > 8) {
assign( hi64r, mkU64(0) );
assign( lo64r, binop( Iop_Shr64,
mkexpr(hi64),
mkU8( 8*(imm-8) ) ));
} else {
assign( hi64r, binop( Iop_Shr64,
mkexpr(hi64),
mkU8(8 * imm) ));
assign( lo64r,
binop( Iop_Or64,
binop(Iop_Shr64, mkexpr(lo64),
mkU8(8 * imm)),
binop(Iop_Shl64, mkexpr(hi64),
mkU8(8 * (8 - imm)) )
)
);
}
assign( dV, binop(Iop_64HLtoV128, mkexpr(hi64r), mkexpr(lo64r)) );
putXMMReg(reg, mkexpr(dV));
goto decode_success;
}
/* 66 0F 73 /2 ib = PSRLQ by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 2) {
delta = dis_SSE_shiftE_imm( delta+2, "psrlq", Iop_ShrN64x2 );
goto decode_success;
}
/* 66 0F D3 = PSRLQ by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD3) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrlq", Iop_ShrN64x2 );
goto decode_success;
}
/* 66 0F 71 /2 ib = PSRLW by immediate */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x71
&& epartIsReg(insn[2])
&& gregOfRM(insn[2]) == 2) {
delta = dis_SSE_shiftE_imm( delta+2, "psrlw", Iop_ShrN16x8 );
goto decode_success;
}
/* 66 0F D1 = PSRLW by E */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD1) {
delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrlw", Iop_ShrN16x8 );
goto decode_success;
}
/* 66 0F F8 = PSUBB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF8) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubb", Iop_Sub8x16, False );
goto decode_success;
}
/* 66 0F FA = PSUBD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFA) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubd", Iop_Sub32x4, False );
goto decode_success;
}
/* ***--- this is an MMX class insn introduced in SSE2 ---*** */
/* 0F FB = PSUBQ -- sub 64x1 */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xFB) {
do_MMX_preamble();
delta = dis_MMXop_regmem_to_reg (
sorb, delta+2, insn[1], "psubq", False );
goto decode_success;
}
/* 66 0F FB = PSUBQ */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFB) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubq", Iop_Sub64x2, False );
goto decode_success;
}
/* 66 0F F9 = PSUBW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF9) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubw", Iop_Sub16x8, False );
goto decode_success;
}
/* 66 0F E8 = PSUBSB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE8) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubsb", Iop_QSub8Sx16, False );
goto decode_success;
}
/* 66 0F E9 = PSUBSW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE9) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubsw", Iop_QSub16Sx8, False );
goto decode_success;
}
/* 66 0F D8 = PSUBSB */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD8) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubusb", Iop_QSub8Ux16, False );
goto decode_success;
}
/* 66 0F D9 = PSUBSW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD9) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"psubusw", Iop_QSub16Ux8, False );
goto decode_success;
}
/* 66 0F 68 = PUNPCKHBW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x68) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpckhbw",
Iop_InterleaveHI8x16, True );
goto decode_success;
}
/* 66 0F 6A = PUNPCKHDQ */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6A) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpckhdq",
Iop_InterleaveHI32x4, True );
goto decode_success;
}
/* 66 0F 6D = PUNPCKHQDQ */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6D) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpckhqdq",
Iop_InterleaveHI64x2, True );
goto decode_success;
}
/* 66 0F 69 = PUNPCKHWD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x69) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpckhwd",
Iop_InterleaveHI16x8, True );
goto decode_success;
}
/* 66 0F 60 = PUNPCKLBW */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x60) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpcklbw",
Iop_InterleaveLO8x16, True );
goto decode_success;
}
/* 66 0F 62 = PUNPCKLDQ */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x62) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpckldq",
Iop_InterleaveLO32x4, True );
goto decode_success;
}
/* 66 0F 6C = PUNPCKLQDQ */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6C) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpcklqdq",
Iop_InterleaveLO64x2, True );
goto decode_success;
}
/* 66 0F 61 = PUNPCKLWD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x61) {
delta = dis_SSEint_E_to_G( sorb, delta+2,
"punpcklwd",
Iop_InterleaveLO16x8, True );
goto decode_success;
}
/* 66 0F EF = PXOR */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEF) {
delta = dis_SSE_E_to_G_all( sorb, delta+2, "pxor", Iop_XorV128 );
goto decode_success;
}
//-- /* FXSAVE/FXRSTOR m32 -- load/store the FPU/MMX/SSE state. */
//-- if (insn[0] == 0x0F && insn[1] == 0xAE
//-- && (!epartIsReg(insn[2]))
//-- && (gregOfRM(insn[2]) == 1 || gregOfRM(insn[2]) == 0) ) {
//-- Bool store = gregOfRM(insn[2]) == 0;
//-- vg_assert(sz == 4);
//-- pair = disAMode ( cb, sorb, eip+2, dis_buf );
//-- t1 = LOW24(pair);
//-- eip += 2+HI8(pair);
//-- uInstr3(cb, store ? SSE2a_MemWr : SSE2a_MemRd, 512,
//-- Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
//-- Lit16, (UShort)insn[2],
//-- TempReg, t1 );
//-- DIP("fx%s %s\n", store ? "save" : "rstor", dis_buf );
//-- goto decode_success;
//-- }
/* 0F AE /7 = CLFLUSH -- flush cache line */
if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xAE
&& !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 7) {
/* This is something of a hack. We need to know the size of the
cache line containing addr. Since we don't (easily), assume
256 on the basis that no real cache would have a line that
big. It's safe to invalidate more stuff than we need, just
inefficient. */
UInt lineszB = 256;
addr = disAMode ( &alen, sorb, delta+2, dis_buf );
delta += 2+alen;
/* Round addr down to the start of the containing block. */
stmt( IRStmt_Put(
OFFB_TISTART,
binop( Iop_And32,
mkexpr(addr),
mkU32( ~(lineszB-1) ))) );
stmt( IRStmt_Put(OFFB_TILEN, mkU32(lineszB) ) );
irbb->jumpkind = Ijk_TInval;
irbb->next = mkU32(guest_EIP_bbstart+delta);
dres.whatNext = Dis_StopHere;
DIP("clflush %s\n", dis_buf);
goto decode_success;
}
/* ---------------------------------------------------- */
/* --- end of the SSE2 decoder. --- */
/* ---------------------------------------------------- */
/* ---------------------------------------------------- */
/* --- start of the SSE3 decoder. --- */
/* ---------------------------------------------------- */
/* Skip parts of the decoder which don't apply given the stated
guest subarchitecture. */
/* if (0 == (archinfo->hwcaps & VEX_HWCAPS_X86_SSE3)) */
/* In fact this is highly bogus; we accept SSE3 insns even on a
SSE2-only guest since they turn into IR which can be re-emitted
successfully on an SSE2 host. */
if (0 == (archinfo->hwcaps & VEX_HWCAPS_X86_SSE2))
goto after_sse_decoders; /* no SSE3 capabilities */
insn = (UChar*)&guest_code[delta];
/* F3 0F 12 = MOVSLDUP -- move from E (mem or xmm) to G (xmm),
duplicating some lanes (2:2:0:0). */
/* F3 0F 16 = MOVSHDUP -- move from E (mem or xmm) to G (xmm),
duplicating some lanes (3:3:1:1). */
if (sz == 4 && insn[0] == 0xF3 && insn[1] == 0x0F
&& (insn[2] == 0x12 || insn[2] == 0x16)) {
IRTemp s3, s2, s1, s0;
IRTemp sV = newTemp(Ity_V128);
Bool isH = insn[2] == 0x16;
s3 = s2 = s1 = s0 = IRTemp_INVALID;
modrm = insn[3];
if (epartIsReg(modrm)) {
assign( sV, getXMMReg( eregOfRM(modrm)) );
DIP("movs%cdup %s,%s\n", isH ? 'h' : 'l',
nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 3+1;
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( sV, loadLE(Ity_V128, mkexpr(addr)) );
DIP("movs%cdup %s,%s\n", isH ? 'h' : 'l',
dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 3+alen;
}
breakup128to32s( sV, &s3, &s2, &s1, &s0 );
putXMMReg( gregOfRM(modrm),
isH ? mk128from32s( s3, s3, s1, s1 )
: mk128from32s( s2, s2, s0, s0 ) );
goto decode_success;
}
/* F2 0F D0 = ADDSUBPS -- 32x4 +/-/+/- from E (mem or xmm) to G (xmm). */
if (sz == 4 && insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xD0) {
IRTemp a3, a2, a1, a0, s3, s2, s1, s0;
IRTemp eV = newTemp(Ity_V128);
IRTemp gV = newTemp(Ity_V128);
IRTemp addV = newTemp(Ity_V128);
IRTemp subV = newTemp(Ity_V128);
a3 = a2 = a1 = a0 = s3 = s2 = s1 = s0 = IRTemp_INVALID;
modrm = insn[3];
if (epartIsReg(modrm)) {
assign( eV, getXMMReg( eregOfRM(modrm)) );
DIP("addsubps %s,%s\n", nameXMMReg(eregOfRM(modrm)),
nameXMMReg(gregOfRM(modrm)));
delta += 3+1;
} else {
addr = disAMode ( &alen, sorb, delta+3, dis_buf );
assign( eV, loadLE(Ity_V128, mkexpr(addr)) );
DIP("addsubps %s,%s\n", dis_buf,
nameXMMReg(gregOfRM(modrm)));
delta += 3+alen;
}
assign( gV, getXMMReg(gregOfRM(modrm)) );
assign( addV, binop(Iop_Add32Fx4, mkexpr(gV), mkexpr(eV)) );
assign( subV, binop(Iop_Sub32Fx4, mkexpr(gV), mkexpr(eV)) );
breakup128to32s( addV, &a3, &a2, &a1, &a0 );
breakup128to32s( subV, &s3, &s2, &s1, &s0 );
putXMMReg( gregOfRM(modrm), mk128from32s( a3, s2, a1, s0 ));
goto decode_success;
}
/* ---------------------------------------------------- */
/* --- end of the SSE3 decoder. --- */
/* ---------------------------------------------------- */
after_sse_decoders:
/* Get the primary opcode. */
opc = getIByte(delta); delta++;
/* We get here if the current insn isn't SSE, or this CPU doesn't
support SSE. */
switch (opc) {
/* ------------------------ Control flow --------------- */
case 0xC2: /* RET imm16 */
d32 = getUDisp16(delta);
delta += 2;
dis_ret(d32);
dres.whatNext = Dis_StopHere;
DIP("ret %d\n", (Int)d32);
break;
case 0xC3: /* RET */
dis_ret(0);
dres.whatNext = Dis_StopHere;
DIP("ret\n");
break;
case 0xE8: /* CALL J4 */
d32 = getUDisp32(delta); delta += 4;
d32 += (guest_EIP_bbstart+delta);
/* (guest_eip_bbstart+delta) == return-to addr, d32 == call-to addr */
if (d32 == guest_EIP_bbstart+delta && getIByte(delta) >= 0x58
&& getIByte(delta) <= 0x5F) {
/* Specially treat the position-independent-code idiom
call X
X: popl %reg
as
movl %eip, %reg.
since this generates better code, but for no other reason. */
Int archReg = getIByte(delta) - 0x58;
/* vex_printf("-- fPIC thingy\n"); */
putIReg(4, archReg, mkU32(guest_EIP_bbstart+delta));
delta++; /* Step over the POP */
DIP("call 0x%x ; popl %s\n",d32,nameIReg(4,archReg));
} else {
/* The normal sequence for a call. */
t1 = newTemp(Ity_I32);
assign(t1, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4)));
putIReg(4, R_ESP, mkexpr(t1));
storeLE( mkexpr(t1), mkU32(guest_EIP_bbstart+delta));
if (resteerOkFn( callback_opaque, (Addr64)(Addr32)d32 )) {
/* follow into the call target. */
dres.whatNext = Dis_Resteer;
dres.continueAt = (Addr64)(Addr32)d32;
} else {
jmp_lit(Ijk_Call,d32);
dres.whatNext = Dis_StopHere;
}
DIP("call 0x%x\n",d32);
}
break;
//-- case 0xC8: /* ENTER */
//-- d32 = getUDisp16(eip); eip += 2;
//-- abyte = getIByte(delta); delta++;
//--
//-- vg_assert(sz == 4);
//-- vg_assert(abyte == 0);
//--
//-- t1 = newTemp(cb); t2 = newTemp(cb);
//-- uInstr2(cb, GET, sz, ArchReg, R_EBP, TempReg, t1);
//-- uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
//-- uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
//-- uLiteral(cb, sz);
//-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
//-- uInstr2(cb, STORE, 4, TempReg, t1, TempReg, t2);
//-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBP);
//-- if (d32) {
//-- uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
//-- uLiteral(cb, d32);
//-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
//-- }
//-- DIP("enter 0x%x, 0x%x", d32, abyte);
//-- break;
case 0xC9: /* LEAVE */
vassert(sz == 4);
t1 = newTemp(Ity_I32); t2 = newTemp(Ity_I32);
assign(t1, getIReg(4,R_EBP));
/* First PUT ESP looks redundant, but need it because ESP must
always be up-to-date for Memcheck to work... */
putIReg(4, R_ESP, mkexpr(t1));
assign(t2, loadLE(Ity_I32,mkexpr(t1)));
putIReg(4, R_EBP, mkexpr(t2));
putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t1), mkU32(4)) );
DIP("leave\n");
break;
//-- /* ---------------- Misc weird-ass insns --------------- */
//--
//-- case 0x27: /* DAA */
//-- case 0x2F: /* DAS */
//-- t1 = newTemp(cb);
//-- uInstr2(cb, GET, 1, ArchReg, R_AL, TempReg, t1);
//-- /* Widen %AL to 32 bits, so it's all defined when we push it. */
//-- uInstr1(cb, WIDEN, 4, TempReg, t1);
//-- uWiden(cb, 1, False);
//-- uInstr0(cb, CALLM_S, 0);
//-- uInstr1(cb, PUSH, 4, TempReg, t1);
//-- uInstr1(cb, CALLM, 0, Lit16,
//-- opc == 0x27 ? VGOFF_(helper_DAA) : VGOFF_(helper_DAS) );
//-- uFlagsRWU(cb, FlagsAC, FlagsSZACP, FlagO);
//-- uInstr1(cb, POP, 4, TempReg, t1);
//-- uInstr0(cb, CALLM_E, 0);
//-- uInstr2(cb, PUT, 1, TempReg, t1, ArchReg, R_AL);
//-- DIP(opc == 0x27 ? "daa\n" : "das\n");
//-- break;
//--
//-- case 0x37: /* AAA */
//-- case 0x3F: /* AAS */
//-- t1 = newTemp(cb);
//-- uInstr2(cb, GET, 2, ArchReg, R_EAX, TempReg, t1);
//-- /* Widen %AL to 32 bits, so it's all defined when we push it. */
//-- uInstr1(cb, WIDEN, 4, TempReg, t1);
//-- uWiden(cb, 2, False);
//-- uInstr0(cb, CALLM_S, 0);
//-- uInstr1(cb, PUSH, 4, TempReg, t1);
//-- uInstr1(cb, CALLM, 0, Lit16,
//-- opc == 0x37 ? VGOFF_(helper_AAA) : VGOFF_(helper_AAS) );
//-- uFlagsRWU(cb, FlagA, FlagsAC, FlagsEmpty);
//-- uInstr1(cb, POP, 4, TempReg, t1);
//-- uInstr0(cb, CALLM_E, 0);
//-- uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
//-- DIP(opc == 0x37 ? "aaa\n" : "aas\n");
//-- break;
//--
//-- case 0xD4: /* AAM */
//-- case 0xD5: /* AAD */
//-- d32 = getIByte(delta); delta++;
//-- if (d32 != 10) VG_(core_panic)("disInstr: AAM/AAD but base not 10 !");
//-- t1 = newTemp(cb);
//-- uInstr2(cb, GET, 2, ArchReg, R_EAX, TempReg, t1);
//-- /* Widen %AX to 32 bits, so it's all defined when we push it. */
//-- uInstr1(cb, WIDEN, 4, TempReg, t1);
//-- uWiden(cb, 2, False);
//-- uInstr0(cb, CALLM_S, 0);
//-- uInstr1(cb, PUSH, 4, TempReg, t1);
//-- uInstr1(cb, CALLM, 0, Lit16,
//-- opc == 0xD4 ? VGOFF_(helper_AAM) : VGOFF_(helper_AAD) );
//-- uFlagsRWU(cb, FlagsEmpty, FlagsSZP, FlagsEmpty);
//-- uInstr1(cb, POP, 4, TempReg, t1);
//-- uInstr0(cb, CALLM_E, 0);
//-- uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
//-- DIP(opc == 0xD4 ? "aam\n" : "aad\n");
//-- break;
/* ------------------------ CWD/CDQ -------------------- */
case 0x98: /* CBW */
if (sz == 4) {
putIReg(4, R_EAX, unop(Iop_16Sto32, getIReg(2, R_EAX)));
DIP("cwde\n");
} else {
vassert(sz == 2);
putIReg(2, R_EAX, unop(Iop_8Sto16, getIReg(1, R_EAX)));
DIP("cbw\n");
}
break;
case 0x99: /* CWD/CDQ */
ty = szToITy(sz);
putIReg(sz, R_EDX,
binop(mkSizedOp(ty,Iop_Sar8),
getIReg(sz, R_EAX),
mkU8(sz == 2 ? 15 : 31)) );
DIP(sz == 2 ? "cwdq\n" : "cdqq\n");
break;
/* ------------------------ FPU ops -------------------- */
case 0x9E: /* SAHF */
codegen_SAHF();
DIP("sahf\n");
break;
case 0x9F: /* LAHF */
codegen_LAHF();
DIP("lahf\n");
break;
case 0x9B: /* FWAIT */
/* ignore? */
DIP("fwait\n");
break;
case 0xD8:
case 0xD9:
case 0xDA:
case 0xDB:
case 0xDC:
case 0xDD:
case 0xDE:
case 0xDF: {
Int delta0 = delta;
Bool decode_OK = False;
delta = dis_FPU ( &decode_OK, sorb, delta );
if (!decode_OK) {
delta = delta0;
goto decode_failure;
}
break;
}
/* ------------------------ INC & DEC ------------------ */
case 0x40: /* INC eAX */
case 0x41: /* INC eCX */
case 0x42: /* INC eDX */
case 0x43: /* INC eBX */
case 0x44: /* INC eSP */
case 0x45: /* INC eBP */
case 0x46: /* INC eSI */
case 0x47: /* INC eDI */
vassert(sz == 2 || sz == 4);
ty = szToITy(sz);
t1 = newTemp(ty);
assign( t1, binop(mkSizedOp(ty,Iop_Add8),
getIReg(sz, (UInt)(opc - 0x40)),
mkU(ty,1)) );
setFlags_INC_DEC( True, t1, ty );
putIReg(sz, (UInt)(opc - 0x40), mkexpr(t1));
DIP("inc%c %s\n", nameISize(sz), nameIReg(sz,opc-0x40));
break;
case 0x48: /* DEC eAX */
case 0x49: /* DEC eCX */
case 0x4A: /* DEC eDX */
case 0x4B: /* DEC eBX */
case 0x4C: /* DEC eSP */
case 0x4D: /* DEC eBP */
case 0x4E: /* DEC eSI */
case 0x4F: /* DEC eDI */
vassert(sz == 2 || sz == 4);
ty = szToITy(sz);
t1 = newTemp(ty);
assign( t1, binop(mkSizedOp(ty,Iop_Sub8),
getIReg(sz, (UInt)(opc - 0x48)),
mkU(ty,1)) );
setFlags_INC_DEC( False, t1, ty );
putIReg(sz, (UInt)(opc - 0x48), mkexpr(t1));
DIP("dec%c %s\n", nameISize(sz), nameIReg(sz,opc-0x48));
break;
/* ------------------------ INT ------------------------ */
case 0xCD: /* INT imm8 */
d32 = getIByte(delta); delta++;
if (d32 != 0x80) goto decode_failure;
/* It's important that all ArchRegs carry their up-to-date value
at this point. So we declare an end-of-block here, which
forces any TempRegs caching ArchRegs to be flushed. */
jmp_lit(Ijk_Sys_int128,((Addr32)guest_EIP_bbstart)+delta);
dres.whatNext = Dis_StopHere;
DIP("int $0x80\n");
break;
/* ------------------------ Jcond, byte offset --------- */
case 0xEB: /* Jb (jump, byte offset) */
d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta);
delta++;
if (resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) {
dres.whatNext = Dis_Resteer;
dres.continueAt = (Addr64)(Addr32)d32;
} else {
jmp_lit(Ijk_Boring,d32);
dres.whatNext = Dis_StopHere;
}
DIP("jmp-8 0x%x\n", d32);
break;
case 0xE9: /* Jv (jump, 16/32 offset) */
vassert(sz == 4); /* JRS added 2004 July 11 */
d32 = (((Addr32)guest_EIP_bbstart)+delta+sz) + getSDisp(sz,delta);
delta += sz;
if (resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) {
dres.whatNext = Dis_Resteer;
dres.continueAt = (Addr64)(Addr32)d32;
} else {
jmp_lit(Ijk_Boring,d32);
dres.whatNext = Dis_StopHere;
}
DIP("jmp 0x%x\n", d32);
break;
case 0x70:
case 0x71:
case 0x72: /* JBb/JNAEb (jump below) */
case 0x73: /* JNBb/JAEb (jump not below) */
case 0x74: /* JZb/JEb (jump zero) */
case 0x75: /* JNZb/JNEb (jump not zero) */
case 0x76: /* JBEb/JNAb (jump below or equal) */
case 0x77: /* JNBEb/JAb (jump not below or equal) */
case 0x78: /* JSb (jump negative) */
case 0x79: /* JSb (jump not negative) */
case 0x7A: /* JP (jump parity even) */
case 0x7B: /* JNP/JPO (jump parity odd) */
case 0x7C: /* JLb/JNGEb (jump less) */
case 0x7D: /* JGEb/JNLb (jump greater or equal) */
case 0x7E: /* JLEb/JNGb (jump less or equal) */
case 0x7F: /* JGb/JNLEb (jump greater) */
d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta);
delta++;
if (0 && resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) {
/* Unused experimental hack: speculatively follow one arm
of a conditional branch. */
/* Assume the branch is taken. So we need to emit a
side-exit to the insn following this one, on the negation
of the condition, and continue at the branch target
address (d32). */
if (0) vex_printf("resteer\n");
stmt( IRStmt_Exit(
mk_x86g_calculate_condition((X86Condcode)(1 ^ (opc - 0x70))),
Ijk_Boring,
IRConst_U32(guest_EIP_bbstart+delta) ) );
dres.whatNext = Dis_Resteer;
dres.continueAt = (Addr64)(Addr32)d32;
} else {
jcc_01((X86Condcode)(opc - 0x70), (Addr32)(guest_EIP_bbstart+delta), d32);
dres.whatNext = Dis_StopHere;
}
DIP("j%s-8 0x%x\n", name_X86Condcode(opc - 0x70), d32);
break;
case 0xE3: /* JECXZ or perhaps JCXZ, depending on OSO ? Intel
manual says it depends on address size override. */
if (sz != 4) goto decode_failure;
d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta);
delta++;
ty = szToITy(sz);
stmt( IRStmt_Exit(
binop(mkSizedOp(ty,Iop_CmpEQ8),
getIReg(sz,R_ECX),
mkU(ty,0)),
Ijk_Boring,
IRConst_U32(d32))
);
DIP("j%sz 0x%x\n", nameIReg(sz, R_ECX), d32);
break;
case 0xE0: /* LOOPNE disp8: decrement count, jump if count != 0 && ZF==0 */
case 0xE1: /* LOOPE disp8: decrement count, jump if count != 0 && ZF==1 */
case 0xE2: /* LOOP disp8: decrement count, jump if count != 0 */
{ /* Again, the docs say this uses ECX/CX as a count depending on
the address size override, not the operand one. Since we
don't handle address size overrides, I guess that means
ECX. */
IRExpr* zbit = NULL;
IRExpr* count = NULL;
IRExpr* cond = NULL;
HChar* xtra = NULL;
if (sz != 4) goto decode_failure;
d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta);
delta++;
putIReg(4, R_ECX, binop(Iop_Sub32, getIReg(4,R_ECX), mkU32(1)));
count = getIReg(4,R_ECX);
cond = binop(Iop_CmpNE32, count, mkU32(0));
switch (opc) {
case 0xE2:
xtra = "";
break;
case 0xE1:
xtra = "e";
zbit = mk_x86g_calculate_condition( X86CondZ );
cond = mkAnd1(cond, zbit);
break;
case 0xE0:
xtra = "ne";
zbit = mk_x86g_calculate_condition( X86CondNZ );
cond = mkAnd1(cond, zbit);
break;
default:
vassert(0);
}
stmt( IRStmt_Exit(cond, Ijk_Boring, IRConst_U32(d32)) );
DIP("loop%s 0x%x\n", xtra, d32);
break;
}
/* ------------------------ IMUL ----------------------- */
case 0x69: /* IMUL Iv, Ev, Gv */
delta = dis_imul_I_E_G ( sorb, sz, delta, sz );
break;
case 0x6B: /* IMUL Ib, Ev, Gv */
delta = dis_imul_I_E_G ( sorb, sz, delta, 1 );
break;
/* ------------------------ MOV ------------------------ */
case 0x88: /* MOV Gb,Eb */
delta = dis_mov_G_E(sorb, 1, delta);
break;
case 0x89: /* MOV Gv,Ev */
delta = dis_mov_G_E(sorb, sz, delta);
break;
case 0x8A: /* MOV Eb,Gb */
delta = dis_mov_E_G(sorb, 1, delta);
break;
case 0x8B: /* MOV Ev,Gv */
delta = dis_mov_E_G(sorb, sz, delta);
break;
case 0x8D: /* LEA M,Gv */
if (sz != 4)
goto decode_failure;
modrm = getIByte(delta);
if (epartIsReg(modrm))
goto decode_failure;
/* NOTE! this is the one place where a segment override prefix
has no effect on the address calculation. Therefore we pass
zero instead of sorb here. */
addr = disAMode ( &alen, /*sorb*/ 0, delta, dis_buf );
delta += alen;
putIReg(sz, gregOfRM(modrm), mkexpr(addr));
DIP("lea%c %s, %s\n", nameISize(sz), dis_buf,
nameIReg(sz,gregOfRM(modrm)));
break;
case 0x8C: /* MOV Sw,Ew -- MOV from a SEGMENT REGISTER */
delta = dis_mov_Sw_Ew(sorb, sz, delta);
break;
case 0x8E: /* MOV Ew,Sw -- MOV to a SEGMENT REGISTER */
delta = dis_mov_Ew_Sw(sorb, delta);
break;
case 0xA0: /* MOV Ob,AL */
sz = 1;
/* Fall through ... */
case 0xA1: /* MOV Ov,eAX */
d32 = getUDisp32(delta); delta += 4;
ty = szToITy(sz);
addr = newTemp(Ity_I32);
assign( addr, handleSegOverride(sorb, mkU32(d32)) );
putIReg(sz, R_EAX, loadLE(ty, mkexpr(addr)));
DIP("mov%c %s0x%x, %s\n", nameISize(sz), sorbTxt(sorb),
d32, nameIReg(sz,R_EAX));
break;
case 0xA2: /* MOV Ob,AL */
sz = 1;
/* Fall through ... */
case 0xA3: /* MOV eAX,Ov */
d32 = getUDisp32(delta); delta += 4;
ty = szToITy(sz);
addr = newTemp(Ity_I32);
assign( addr, handleSegOverride(sorb, mkU32(d32)) );
storeLE( mkexpr(addr), getIReg(sz,R_EAX) );
DIP("mov%c %s, %s0x%x\n", nameISize(sz), nameIReg(sz,R_EAX),
sorbTxt(sorb), d32);
break;
case 0xB0: /* MOV imm,AL */
case 0xB1: /* MOV imm,CL */
case 0xB2: /* MOV imm,DL */
case 0xB3: /* MOV imm,BL */
case 0xB4: /* MOV imm,AH */
case 0xB5: /* MOV imm,CH */
case 0xB6: /* MOV imm,DH */
case 0xB7: /* MOV imm,BH */
d32 = getIByte(delta); delta += 1;
putIReg(1, opc-0xB0, mkU8(d32));
DIP("movb $0x%x,%s\n", d32, nameIReg(1,opc-0xB0));
break;
case 0xB8: /* MOV imm,eAX */
case 0xB9: /* MOV imm,eCX */
case 0xBA: /* MOV imm,eDX */
case 0xBB: /* MOV imm,eBX */
case 0xBC: /* MOV imm,eSP */
case 0xBD: /* MOV imm,eBP */
case 0xBE: /* MOV imm,eSI */
case 0xBF: /* MOV imm,eDI */
d32 = getUDisp(sz,delta); delta += sz;
putIReg(sz, opc-0xB8, mkU(szToITy(sz), d32));
DIP("mov%c $0x%x,%s\n", nameISize(sz), d32, nameIReg(sz,opc-0xB8));
break;
case 0xC6: /* MOV Ib,Eb */
sz = 1;
goto do_Mov_I_E;
case 0xC7: /* MOV Iv,Ev */
goto do_Mov_I_E;
do_Mov_I_E:
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
delta++; /* mod/rm byte */
d32 = getUDisp(sz,delta); delta += sz;
putIReg(sz, eregOfRM(modrm), mkU(szToITy(sz), d32));
DIP("mov%c $0x%x, %s\n", nameISize(sz), d32,
nameIReg(sz,eregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
d32 = getUDisp(sz,delta); delta += sz;
storeLE(mkexpr(addr), mkU(szToITy(sz), d32));
DIP("mov%c $0x%x, %s\n", nameISize(sz), d32, dis_buf);
}
break;
/* ------------------------ opl imm, A ----------------- */
case 0x04: /* ADD Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_Add8, True, delta, "add" );
break;
case 0x05: /* ADD Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_Add8, True, delta, "add" );
break;
case 0x0C: /* OR Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_Or8, True, delta, "or" );
break;
case 0x0D: /* OR Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_Or8, True, delta, "or" );
break;
case 0x14: /* ADC Ib, AL */
delta = dis_op_imm_A( 1, True, Iop_Add8, True, delta, "adc" );
break;
case 0x15: /* ADC Iv, eAX */
delta = dis_op_imm_A( sz, True, Iop_Add8, True, delta, "adc" );
break;
case 0x1C: /* SBB Ib, AL */
delta = dis_op_imm_A( 1, True, Iop_Sub8, True, delta, "sbb" );
break;
case 0x1D: /* SBB Iv, eAX */
delta = dis_op_imm_A( sz, True, Iop_Sub8, True, delta, "sbb" );
break;
case 0x24: /* AND Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_And8, True, delta, "and" );
break;
case 0x25: /* AND Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_And8, True, delta, "and" );
break;
case 0x2C: /* SUB Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_Sub8, True, delta, "sub" );
break;
case 0x2D: /* SUB Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_Sub8, True, delta, "sub" );
break;
case 0x34: /* XOR Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_Xor8, True, delta, "xor" );
break;
case 0x35: /* XOR Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_Xor8, True, delta, "xor" );
break;
case 0x3C: /* CMP Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_Sub8, False, delta, "cmp" );
break;
case 0x3D: /* CMP Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_Sub8, False, delta, "cmp" );
break;
case 0xA8: /* TEST Ib, AL */
delta = dis_op_imm_A( 1, False, Iop_And8, False, delta, "test" );
break;
case 0xA9: /* TEST Iv, eAX */
delta = dis_op_imm_A( sz, False, Iop_And8, False, delta, "test" );
break;
/* ------------------------ opl Ev, Gv ----------------- */
case 0x02: /* ADD Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_Add8, True, 1, delta, "add" );
break;
case 0x03: /* ADD Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_Add8, True, sz, delta, "add" );
break;
case 0x0A: /* OR Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_Or8, True, 1, delta, "or" );
break;
case 0x0B: /* OR Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_Or8, True, sz, delta, "or" );
break;
case 0x12: /* ADC Eb,Gb */
delta = dis_op2_E_G ( sorb, True, Iop_Add8, True, 1, delta, "adc" );
break;
case 0x13: /* ADC Ev,Gv */
delta = dis_op2_E_G ( sorb, True, Iop_Add8, True, sz, delta, "adc" );
break;
case 0x1A: /* SBB Eb,Gb */
delta = dis_op2_E_G ( sorb, True, Iop_Sub8, True, 1, delta, "sbb" );
break;
case 0x1B: /* SBB Ev,Gv */
delta = dis_op2_E_G ( sorb, True, Iop_Sub8, True, sz, delta, "sbb" );
break;
case 0x22: /* AND Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_And8, True, 1, delta, "and" );
break;
case 0x23: /* AND Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_And8, True, sz, delta, "and" );
break;
case 0x2A: /* SUB Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_Sub8, True, 1, delta, "sub" );
break;
case 0x2B: /* SUB Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_Sub8, True, sz, delta, "sub" );
break;
case 0x32: /* XOR Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_Xor8, True, 1, delta, "xor" );
break;
case 0x33: /* XOR Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_Xor8, True, sz, delta, "xor" );
break;
case 0x3A: /* CMP Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_Sub8, False, 1, delta, "cmp" );
break;
case 0x3B: /* CMP Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_Sub8, False, sz, delta, "cmp" );
break;
case 0x84: /* TEST Eb,Gb */
delta = dis_op2_E_G ( sorb, False, Iop_And8, False, 1, delta, "test" );
break;
case 0x85: /* TEST Ev,Gv */
delta = dis_op2_E_G ( sorb, False, Iop_And8, False, sz, delta, "test" );
break;
/* ------------------------ opl Gv, Ev ----------------- */
case 0x00: /* ADD Gb,Eb */
delta = dis_op2_G_E ( sorb, False, Iop_Add8, True, 1, delta, "add" );
break;
case 0x01: /* ADD Gv,Ev */
delta = dis_op2_G_E ( sorb, False, Iop_Add8, True, sz, delta, "add" );
break;
case 0x08: /* OR Gb,Eb */
delta = dis_op2_G_E ( sorb, False, Iop_Or8, True, 1, delta, "or" );
break;
case 0x09: /* OR Gv,Ev */
delta = dis_op2_G_E ( sorb, False, Iop_Or8, True, sz, delta, "or" );
break;
case 0x10: /* ADC Gb,Eb */
delta = dis_op2_G_E ( sorb, True, Iop_Add8, True, 1, delta, "adc" );
break;
case 0x11: /* ADC Gv,Ev */
delta = dis_op2_G_E ( sorb, True, Iop_Add8, True, sz, delta, "adc" );
break;
case 0x18: /* SBB Gb,Eb */
delta = dis_op2_G_E ( sorb, True, Iop_Sub8, True, 1, delta, "sbb" );
break;
case 0x19: /* SBB Gv,Ev */
delta = dis_op2_G_E ( sorb, True, Iop_Sub8, True, sz, delta, "sbb" );
break;
case 0x20: /* AND Gb,Eb */
delta = dis_op2_G_E ( sorb, False, Iop_And8, True, 1, delta, "and" );
break;
case 0x21: /* AND Gv,Ev */
delta = dis_op2_G_E ( sorb, False, Iop_And8, True, sz, delta, "and" );
break;
case 0x28: /* SUB Gb,Eb */
delta = dis_op2_G_E ( sorb, False, Iop_Sub8, True, 1, delta, "sub" );
break;
case 0x29: /* SUB Gv,Ev */
delta = dis_op2_G_E ( sorb, False, Iop_Sub8, True, sz, delta, "sub" );
break;
case 0x30: /* XOR Gb,Eb */
delta = dis_op2_G_E ( sorb, False, Iop_Xor8, True, 1, delta, "xor" );
break;
case 0x31: /* XOR Gv,Ev */
delta = dis_op2_G_E ( sorb, False, Iop_Xor8, True, sz, delta, "xor" );
break;
case 0x38: /* CMP Gb,Eb */
delta = dis_op2_G_E ( sorb, False, Iop_Sub8, False, 1, delta, "cmp" );
break;
case 0x39: /* CMP Gv,Ev */
delta = dis_op2_G_E ( sorb, False, Iop_Sub8, False, sz, delta, "cmp" );
break;
/* ------------------------ POP ------------------------ */
case 0x58: /* POP eAX */
case 0x59: /* POP eCX */
case 0x5A: /* POP eDX */
case 0x5B: /* POP eBX */
case 0x5D: /* POP eBP */
case 0x5E: /* POP eSI */
case 0x5F: /* POP eDI */
case 0x5C: /* POP eSP */
vassert(sz == 2 || sz == 4);
t1 = newTemp(szToITy(sz)); t2 = newTemp(Ity_I32);
assign(t2, getIReg(4, R_ESP));
assign(t1, loadLE(szToITy(sz),mkexpr(t2)));
putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t2), mkU32(sz)));
putIReg(sz, opc-0x58, mkexpr(t1));
DIP("pop%c %s\n", nameISize(sz), nameIReg(sz,opc-0x58));
break;
case 0x9D: /* POPF */
vassert(sz == 2 || sz == 4);
vassert(sz == 4); // until we know a sz==2 test case exists
t1 = newTemp(Ity_I32); t2 = newTemp(Ity_I32);
assign(t2, getIReg(4, R_ESP));
assign(t1, widenUto32(loadLE(szToITy(sz),mkexpr(t2))));
putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t2), mkU32(sz)));
/* t1 is the flag word. Mask out everything except OSZACP and
set the flags thunk to X86G_CC_OP_COPY. */
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put( OFFB_CC_DEP1,
binop(Iop_And32,
mkexpr(t1),
mkU32( X86G_CC_MASK_C | X86G_CC_MASK_P
| X86G_CC_MASK_A | X86G_CC_MASK_Z
| X86G_CC_MASK_S| X86G_CC_MASK_O )
)
)
);
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
/* Also need to set the D flag, which is held in bit 10 of t1.
If zero, put 1 in OFFB_DFLAG, else -1 in OFFB_DFLAG. */
stmt( IRStmt_Put(
OFFB_DFLAG,
IRExpr_Mux0X(
unop(Iop_32to8,
binop(Iop_And32,
binop(Iop_Shr32, mkexpr(t1), mkU8(10)),
mkU32(1))),
mkU32(1),
mkU32(0xFFFFFFFF)))
);
/* Set the ID flag */
stmt( IRStmt_Put(
OFFB_IDFLAG,
IRExpr_Mux0X(
unop(Iop_32to8,
binop(Iop_And32,
binop(Iop_Shr32, mkexpr(t1), mkU8(21)),
mkU32(1))),
mkU32(0),
mkU32(1)))
);
/* And set the AC flag. If setting it 1 to, emit an emulation
warning. */
stmt( IRStmt_Put(
OFFB_ACFLAG,
IRExpr_Mux0X(
unop(Iop_32to8,
binop(Iop_And32,
binop(Iop_Shr32, mkexpr(t1), mkU8(18)),
mkU32(1))),
mkU32(0),
mkU32(1)))
);
put_emwarn( mkU32(EmWarn_X86_acFlag) );
stmt(
IRStmt_Exit(
binop( Iop_CmpNE32,
binop(Iop_And32, mkexpr(t1), mkU32(1<<18)),
mkU32(0) ),
Ijk_EmWarn,
IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta)
)
);
DIP("popf%c\n", nameISize(sz));
break;
case 0x61: /* POPA */
/* This is almost certainly wrong for sz==2. So ... */
if (sz != 4) goto decode_failure;
/* t5 is the old %ESP value. */
t5 = newTemp(Ity_I32);
assign( t5, getIReg(4, R_ESP) );
/* Reload all the registers, except %esp. */
putIReg(4,R_EAX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(28)) ));
putIReg(4,R_ECX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(24)) ));
putIReg(4,R_EDX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(20)) ));
putIReg(4,R_EBX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(16)) ));
/* ignore saved %ESP */
putIReg(4,R_EBP, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32( 8)) ));
putIReg(4,R_ESI, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32( 4)) ));
putIReg(4,R_EDI, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32( 0)) ));
/* and move %ESP back up */
putIReg( 4, R_ESP, binop(Iop_Add32, mkexpr(t5), mkU32(8*4)) );
DIP("popa%c\n", nameISize(sz));
break;
case 0x8F: /* POPL/POPW m32 */
{ Int len;
UChar rm = getIByte(delta);
/* make sure this instruction is correct POP */
if (epartIsReg(rm) || gregOfRM(rm) != 0)
goto decode_failure;
/* and has correct size */
if (sz != 4 && sz != 2)
goto decode_failure;
ty = szToITy(sz);
t1 = newTemp(Ity_I32); /* stack address */
t3 = newTemp(ty); /* data */
/* set t1 to ESP: t1 = ESP */
assign( t1, getIReg(4, R_ESP) );
/* load M[ESP] to virtual register t3: t3 = M[t1] */
assign( t3, loadLE(ty, mkexpr(t1)) );
/* increase ESP; must be done before the STORE. Intel manual says:
If the ESP register is used as a base register for addressing
a destination operand in memory, the POP instruction computes
the effective address of the operand after it increments the
ESP register.
*/
putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t1), mkU32(sz)) );
/* resolve MODR/M */
addr = disAMode ( &len, sorb, delta, dis_buf);
storeLE( mkexpr(addr), mkexpr(t3) );
DIP("pop%c %s\n", sz==2 ? 'w' : 'l', dis_buf);
delta += len;
break;
}
case 0x1F: /* POP %DS */
dis_pop_segreg( R_DS, sz ); break;
case 0x07: /* POP %ES */
dis_pop_segreg( R_ES, sz ); break;
case 0x17: /* POP %SS */
dis_pop_segreg( R_SS, sz ); break;
/* ------------------------ PUSH ----------------------- */
case 0x50: /* PUSH eAX */
case 0x51: /* PUSH eCX */
case 0x52: /* PUSH eDX */
case 0x53: /* PUSH eBX */
case 0x55: /* PUSH eBP */
case 0x56: /* PUSH eSI */
case 0x57: /* PUSH eDI */
case 0x54: /* PUSH eSP */
/* This is the Right Way, in that the value to be pushed is
established before %esp is changed, so that pushl %esp
correctly pushes the old value. */
vassert(sz == 2 || sz == 4);
ty = sz==2 ? Ity_I16 : Ity_I32;
t1 = newTemp(ty); t2 = newTemp(Ity_I32);
assign(t1, getIReg(sz, opc-0x50));
assign(t2, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(sz)));
putIReg(4, R_ESP, mkexpr(t2) );
storeLE(mkexpr(t2),mkexpr(t1));
DIP("push%c %s\n", nameISize(sz), nameIReg(sz,opc-0x50));
break;
case 0x68: /* PUSH Iv */
d32 = getUDisp(sz,delta); delta += sz;
goto do_push_I;
case 0x6A: /* PUSH Ib, sign-extended to sz */
d32 = getSDisp8(delta); delta += 1;
goto do_push_I;
do_push_I:
ty = szToITy(sz);
t1 = newTemp(Ity_I32); t2 = newTemp(ty);
assign( t1, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) );
putIReg(4, R_ESP, mkexpr(t1) );
storeLE( mkexpr(t1), mkU(ty,d32) );
DIP("push%c $0x%x\n", nameISize(sz), d32);
break;
case 0x9C: /* PUSHF */ {
vassert(sz == 2 || sz == 4);
vassert(sz == 4); // wait for sz==2 test case
t1 = newTemp(Ity_I32);
assign( t1, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) );
putIReg(4, R_ESP, mkexpr(t1) );
/* Calculate OSZACP, and patch in fixed fields as per
Intel docs.
- bit 1 is always 1
- bit 9 is Interrupt Enable (should always be 1 in user mode?)
*/
t2 = newTemp(Ity_I32);
assign( t2, binop(Iop_Or32,
mk_x86g_calculate_eflags_all(),
mkU32( (1<<1)|(1<<9) ) ));
/* Patch in the D flag. This can simply be a copy of bit 10 of
baseBlock[OFFB_DFLAG]. */
t3 = newTemp(Ity_I32);
assign( t3, binop(Iop_Or32,
mkexpr(t2),
binop(Iop_And32,
IRExpr_Get(OFFB_DFLAG,Ity_I32),
mkU32(1<<10)))
);
/* And patch in the ID flag. */
t4 = newTemp(Ity_I32);
assign( t4, binop(Iop_Or32,
mkexpr(t3),
binop(Iop_And32,
binop(Iop_Shl32, IRExpr_Get(OFFB_IDFLAG,Ity_I32),
mkU8(21)),
mkU32(1<<21)))
);
/* And patch in the AC flag. */
t5 = newTemp(Ity_I32);
assign( t5, binop(Iop_Or32,
mkexpr(t4),
binop(Iop_And32,
binop(Iop_Shl32, IRExpr_Get(OFFB_ACFLAG,Ity_I32),
mkU8(18)),
mkU32(1<<18)))
);
/* if sz==2, the stored value needs to be narrowed. */
if (sz == 2)
storeLE( mkexpr(t1), unop(Iop_32to16,mkexpr(t5)) );
else
storeLE( mkexpr(t1), mkexpr(t5) );
DIP("pushf%c\n", nameISize(sz));
break;
}
case 0x60: /* PUSHA */
/* This is almost certainly wrong for sz==2. So ... */
if (sz != 4) goto decode_failure;
/* This is the Right Way, in that the value to be pushed is
established before %esp is changed, so that pusha
correctly pushes the old %esp value. New value of %esp is
pushed at start. */
/* t0 is the %ESP value we're going to push. */
t0 = newTemp(Ity_I32);
assign( t0, getIReg(4, R_ESP) );
/* t5 will be the new %ESP value. */
t5 = newTemp(Ity_I32);
assign( t5, binop(Iop_Sub32, mkexpr(t0), mkU32(8*4)) );
/* Update guest state before prodding memory. */
putIReg(4, R_ESP, mkexpr(t5));
/* Dump all the registers. */
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(28)), getIReg(4,R_EAX) );
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(24)), getIReg(4,R_ECX) );
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(20)), getIReg(4,R_EDX) );
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(16)), getIReg(4,R_EBX) );
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(12)), mkexpr(t0) /*esp*/);
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32( 8)), getIReg(4,R_EBP) );
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32( 4)), getIReg(4,R_ESI) );
storeLE( binop(Iop_Add32,mkexpr(t5),mkU32( 0)), getIReg(4,R_EDI) );
DIP("pusha%c\n", nameISize(sz));
break;
case 0x0E: /* PUSH %CS */
dis_push_segreg( R_CS, sz ); break;
case 0x1E: /* PUSH %DS */
dis_push_segreg( R_DS, sz ); break;
case 0x06: /* PUSH %ES */
dis_push_segreg( R_ES, sz ); break;
case 0x16: /* PUSH %SS */
dis_push_segreg( R_SS, sz ); break;
/* ------------------------ SCAS et al ----------------- */
case 0xA4: /* MOVS, no REP prefix */
case 0xA5:
dis_string_op( dis_MOVS, ( opc == 0xA4 ? 1 : sz ), "movs", sorb );
break;
case 0xA6: /* CMPSb, no REP prefix */
case 0xA7:
dis_string_op( dis_CMPS, ( opc == 0xA6 ? 1 : sz ), "cmps", sorb );
break;
case 0xAA: /* STOS, no REP prefix */
case 0xAB:
dis_string_op( dis_STOS, ( opc == 0xAA ? 1 : sz ), "stos", sorb );
break;
case 0xAC: /* LODS, no REP prefix */
case 0xAD:
dis_string_op( dis_LODS, ( opc == 0xAC ? 1 : sz ), "lods", sorb );
break;
case 0xAE: /* SCAS, no REP prefix */
case 0xAF:
dis_string_op( dis_SCAS, ( opc == 0xAE ? 1 : sz ), "scas", sorb );
break;
case 0xFC: /* CLD */
stmt( IRStmt_Put( OFFB_DFLAG, mkU32(1)) );
DIP("cld\n");
break;
case 0xFD: /* STD */
stmt( IRStmt_Put( OFFB_DFLAG, mkU32(0xFFFFFFFF)) );
DIP("std\n");
break;
case 0xF8: /* CLC */
case 0xF9: /* STC */
case 0xF5: /* CMC */
t0 = newTemp(Ity_I32);
t1 = newTemp(Ity_I32);
assign( t0, mk_x86g_calculate_eflags_all() );
switch (opc) {
case 0xF8:
assign( t1, binop(Iop_And32, mkexpr(t0),
mkU32(~X86G_CC_MASK_C)));
DIP("clc\n");
break;
case 0xF9:
assign( t1, binop(Iop_Or32, mkexpr(t0),
mkU32(X86G_CC_MASK_C)));
DIP("stc\n");
break;
case 0xF5:
assign( t1, binop(Iop_Xor32, mkexpr(t0),
mkU32(X86G_CC_MASK_C)));
DIP("cmc\n");
break;
default:
vpanic("disInstr(x86)(clc/stc/cmc)");
}
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(t1) ));
/* Set NDEP even though it isn't used. This makes redundant-PUT
elimination of previous stores to this field work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
break;
/* REPNE prefix insn */
case 0xF2: {
Addr32 eip_orig = guest_EIP_bbstart + delta - 1;
vassert(sorb == 0);
abyte = getIByte(delta); delta++;
if (abyte == 0x66) { sz = 2; abyte = getIByte(delta); delta++; }
dres.whatNext = Dis_StopHere;
switch (abyte) {
/* According to the Intel manual, "repne movs" should never occur, but
* in practice it has happened, so allow for it here... */
case 0xA4: sz = 1; /* REPNE MOVS<sz> */
goto decode_failure;
//-- case 0xA5:
// dis_REP_op ( CondNZ, dis_MOVS, sz, eip_orig,
// guest_eip_bbstart+delta, "repne movs" );
// break;
//--
//-- case 0xA6: sz = 1; /* REPNE CMPS<sz> */
//-- case 0xA7:
//-- dis_REP_op ( cb, CondNZ, dis_CMPS, sz, eip_orig, eip, "repne cmps" );
//-- break;
//--
case 0xAE: sz = 1; /* REPNE SCAS<sz> */
case 0xAF:
dis_REP_op ( X86CondNZ, dis_SCAS, sz, eip_orig,
guest_EIP_bbstart+delta, "repne scas" );
break;
default:
goto decode_failure;
}
break;
}
/* REP/REPE prefix insn (for SCAS and CMPS, 0xF3 means REPE,
for the rest, it means REP) */
case 0xF3: {
Addr32 eip_orig = guest_EIP_bbstart + delta - 1;
vassert(sorb == 0);
abyte = getIByte(delta); delta++;
if (abyte == 0x66) { sz = 2; abyte = getIByte(delta); delta++; }
dres.whatNext = Dis_StopHere;
switch (abyte) {
case 0xA4: sz = 1; /* REP MOVS<sz> */
case 0xA5:
dis_REP_op ( X86CondAlways, dis_MOVS, sz, eip_orig,
guest_EIP_bbstart+delta, "rep movs" );
break;
case 0xA6: sz = 1; /* REPE CMP<sz> */
case 0xA7:
dis_REP_op ( X86CondZ, dis_CMPS, sz, eip_orig,
guest_EIP_bbstart+delta, "repe cmps" );
break;
case 0xAA: sz = 1; /* REP STOS<sz> */
case 0xAB:
dis_REP_op ( X86CondAlways, dis_STOS, sz, eip_orig,
guest_EIP_bbstart+delta, "rep stos" );
break;
case 0xAE: sz = 1; /* REPE SCAS<sz> */
case 0xAF:
dis_REP_op ( X86CondZ, dis_SCAS, sz, eip_orig,
guest_EIP_bbstart+delta, "repe scas" );
break;
case 0x90: /* REP NOP (PAUSE) */
/* a hint to the P4 re spin-wait loop */
DIP("rep nop (P4 pause)\n");
/* "observe" the hint. The Vex client needs to be careful not
to cause very long delays as a result, though. */
jmp_lit(Ijk_Yield, ((Addr32)guest_EIP_bbstart)+delta);
dres.whatNext = Dis_StopHere;
break;
case 0xC3: /* REP RET -- same as normal ret? */
dis_ret(0);
dres.whatNext = Dis_StopHere;
DIP("rep ret\n");
break;
default:
goto decode_failure;
}
break;
}
/* ------------------------ XCHG ----------------------- */
case 0x86: /* XCHG Gb,Eb */
sz = 1;
/* Fall through ... */
case 0x87: /* XCHG Gv,Ev */
modrm = getIByte(delta);
ty = szToITy(sz);
t1 = newTemp(ty); t2 = newTemp(ty);
if (epartIsReg(modrm)) {
assign(t1, getIReg(sz, eregOfRM(modrm)));
assign(t2, getIReg(sz, gregOfRM(modrm)));
putIReg(sz, gregOfRM(modrm), mkexpr(t1));
putIReg(sz, eregOfRM(modrm), mkexpr(t2));
delta++;
DIP("xchg%c %s, %s\n",
nameISize(sz), nameIReg(sz,gregOfRM(modrm)),
nameIReg(sz,eregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
assign( t1, loadLE(ty,mkexpr(addr)) );
assign( t2, getIReg(sz,gregOfRM(modrm)) );
storeLE( mkexpr(addr), mkexpr(t2) );
putIReg( sz, gregOfRM(modrm), mkexpr(t1) );
delta += alen;
DIP("xchg%c %s, %s\n", nameISize(sz),
nameIReg(sz,gregOfRM(modrm)), dis_buf);
}
break;
case 0x90: /* XCHG eAX,eAX */
DIP("nop\n");
break;
case 0x91: /* XCHG eAX,eCX */
case 0x92: /* XCHG eAX,eDX */
case 0x93: /* XCHG eAX,eBX */
case 0x94: /* XCHG eAX,eSP */
case 0x95: /* XCHG eAX,eBP */
case 0x96: /* XCHG eAX,eSI */
case 0x97: /* XCHG eAX,eDI */
codegen_xchg_eAX_Reg ( sz, opc - 0x90 );
break;
//-- /* ------------------------ XLAT ----------------------- */
//--
//-- case 0xD7: /* XLAT */
//-- t1 = newTemp(cb); t2 = newTemp(cb);
//-- uInstr2(cb, GET, sz, ArchReg, R_EBX, TempReg, t1); /* get eBX */
//-- handleSegOverride( cb, sorb, t1 ); /* make t1 DS:eBX */
//-- uInstr2(cb, GET, 1, ArchReg, R_AL, TempReg, t2); /* get AL */
//-- /* Widen %AL to 32 bits, so it's all defined when we add it. */
//-- uInstr1(cb, WIDEN, 4, TempReg, t2);
//-- uWiden(cb, 1, False);
//-- uInstr2(cb, ADD, sz, TempReg, t2, TempReg, t1); /* add AL to eBX */
//-- uInstr2(cb, LOAD, 1, TempReg, t1, TempReg, t2); /* get byte at t1 into t2 */
//-- uInstr2(cb, PUT, 1, TempReg, t2, ArchReg, R_AL); /* put byte into AL */
//--
//-- DIP("xlat%c [ebx]\n", nameISize(sz));
//-- break;
/* ------------------------ IN / OUT ----------------------- */
case 0xE4: /* IN imm8, AL */
sz = 1;
t1 = newTemp(Ity_I32);
abyte = getIByte(delta); delta++;
assign(t1, mkU32( abyte & 0xFF ));
DIP("in%c $%d,%s\n", nameISize(sz), (Int)abyte, nameIReg(sz,R_EAX));
goto do_IN;
case 0xE5: /* IN imm8, eAX */
vassert(sz == 2 || sz == 4);
t1 = newTemp(Ity_I32);
abyte = getIByte(delta); delta++;
assign(t1, mkU32( abyte & 0xFF ));
DIP("in%c $%d,%s\n", nameISize(sz), (Int)abyte, nameIReg(sz,R_EAX));
goto do_IN;
case 0xEC: /* IN %DX, AL */
sz = 1;
t1 = newTemp(Ity_I32);
assign(t1, unop(Iop_16Uto32, getIReg(2, R_EDX)));
DIP("in%c %s,%s\n", nameISize(sz), nameIReg(2,R_EDX),
nameIReg(sz,R_EAX));
goto do_IN;
case 0xED: /* IN %DX, eAX */
vassert(sz == 2 || sz == 4);
t1 = newTemp(Ity_I32);
assign(t1, unop(Iop_16Uto32, getIReg(2, R_EDX)));
DIP("in%c %s,%s\n", nameISize(sz), nameIReg(2,R_EDX),
nameIReg(sz,R_EAX));
goto do_IN;
do_IN: {
/* At this point, sz indicates the width, and t1 is a 32-bit
value giving port number. */
IRDirty* d;
vassert(sz == 1 || sz == 2 || sz == 4);
ty = szToITy(sz);
t2 = newTemp(Ity_I32);
d = unsafeIRDirty_1_N(
t2,
0/*regparms*/,
"x86g_dirtyhelper_IN",
&x86g_dirtyhelper_IN,
mkIRExprVec_2( mkexpr(t1), mkU32(sz) )
);
/* do the call, dumping the result in t2. */
stmt( IRStmt_Dirty(d) );
putIReg(sz, R_EAX, narrowTo( ty, mkexpr(t2) ) );
break;
}
case 0xE6: /* OUT AL, imm8 */
sz = 1;
t1 = newTemp(Ity_I32);
abyte = getIByte(delta); delta++;
assign( t1, mkU32( abyte & 0xFF ) );
DIP("out%c %s,$%d\n", nameISize(sz), nameIReg(sz,R_EAX), (Int)abyte);
goto do_OUT;
case 0xE7: /* OUT eAX, imm8 */
vassert(sz == 2 || sz == 4);
t1 = newTemp(Ity_I32);
abyte = getIByte(delta); delta++;
assign( t1, mkU32( abyte & 0xFF ) );
DIP("out%c %s,$%d\n", nameISize(sz), nameIReg(sz,R_EAX), (Int)abyte);
goto do_OUT;
case 0xEE: /* OUT AL, %DX */
sz = 1;
t1 = newTemp(Ity_I32);
assign( t1, unop(Iop_16Uto32, getIReg(2, R_EDX)) );
DIP("out%c %s,%s\n", nameISize(sz), nameIReg(sz,R_EAX),
nameIReg(2,R_EDX));
goto do_OUT;
case 0xEF: /* OUT eAX, %DX */
vassert(sz == 2 || sz == 4);
t1 = newTemp(Ity_I32);
assign( t1, unop(Iop_16Uto32, getIReg(2, R_EDX)) );
DIP("out%c %s,%s\n", nameISize(sz), nameIReg(sz,R_EAX),
nameIReg(2,R_EDX));
goto do_OUT;
do_OUT: {
/* At this point, sz indicates the width, and t1 is a 32-bit
value giving port number. */
IRDirty* d;
vassert(sz == 1 || sz == 2 || sz == 4);
ty = szToITy(sz);
d = unsafeIRDirty_0_N(
0/*regparms*/,
"x86g_dirtyhelper_OUT",
&x86g_dirtyhelper_OUT,
mkIRExprVec_3( mkexpr(t1),
widenUto32( getIReg(sz, R_EAX) ),
mkU32(sz) )
);
stmt( IRStmt_Dirty(d) );
break;
}
/* ------------------------ (Grp1 extensions) ---------- */
case 0x80: /* Grp1 Ib,Eb */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
sz = 1;
d_sz = 1;
d32 = getUChar(delta + am_sz);
delta = dis_Grp1 ( sorb, delta, modrm, am_sz, d_sz, sz, d32 );
break;
case 0x81: /* Grp1 Iv,Ev */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
d_sz = sz;
d32 = getUDisp(d_sz, delta + am_sz);
delta = dis_Grp1 ( sorb, delta, modrm, am_sz, d_sz, sz, d32 );
break;
case 0x83: /* Grp1 Ib,Ev */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
d_sz = 1;
d32 = getSDisp8(delta + am_sz);
delta = dis_Grp1 ( sorb, delta, modrm, am_sz, d_sz, sz, d32 );
break;
/* ------------------------ (Grp2 extensions) ---------- */
case 0xC0: /* Grp2 Ib,Eb */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
d_sz = 1;
d32 = getUChar(delta + am_sz);
sz = 1;
delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz,
mkU8(d32 & 0xFF), NULL );
break;
case 0xC1: /* Grp2 Ib,Ev */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
d_sz = 1;
d32 = getUChar(delta + am_sz);
delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz,
mkU8(d32 & 0xFF), NULL );
break;
case 0xD0: /* Grp2 1,Eb */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
d_sz = 0;
d32 = 1;
sz = 1;
delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz,
mkU8(d32), NULL );
break;
case 0xD1: /* Grp2 1,Ev */
modrm = getUChar(delta);
am_sz = lengthAMode(delta);
d_sz = 0;
d32 = 1;
delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz,
mkU8(d32), NULL );
break;
case 0xD2: /* Grp2 CL,Eb */
modrm = getUChar(delta);
am_sz = lengthAMode(delta);
d_sz = 0;
sz = 1;
delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz,
getIReg(1,R_ECX), "%cl" );
break;
case 0xD3: /* Grp2 CL,Ev */
modrm = getIByte(delta);
am_sz = lengthAMode(delta);
d_sz = 0;
delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz,
getIReg(1,R_ECX), "%cl" );
break;
/* ------------------------ (Grp3 extensions) ---------- */
case 0xF6: /* Grp3 Eb */
delta = dis_Grp3 ( sorb, 1, delta );
break;
case 0xF7: /* Grp3 Ev */
delta = dis_Grp3 ( sorb, sz, delta );
break;
/* ------------------------ (Grp4 extensions) ---------- */
case 0xFE: /* Grp4 Eb */
delta = dis_Grp4 ( sorb, delta );
break;
/* ------------------------ (Grp5 extensions) ---------- */
case 0xFF: /* Grp5 Ev */
delta = dis_Grp5 ( sorb, sz, delta, &dres );
break;
/* ------------------------ Escapes to 2-byte opcodes -- */
case 0x0F: {
opc = getIByte(delta); delta++;
switch (opc) {
/* =-=-=-=-=-=-=-=-=- Grp8 =-=-=-=-=-=-=-=-=-=-=-= */
case 0xBA: { /* Grp8 Ib,Ev */
Bool decode_OK = False;
modrm = getUChar(delta);
am_sz = lengthAMode(delta);
d32 = getSDisp8(delta + am_sz);
delta = dis_Grp8_Imm ( sorb, delta, modrm, am_sz, sz, d32,
&decode_OK );
if (!decode_OK)
goto decode_failure;
break;
}
/* =-=-=-=-=-=-=-=-=- BSF/BSR -=-=-=-=-=-=-=-=-=-= */
case 0xBC: /* BSF Gv,Ev */
delta = dis_bs_E_G ( sorb, sz, delta, True );
break;
case 0xBD: /* BSR Gv,Ev */
delta = dis_bs_E_G ( sorb, sz, delta, False );
break;
/* =-=-=-=-=-=-=-=-=- BSWAP -=-=-=-=-=-=-=-=-=-=-= */
case 0xC8: /* BSWAP %eax */
case 0xC9:
case 0xCA:
case 0xCB:
case 0xCC:
case 0xCD:
case 0xCE:
case 0xCF: /* BSWAP %edi */
/* AFAICS from the Intel docs, this only exists at size 4. */
vassert(sz == 4);
t1 = newTemp(Ity_I32);
t2 = newTemp(Ity_I32);
assign( t1, getIReg(4, opc-0xC8) );
assign( t2,
binop(Iop_Or32,
binop(Iop_Shl32, mkexpr(t1), mkU8(24)),
binop(Iop_Or32,
binop(Iop_And32, binop(Iop_Shl32, mkexpr(t1), mkU8(8)),
mkU32(0x00FF0000)),
binop(Iop_Or32,
binop(Iop_And32, binop(Iop_Shr32, mkexpr(t1), mkU8(8)),
mkU32(0x0000FF00)),
binop(Iop_And32, binop(Iop_Shr32, mkexpr(t1), mkU8(24)),
mkU32(0x000000FF) )
)))
);
putIReg(4, opc-0xC8, mkexpr(t2));
DIP("bswapl %s\n", nameIReg(4, opc-0xC8));
break;
/* =-=-=-=-=-=-=-=-=- BT/BTS/BTR/BTC =-=-=-=-=-=-= */
case 0xA3: /* BT Gv,Ev */
delta = dis_bt_G_E ( sorb, sz, delta, BtOpNone );
break;
case 0xB3: /* BTR Gv,Ev */
delta = dis_bt_G_E ( sorb, sz, delta, BtOpReset );
break;
case 0xAB: /* BTS Gv,Ev */
delta = dis_bt_G_E ( sorb, sz, delta, BtOpSet );
break;
case 0xBB: /* BTC Gv,Ev */
delta = dis_bt_G_E ( sorb, sz, delta, BtOpComp );
break;
/* =-=-=-=-=-=-=-=-=- CMOV =-=-=-=-=-=-=-=-=-=-=-= */
case 0x40:
case 0x41:
case 0x42: /* CMOVBb/CMOVNAEb (cmov below) */
case 0x43: /* CMOVNBb/CMOVAEb (cmov not below) */
case 0x44: /* CMOVZb/CMOVEb (cmov zero) */
case 0x45: /* CMOVNZb/CMOVNEb (cmov not zero) */
case 0x46: /* CMOVBEb/CMOVNAb (cmov below or equal) */
case 0x47: /* CMOVNBEb/CMOVAb (cmov not below or equal) */
case 0x48: /* CMOVSb (cmov negative) */
case 0x49: /* CMOVSb (cmov not negative) */
case 0x4A: /* CMOVP (cmov parity even) */
case 0x4B: /* CMOVNP (cmov parity odd) */
case 0x4C: /* CMOVLb/CMOVNGEb (cmov less) */
case 0x4D: /* CMOVGEb/CMOVNLb (cmov greater or equal) */
case 0x4E: /* CMOVLEb/CMOVNGb (cmov less or equal) */
case 0x4F: /* CMOVGb/CMOVNLEb (cmov greater) */
delta = dis_cmov_E_G(sorb, sz, (X86Condcode)(opc - 0x40), delta);
break;
/* =-=-=-=-=-=-=-=-=- CMPXCHG -=-=-=-=-=-=-=-=-=-= */
case 0xB0: /* CMPXCHG Gb,Eb */
delta = dis_cmpxchg_G_E ( sorb, 1, delta );
break;
case 0xB1: /* CMPXCHG Gv,Ev */
delta = dis_cmpxchg_G_E ( sorb, sz, delta );
break;
case 0xC7: { /* CMPXCHG8B Gv (0F C7 /1) */
IRTemp m64_old = newTemp(Ity_I64);
IRTemp m64_new = newTemp(Ity_I64);
IRTemp da_old = newTemp(Ity_I64);
IRTemp da_new = newTemp(Ity_I64);
IRTemp cb_old = newTemp(Ity_I64);
IRTemp flags_old = newTemp(Ity_I32);
IRTemp flags_new = newTemp(Ity_I32);
IRTemp cond = newTemp(Ity_I8);
/* Decode, and generate address. */
modrm = getIByte(delta);
if (epartIsReg(modrm)) goto decode_failure;
if (gregOfRM(modrm) != 1) goto decode_failure;
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
/* Fetch the old 64-bit values and compute the guard. */
assign( m64_old, loadLE(Ity_I64, mkexpr(addr) ));
assign( da_old, binop(Iop_32HLto64,
getIReg(4,R_EDX), getIReg(4,R_EAX)) );
assign( cb_old, binop(Iop_32HLto64,
getIReg(4,R_ECX), getIReg(4,R_EBX)) );
assign( cond,
unop(Iop_1Uto8,
binop(Iop_CmpEQ64, mkexpr(da_old), mkexpr(m64_old))) );
/* Compute new %edx:%eax and m64 values, and put in place */
assign( da_new,
IRExpr_Mux0X(mkexpr(cond), mkexpr(m64_old), mkexpr(da_old)));
assign( m64_new,
IRExpr_Mux0X(mkexpr(cond), mkexpr(m64_old), mkexpr(cb_old)));
putIReg(4, R_EDX, unop(Iop_64HIto32, mkexpr(da_new)) );
putIReg(4, R_EAX, unop(Iop_64to32, mkexpr(da_new)) );
storeLE( mkexpr(addr), mkexpr(m64_new) );
/* Copy the guard into the Z flag and leave the others unchanged */
assign( flags_old, widenUto32(mk_x86g_calculate_eflags_all()));
assign(
flags_new,
binop(Iop_Or32,
binop(Iop_And32, mkexpr(flags_old),
mkU32(~X86G_CC_MASK_Z)),
binop(Iop_Shl32,
binop(Iop_And32,
unop(Iop_8Uto32, mkexpr(cond)), mkU32(1)),
mkU8(X86G_CC_SHIFT_Z)) ));
stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) ));
stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(flags_new) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) ));
/* Set NDEP even though it isn't used. This makes
redundant-PUT elimination of previous stores to this field
work better. */
stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) ));
/* Sheesh. Aren't you glad it was me and not you that had to
write and validate all this grunge? */
DIP("cmpxchg8b %s\n", dis_buf);
break;
}
/* =-=-=-=-=-=-=-=-=- CPUID -=-=-=-=-=-=-=-=-=-=-= */
case 0xA2: { /* CPUID */
/* Uses dirty helper:
void dirtyhelper_CPUID_sse[012] ( VexGuestX86State* )
declared to mod eax, wr ebx, ecx, edx
*/
IRDirty* d = NULL;
HChar* fName = NULL;
void* fAddr = NULL;
if (archinfo->hwcaps & VEX_HWCAPS_X86_SSE2) {
fName = "x86g_dirtyhelper_CPUID_sse2";
fAddr = &x86g_dirtyhelper_CPUID_sse2;
}
else
if (archinfo->hwcaps & VEX_HWCAPS_X86_SSE1) {
fName = "x86g_dirtyhelper_CPUID_sse1";
fAddr = &x86g_dirtyhelper_CPUID_sse1;
}
else
if (archinfo->hwcaps == 0/*no SSE*/) {
fName = "x86g_dirtyhelper_CPUID_sse0";
fAddr = &x86g_dirtyhelper_CPUID_sse0;
} else
vpanic("disInstr(x86)(cpuid)");
vassert(fName); vassert(fAddr);
d = unsafeIRDirty_0_N ( 0/*regparms*/,
fName, fAddr, mkIRExprVec_0() );
/* declare guest state effects */
d->needsBBP = True;
d->nFxState = 4;
d->fxState[0].fx = Ifx_Modify;
d->fxState[0].offset = OFFB_EAX;
d->fxState[0].size = 4;
d->fxState[1].fx = Ifx_Write;
d->fxState[1].offset = OFFB_EBX;
d->fxState[1].size = 4;
d->fxState[2].fx = Ifx_Write;
d->fxState[2].offset = OFFB_ECX;
d->fxState[2].size = 4;
d->fxState[3].fx = Ifx_Write;
d->fxState[3].offset = OFFB_EDX;
d->fxState[3].size = 4;
/* execute the dirty call, side-effecting guest state */
stmt( IRStmt_Dirty(d) );
/* CPUID is a serialising insn. So, just in case someone is
using it as a memory fence ... */
stmt( IRStmt_MFence() );
DIP("cpuid\n");
break;
}
//-- if (!VG_(cpu_has_feature)(VG_X86_FEAT_CPUID))
//-- goto decode_failure;
//--
//-- t1 = newTemp(cb);
//-- t2 = newTemp(cb);
//-- t3 = newTemp(cb);
//-- t4 = newTemp(cb);
//-- uInstr0(cb, CALLM_S, 0);
//--
//-- uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, t1);
//-- uInstr1(cb, PUSH, 4, TempReg, t1);
//--
//-- uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
//-- uLiteral(cb, 0);
//-- uInstr1(cb, PUSH, 4, TempReg, t2);
//--
//-- uInstr2(cb, MOV, 4, Literal, 0, TempReg, t3);
//-- uLiteral(cb, 0);
//-- uInstr1(cb, PUSH, 4, TempReg, t3);
//--
//-- uInstr2(cb, MOV, 4, Literal, 0, TempReg, t4);
//-- uLiteral(cb, 0);
//-- uInstr1(cb, PUSH, 4, TempReg, t4);
//--
//-- uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_CPUID));
//-- uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty);
//--
//-- uInstr1(cb, POP, 4, TempReg, t4);
//-- uInstr2(cb, PUT, 4, TempReg, t4, ArchReg, R_EDX);
//--
//-- uInstr1(cb, POP, 4, TempReg, t3);
//-- uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ECX);
//--
//-- uInstr1(cb, POP, 4, TempReg, t2);
//-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBX);
//--
//-- uInstr1(cb, POP, 4, TempReg, t1);
//-- uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_EAX);
//--
//-- uInstr0(cb, CALLM_E, 0);
//-- DIP("cpuid\n");
//-- break;
//--
/* =-=-=-=-=-=-=-=-=- MOVZX, MOVSX =-=-=-=-=-=-=-= */
case 0xB6: /* MOVZXb Eb,Gv */
if (sz != 2 && sz != 4)
goto decode_failure;
delta = dis_movx_E_G ( sorb, delta, 1, sz, False );
break;
case 0xB7: /* MOVZXw Ew,Gv */
if (sz != 4)
goto decode_failure;
delta = dis_movx_E_G ( sorb, delta, 2, 4, False );
break;
case 0xBE: /* MOVSXb Eb,Gv */
if (sz != 2 && sz != 4)
goto decode_failure;
delta = dis_movx_E_G ( sorb, delta, 1, sz, True );
break;
case 0xBF: /* MOVSXw Ew,Gv */
if (sz != 4)
goto decode_failure;
delta = dis_movx_E_G ( sorb, delta, 2, 4, True );
break;
//-- /* =-=-=-=-=-=-=-=-=-=-= MOVNTI -=-=-=-=-=-=-=-=-= */
//--
//-- case 0xC3: /* MOVNTI Gv,Ev */
//-- vg_assert(sz == 4);
//-- modrm = getUChar(eip);
//-- vg_assert(!epartIsReg(modrm));
//-- t1 = newTemp(cb);
//-- uInstr2(cb, GET, 4, ArchReg, gregOfRM(modrm), TempReg, t1);
//-- pair = disAMode ( cb, sorb, eip, dis_buf );
//-- t2 = LOW24(pair);
//-- eip += HI8(pair);
//-- uInstr2(cb, STORE, 4, TempReg, t1, TempReg, t2);
//-- DIP("movnti %s,%s\n", nameIReg(4,gregOfRM(modrm)), dis_buf);
//-- break;
/* =-=-=-=-=-=-=-=-=- MUL/IMUL =-=-=-=-=-=-=-=-=-= */
case 0xAF: /* IMUL Ev, Gv */
delta = dis_mul_E_G ( sorb, sz, delta );
break;
/* =-=-=-=-=-=-=-=-=- Jcond d32 -=-=-=-=-=-=-=-=-= */
case 0x80:
case 0x81:
case 0x82: /* JBb/JNAEb (jump below) */
case 0x83: /* JNBb/JAEb (jump not below) */
case 0x84: /* JZb/JEb (jump zero) */
case 0x85: /* JNZb/JNEb (jump not zero) */
case 0x86: /* JBEb/JNAb (jump below or equal) */
case 0x87: /* JNBEb/JAb (jump not below or equal) */
case 0x88: /* JSb (jump negative) */
case 0x89: /* JSb (jump not negative) */
case 0x8A: /* JP (jump parity even) */
case 0x8B: /* JNP/JPO (jump parity odd) */
case 0x8C: /* JLb/JNGEb (jump less) */
case 0x8D: /* JGEb/JNLb (jump greater or equal) */
case 0x8E: /* JLEb/JNGb (jump less or equal) */
case 0x8F: /* JGb/JNLEb (jump greater) */
d32 = (((Addr32)guest_EIP_bbstart)+delta+4) + getUDisp32(delta);
delta += 4;
jcc_01( (X86Condcode)(opc - 0x80),
(Addr32)(guest_EIP_bbstart+delta),
d32 );
dres.whatNext = Dis_StopHere;
DIP("j%s-32 0x%x\n", name_X86Condcode(opc - 0x80), d32);
break;
/* =-=-=-=-=-=-=-=-=- RDTSC -=-=-=-=-=-=-=-=-=-=-= */
case 0x31: { /* RDTSC */
IRTemp val = newTemp(Ity_I64);
IRExpr** args = mkIRExprVec_0();
IRDirty* d = unsafeIRDirty_1_N (
val,
0/*regparms*/,
"x86g_dirtyhelper_RDTSC",
&x86g_dirtyhelper_RDTSC,
args
);
/* execute the dirty call, dumping the result in val. */
stmt( IRStmt_Dirty(d) );
putIReg(4, R_EDX, unop(Iop_64HIto32, mkexpr(val)));
putIReg(4, R_EAX, unop(Iop_64to32, mkexpr(val)));
DIP("rdtsc\n");
break;
}
/* =-=-=-=-=-=-=-=-=- PUSH/POP Sreg =-=-=-=-=-=-=-=-=-= */
case 0xA1: /* POP %FS */
dis_pop_segreg( R_FS, sz ); break;
case 0xA9: /* POP %GS */
dis_pop_segreg( R_GS, sz ); break;
case 0xA0: /* PUSH %FS */
dis_push_segreg( R_FS, sz ); break;
case 0xA8: /* PUSH %GS */
dis_push_segreg( R_GS, sz ); break;
/* =-=-=-=-=-=-=-=-=- SETcc Eb =-=-=-=-=-=-=-=-=-= */
case 0x90:
case 0x91:
case 0x92: /* set-Bb/set-NAEb (jump below) */
case 0x93: /* set-NBb/set-AEb (jump not below) */
case 0x94: /* set-Zb/set-Eb (jump zero) */
case 0x95: /* set-NZb/set-NEb (jump not zero) */
case 0x96: /* set-BEb/set-NAb (jump below or equal) */
case 0x97: /* set-NBEb/set-Ab (jump not below or equal) */
case 0x98: /* set-Sb (jump negative) */
case 0x99: /* set-Sb (jump not negative) */
case 0x9A: /* set-P (jump parity even) */
case 0x9B: /* set-NP (jump parity odd) */
case 0x9C: /* set-Lb/set-NGEb (jump less) */
case 0x9D: /* set-GEb/set-NLb (jump greater or equal) */
case 0x9E: /* set-LEb/set-NGb (jump less or equal) */
case 0x9F: /* set-Gb/set-NLEb (jump greater) */
t1 = newTemp(Ity_I8);
assign( t1, unop(Iop_1Uto8,mk_x86g_calculate_condition(opc-0x90)) );
modrm = getIByte(delta);
if (epartIsReg(modrm)) {
delta++;
putIReg(1, eregOfRM(modrm), mkexpr(t1));
DIP("set%s %s\n", name_X86Condcode(opc-0x90),
nameIReg(1,eregOfRM(modrm)));
} else {
addr = disAMode ( &alen, sorb, delta, dis_buf );
delta += alen;
storeLE( mkexpr(addr), mkexpr(t1) );
DIP("set%s %s\n", name_X86Condcode(opc-0x90), dis_buf);
}
break;
/* =-=-=-=-=-=-=-=-=- SHLD/SHRD -=-=-=-=-=-=-=-=-= */
case 0xA4: /* SHLDv imm8,Gv,Ev */
modrm = getIByte(delta);
d32 = delta + lengthAMode(delta);
vex_sprintf(dis_buf, "$%d", getIByte(d32));
delta = dis_SHLRD_Gv_Ev (
sorb, delta, modrm, sz,
mkU8(getIByte(d32)), True, /* literal */
dis_buf, True );
break;
case 0xA5: /* SHLDv %cl,Gv,Ev */
modrm = getIByte(delta);
delta = dis_SHLRD_Gv_Ev (
sorb, delta, modrm, sz,
getIReg(1,R_ECX), False, /* not literal */
"%cl", True );
break;
case 0xAC: /* SHRDv imm8,Gv,Ev */
modrm = getIByte(delta);
d32 = delta + lengthAMode(delta);
vex_sprintf(dis_buf, "$%d", getIByte(d32));
delta = dis_SHLRD_Gv_Ev (
sorb, delta, modrm, sz,
mkU8(getIByte(d32)), True, /* literal */
dis_buf, False );
break;
case 0xAD: /* SHRDv %cl,Gv,Ev */
modrm = getIByte(delta);
delta = dis_SHLRD_Gv_Ev (
sorb, delta, modrm, sz,
getIReg(1,R_ECX), False, /* not literal */
"%cl", False );
break;
/* =-=-=-=-=-=-=-=-=- SYSENTER -=-=-=-=-=-=-=-=-=-= */
case 0x34:
/* Simple implementation needing a long explaination.
sysenter is a kind of syscall entry. The key thing here
is that the return address is not known -- that is
something that is beyond Vex's knowledge. So this IR
forces a return to the scheduler, which can do what it
likes to simulate the systenter, but it MUST set this
thread's guest_EIP field with the continuation address
before resuming execution. If that doesn't happen, the
thread will jump to address zero, which is probably
fatal.
*/
jmp_lit(Ijk_Sys_sysenter, 0/*bogus next EIP value*/);
dres.whatNext = Dis_StopHere;
DIP("sysenter");
break;
/* =-=-=-=-=-=-=-=-=- XADD -=-=-=-=-=-=-=-=-=-= */
case 0xC0: { /* XADD Gb,Eb */
Bool decodeOK;
delta = dis_xadd_G_E ( sorb, 1, delta, &decodeOK );
if (!decodeOK) goto decode_failure;
break;
}
case 0xC1: { /* XADD Gv,Ev */
Bool decodeOK;
delta = dis_xadd_G_E ( sorb, sz, delta, &decodeOK );
if (!decodeOK) goto decode_failure;
break;
}
/* =-=-=-=-=-=-=-=-=- MMXery =-=-=-=-=-=-=-=-=-=-= */
case 0x71:
case 0x72:
case 0x73: /* PSLLgg/PSRAgg/PSRLgg mmxreg by imm8 */
case 0x6E: /* MOVD (src)ireg-or-mem, (dst)mmxreg */
case 0x7E: /* MOVD (src)mmxreg, (dst)ireg-or-mem */
case 0x7F: /* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */
case 0x6F: /* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */
case 0xFC:
case 0xFD:
case 0xFE: /* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xEC:
case 0xED: /* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xDC:
case 0xDD: /* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xF8:
case 0xF9:
case 0xFA: /* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xE8:
case 0xE9: /* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xD8:
case 0xD9: /* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */
case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */
case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */
case 0x74:
case 0x75:
case 0x76: /* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0x64:
case 0x65:
case 0x66: /* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */
case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */
case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */
case 0x68:
case 0x69:
case 0x6A: /* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0x60:
case 0x61:
case 0x62: /* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */
case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */
case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */
case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */
case 0xF1: /* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xF2:
case 0xF3:
case 0xD1: /* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xD2:
case 0xD3:
case 0xE1: /* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */
case 0xE2:
{
Int delta0 = delta-1;
Bool decode_OK = False;
/* If sz==2 this is SSE, and we assume sse idec has
already spotted those cases by now. */
if (sz != 4)
goto decode_failure;
delta = dis_MMX ( &decode_OK, sorb, sz, delta-1 );
if (!decode_OK) {
delta = delta0;
goto decode_failure;
}
break;
}
case 0x77: /* EMMS */
if (sz != 4)
goto decode_failure;
do_EMMS_preamble();
DIP("emms\n");
break;
/* =-=-=-=-=-=-=-=-=- unimp2 =-=-=-=-=-=-=-=-=-=-= */
default:
goto decode_failure;
} /* switch (opc) for the 2-byte opcodes */
goto decode_success;
} /* case 0x0F: of primary opcode */
/* ------------------------ ??? ------------------------ */
default:
decode_failure:
/* All decode failures end up here. */
vex_printf("vex x86->IR: unhandled instruction bytes: "
"0x%x 0x%x 0x%x 0x%x\n",
(Int)getIByte(delta_start+0),
(Int)getIByte(delta_start+1),
(Int)getIByte(delta_start+2),
(Int)getIByte(delta_start+3) );
/* Tell the dispatcher that this insn cannot be decoded, and so has
not been executed, and (is currently) the next to be executed.
EIP should be up-to-date since it made so at the start of each
insn, but nevertheless be paranoid and update it again right
now. */
stmt( IRStmt_Put( OFFB_EIP, mkU32(guest_EIP_curr_instr) ) );
jmp_lit(Ijk_NoDecode, guest_EIP_curr_instr);
dres.whatNext = Dis_StopHere;
dres.len = 0;
return dres;
} /* switch (opc) for the main (primary) opcode switch. */
decode_success:
/* All decode successes end up here. */
DIP("\n");
dres.len = delta - delta_start;
return dres;
}
#undef DIP
#undef DIS
/*------------------------------------------------------------*/
/*--- Top-level fn ---*/
/*------------------------------------------------------------*/
/* Disassemble a single instruction into IR. The instruction
is located in host memory at &guest_code[delta]. */
DisResult disInstr_X86 ( IRBB* irbb_IN,
Bool put_IP,
Bool (*resteerOkFn) ( void*, Addr64 ),
void* callback_opaque,
UChar* guest_code_IN,
Long delta,
Addr64 guest_IP,
VexArch guest_arch,
VexArchInfo* archinfo,
Bool host_bigendian_IN )
{
DisResult dres;
/* Set globals (see top of this file) */
vassert(guest_arch == VexArchX86);
guest_code = guest_code_IN;
irbb = irbb_IN;
host_is_bigendian = host_bigendian_IN;
guest_EIP_curr_instr = (Addr32)guest_IP;
guest_EIP_bbstart = (Addr32)toUInt(guest_IP - delta);
dres = disInstr_X86_WRK ( put_IP, resteerOkFn, callback_opaque,
delta, archinfo );
return dres;
}
/*--------------------------------------------------------------------*/
/*--- end guest-x86/toIR.c ---*/
/*--------------------------------------------------------------------*/