| // Copyright 2015, ARM Limited |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of ARM Limited nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "../test-runner.h" |
| #include "../test-utils-a64.h" |
| #include "custom-disassembler.h" |
| #include "examples.h" |
| #include "non-const-visitor.h" |
| |
| #include "a64/macro-assembler-a64.h" |
| #include "a64/debugger-a64.h" |
| #include "a64/simulator-a64.h" |
| #define TEST(name) TEST_(EXAMPLE_##name) |
| |
| using namespace vixl; |
| |
| |
| TEST(custom_disassembler) { |
| TestCustomDisassembler(); |
| } |
| |
| |
| // The tests below only work with the simulator. |
| #ifdef VIXL_INCLUDE_SIMULATOR |
| |
| #define ARRAY_SIZE(Array) (sizeof(Array) / sizeof((Array)[0])) |
| #define BUF_SIZE (4096) |
| #define __ masm-> |
| |
| uint64_t FactorialC(uint64_t n) { |
| uint64_t result = 1; |
| |
| while (n != 0) { |
| result *= n; |
| n--; |
| } |
| |
| return result; |
| } |
| |
| // Multiply two column-major 4x4 matrices of 32 bit floating point values. |
| // Return a column-major 4x4 matrix of 32 bit floating point values in 'C'. |
| void MatrixMultiplyC(float C[16], float A[16], float B[16]) { |
| C[ 0] = A[ 0]*B[ 0] + A[ 4]*B[ 1] + A[ 8]*B[ 2] + A[12]*B[ 3]; |
| C[ 1] = A[ 1]*B[ 0] + A[ 5]*B[ 1] + A[ 9]*B[ 2] + A[13]*B[ 3]; |
| C[ 2] = A[ 2]*B[ 0] + A[ 6]*B[ 1] + A[10]*B[ 2] + A[14]*B[ 3]; |
| C[ 3] = A[ 3]*B[ 0] + A[ 7]*B[ 1] + A[11]*B[ 2] + A[15]*B[ 3]; |
| |
| C[ 4] = A[ 0]*B[ 4] + A[ 4]*B[ 5] + A[ 8]*B[ 6] + A[12]*B[ 7]; |
| C[ 5] = A[ 1]*B[ 4] + A[ 5]*B[ 5] + A[ 9]*B[ 6] + A[13]*B[ 7]; |
| C[ 6] = A[ 2]*B[ 4] + A[ 6]*B[ 5] + A[10]*B[ 6] + A[14]*B[ 7]; |
| C[ 7] = A[ 3]*B[ 4] + A[ 7]*B[ 5] + A[11]*B[ 6] + A[15]*B[ 7]; |
| |
| C[ 8] = A[ 0]*B[ 8] + A[ 4]*B[ 9] + A[ 8]*B[10] + A[12]*B[11]; |
| C[ 9] = A[ 1]*B[ 8] + A[ 5]*B[ 9] + A[ 9]*B[10] + A[13]*B[11]; |
| C[10] = A[ 2]*B[ 8] + A[ 6]*B[ 9] + A[10]*B[10] + A[14]*B[11]; |
| C[11] = A[ 3]*B[ 8] + A[ 7]*B[ 9] + A[11]*B[10] + A[15]*B[11]; |
| |
| C[12] = A[ 0]*B[12] + A[ 4]*B[13] + A[ 8]*B[14] + A[12]*B[15]; |
| C[13] = A[ 1]*B[12] + A[ 5]*B[13] + A[ 9]*B[14] + A[13]*B[15]; |
| C[14] = A[ 2]*B[12] + A[ 6]*B[13] + A[10]*B[14] + A[14]*B[15]; |
| C[15] = A[ 3]*B[12] + A[ 7]*B[13] + A[11]*B[14] + A[15]*B[15]; |
| } |
| |
| double Add3DoubleC(double x, double y, double z) { |
| return x + y + z; |
| } |
| |
| double Add4DoubleC(uint64_t a, double b, uint64_t c, double d) { |
| return static_cast<double>(a) + b + static_cast<double>(c) + d; |
| } |
| |
| uint32_t SumArrayC(uint8_t* array, uint32_t size) { |
| uint32_t result = 0; |
| |
| for (uint32_t i = 0; i < size; ++i) { |
| result += array[i]; |
| } |
| |
| return result; |
| } |
| |
| |
| void GenerateTestWrapper(MacroAssembler* masm, RegisterDump *regs) { |
| __ Push(xzr, lr); |
| __ Blr(x15); |
| regs->Dump(masm); |
| __ Pop(lr, xzr); |
| __ Ret(); |
| } |
| |
| |
| #define TEST_FUNCTION(Func) \ |
| do { \ |
| int64_t saved_xregs[13]; \ |
| saved_xregs[0] = simulator.xreg(19); \ |
| saved_xregs[1] = simulator.xreg(20); \ |
| saved_xregs[2] = simulator.xreg(21); \ |
| saved_xregs[3] = simulator.xreg(22); \ |
| saved_xregs[4] = simulator.xreg(23); \ |
| saved_xregs[5] = simulator.xreg(24); \ |
| saved_xregs[6] = simulator.xreg(25); \ |
| saved_xregs[7] = simulator.xreg(26); \ |
| saved_xregs[8] = simulator.xreg(27); \ |
| saved_xregs[9] = simulator.xreg(28); \ |
| saved_xregs[10] = simulator.xreg(29); \ |
| saved_xregs[11] = simulator.xreg(30); \ |
| saved_xregs[12] = simulator.xreg(31); \ |
| \ |
| uint64_t saved_dregs[8]; \ |
| saved_dregs[0] = simulator.dreg_bits(8); \ |
| saved_dregs[1] = simulator.dreg_bits(9); \ |
| saved_dregs[2] = simulator.dreg_bits(10); \ |
| saved_dregs[3] = simulator.dreg_bits(11); \ |
| saved_dregs[4] = simulator.dreg_bits(12); \ |
| saved_dregs[5] = simulator.dreg_bits(13); \ |
| saved_dregs[6] = simulator.dreg_bits(14); \ |
| saved_dregs[7] = simulator.dreg_bits(15); \ |
| \ |
| simulator.set_xreg(15, masm.GetLabelAddress<uint64_t>(&Func)); \ |
| simulator.RunFrom(masm.GetLabelAddress<Instruction*>(&test)); \ |
| \ |
| assert(saved_xregs[0] == simulator.xreg(19)); \ |
| assert(saved_xregs[1] == simulator.xreg(20)); \ |
| assert(saved_xregs[2] == simulator.xreg(21)); \ |
| assert(saved_xregs[3] == simulator.xreg(22)); \ |
| assert(saved_xregs[4] == simulator.xreg(23)); \ |
| assert(saved_xregs[5] == simulator.xreg(24)); \ |
| assert(saved_xregs[6] == simulator.xreg(25)); \ |
| assert(saved_xregs[7] == simulator.xreg(26)); \ |
| assert(saved_xregs[8] == simulator.xreg(27)); \ |
| assert(saved_xregs[9] == simulator.xreg(28)); \ |
| assert(saved_xregs[10] == simulator.xreg(29)); \ |
| assert(saved_xregs[11] == simulator.xreg(30)); \ |
| assert(saved_xregs[12] == simulator.xreg(31)); \ |
| \ |
| assert(saved_dregs[0] == simulator.dreg_bits(8)); \ |
| assert(saved_dregs[1] == simulator.dreg_bits(9)); \ |
| assert(saved_dregs[2] == simulator.dreg_bits(10)); \ |
| assert(saved_dregs[3] == simulator.dreg_bits(11)); \ |
| assert(saved_dregs[4] == simulator.dreg_bits(12)); \ |
| assert(saved_dregs[5] == simulator.dreg_bits(13)); \ |
| assert(saved_dregs[6] == simulator.dreg_bits(14)); \ |
| assert(saved_dregs[7] == simulator.dreg_bits(15)); \ |
| \ |
| } while (0) |
| |
| #define START() \ |
| MacroAssembler masm(BUF_SIZE); \ |
| Decoder decoder; \ |
| Debugger simulator(&decoder); \ |
| simulator.set_coloured_trace(Test::coloured_trace()); \ |
| PrintDisassembler* pdis = NULL; \ |
| Instrument* inst = NULL; \ |
| if (Test::trace_sim()) { \ |
| pdis = new PrintDisassembler(stdout); \ |
| decoder.PrependVisitor(pdis); \ |
| } \ |
| if (Test::instruction_stats()) { \ |
| inst = new Instrument("vixl_stats.csv", 10); \ |
| inst->Enable(); \ |
| decoder.AppendVisitor(inst); \ |
| } \ |
| RegisterDump regs; \ |
| \ |
| Label test; \ |
| masm.Bind(&test); \ |
| GenerateTestWrapper(&masm, ®s); \ |
| masm.FinalizeCode() |
| |
| |
| |
| #define FACTORIAL_DOTEST(N) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_xreg(0, N); \ |
| TEST_FUNCTION(factorial); \ |
| assert(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \ |
| } while (0) |
| |
| TEST(factorial) { |
| START(); |
| |
| Label factorial; |
| masm.Bind(&factorial); |
| GenerateFactorial(&masm); |
| masm.FinalizeCode(); |
| |
| FACTORIAL_DOTEST(0); |
| FACTORIAL_DOTEST(1); |
| FACTORIAL_DOTEST(5); |
| FACTORIAL_DOTEST(10); |
| FACTORIAL_DOTEST(20); |
| FACTORIAL_DOTEST(25); |
| } |
| |
| |
| #define FACTORIAL_REC_DOTEST(N) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_xreg(0, N); \ |
| TEST_FUNCTION(factorial_rec); \ |
| assert(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \ |
| } while (0) |
| |
| TEST(factorial_rec) { |
| START(); |
| |
| Label factorial_rec; |
| masm.Bind(&factorial_rec); |
| GenerateFactorialRec(&masm); |
| masm.FinalizeCode(); |
| |
| FACTORIAL_REC_DOTEST(0); |
| FACTORIAL_REC_DOTEST(1); |
| FACTORIAL_REC_DOTEST(5); |
| FACTORIAL_REC_DOTEST(10); |
| FACTORIAL_REC_DOTEST(20); |
| FACTORIAL_REC_DOTEST(25); |
| } |
| |
| TEST(neon_matrix_multiply) { |
| START(); |
| |
| Label neon_matrix_multiply; |
| masm.Bind(&neon_matrix_multiply); |
| GenerateNEONMatrixMultiply(&masm); |
| masm.FinalizeCode(); |
| |
| { |
| const int kRowSize = 4; |
| const int kColSize = 4; |
| const int kLength = kRowSize * kColSize; |
| |
| float mat1[kLength], mat2[kLength], expected[kLength], output[kLength]; |
| |
| // Fill the two input matrices with some 32 bit floating point values. |
| |
| mat1[0] = 1.0f; mat1[4] = 2.0f; mat1[ 8] = 3.0f; mat1[12] = 4.0f; |
| mat1[1] = 52.03f; mat1[5] = 12.24f; mat1[ 9] = 53.56f; mat1[13] = 22.22f; |
| mat1[2] = 4.43f; mat1[6] = 5.00f; mat1[10] = 7.00f; mat1[14] = 3.11f; |
| mat1[3] = 43.47f; mat1[7] = 10.97f; mat1[11] = 37.78f; mat1[15] = 90.91f; |
| |
| mat2[0] = 1.0f; mat2[4] = 11.24f; mat2[ 8] = 21.00f; mat2[12] = 21.31f; |
| mat2[1] = 2.0f; mat2[5] = 2.24f; mat2[ 9] = 8.56f; mat2[13] = 52.03f; |
| mat2[2] = 3.0f; mat2[6] = 51.00f; mat2[10] = 21.00f; mat2[14] = 33.11f; |
| mat2[3] = 4.0f; mat2[7] = 0.00f; mat2[11] = 84.00f; mat2[15] = 1.97f; |
| |
| MatrixMultiplyC(expected, mat1, mat2); |
| |
| simulator.ResetState(); |
| simulator.set_xreg(0, reinterpret_cast<uintptr_t>(output)); |
| simulator.set_xreg(1, reinterpret_cast<uintptr_t>(mat1)); |
| simulator.set_xreg(2, reinterpret_cast<uintptr_t>(mat2)); |
| TEST_FUNCTION(neon_matrix_multiply); |
| |
| // Check that the results match what is expected. |
| for (int i = 0; i < kLength; i++) { |
| assert(output[i] == expected[i]); |
| } |
| } |
| } |
| |
| TEST(add2_vectors) { |
| START(); |
| |
| // Create and initialize the assembler and the simulator. |
| Label add2_vectors; |
| masm.Bind(&add2_vectors); |
| GenerateAdd2Vectors(&masm); |
| masm.FinalizeCode(); |
| |
| // Initialize input data for the example function. |
| uint8_t A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 200}; |
| uint8_t B[] = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, \ |
| 30, 31, 50}; |
| uint8_t D[ARRAY_SIZE(A)]; |
| uintptr_t A_addr = reinterpret_cast<uintptr_t>(A); |
| uintptr_t B_addr = reinterpret_cast<uintptr_t>(B); |
| |
| // Check whether number of elements in vectors match. |
| VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(B)); |
| VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(D)); |
| |
| // Compute vector sum for comparison later. |
| for (unsigned i = 0; i < ARRAY_SIZE(A); i++) { |
| D[i] = A[i] + B[i]; |
| } |
| |
| // Set up simulator and run example function. |
| simulator.ResetState(); |
| simulator.set_xreg(0, A_addr); |
| simulator.set_xreg(1, B_addr); |
| simulator.set_xreg(2, ARRAY_SIZE(A)); |
| TEST_FUNCTION(add2_vectors); |
| |
| // Compare vectors to ensure sums are equal. |
| for (unsigned i = 0; i < ARRAY_SIZE(A); i++) { |
| assert(A[i] == D[i]); |
| } |
| } |
| |
| #define ADD3_DOUBLE_DOTEST(A, B, C) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_dreg(0, A); \ |
| simulator.set_dreg(1, B); \ |
| simulator.set_dreg(2, C); \ |
| TEST_FUNCTION(add3_double); \ |
| assert(regs.dreg(0) == Add3DoubleC(A, B, C)); \ |
| } while (0) |
| |
| TEST(add3_double) { |
| START(); |
| |
| Label add3_double; |
| masm.Bind(&add3_double); |
| GenerateAdd3Double(&masm); |
| masm.FinalizeCode(); |
| |
| ADD3_DOUBLE_DOTEST(0.0, 0.0, 0.0); |
| ADD3_DOUBLE_DOTEST(457.698, 14.36, 2.00025); |
| ADD3_DOUBLE_DOTEST(-45.55, -98.9, -0.354); |
| ADD3_DOUBLE_DOTEST(.55, .9, .12); |
| } |
| |
| |
| #define ADD4_DOUBLE_DOTEST(A, B, C, D) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_xreg(0, A); \ |
| simulator.set_dreg(0, B); \ |
| simulator.set_xreg(1, C); \ |
| simulator.set_dreg(1, D); \ |
| TEST_FUNCTION(add4_double); \ |
| assert(regs.dreg(0) == Add4DoubleC(A, B, C, D)); \ |
| } while (0) |
| |
| TEST(add4_double) { |
| START(); |
| |
| Label add4_double; |
| masm.Bind(&add4_double); |
| GenerateAdd4Double(&masm); |
| masm.FinalizeCode(); |
| |
| ADD4_DOUBLE_DOTEST(0, 0, 0, 0); |
| ADD4_DOUBLE_DOTEST(4, 3.287, 6, 13.48); |
| ADD4_DOUBLE_DOTEST(56, 665.368, 0, -4932.4697); |
| ADD4_DOUBLE_DOTEST(56, 0, 546, 0); |
| ADD4_DOUBLE_DOTEST(0, 0.658, 0, 0.00000011540026); |
| } |
| |
| |
| #define SUM_ARRAY_DOTEST(Array) \ |
| do { \ |
| simulator.ResetState(); \ |
| uintptr_t addr = reinterpret_cast<uintptr_t>(Array); \ |
| simulator.set_xreg(0, addr); \ |
| simulator.set_xreg(1, ARRAY_SIZE(Array)); \ |
| TEST_FUNCTION(sum_array); \ |
| assert(regs.xreg(0) == SumArrayC(Array, ARRAY_SIZE(Array))); \ |
| } while (0) |
| |
| TEST(sum_array) { |
| START(); |
| |
| Label sum_array; |
| masm.Bind(&sum_array); |
| GenerateSumArray(&masm); |
| masm.FinalizeCode(); |
| |
| uint8_t data1[] = { 4, 9, 13, 3, 2, 6, 5 }; |
| SUM_ARRAY_DOTEST(data1); |
| |
| uint8_t data2[] = { 42 }; |
| SUM_ARRAY_DOTEST(data2); |
| |
| uint8_t data3[1000]; |
| for (unsigned int i = 0; i < ARRAY_SIZE(data3); ++i) |
| data3[i] = 255; |
| SUM_ARRAY_DOTEST(data3); |
| } |
| |
| |
| #define ABS_DOTEST(X) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_xreg(0, X); \ |
| TEST_FUNCTION(func_abs); \ |
| assert(regs.xreg(0) == abs(X)); \ |
| } while (0) |
| |
| TEST(abs) { |
| START(); |
| |
| Label func_abs; |
| masm.Bind(&func_abs); |
| GenerateAbs(&masm); |
| masm.FinalizeCode(); |
| |
| ABS_DOTEST(-42); |
| ABS_DOTEST(0); |
| ABS_DOTEST(545); |
| ABS_DOTEST(-428751489); |
| } |
| |
| |
| TEST(crc32) { |
| START(); |
| |
| Label crc32; |
| masm.Bind(&crc32); |
| GenerateCrc32(&masm); |
| masm.FinalizeCode(); |
| |
| const char *msg = "Hello World!"; |
| uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg); |
| size_t msg_size = strlen(msg); |
| int64_t chksum = INT64_C(0xe3d6e35c); |
| simulator.set_xreg(0, msg_addr); |
| simulator.set_xreg(1, msg_size); |
| TEST_FUNCTION(crc32); |
| assert(regs.xreg(0) == chksum); |
| } |
| |
| |
| TEST(swap4) { |
| START(); |
| |
| Label swap4; |
| masm.Bind(&swap4); |
| GenerateSwap4(&masm); |
| masm.FinalizeCode(); |
| |
| int64_t a = 15; |
| int64_t b = 26; |
| int64_t c = 46; |
| int64_t d = 79; |
| |
| simulator.set_xreg(0, a); |
| simulator.set_xreg(1, b); |
| simulator.set_xreg(2, c); |
| simulator.set_xreg(3, d); |
| TEST_FUNCTION(swap4); |
| assert(regs.xreg(0) == d); |
| assert(regs.xreg(1) == c); |
| assert(regs.xreg(2) == b); |
| assert(regs.xreg(3) == a); |
| } |
| |
| |
| TEST(swap_int32) { |
| START(); |
| |
| Label swap_int32; |
| masm.Bind(&swap_int32); |
| GenerateSwapInt32(&masm); |
| masm.FinalizeCode(); |
| |
| int32_t x = 168; |
| int32_t y = 246; |
| simulator.set_wreg(0, x); |
| simulator.set_wreg(1, y); |
| TEST_FUNCTION(swap_int32); |
| assert(regs.wreg(0) == y); |
| assert(regs.wreg(1) == x); |
| } |
| |
| |
| #define CHECKBOUNDS_DOTEST(Value, Low, High) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_xreg(0, Value); \ |
| simulator.set_xreg(1, Low); \ |
| simulator.set_xreg(2, High); \ |
| TEST_FUNCTION(check_bounds); \ |
| assert(regs.xreg(0) == ((Low <= Value) && (Value <= High))); \ |
| } while (0) |
| |
| TEST(check_bounds) { |
| START(); |
| |
| Label check_bounds; |
| masm.Bind(&check_bounds); |
| GenerateCheckBounds(&masm); |
| masm.FinalizeCode(); |
| |
| CHECKBOUNDS_DOTEST(0, 100, 200); |
| CHECKBOUNDS_DOTEST(58, 100, 200); |
| CHECKBOUNDS_DOTEST(99, 100, 200); |
| CHECKBOUNDS_DOTEST(100, 100, 200); |
| CHECKBOUNDS_DOTEST(101, 100, 200); |
| CHECKBOUNDS_DOTEST(150, 100, 200); |
| CHECKBOUNDS_DOTEST(199, 100, 200); |
| CHECKBOUNDS_DOTEST(200, 100, 200); |
| CHECKBOUNDS_DOTEST(201, 100, 200); |
| } |
| |
| |
| #define GETTING_STARTED_DOTEST(Value) \ |
| do { \ |
| simulator.ResetState(); \ |
| simulator.set_xreg(0, Value); \ |
| TEST_FUNCTION(demo_function); \ |
| assert(regs.xreg(0) == (Value & 0x1122334455667788)); \ |
| } while (0) |
| |
| TEST(getting_started) { |
| START(); |
| |
| Label demo_function; |
| masm.Bind(&demo_function); |
| GenerateDemoFunction(&masm); |
| masm.FinalizeCode(); |
| |
| GETTING_STARTED_DOTEST(0x8899aabbccddeeff); |
| GETTING_STARTED_DOTEST(0x1122334455667788); |
| GETTING_STARTED_DOTEST(0x0000000000000000); |
| GETTING_STARTED_DOTEST(0xffffffffffffffff); |
| GETTING_STARTED_DOTEST(0x5a5a5a5a5a5a5a5a); |
| } |
| |
| |
| TEST(non_const_visitor) { |
| byte assm_buf[BUF_SIZE]; |
| MacroAssembler masm(assm_buf, BUF_SIZE); |
| |
| Label code_start, code_end; |
| masm.Bind(&code_start); |
| GenerateNonConstVisitorTestCode(&masm); |
| masm.Bind(&code_end); |
| masm.FinalizeCode(); |
| Instruction* instr_start = masm.GetLabelAddress<Instruction*>(&code_start); |
| Instruction* instr_end = masm.GetLabelAddress<Instruction*>(&code_end); |
| |
| int64_t res_orig = RunNonConstVisitorTestGeneratedCode(instr_start); |
| |
| ModifyNonConstVisitorTestGeneratedCode(instr_start, instr_end); |
| |
| int64_t res_mod = RunNonConstVisitorTestGeneratedCode(instr_start); |
| assert(res_orig == -res_mod); |
| } |
| |
| |
| TEST(literal_example) { |
| VIXL_ASSERT(LiteralExample(1, 2) == 3); |
| VIXL_ASSERT( |
| LiteralExample(INT64_C(0x100000000), 0x1) == INT64_C(0x100000001)); |
| } |
| |
| #endif // VIXL_INCLUDE_SIMULATOR |