compiler: Bring over glsl compiler from alchemist-10.2.6+steamos-LunarG-1.1
diff --git a/icd/intel/compiler/shader/linker.cpp b/icd/intel/compiler/shader/linker.cpp
new file mode 100644
index 0000000..c448847
--- /dev/null
+++ b/icd/intel/compiler/shader/linker.cpp
@@ -0,0 +1,2644 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file linker.cpp
+ * GLSL linker implementation
+ *
+ * Given a set of shaders that are to be linked to generate a final program,
+ * there are three distinct stages.
+ *
+ * In the first stage shaders are partitioned into groups based on the shader
+ * type.  All shaders of a particular type (e.g., vertex shaders) are linked
+ * together.
+ *
+ *   - Undefined references in each shader are resolve to definitions in
+ *     another shader.
+ *   - Types and qualifiers of uniforms, outputs, and global variables defined
+ *     in multiple shaders with the same name are verified to be the same.
+ *   - Initializers for uniforms and global variables defined
+ *     in multiple shaders with the same name are verified to be the same.
+ *
+ * The result, in the terminology of the GLSL spec, is a set of shader
+ * executables for each processing unit.
+ *
+ * After the first stage is complete, a series of semantic checks are performed
+ * on each of the shader executables.
+ *
+ *   - Each shader executable must define a \c main function.
+ *   - Each vertex shader executable must write to \c gl_Position.
+ *   - Each fragment shader executable must write to either \c gl_FragData or
+ *     \c gl_FragColor.
+ *
+ * In the final stage individual shader executables are linked to create a
+ * complete exectuable.
+ *
+ *   - Types of uniforms defined in multiple shader stages with the same name
+ *     are verified to be the same.
+ *   - Initializers for uniforms defined in multiple shader stages with the
+ *     same name are verified to be the same.
+ *   - Types and qualifiers of outputs defined in one stage are verified to
+ *     be the same as the types and qualifiers of inputs defined with the same
+ *     name in a later stage.
+ *
+ * \author Ian Romanick <ian.d.romanick@intel.com>
+ */
+
+#include "main/core.h"
+#include "glsl_symbol_table.h"
+#include "glsl_parser_extras.h"
+#include "ir.h"
+#include "program.h"
+#include "program/hash_table.h"
+#include "linker.h"
+#include "link_varyings.h"
+#include "ir_optimization.h"
+#include "ir_rvalue_visitor.h"
+
+extern "C" {
+#include "main/shaderobj.h"
+#include "main/enums.h"
+}
+
+void linker_error(gl_shader_program *, const char *, ...);
+
+namespace {
+
+/**
+ * Visitor that determines whether or not a variable is ever written.
+ */
+class find_assignment_visitor : public ir_hierarchical_visitor {
+public:
+   find_assignment_visitor(const char *name)
+      : name(name), found(false)
+   {
+      /* empty */
+   }
+
+   virtual ir_visitor_status visit_enter(ir_assignment *ir)
+   {
+      ir_variable *const var = ir->lhs->variable_referenced();
+
+      if (strcmp(name, var->name) == 0) {
+	 found = true;
+	 return visit_stop;
+      }
+
+      return visit_continue_with_parent;
+   }
+
+   virtual ir_visitor_status visit_enter(ir_call *ir)
+   {
+      foreach_two_lists(formal_node, &ir->callee->parameters,
+                        actual_node, &ir->actual_parameters) {
+	 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
+	 ir_variable *sig_param = (ir_variable *) formal_node;
+
+	 if (sig_param->data.mode == ir_var_function_out ||
+	     sig_param->data.mode == ir_var_function_inout) {
+	    ir_variable *var = param_rval->variable_referenced();
+	    if (var && strcmp(name, var->name) == 0) {
+	       found = true;
+	       return visit_stop;
+	    }
+	 }
+      }
+
+      if (ir->return_deref != NULL) {
+	 ir_variable *const var = ir->return_deref->variable_referenced();
+
+	 if (strcmp(name, var->name) == 0) {
+	    found = true;
+	    return visit_stop;
+	 }
+      }
+
+      return visit_continue_with_parent;
+   }
+
+   bool variable_found()
+   {
+      return found;
+   }
+
+private:
+   const char *name;       /**< Find writes to a variable with this name. */
+   bool found;             /**< Was a write to the variable found? */
+};
+
+
+/**
+ * Visitor that determines whether or not a variable is ever read.
+ */
+class find_deref_visitor : public ir_hierarchical_visitor {
+public:
+   find_deref_visitor(const char *name)
+      : name(name), found(false)
+   {
+      /* empty */
+   }
+
+   virtual ir_visitor_status visit(ir_dereference_variable *ir)
+   {
+      if (strcmp(this->name, ir->var->name) == 0) {
+	 this->found = true;
+	 return visit_stop;
+      }
+
+      return visit_continue;
+   }
+
+   bool variable_found() const
+   {
+      return this->found;
+   }
+
+private:
+   const char *name;       /**< Find writes to a variable with this name. */
+   bool found;             /**< Was a write to the variable found? */
+};
+
+
+class geom_array_resize_visitor : public ir_hierarchical_visitor {
+public:
+   unsigned num_vertices;
+   gl_shader_program *prog;
+
+   geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
+   {
+      this->num_vertices = num_vertices;
+      this->prog = prog;
+   }
+
+   virtual ~geom_array_resize_visitor()
+   {
+      /* empty */
+   }
+
+   virtual ir_visitor_status visit(ir_variable *var)
+   {
+      if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
+         return visit_continue;
+
+      unsigned size = var->type->length;
+
+      /* Generate a link error if the shader has declared this array with an
+       * incorrect size.
+       */
+      if (size && size != this->num_vertices) {
+         linker_error(this->prog, "size of array %s declared as %u, "
+                      "but number of input vertices is %u\n",
+                      var->name, size, this->num_vertices);
+         return visit_continue;
+      }
+
+      /* Generate a link error if the shader attempts to access an input
+       * array using an index too large for its actual size assigned at link
+       * time.
+       */
+      if (var->data.max_array_access >= this->num_vertices) {
+         linker_error(this->prog, "geometry shader accesses element %i of "
+                      "%s, but only %i input vertices\n",
+                      var->data.max_array_access, var->name, this->num_vertices);
+         return visit_continue;
+      }
+
+      var->type = glsl_type::get_array_instance(var->type->element_type(),
+                                                this->num_vertices);
+      var->data.max_array_access = this->num_vertices - 1;
+
+      return visit_continue;
+   }
+
+   /* Dereferences of input variables need to be updated so that their type
+    * matches the newly assigned type of the variable they are accessing. */
+   virtual ir_visitor_status visit(ir_dereference_variable *ir)
+   {
+      ir->type = ir->var->type;
+      return visit_continue;
+   }
+
+   /* Dereferences of 2D input arrays need to be updated so that their type
+    * matches the newly assigned type of the array they are accessing. */
+   virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
+   {
+      const glsl_type *const vt = ir->array->type;
+      if (vt->is_array())
+         ir->type = vt->element_type();
+      return visit_continue;
+   }
+};
+
+
+/**
+ * Visitor that determines whether or not a shader uses ir_end_primitive.
+ */
+class find_end_primitive_visitor : public ir_hierarchical_visitor {
+public:
+   find_end_primitive_visitor()
+      : found(false)
+   {
+      /* empty */
+   }
+
+   virtual ir_visitor_status visit(ir_end_primitive *)
+   {
+      found = true;
+      return visit_stop;
+   }
+
+   bool end_primitive_found()
+   {
+      return found;
+   }
+
+private:
+   bool found;
+};
+
+} /* anonymous namespace */
+
+void
+linker_error(gl_shader_program *prog, const char *fmt, ...)
+{
+   va_list ap;
+
+   ralloc_strcat(&prog->InfoLog, "error: ");
+   va_start(ap, fmt);
+   ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
+   va_end(ap);
+
+   prog->LinkStatus = false;
+}
+
+
+void
+linker_warning(gl_shader_program *prog, const char *fmt, ...)
+{
+   va_list ap;
+
+   ralloc_strcat(&prog->InfoLog, "warning: ");
+   va_start(ap, fmt);
+   ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
+   va_end(ap);
+
+}
+
+
+/**
+ * Given a string identifying a program resource, break it into a base name
+ * and an optional array index in square brackets.
+ *
+ * If an array index is present, \c out_base_name_end is set to point to the
+ * "[" that precedes the array index, and the array index itself is returned
+ * as a long.
+ *
+ * If no array index is present (or if the array index is negative or
+ * mal-formed), \c out_base_name_end, is set to point to the null terminator
+ * at the end of the input string, and -1 is returned.
+ *
+ * Only the final array index is parsed; if the string contains other array
+ * indices (or structure field accesses), they are left in the base name.
+ *
+ * No attempt is made to check that the base name is properly formed;
+ * typically the caller will look up the base name in a hash table, so
+ * ill-formed base names simply turn into hash table lookup failures.
+ */
+long
+parse_program_resource_name(const GLchar *name,
+                            const GLchar **out_base_name_end)
+{
+   /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
+    *
+    *     "When an integer array element or block instance number is part of
+    *     the name string, it will be specified in decimal form without a "+"
+    *     or "-" sign or any extra leading zeroes. Additionally, the name
+    *     string will not include white space anywhere in the string."
+    */
+
+   const size_t len = strlen(name);
+   *out_base_name_end = name + len;
+
+   if (len == 0 || name[len-1] != ']')
+      return -1;
+
+   /* Walk backwards over the string looking for a non-digit character.  This
+    * had better be the opening bracket for an array index.
+    *
+    * Initially, i specifies the location of the ']'.  Since the string may
+    * contain only the ']' charcater, walk backwards very carefully.
+    */
+   unsigned i;
+   for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
+      /* empty */ ;
+
+   if ((i == 0) || name[i-1] != '[')
+      return -1;
+
+   long array_index = strtol(&name[i], NULL, 10);
+   if (array_index < 0)
+      return -1;
+
+   *out_base_name_end = name + (i - 1);
+   return array_index;
+}
+
+
+void
+link_invalidate_variable_locations(exec_list *ir)
+{
+   foreach_list(node, ir) {
+      ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+      if (var == NULL)
+         continue;
+
+      /* Only assign locations for variables that lack an explicit location.
+       * Explicit locations are set for all built-in variables, generic vertex
+       * shader inputs (via layout(location=...)), and generic fragment shader
+       * outputs (also via layout(location=...)).
+       */
+      if (!var->data.explicit_location) {
+         var->data.location = -1;
+         var->data.location_frac = 0;
+      }
+
+      /* ir_variable::is_unmatched_generic_inout is used by the linker while
+       * connecting outputs from one stage to inputs of the next stage.
+       *
+       * There are two implicit assumptions here.  First, we assume that any
+       * built-in variable (i.e., non-generic in or out) will have
+       * explicit_location set.  Second, we assume that any generic in or out
+       * will not have explicit_location set.
+       *
+       * This second assumption will only be valid until
+       * GL_ARB_separate_shader_objects is supported.  When that extension is
+       * implemented, this function will need some modifications.
+       */
+      if (!var->data.explicit_location) {
+         var->data.is_unmatched_generic_inout = 1;
+      } else {
+         var->data.is_unmatched_generic_inout = 0;
+      }
+   }
+}
+
+
+/**
+ * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
+ *
+ * Also check for errors based on incorrect usage of gl_ClipVertex and
+ * gl_ClipDistance.
+ *
+ * Return false if an error was reported.
+ */
+static void
+analyze_clip_usage(struct gl_shader_program *prog,
+                   struct gl_shader *shader, GLboolean *UsesClipDistance,
+                   GLuint *ClipDistanceArraySize)
+{
+   *ClipDistanceArraySize = 0;
+
+   if (!prog->IsES && prog->Version >= 130) {
+      /* From section 7.1 (Vertex Shader Special Variables) of the
+       * GLSL 1.30 spec:
+       *
+       *   "It is an error for a shader to statically write both
+       *   gl_ClipVertex and gl_ClipDistance."
+       *
+       * This does not apply to GLSL ES shaders, since GLSL ES defines neither
+       * gl_ClipVertex nor gl_ClipDistance.
+       */
+      find_assignment_visitor clip_vertex("gl_ClipVertex");
+      find_assignment_visitor clip_distance("gl_ClipDistance");
+
+      clip_vertex.run(shader->ir);
+      clip_distance.run(shader->ir);
+      if (clip_vertex.variable_found() && clip_distance.variable_found()) {
+         linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
+                      "and `gl_ClipDistance'\n",
+                      _mesa_shader_stage_to_string(shader->Stage));
+         return;
+      }
+      *UsesClipDistance = clip_distance.variable_found();
+      ir_variable *clip_distance_var =
+         shader->symbols->get_variable("gl_ClipDistance");
+      if (clip_distance_var)
+         *ClipDistanceArraySize = clip_distance_var->type->length;
+   } else {
+      *UsesClipDistance = false;
+   }
+}
+
+
+/**
+ * Verify that a vertex shader executable meets all semantic requirements.
+ *
+ * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
+ * as a side effect.
+ *
+ * \param shader  Vertex shader executable to be verified
+ */
+void
+validate_vertex_shader_executable(struct gl_shader_program *prog,
+				  struct gl_shader *shader)
+{
+   if (shader == NULL)
+      return;
+
+   /* From the GLSL 1.10 spec, page 48:
+    *
+    *     "The variable gl_Position is available only in the vertex
+    *      language and is intended for writing the homogeneous vertex
+    *      position. All executions of a well-formed vertex shader
+    *      executable must write a value into this variable. [...] The
+    *      variable gl_Position is available only in the vertex
+    *      language and is intended for writing the homogeneous vertex
+    *      position. All executions of a well-formed vertex shader
+    *      executable must write a value into this variable."
+    *
+    * while in GLSL 1.40 this text is changed to:
+    *
+    *     "The variable gl_Position is available only in the vertex
+    *      language and is intended for writing the homogeneous vertex
+    *      position. It can be written at any time during shader
+    *      execution. It may also be read back by a vertex shader
+    *      after being written. This value will be used by primitive
+    *      assembly, clipping, culling, and other fixed functionality
+    *      operations, if present, that operate on primitives after
+    *      vertex processing has occurred. Its value is undefined if
+    *      the vertex shader executable does not write gl_Position."
+    *
+    * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
+    * not an error.
+    */
+   if (prog->Version < (prog->IsES ? 300 : 140)) {
+      find_assignment_visitor find("gl_Position");
+      find.run(shader->ir);
+      if (!find.variable_found()) {
+	 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
+	 return;
+      }
+   }
+
+   analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
+                      &prog->Vert.ClipDistanceArraySize);
+}
+
+
+/**
+ * Verify that a fragment shader executable meets all semantic requirements
+ *
+ * \param shader  Fragment shader executable to be verified
+ */
+void
+validate_fragment_shader_executable(struct gl_shader_program *prog,
+				    struct gl_shader *shader)
+{
+   if (shader == NULL)
+      return;
+
+   find_assignment_visitor frag_color("gl_FragColor");
+   find_assignment_visitor frag_data("gl_FragData");
+
+   frag_color.run(shader->ir);
+   frag_data.run(shader->ir);
+
+   if (frag_color.variable_found() && frag_data.variable_found()) {
+      linker_error(prog,  "fragment shader writes to both "
+		   "`gl_FragColor' and `gl_FragData'\n");
+   }
+}
+
+/**
+ * Verify that a geometry shader executable meets all semantic requirements
+ *
+ * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
+ * prog->Geom.ClipDistanceArraySize as a side effect.
+ *
+ * \param shader Geometry shader executable to be verified
+ */
+void
+validate_geometry_shader_executable(struct gl_shader_program *prog,
+				    struct gl_shader *shader)
+{
+   if (shader == NULL)
+      return;
+
+   unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
+   prog->Geom.VerticesIn = num_vertices;
+
+   analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
+                      &prog->Geom.ClipDistanceArraySize);
+
+   find_end_primitive_visitor end_primitive;
+   end_primitive.run(shader->ir);
+   prog->Geom.UsesEndPrimitive = end_primitive.end_primitive_found();
+}
+
+
+/**
+ * Perform validation of global variables used across multiple shaders
+ */
+void
+cross_validate_globals(struct gl_shader_program *prog,
+		       struct gl_shader **shader_list,
+		       unsigned num_shaders,
+		       bool uniforms_only)
+{
+   /* Examine all of the uniforms in all of the shaders and cross validate
+    * them.
+    */
+   glsl_symbol_table variables;
+   for (unsigned i = 0; i < num_shaders; i++) {
+      if (shader_list[i] == NULL)
+	 continue;
+
+      foreach_list(node, shader_list[i]->ir) {
+	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+	 if (var == NULL)
+	    continue;
+
+	 if (uniforms_only && (var->data.mode != ir_var_uniform))
+	    continue;
+
+	 /* Don't cross validate temporaries that are at global scope.  These
+	  * will eventually get pulled into the shaders 'main'.
+	  */
+	 if (var->data.mode == ir_var_temporary)
+	    continue;
+
+	 /* If a global with this name has already been seen, verify that the
+	  * new instance has the same type.  In addition, if the globals have
+	  * initializers, the values of the initializers must be the same.
+	  */
+	 ir_variable *const existing = variables.get_variable(var->name);
+	 if (existing != NULL) {
+	    if (var->type != existing->type) {
+	       /* Consider the types to be "the same" if both types are arrays
+		* of the same type and one of the arrays is implicitly sized.
+		* In addition, set the type of the linked variable to the
+		* explicitly sized array.
+		*/
+	       if (var->type->is_array()
+		   && existing->type->is_array()
+		   && (var->type->fields.array == existing->type->fields.array)
+		   && ((var->type->length == 0)
+		       || (existing->type->length == 0))) {
+		  if (var->type->length != 0) {
+		     existing->type = var->type;
+		  }
+               } else if (var->type->is_record()
+		   && existing->type->is_record()
+		   && existing->type->record_compare(var->type)) {
+		  existing->type = var->type;
+	       } else {
+		  linker_error(prog, "%s `%s' declared as type "
+			       "`%s' and type `%s'\n",
+			       mode_string(var),
+			       var->name, var->type->name,
+			       existing->type->name);
+		  return;
+	       }
+	    }
+
+	    if (var->data.explicit_location) {
+	       if (existing->data.explicit_location
+		   && (var->data.location != existing->data.location)) {
+		     linker_error(prog, "explicit locations for %s "
+				  "`%s' have differing values\n",
+				  mode_string(var), var->name);
+		     return;
+	       }
+
+	       existing->data.location = var->data.location;
+	       existing->data.explicit_location = true;
+	    }
+
+            /* From the GLSL 4.20 specification:
+             * "A link error will result if two compilation units in a program
+             *  specify different integer-constant bindings for the same
+             *  opaque-uniform name.  However, it is not an error to specify a
+             *  binding on some but not all declarations for the same name"
+             */
+            if (var->data.explicit_binding) {
+               if (existing->data.explicit_binding &&
+                   var->data.binding != existing->data.binding) {
+                  linker_error(prog, "explicit bindings for %s "
+                               "`%s' have differing values\n",
+                               mode_string(var), var->name);
+                  return;
+               }
+
+               existing->data.binding = var->data.binding;
+               existing->data.explicit_binding = true;
+            }
+
+            if (var->type->contains_atomic() &&
+                var->data.atomic.offset != existing->data.atomic.offset) {
+               linker_error(prog, "offset specifications for %s "
+                            "`%s' have differing values\n",
+                            mode_string(var), var->name);
+               return;
+            }
+
+	    /* Validate layout qualifiers for gl_FragDepth.
+	     *
+	     * From the AMD/ARB_conservative_depth specs:
+	     *
+	     *    "If gl_FragDepth is redeclared in any fragment shader in a
+	     *    program, it must be redeclared in all fragment shaders in
+	     *    that program that have static assignments to
+	     *    gl_FragDepth. All redeclarations of gl_FragDepth in all
+	     *    fragment shaders in a single program must have the same set
+	     *    of qualifiers."
+	     */
+	    if (strcmp(var->name, "gl_FragDepth") == 0) {
+	       bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
+	       bool layout_differs =
+		  var->data.depth_layout != existing->data.depth_layout;
+
+	       if (layout_declared && layout_differs) {
+		  linker_error(prog,
+			       "All redeclarations of gl_FragDepth in all "
+			       "fragment shaders in a single program must have "
+			       "the same set of qualifiers.");
+	       }
+
+	       if (var->data.used && layout_differs) {
+		  linker_error(prog,
+			       "If gl_FragDepth is redeclared with a layout "
+			       "qualifier in any fragment shader, it must be "
+			       "redeclared with the same layout qualifier in "
+			       "all fragment shaders that have assignments to "
+			       "gl_FragDepth");
+	       }
+	    }
+
+	    /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
+	     *
+	     *     "If a shared global has multiple initializers, the
+	     *     initializers must all be constant expressions, and they
+	     *     must all have the same value. Otherwise, a link error will
+	     *     result. (A shared global having only one initializer does
+	     *     not require that initializer to be a constant expression.)"
+	     *
+	     * Previous to 4.20 the GLSL spec simply said that initializers
+	     * must have the same value.  In this case of non-constant
+	     * initializers, this was impossible to determine.  As a result,
+	     * no vendor actually implemented that behavior.  The 4.20
+	     * behavior matches the implemented behavior of at least one other
+	     * vendor, so we'll implement that for all GLSL versions.
+	     */
+	    if (var->constant_initializer != NULL) {
+	       if (existing->constant_initializer != NULL) {
+		  if (!var->constant_initializer->has_value(existing->constant_initializer)) {
+		     linker_error(prog, "initializers for %s "
+				  "`%s' have differing values\n",
+				  mode_string(var), var->name);
+		     return;
+		  }
+	       } else {
+		  /* If the first-seen instance of a particular uniform did not
+		   * have an initializer but a later instance does, copy the
+		   * initializer to the version stored in the symbol table.
+		   */
+		  /* FINISHME: This is wrong.  The constant_value field should
+		   * FINISHME: not be modified!  Imagine a case where a shader
+		   * FINISHME: without an initializer is linked in two different
+		   * FINISHME: programs with shaders that have differing
+		   * FINISHME: initializers.  Linking with the first will
+		   * FINISHME: modify the shader, and linking with the second
+		   * FINISHME: will fail.
+		   */
+		  existing->constant_initializer =
+		     var->constant_initializer->clone(ralloc_parent(existing),
+						      NULL);
+	       }
+	    }
+
+	    if (var->data.has_initializer) {
+	       if (existing->data.has_initializer
+		   && (var->constant_initializer == NULL
+		       || existing->constant_initializer == NULL)) {
+		  linker_error(prog,
+			       "shared global variable `%s' has multiple "
+			       "non-constant initializers.\n",
+			       var->name);
+		  return;
+	       }
+
+	       /* Some instance had an initializer, so keep track of that.  In
+		* this location, all sorts of initializers (constant or
+		* otherwise) will propagate the existence to the variable
+		* stored in the symbol table.
+		*/
+	       existing->data.has_initializer = true;
+	    }
+
+	    if (existing->data.invariant != var->data.invariant) {
+	       linker_error(prog, "declarations for %s `%s' have "
+			    "mismatching invariant qualifiers\n",
+			    mode_string(var), var->name);
+	       return;
+	    }
+            if (existing->data.centroid != var->data.centroid) {
+               linker_error(prog, "declarations for %s `%s' have "
+			    "mismatching centroid qualifiers\n",
+			    mode_string(var), var->name);
+               return;
+            }
+            if (existing->data.sample != var->data.sample) {
+               linker_error(prog, "declarations for %s `%s` have "
+                            "mismatching sample qualifiers\n",
+                            mode_string(var), var->name);
+               return;
+            }
+	 } else
+	    variables.add_variable(var);
+      }
+   }
+}
+
+
+/**
+ * Perform validation of uniforms used across multiple shader stages
+ */
+void
+cross_validate_uniforms(struct gl_shader_program *prog)
+{
+   cross_validate_globals(prog, prog->_LinkedShaders,
+                          MESA_SHADER_STAGES, true);
+}
+
+/**
+ * Accumulates the array of prog->UniformBlocks and checks that all
+ * definitons of blocks agree on their contents.
+ */
+static bool
+interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
+{
+   unsigned max_num_uniform_blocks = 0;
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+      if (prog->_LinkedShaders[i])
+	 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
+   }
+
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+      struct gl_shader *sh = prog->_LinkedShaders[i];
+
+      prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
+						     max_num_uniform_blocks);
+      for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
+	 prog->UniformBlockStageIndex[i][j] = -1;
+
+      if (sh == NULL)
+	 continue;
+
+      for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
+	 int index = link_cross_validate_uniform_block(prog,
+						       &prog->UniformBlocks,
+						       &prog->NumUniformBlocks,
+						       &sh->UniformBlocks[j]);
+
+	 if (index == -1) {
+	    linker_error(prog, "uniform block `%s' has mismatching definitions",
+			 sh->UniformBlocks[j].Name);
+	    return false;
+	 }
+
+	 prog->UniformBlockStageIndex[i][index] = j;
+      }
+   }
+
+   return true;
+}
+
+
+/**
+ * Populates a shaders symbol table with all global declarations
+ */
+void
+populate_symbol_table(gl_shader *sh)
+{
+   sh->symbols = new(sh) glsl_symbol_table;
+
+   foreach_list(node, sh->ir) {
+      ir_instruction *const inst = (ir_instruction *) node;
+      ir_variable *var;
+      ir_function *func;
+
+      if ((func = inst->as_function()) != NULL) {
+	 sh->symbols->add_function(func);
+      } else if ((var = inst->as_variable()) != NULL) {
+	 sh->symbols->add_variable(var);
+      }
+   }
+}
+
+
+/**
+ * Remap variables referenced in an instruction tree
+ *
+ * This is used when instruction trees are cloned from one shader and placed in
+ * another.  These trees will contain references to \c ir_variable nodes that
+ * do not exist in the target shader.  This function finds these \c ir_variable
+ * references and replaces the references with matching variables in the target
+ * shader.
+ *
+ * If there is no matching variable in the target shader, a clone of the
+ * \c ir_variable is made and added to the target shader.  The new variable is
+ * added to \b both the instruction stream and the symbol table.
+ *
+ * \param inst         IR tree that is to be processed.
+ * \param symbols      Symbol table containing global scope symbols in the
+ *                     linked shader.
+ * \param instructions Instruction stream where new variable declarations
+ *                     should be added.
+ */
+void
+remap_variables(ir_instruction *inst, struct gl_shader *target,
+		hash_table *temps)
+{
+   class remap_visitor : public ir_hierarchical_visitor {
+   public:
+	 remap_visitor(struct gl_shader *target,
+		    hash_table *temps)
+      {
+	 this->target = target;
+	 this->symbols = target->symbols;
+	 this->instructions = target->ir;
+	 this->temps = temps;
+      }
+
+      virtual ir_visitor_status visit(ir_dereference_variable *ir)
+      {
+	 if (ir->var->data.mode == ir_var_temporary) {
+	    ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
+
+	    assert(var != NULL);
+	    ir->var = var;
+	    return visit_continue;
+	 }
+
+	 ir_variable *const existing =
+	    this->symbols->get_variable(ir->var->name);
+	 if (existing != NULL)
+	    ir->var = existing;
+	 else {
+	    ir_variable *copy = ir->var->clone(this->target, NULL);
+
+	    this->symbols->add_variable(copy);
+	    this->instructions->push_head(copy);
+	    ir->var = copy;
+	 }
+
+	 return visit_continue;
+      }
+
+   private:
+      struct gl_shader *target;
+      glsl_symbol_table *symbols;
+      exec_list *instructions;
+      hash_table *temps;
+   };
+
+   remap_visitor v(target, temps);
+
+   inst->accept(&v);
+}
+
+
+/**
+ * Move non-declarations from one instruction stream to another
+ *
+ * The intended usage pattern of this function is to pass the pointer to the
+ * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
+ * pointer) for \c last and \c false for \c make_copies on the first
+ * call.  Successive calls pass the return value of the previous call for
+ * \c last and \c true for \c make_copies.
+ *
+ * \param instructions Source instruction stream
+ * \param last         Instruction after which new instructions should be
+ *                     inserted in the target instruction stream
+ * \param make_copies  Flag selecting whether instructions in \c instructions
+ *                     should be copied (via \c ir_instruction::clone) into the
+ *                     target list or moved.
+ *
+ * \return
+ * The new "last" instruction in the target instruction stream.  This pointer
+ * is suitable for use as the \c last parameter of a later call to this
+ * function.
+ */
+exec_node *
+move_non_declarations(exec_list *instructions, exec_node *last,
+		      bool make_copies, gl_shader *target)
+{
+   hash_table *temps = NULL;
+
+   if (make_copies)
+      temps = hash_table_ctor(0, hash_table_pointer_hash,
+			      hash_table_pointer_compare);
+
+   foreach_list_safe(node, instructions) {
+      ir_instruction *inst = (ir_instruction *) node;
+
+      if (inst->as_function())
+	 continue;
+
+      ir_variable *var = inst->as_variable();
+      if ((var != NULL) && (var->data.mode != ir_var_temporary))
+	 continue;
+
+      assert(inst->as_assignment()
+             || inst->as_call()
+             || inst->as_if() /* for initializers with the ?: operator */
+	     || ((var != NULL) && (var->data.mode == ir_var_temporary)));
+
+      if (make_copies) {
+	 inst = inst->clone(target, NULL);
+
+	 if (var != NULL)
+	    hash_table_insert(temps, inst, var);
+	 else
+	    remap_variables(inst, target, temps);
+      } else {
+	 inst->remove();
+      }
+
+      last->insert_after(inst);
+      last = inst;
+   }
+
+   if (make_copies)
+      hash_table_dtor(temps);
+
+   return last;
+}
+
+/**
+ * Get the function signature for main from a shader
+ */
+static ir_function_signature *
+get_main_function_signature(gl_shader *sh)
+{
+   ir_function *const f = sh->symbols->get_function("main");
+   if (f != NULL) {
+      exec_list void_parameters;
+
+      /* Look for the 'void main()' signature and ensure that it's defined.
+       * This keeps the linker from accidentally pick a shader that just
+       * contains a prototype for main.
+       *
+       * We don't have to check for multiple definitions of main (in multiple
+       * shaders) because that would have already been caught above.
+       */
+      ir_function_signature *sig = f->matching_signature(NULL, &void_parameters);
+      if ((sig != NULL) && sig->is_defined) {
+	 return sig;
+      }
+   }
+
+   return NULL;
+}
+
+
+/**
+ * This class is only used in link_intrastage_shaders() below but declaring
+ * it inside that function leads to compiler warnings with some versions of
+ * gcc.
+ */
+class array_sizing_visitor : public ir_hierarchical_visitor {
+public:
+   array_sizing_visitor()
+      : mem_ctx(ralloc_context(NULL)),
+        unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
+                                           hash_table_pointer_compare))
+   {
+   }
+
+   ~array_sizing_visitor()
+   {
+      hash_table_dtor(this->unnamed_interfaces);
+      ralloc_free(this->mem_ctx);
+   }
+
+   virtual ir_visitor_status visit(ir_variable *var)
+   {
+      fixup_type(&var->type, var->data.max_array_access);
+      if (var->type->is_interface()) {
+         if (interface_contains_unsized_arrays(var->type)) {
+            const glsl_type *new_type =
+               resize_interface_members(var->type, var->max_ifc_array_access);
+            var->type = new_type;
+            var->change_interface_type(new_type);
+         }
+      } else if (var->type->is_array() &&
+                 var->type->fields.array->is_interface()) {
+         if (interface_contains_unsized_arrays(var->type->fields.array)) {
+            const glsl_type *new_type =
+               resize_interface_members(var->type->fields.array,
+                                        var->max_ifc_array_access);
+            var->change_interface_type(new_type);
+            var->type =
+               glsl_type::get_array_instance(new_type, var->type->length);
+         }
+      } else if (const glsl_type *ifc_type = var->get_interface_type()) {
+         /* Store a pointer to the variable in the unnamed_interfaces
+          * hashtable.
+          */
+         ir_variable **interface_vars = (ir_variable **)
+            hash_table_find(this->unnamed_interfaces, ifc_type);
+         if (interface_vars == NULL) {
+            interface_vars = rzalloc_array(mem_ctx, ir_variable *,
+                                           ifc_type->length);
+            hash_table_insert(this->unnamed_interfaces, interface_vars,
+                              ifc_type);
+         }
+         unsigned index = ifc_type->field_index(var->name);
+         assert(index < ifc_type->length);
+         assert(interface_vars[index] == NULL);
+         interface_vars[index] = var;
+      }
+      return visit_continue;
+   }
+
+   /**
+    * For each unnamed interface block that was discovered while running the
+    * visitor, adjust the interface type to reflect the newly assigned array
+    * sizes, and fix up the ir_variable nodes to point to the new interface
+    * type.
+    */
+   void fixup_unnamed_interface_types()
+   {
+      hash_table_call_foreach(this->unnamed_interfaces,
+                              fixup_unnamed_interface_type, NULL);
+   }
+
+private:
+   /**
+    * If the type pointed to by \c type represents an unsized array, replace
+    * it with a sized array whose size is determined by max_array_access.
+    */
+   static void fixup_type(const glsl_type **type, unsigned max_array_access)
+   {
+      if ((*type)->is_unsized_array()) {
+         *type = glsl_type::get_array_instance((*type)->fields.array,
+                                               max_array_access + 1);
+         assert(*type != NULL);
+      }
+   }
+
+   /**
+    * Determine whether the given interface type contains unsized arrays (if
+    * it doesn't, array_sizing_visitor doesn't need to process it).
+    */
+   static bool interface_contains_unsized_arrays(const glsl_type *type)
+   {
+      for (unsigned i = 0; i < type->length; i++) {
+         const glsl_type *elem_type = type->fields.structure[i].type;
+         if (elem_type->is_unsized_array())
+            return true;
+      }
+      return false;
+   }
+
+   /**
+    * Create a new interface type based on the given type, with unsized arrays
+    * replaced by sized arrays whose size is determined by
+    * max_ifc_array_access.
+    */
+   static const glsl_type *
+   resize_interface_members(const glsl_type *type,
+                            const unsigned *max_ifc_array_access)
+   {
+      unsigned num_fields = type->length;
+      glsl_struct_field *fields = new glsl_struct_field[num_fields];
+      memcpy(fields, type->fields.structure,
+             num_fields * sizeof(*fields));
+      for (unsigned i = 0; i < num_fields; i++) {
+         fixup_type(&fields[i].type, max_ifc_array_access[i]);
+      }
+      glsl_interface_packing packing =
+         (glsl_interface_packing) type->interface_packing;
+      const glsl_type *new_ifc_type =
+         glsl_type::get_interface_instance(fields, num_fields,
+                                           packing, type->name);
+      delete [] fields;
+      return new_ifc_type;
+   }
+
+   static void fixup_unnamed_interface_type(const void *key, void *data,
+                                            void *)
+   {
+      const glsl_type *ifc_type = (const glsl_type *) key;
+      ir_variable **interface_vars = (ir_variable **) data;
+      unsigned num_fields = ifc_type->length;
+      glsl_struct_field *fields = new glsl_struct_field[num_fields];
+      memcpy(fields, ifc_type->fields.structure,
+             num_fields * sizeof(*fields));
+      bool interface_type_changed = false;
+      for (unsigned i = 0; i < num_fields; i++) {
+         if (interface_vars[i] != NULL &&
+             fields[i].type != interface_vars[i]->type) {
+            fields[i].type = interface_vars[i]->type;
+            interface_type_changed = true;
+         }
+      }
+      if (!interface_type_changed) {
+         delete [] fields;
+         return;
+      }
+      glsl_interface_packing packing =
+         (glsl_interface_packing) ifc_type->interface_packing;
+      const glsl_type *new_ifc_type =
+         glsl_type::get_interface_instance(fields, num_fields, packing,
+                                           ifc_type->name);
+      delete [] fields;
+      for (unsigned i = 0; i < num_fields; i++) {
+         if (interface_vars[i] != NULL)
+            interface_vars[i]->change_interface_type(new_ifc_type);
+      }
+   }
+
+   /**
+    * Memory context used to allocate the data in \c unnamed_interfaces.
+    */
+   void *mem_ctx;
+
+   /**
+    * Hash table from const glsl_type * to an array of ir_variable *'s
+    * pointing to the ir_variables constituting each unnamed interface block.
+    */
+   hash_table *unnamed_interfaces;
+};
+
+/**
+ * Performs the cross-validation of layout qualifiers specified in
+ * redeclaration of gl_FragCoord for the attached fragment shaders,
+ * and propagates them to the linked FS and linked shader program.
+ */
+static void
+link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
+	                        struct gl_shader *linked_shader,
+	                        struct gl_shader **shader_list,
+	                        unsigned num_shaders)
+{
+   linked_shader->redeclares_gl_fragcoord = false;
+   linked_shader->uses_gl_fragcoord = false;
+   linked_shader->origin_upper_left = false;
+   linked_shader->pixel_center_integer = false;
+
+   if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
+       (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
+      return;
+
+   for (unsigned i = 0; i < num_shaders; i++) {
+      struct gl_shader *shader = shader_list[i];
+      /* From the GLSL 1.50 spec, page 39:
+       *
+       *   "If gl_FragCoord is redeclared in any fragment shader in a program,
+       *    it must be redeclared in all the fragment shaders in that program
+       *    that have a static use gl_FragCoord."
+       *
+       * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
+       * gl_FragCoord with no layout qualifiers but the other one doesn't
+       * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
+       * should be a link error. But, generating link error for this case will
+       * be a wrong behaviour which spec didn't intend to do and it could also
+       * break some applications.
+       */
+      if ((linked_shader->redeclares_gl_fragcoord
+           && !shader->redeclares_gl_fragcoord
+           && shader->uses_gl_fragcoord
+           && (linked_shader->origin_upper_left
+               || linked_shader->pixel_center_integer))
+          || (shader->redeclares_gl_fragcoord
+              && !linked_shader->redeclares_gl_fragcoord
+              && linked_shader->uses_gl_fragcoord
+              && (shader->origin_upper_left
+                  || shader->pixel_center_integer))) {
+             linker_error(prog, "fragment shader defined with conflicting "
+                         "layout qualifiers for gl_FragCoord\n");
+      }
+
+      /* From the GLSL 1.50 spec, page 39:
+       *
+       *   "All redeclarations of gl_FragCoord in all fragment shaders in a
+       *    single program must have the same set of qualifiers."
+       */
+      if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
+          && (shader->origin_upper_left != linked_shader->origin_upper_left
+          || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
+         linker_error(prog, "fragment shader defined with conflicting "
+                      "layout qualifiers for gl_FragCoord\n");
+      }
+
+      /* Update the linked shader state.  Note that uses_gl_fragcoord should
+       * accumulate the results.  The other values should replace.  If there
+       * are multiple redeclarations, all the fields except uses_gl_fragcoord
+       * are already known to be the same.
+       */
+      if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
+         linked_shader->redeclares_gl_fragcoord =
+            shader->redeclares_gl_fragcoord;
+         linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
+            || shader->uses_gl_fragcoord;
+         linked_shader->origin_upper_left = shader->origin_upper_left;
+         linked_shader->pixel_center_integer = shader->pixel_center_integer;
+      }
+   }
+}
+
+/**
+ * Performs the cross-validation of geometry shader max_vertices and
+ * primitive type layout qualifiers for the attached geometry shaders,
+ * and propagates them to the linked GS and linked shader program.
+ */
+static void
+link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
+				struct gl_shader *linked_shader,
+				struct gl_shader **shader_list,
+				unsigned num_shaders)
+{
+   linked_shader->Geom.VerticesOut = 0;
+   linked_shader->Geom.Invocations = 0;
+   linked_shader->Geom.InputType = PRIM_UNKNOWN;
+   linked_shader->Geom.OutputType = PRIM_UNKNOWN;
+
+   /* No in/out qualifiers defined for anything but GLSL 1.50+
+    * geometry shaders so far.
+    */
+   if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
+      return;
+
+   /* From the GLSL 1.50 spec, page 46:
+    *
+    *     "All geometry shader output layout declarations in a program
+    *      must declare the same layout and same value for
+    *      max_vertices. There must be at least one geometry output
+    *      layout declaration somewhere in a program, but not all
+    *      geometry shaders (compilation units) are required to
+    *      declare it."
+    */
+
+   for (unsigned i = 0; i < num_shaders; i++) {
+      struct gl_shader *shader = shader_list[i];
+
+      if (shader->Geom.InputType != PRIM_UNKNOWN) {
+	 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
+	     linked_shader->Geom.InputType != shader->Geom.InputType) {
+	    linker_error(prog, "geometry shader defined with conflicting "
+			 "input types\n");
+	    return;
+	 }
+	 linked_shader->Geom.InputType = shader->Geom.InputType;
+      }
+
+      if (shader->Geom.OutputType != PRIM_UNKNOWN) {
+	 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
+	     linked_shader->Geom.OutputType != shader->Geom.OutputType) {
+	    linker_error(prog, "geometry shader defined with conflicting "
+			 "output types\n");
+	    return;
+	 }
+	 linked_shader->Geom.OutputType = shader->Geom.OutputType;
+      }
+
+      if (shader->Geom.VerticesOut != 0) {
+	 if (linked_shader->Geom.VerticesOut != 0 &&
+	     linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
+	    linker_error(prog, "geometry shader defined with conflicting "
+			 "output vertex count (%d and %d)\n",
+			 linked_shader->Geom.VerticesOut,
+			 shader->Geom.VerticesOut);
+	    return;
+	 }
+	 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
+      }
+
+      if (shader->Geom.Invocations != 0) {
+	 if (linked_shader->Geom.Invocations != 0 &&
+	     linked_shader->Geom.Invocations != shader->Geom.Invocations) {
+	    linker_error(prog, "geometry shader defined with conflicting "
+			 "invocation count (%d and %d)\n",
+			 linked_shader->Geom.Invocations,
+			 shader->Geom.Invocations);
+	    return;
+	 }
+	 linked_shader->Geom.Invocations = shader->Geom.Invocations;
+      }
+   }
+
+   /* Just do the intrastage -> interstage propagation right now,
+    * since we already know we're in the right type of shader program
+    * for doing it.
+    */
+   if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
+      linker_error(prog,
+		   "geometry shader didn't declare primitive input type\n");
+      return;
+   }
+   prog->Geom.InputType = linked_shader->Geom.InputType;
+
+   if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
+      linker_error(prog,
+		   "geometry shader didn't declare primitive output type\n");
+      return;
+   }
+   prog->Geom.OutputType = linked_shader->Geom.OutputType;
+
+   if (linked_shader->Geom.VerticesOut == 0) {
+      linker_error(prog,
+		   "geometry shader didn't declare max_vertices\n");
+      return;
+   }
+   prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
+
+   if (linked_shader->Geom.Invocations == 0)
+      linked_shader->Geom.Invocations = 1;
+
+   prog->Geom.Invocations = linked_shader->Geom.Invocations;
+}
+
+
+/**
+ * Perform cross-validation of compute shader local_size_{x,y,z} layout
+ * qualifiers for the attached compute shaders, and propagate them to the
+ * linked CS and linked shader program.
+ */
+static void
+link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
+                                struct gl_shader *linked_shader,
+                                struct gl_shader **shader_list,
+                                unsigned num_shaders)
+{
+   for (int i = 0; i < 3; i++)
+      linked_shader->Comp.LocalSize[i] = 0;
+
+   /* This function is called for all shader stages, but it only has an effect
+    * for compute shaders.
+    */
+   if (linked_shader->Stage != MESA_SHADER_COMPUTE)
+      return;
+
+   /* From the ARB_compute_shader spec, in the section describing local size
+    * declarations:
+    *
+    *     If multiple compute shaders attached to a single program object
+    *     declare local work-group size, the declarations must be identical;
+    *     otherwise a link-time error results. Furthermore, if a program
+    *     object contains any compute shaders, at least one must contain an
+    *     input layout qualifier specifying the local work sizes of the
+    *     program, or a link-time error will occur.
+    */
+   for (unsigned sh = 0; sh < num_shaders; sh++) {
+      struct gl_shader *shader = shader_list[sh];
+
+      if (shader->Comp.LocalSize[0] != 0) {
+         if (linked_shader->Comp.LocalSize[0] != 0) {
+            for (int i = 0; i < 3; i++) {
+               if (linked_shader->Comp.LocalSize[i] !=
+                   shader->Comp.LocalSize[i]) {
+                  linker_error(prog, "compute shader defined with conflicting "
+                               "local sizes\n");
+                  return;
+               }
+            }
+         }
+         for (int i = 0; i < 3; i++)
+            linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
+      }
+   }
+
+   /* Just do the intrastage -> interstage propagation right now,
+    * since we already know we're in the right type of shader program
+    * for doing it.
+    */
+   if (linked_shader->Comp.LocalSize[0] == 0) {
+      linker_error(prog, "compute shader didn't declare local size\n");
+      return;
+   }
+   for (int i = 0; i < 3; i++)
+      prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
+}
+
+
+/**
+ * Combine a group of shaders for a single stage to generate a linked shader
+ *
+ * \note
+ * If this function is supplied a single shader, it is cloned, and the new
+ * shader is returned.
+ */
+static struct gl_shader *
+link_intrastage_shaders(void *mem_ctx,
+			struct gl_context *ctx,
+			struct gl_shader_program *prog,
+			struct gl_shader **shader_list,
+			unsigned num_shaders)
+{
+   struct gl_uniform_block *uniform_blocks = NULL;
+
+   /* Check that global variables defined in multiple shaders are consistent.
+    */
+   cross_validate_globals(prog, shader_list, num_shaders, false);
+   if (!prog->LinkStatus)
+      return NULL;
+
+   /* Check that interface blocks defined in multiple shaders are consistent.
+    */
+   validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
+                                        num_shaders);
+   if (!prog->LinkStatus)
+      return NULL;
+
+   /* Link up uniform blocks defined within this stage. */
+   const unsigned num_uniform_blocks =
+      link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
+                          &uniform_blocks);
+
+   /* Check that there is only a single definition of each function signature
+    * across all shaders.
+    */
+   for (unsigned i = 0; i < (num_shaders - 1); i++) {
+      foreach_list(node, shader_list[i]->ir) {
+	 ir_function *const f = ((ir_instruction *) node)->as_function();
+
+	 if (f == NULL)
+	    continue;
+
+	 for (unsigned j = i + 1; j < num_shaders; j++) {
+	    ir_function *const other =
+	       shader_list[j]->symbols->get_function(f->name);
+
+	    /* If the other shader has no function (and therefore no function
+	     * signatures) with the same name, skip to the next shader.
+	     */
+	    if (other == NULL)
+	       continue;
+
+	    foreach_list(n, &f->signatures) {
+	       ir_function_signature *sig = (ir_function_signature *) n;
+
+	       if (!sig->is_defined || sig->is_builtin())
+		  continue;
+
+	       ir_function_signature *other_sig =
+		  other->exact_matching_signature(NULL, &sig->parameters);
+
+	       if ((other_sig != NULL) && other_sig->is_defined
+		   && !other_sig->is_builtin()) {
+		  linker_error(prog, "function `%s' is multiply defined",
+			       f->name);
+		  return NULL;
+	       }
+	    }
+	 }
+      }
+   }
+
+   /* Find the shader that defines main, and make a clone of it.
+    *
+    * Starting with the clone, search for undefined references.  If one is
+    * found, find the shader that defines it.  Clone the reference and add
+    * it to the shader.  Repeat until there are no undefined references or
+    * until a reference cannot be resolved.
+    */
+   gl_shader *main = NULL;
+   for (unsigned i = 0; i < num_shaders; i++) {
+      if (get_main_function_signature(shader_list[i]) != NULL) {
+	 main = shader_list[i];
+	 break;
+      }
+   }
+
+   if (main == NULL) {
+      linker_error(prog, "%s shader lacks `main'\n",
+		   _mesa_shader_stage_to_string(shader_list[0]->Stage));
+      return NULL;
+   }
+
+   gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
+   linked->ir = new(linked) exec_list;
+   clone_ir_list(mem_ctx, linked->ir, main->ir);
+
+   linked->UniformBlocks = uniform_blocks;
+   linked->NumUniformBlocks = num_uniform_blocks;
+   ralloc_steal(linked, linked->UniformBlocks);
+
+   link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
+   link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
+   link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
+
+   populate_symbol_table(linked);
+
+   /* The a pointer to the main function in the final linked shader (i.e., the
+    * copy of the original shader that contained the main function).
+    */
+   ir_function_signature *const main_sig = get_main_function_signature(linked);
+
+   /* Move any instructions other than variable declarations or function
+    * declarations into main.
+    */
+   exec_node *insertion_point =
+      move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
+			    linked);
+
+   for (unsigned i = 0; i < num_shaders; i++) {
+      if (shader_list[i] == main)
+	 continue;
+
+      insertion_point = move_non_declarations(shader_list[i]->ir,
+					      insertion_point, true, linked);
+   }
+
+   /* Check if any shader needs built-in functions. */
+   bool need_builtins = false;
+   for (unsigned i = 0; i < num_shaders; i++) {
+      if (shader_list[i]->uses_builtin_functions) {
+         need_builtins = true;
+         break;
+      }
+   }
+
+   bool ok;
+   if (need_builtins) {
+      /* Make a temporary array one larger than shader_list, which will hold
+       * the built-in function shader as well.
+       */
+      gl_shader **linking_shaders = (gl_shader **)
+         calloc(num_shaders + 1, sizeof(gl_shader *));
+      memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
+      linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
+
+      ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
+
+      free(linking_shaders);
+   } else {
+      ok = link_function_calls(prog, linked, shader_list, num_shaders);
+   }
+
+
+   if (!ok) {
+      ctx->Driver.DeleteShader(ctx, linked);
+      return NULL;
+   }
+
+   /* At this point linked should contain all of the linked IR, so
+    * validate it to make sure nothing went wrong.
+    */
+   validate_ir_tree(linked->ir);
+
+   /* Set the size of geometry shader input arrays */
+   if (linked->Stage == MESA_SHADER_GEOMETRY) {
+      unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
+      geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
+      foreach_list(n, linked->ir) {
+         ir_instruction *ir = (ir_instruction *) n;
+         ir->accept(&input_resize_visitor);
+      }
+   }
+
+   /* Make a pass over all variable declarations to ensure that arrays with
+    * unspecified sizes have a size specified.  The size is inferred from the
+    * max_array_access field.
+    */
+   array_sizing_visitor v;
+   v.run(linked->ir);
+   v.fixup_unnamed_interface_types();
+
+   return linked;
+}
+
+/**
+ * Update the sizes of linked shader uniform arrays to the maximum
+ * array index used.
+ *
+ * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
+ *
+ *     If one or more elements of an array are active,
+ *     GetActiveUniform will return the name of the array in name,
+ *     subject to the restrictions listed above. The type of the array
+ *     is returned in type. The size parameter contains the highest
+ *     array element index used, plus one. The compiler or linker
+ *     determines the highest index used.  There will be only one
+ *     active uniform reported by the GL per uniform array.
+
+ */
+static void
+update_array_sizes(struct gl_shader_program *prog)
+{
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+	 if (prog->_LinkedShaders[i] == NULL)
+	    continue;
+
+      foreach_list(node, prog->_LinkedShaders[i]->ir) {
+	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+	 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
+	     !var->type->is_array())
+	    continue;
+
+	 /* GL_ARB_uniform_buffer_object says that std140 uniforms
+	  * will not be eliminated.  Since we always do std140, just
+	  * don't resize arrays in UBOs.
+          *
+          * Atomic counters are supposed to get deterministic
+          * locations assigned based on the declaration ordering and
+          * sizes, array compaction would mess that up.
+	  */
+	 if (var->is_in_uniform_block() || var->type->contains_atomic())
+	    continue;
+
+	 unsigned int size = var->data.max_array_access;
+	 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
+	       if (prog->_LinkedShaders[j] == NULL)
+		  continue;
+
+	    foreach_list(node2, prog->_LinkedShaders[j]->ir) {
+	       ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
+	       if (!other_var)
+		  continue;
+
+	       if (strcmp(var->name, other_var->name) == 0 &&
+		   other_var->data.max_array_access > size) {
+		  size = other_var->data.max_array_access;
+	       }
+	    }
+	 }
+
+	 if (size + 1 != var->type->length) {
+	    /* If this is a built-in uniform (i.e., it's backed by some
+	     * fixed-function state), adjust the number of state slots to
+	     * match the new array size.  The number of slots per array entry
+	     * is not known.  It seems safe to assume that the total number of
+	     * slots is an integer multiple of the number of array elements.
+	     * Determine the number of slots per array element by dividing by
+	     * the old (total) size.
+	     */
+	    if (var->num_state_slots > 0) {
+	       var->num_state_slots = (size + 1)
+		  * (var->num_state_slots / var->type->length);
+	    }
+
+	    var->type = glsl_type::get_array_instance(var->type->fields.array,
+						      size + 1);
+	    /* FINISHME: We should update the types of array
+	     * dereferences of this variable now.
+	     */
+	 }
+      }
+   }
+}
+
+/**
+ * Find a contiguous set of available bits in a bitmask.
+ *
+ * \param used_mask     Bits representing used (1) and unused (0) locations
+ * \param needed_count  Number of contiguous bits needed.
+ *
+ * \return
+ * Base location of the available bits on success or -1 on failure.
+ */
+int
+find_available_slots(unsigned used_mask, unsigned needed_count)
+{
+   unsigned needed_mask = (1 << needed_count) - 1;
+   const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
+
+   /* The comparison to 32 is redundant, but without it GCC emits "warning:
+    * cannot optimize possibly infinite loops" for the loop below.
+    */
+   if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
+      return -1;
+
+   for (int i = 0; i <= max_bit_to_test; i++) {
+      if ((needed_mask & ~used_mask) == needed_mask)
+	 return i;
+
+      needed_mask <<= 1;
+   }
+
+   return -1;
+}
+
+
+/**
+ * Assign locations for either VS inputs for FS outputs
+ *
+ * \param prog          Shader program whose variables need locations assigned
+ * \param target_index  Selector for the program target to receive location
+ *                      assignmnets.  Must be either \c MESA_SHADER_VERTEX or
+ *                      \c MESA_SHADER_FRAGMENT.
+ * \param max_index     Maximum number of generic locations.  This corresponds
+ *                      to either the maximum number of draw buffers or the
+ *                      maximum number of generic attributes.
+ *
+ * \return
+ * If locations are successfully assigned, true is returned.  Otherwise an
+ * error is emitted to the shader link log and false is returned.
+ */
+bool
+assign_attribute_or_color_locations(gl_shader_program *prog,
+				    unsigned target_index,
+				    unsigned max_index)
+{
+   /* Mark invalid locations as being used.
+    */
+   unsigned used_locations = (max_index >= 32)
+      ? ~0 : ~((1 << max_index) - 1);
+
+   assert((target_index == MESA_SHADER_VERTEX)
+	  || (target_index == MESA_SHADER_FRAGMENT));
+
+   gl_shader *const sh = prog->_LinkedShaders[target_index];
+   if (sh == NULL)
+      return true;
+
+   /* Operate in a total of four passes.
+    *
+    * 1. Invalidate the location assignments for all vertex shader inputs.
+    *
+    * 2. Assign locations for inputs that have user-defined (via
+    *    glBindVertexAttribLocation) locations and outputs that have
+    *    user-defined locations (via glBindFragDataLocation).
+    *
+    * 3. Sort the attributes without assigned locations by number of slots
+    *    required in decreasing order.  Fragmentation caused by attribute
+    *    locations assigned by the application may prevent large attributes
+    *    from having enough contiguous space.
+    *
+    * 4. Assign locations to any inputs without assigned locations.
+    */
+
+   const int generic_base = (target_index == MESA_SHADER_VERTEX)
+      ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
+
+   const enum ir_variable_mode direction =
+      (target_index == MESA_SHADER_VERTEX)
+      ? ir_var_shader_in : ir_var_shader_out;
+
+
+   /* Temporary storage for the set of attributes that need locations assigned.
+    */
+   struct temp_attr {
+      unsigned slots;
+      ir_variable *var;
+
+      /* Used below in the call to qsort. */
+      static int compare(const void *a, const void *b)
+      {
+	 const temp_attr *const l = (const temp_attr *) a;
+	 const temp_attr *const r = (const temp_attr *) b;
+
+	 /* Reversed because we want a descending order sort below. */
+	 return r->slots - l->slots;
+      }
+   } to_assign[16];
+
+   unsigned num_attr = 0;
+
+   foreach_list(node, sh->ir) {
+      ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+      if ((var == NULL) || (var->data.mode != (unsigned) direction))
+	 continue;
+
+      if (var->data.explicit_location) {
+	 if ((var->data.location >= (int)(max_index + generic_base))
+	     || (var->data.location < 0)) {
+	    linker_error(prog,
+			 "invalid explicit location %d specified for `%s'\n",
+			 (var->data.location < 0)
+			 ? var->data.location
+                         : var->data.location - generic_base,
+			 var->name);
+	    return false;
+	 }
+      } else if (target_index == MESA_SHADER_VERTEX) {
+	 unsigned binding;
+
+	 if (prog->AttributeBindings->get(binding, var->name)) {
+	    assert(binding >= VERT_ATTRIB_GENERIC0);
+	    var->data.location = binding;
+            var->data.is_unmatched_generic_inout = 0;
+	 }
+      } else if (target_index == MESA_SHADER_FRAGMENT) {
+	 unsigned binding;
+	 unsigned index;
+
+	 if (prog->FragDataBindings->get(binding, var->name)) {
+	    assert(binding >= FRAG_RESULT_DATA0);
+	    var->data.location = binding;
+            var->data.is_unmatched_generic_inout = 0;
+
+	    if (prog->FragDataIndexBindings->get(index, var->name)) {
+	       var->data.index = index;
+	    }
+	 }
+      }
+
+      /* If the variable is not a built-in and has a location statically
+       * assigned in the shader (presumably via a layout qualifier), make sure
+       * that it doesn't collide with other assigned locations.  Otherwise,
+       * add it to the list of variables that need linker-assigned locations.
+       */
+      const unsigned slots = var->type->count_attribute_slots();
+      if (var->data.location != -1) {
+	 if (var->data.location >= generic_base && var->data.index < 1) {
+	    /* From page 61 of the OpenGL 4.0 spec:
+	     *
+	     *     "LinkProgram will fail if the attribute bindings assigned
+	     *     by BindAttribLocation do not leave not enough space to
+	     *     assign a location for an active matrix attribute or an
+	     *     active attribute array, both of which require multiple
+	     *     contiguous generic attributes."
+	     *
+	     * I think above text prohibits the aliasing of explicit and
+	     * automatic assignments. But, aliasing is allowed in manual
+	     * assignments of attribute locations. See below comments for
+	     * the details.
+	     *
+	     * From OpenGL 4.0 spec, page 61:
+	     *
+	     *     "It is possible for an application to bind more than one
+	     *     attribute name to the same location. This is referred to as
+	     *     aliasing. This will only work if only one of the aliased
+	     *     attributes is active in the executable program, or if no
+	     *     path through the shader consumes more than one attribute of
+	     *     a set of attributes aliased to the same location. A link
+	     *     error can occur if the linker determines that every path
+	     *     through the shader consumes multiple aliased attributes,
+	     *     but implementations are not required to generate an error
+	     *     in this case."
+	     *
+	     * From GLSL 4.30 spec, page 54:
+	     *
+	     *    "A program will fail to link if any two non-vertex shader
+	     *     input variables are assigned to the same location. For
+	     *     vertex shaders, multiple input variables may be assigned
+	     *     to the same location using either layout qualifiers or via
+	     *     the OpenGL API. However, such aliasing is intended only to
+	     *     support vertex shaders where each execution path accesses
+	     *     at most one input per each location. Implementations are
+	     *     permitted, but not required, to generate link-time errors
+	     *     if they detect that every path through the vertex shader
+	     *     executable accesses multiple inputs assigned to any single
+	     *     location. For all shader types, a program will fail to link
+	     *     if explicit location assignments leave the linker unable
+	     *     to find space for other variables without explicit
+	     *     assignments."
+	     *
+	     * From OpenGL ES 3.0 spec, page 56:
+	     *
+	     *    "Binding more than one attribute name to the same location
+	     *     is referred to as aliasing, and is not permitted in OpenGL
+	     *     ES Shading Language 3.00 vertex shaders. LinkProgram will
+	     *     fail when this condition exists. However, aliasing is
+	     *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
+	     *     This will only work if only one of the aliased attributes
+	     *     is active in the executable program, or if no path through
+	     *     the shader consumes more than one attribute of a set of
+	     *     attributes aliased to the same location. A link error can
+	     *     occur if the linker determines that every path through the
+	     *     shader consumes multiple aliased attributes, but implemen-
+	     *     tations are not required to generate an error in this case."
+	     *
+	     * After looking at above references from OpenGL, OpenGL ES and
+	     * GLSL specifications, we allow aliasing of vertex input variables
+	     * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
+	     *
+	     * NOTE: This is not required by the spec but its worth mentioning
+	     * here that we're not doing anything to make sure that no path
+	     * through the vertex shader executable accesses multiple inputs
+	     * assigned to any single location.
+	     */
+
+	    /* Mask representing the contiguous slots that will be used by
+	     * this attribute.
+	     */
+	    const unsigned attr = var->data.location - generic_base;
+	    const unsigned use_mask = (1 << slots) - 1;
+            const char *const string = (target_index == MESA_SHADER_VERTEX)
+               ? "vertex shader input" : "fragment shader output";
+
+            /* Generate a link error if the requested locations for this
+             * attribute exceed the maximum allowed attribute location.
+             */
+            if (attr + slots > max_index) {
+               linker_error(prog,
+                           "insufficient contiguous locations "
+                           "available for %s `%s' %d %d %d", string,
+                           var->name, used_locations, use_mask, attr);
+               return false;
+            }
+
+	    /* Generate a link error if the set of bits requested for this
+	     * attribute overlaps any previously allocated bits.
+	     */
+	    if ((~(use_mask << attr) & used_locations) != used_locations) {
+               if (target_index == MESA_SHADER_FRAGMENT ||
+                   (prog->IsES && prog->Version >= 300)) {
+                  linker_error(prog,
+                               "overlapping location is assigned "
+                               "to %s `%s' %d %d %d\n", string,
+                               var->name, used_locations, use_mask, attr);
+                  return false;
+               } else {
+                  linker_warning(prog,
+                                 "overlapping location is assigned "
+                                 "to %s `%s' %d %d %d\n", string,
+                                 var->name, used_locations, use_mask, attr);
+               }
+	    }
+
+	    used_locations |= (use_mask << attr);
+	 }
+
+	 continue;
+      }
+
+      to_assign[num_attr].slots = slots;
+      to_assign[num_attr].var = var;
+      num_attr++;
+   }
+
+   /* If all of the attributes were assigned locations by the application (or
+    * are built-in attributes with fixed locations), return early.  This should
+    * be the common case.
+    */
+   if (num_attr == 0)
+      return true;
+
+   qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
+
+   if (target_index == MESA_SHADER_VERTEX) {
+      /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
+       * only be explicitly assigned by via glBindAttribLocation.  Mark it as
+       * reserved to prevent it from being automatically allocated below.
+       */
+      find_deref_visitor find("gl_Vertex");
+      find.run(sh->ir);
+      if (find.variable_found())
+	 used_locations |= (1 << 0);
+   }
+
+   for (unsigned i = 0; i < num_attr; i++) {
+      /* Mask representing the contiguous slots that will be used by this
+       * attribute.
+       */
+      const unsigned use_mask = (1 << to_assign[i].slots) - 1;
+
+      int location = find_available_slots(used_locations, to_assign[i].slots);
+
+      if (location < 0) {
+	 const char *const string = (target_index == MESA_SHADER_VERTEX)
+	    ? "vertex shader input" : "fragment shader output";
+
+	 linker_error(prog,
+		      "insufficient contiguous locations "
+		      "available for %s `%s'",
+		      string, to_assign[i].var->name);
+	 return false;
+      }
+
+      to_assign[i].var->data.location = generic_base + location;
+      to_assign[i].var->data.is_unmatched_generic_inout = 0;
+      used_locations |= (use_mask << location);
+   }
+
+   return true;
+}
+
+
+/**
+ * Demote shader inputs and outputs that are not used in other stages
+ */
+void
+demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
+{
+   foreach_list(node, sh->ir) {
+      ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+      if ((var == NULL) || (var->data.mode != int(mode)))
+	 continue;
+
+      /* A shader 'in' or 'out' variable is only really an input or output if
+       * its value is used by other shader stages.  This will cause the variable
+       * to have a location assigned.
+       */
+      if (var->data.is_unmatched_generic_inout) {
+	 var->data.mode = ir_var_auto;
+      }
+   }
+}
+
+
+/**
+ * Store the gl_FragDepth layout in the gl_shader_program struct.
+ */
+static void
+store_fragdepth_layout(struct gl_shader_program *prog)
+{
+   if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
+      return;
+   }
+
+   struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
+
+   /* We don't look up the gl_FragDepth symbol directly because if
+    * gl_FragDepth is not used in the shader, it's removed from the IR.
+    * However, the symbol won't be removed from the symbol table.
+    *
+    * We're only interested in the cases where the variable is NOT removed
+    * from the IR.
+    */
+   foreach_list(node, ir) {
+      ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+      if (var == NULL || var->data.mode != ir_var_shader_out) {
+         continue;
+      }
+
+      if (strcmp(var->name, "gl_FragDepth") == 0) {
+         switch (var->data.depth_layout) {
+         case ir_depth_layout_none:
+            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
+            return;
+         case ir_depth_layout_any:
+            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
+            return;
+         case ir_depth_layout_greater:
+            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
+            return;
+         case ir_depth_layout_less:
+            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
+            return;
+         case ir_depth_layout_unchanged:
+            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
+            return;
+         default:
+            assert(0);
+            return;
+         }
+      }
+   }
+}
+
+/**
+ * Validate the resources used by a program versus the implementation limits
+ */
+static void
+check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+      struct gl_shader *sh = prog->_LinkedShaders[i];
+
+      if (sh == NULL)
+	 continue;
+
+      if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
+	 linker_error(prog, "Too many %s shader texture samplers",
+		      _mesa_shader_stage_to_string(i));
+      }
+
+      if (sh->num_uniform_components >
+          ctx->Const.Program[i].MaxUniformComponents) {
+         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
+            linker_warning(prog, "Too many %s shader default uniform block "
+                           "components, but the driver will try to optimize "
+                           "them out; this is non-portable out-of-spec "
+			   "behavior\n",
+                           _mesa_shader_stage_to_string(i));
+         } else {
+            linker_error(prog, "Too many %s shader default uniform block "
+			 "components",
+                         _mesa_shader_stage_to_string(i));
+         }
+      }
+
+      if (sh->num_combined_uniform_components >
+	  ctx->Const.Program[i].MaxCombinedUniformComponents) {
+         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
+            linker_warning(prog, "Too many %s shader uniform components, "
+                           "but the driver will try to optimize them out; "
+                           "this is non-portable out-of-spec behavior\n",
+                           _mesa_shader_stage_to_string(i));
+         } else {
+            linker_error(prog, "Too many %s shader uniform components",
+                         _mesa_shader_stage_to_string(i));
+         }
+      }
+   }
+
+   unsigned blocks[MESA_SHADER_STAGES] = {0};
+   unsigned total_uniform_blocks = 0;
+
+   for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
+      for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
+	 if (prog->UniformBlockStageIndex[j][i] != -1) {
+	    blocks[j]++;
+	    total_uniform_blocks++;
+	 }
+      }
+
+      if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
+	 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
+		      prog->NumUniformBlocks,
+		      ctx->Const.MaxCombinedUniformBlocks);
+      } else {
+	 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+            const unsigned max_uniform_blocks =
+               ctx->Const.Program[i].MaxUniformBlocks;
+	    if (blocks[i] > max_uniform_blocks) {
+	       linker_error(prog, "Too many %s uniform blocks (%d/%d)",
+			    _mesa_shader_stage_to_string(i),
+			    blocks[i],
+			    max_uniform_blocks);
+	       break;
+	    }
+	 }
+      }
+   }
+}
+
+/**
+ * Validate shader image resources.
+ */
+static void
+check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+   unsigned total_image_units = 0;
+   unsigned fragment_outputs = 0;
+
+   if (!ctx->Extensions.ARB_shader_image_load_store)
+      return;
+
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+      struct gl_shader *sh = prog->_LinkedShaders[i];
+
+      if (sh) {
+         if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
+            linker_error(prog, "Too many %s shader image uniforms",
+                         _mesa_shader_stage_to_string(i));
+
+         total_image_units += sh->NumImages;
+
+         if (i == MESA_SHADER_FRAGMENT) {
+            foreach_list(node, sh->ir) {
+               ir_variable *var = ((ir_instruction *)node)->as_variable();
+               if (var && var->data.mode == ir_var_shader_out)
+                  fragment_outputs += var->type->count_attribute_slots();
+            }
+         }
+      }
+   }
+
+   if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
+      linker_error(prog, "Too many combined image uniforms");
+
+   if (total_image_units + fragment_outputs >
+       ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
+      linker_error(prog, "Too many combined image uniforms and fragment outputs");
+}
+
+void
+link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+   tfeedback_decl *tfeedback_decls = NULL;
+   unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
+
+   void *mem_ctx = ralloc_context(NULL); // temporary linker context
+
+   prog->LinkStatus = true; /* All error paths will set this to false */
+   prog->Validated = false;
+   prog->_Used = false;
+
+   ralloc_free(prog->InfoLog);
+   prog->InfoLog = ralloc_strdup(NULL, "");
+
+   ralloc_free(prog->UniformBlocks);
+   prog->UniformBlocks = NULL;
+   prog->NumUniformBlocks = 0;
+   for (int i = 0; i < MESA_SHADER_STAGES; i++) {
+      ralloc_free(prog->UniformBlockStageIndex[i]);
+      prog->UniformBlockStageIndex[i] = NULL;
+   }
+
+   ralloc_free(prog->AtomicBuffers);
+   prog->AtomicBuffers = NULL;
+   prog->NumAtomicBuffers = 0;
+   prog->ARB_fragment_coord_conventions_enable = false;
+
+   /* Separate the shaders into groups based on their type.
+    */
+   struct gl_shader **shader_list[MESA_SHADER_STAGES];
+   unsigned num_shaders[MESA_SHADER_STAGES];
+
+   for (int i = 0; i < MESA_SHADER_STAGES; i++) {
+      shader_list[i] = (struct gl_shader **)
+         calloc(prog->NumShaders, sizeof(struct gl_shader *));
+      num_shaders[i] = 0;
+   }
+
+   unsigned min_version = UINT_MAX;
+   unsigned max_version = 0;
+   const bool is_es_prog =
+      (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
+   for (unsigned i = 0; i < prog->NumShaders; i++) {
+      min_version = MIN2(min_version, prog->Shaders[i]->Version);
+      max_version = MAX2(max_version, prog->Shaders[i]->Version);
+
+      if (prog->Shaders[i]->IsES != is_es_prog) {
+	 linker_error(prog, "all shaders must use same shading "
+		      "language version\n");
+	 goto done;
+      }
+
+      prog->ARB_fragment_coord_conventions_enable |=
+         prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
+
+      gl_shader_stage shader_type = prog->Shaders[i]->Stage;
+      shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
+      num_shaders[shader_type]++;
+   }
+
+   /* In desktop GLSL, different shader versions may be linked together.  In
+    * GLSL ES, all shader versions must be the same.
+    */
+   if (is_es_prog && min_version != max_version) {
+      linker_error(prog, "all shaders must use same shading "
+		   "language version\n");
+      goto done;
+   }
+
+   prog->Version = max_version;
+   prog->IsES = is_es_prog;
+
+   /* Geometry shaders have to be linked with vertex shaders.
+    */
+   if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
+       num_shaders[MESA_SHADER_VERTEX] == 0 &&
+       !prog->SeparateShader) {
+      linker_error(prog, "Geometry shader must be linked with "
+		   "vertex shader\n");
+      goto done;
+   }
+
+   /* Compute shaders have additional restrictions. */
+   if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
+       num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
+      linker_error(prog, "Compute shaders may not be linked with any other "
+                   "type of shader\n");
+   }
+
+   for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
+      if (prog->_LinkedShaders[i] != NULL)
+	 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
+
+      prog->_LinkedShaders[i] = NULL;
+   }
+
+   /* Link all shaders for a particular stage and validate the result.
+    */
+   for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
+      if (num_shaders[stage] > 0) {
+         gl_shader *const sh =
+            link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
+                                    num_shaders[stage]);
+
+         if (!prog->LinkStatus)
+            goto done;
+
+         switch (stage) {
+         case MESA_SHADER_VERTEX:
+            validate_vertex_shader_executable(prog, sh);
+            break;
+         case MESA_SHADER_GEOMETRY:
+            validate_geometry_shader_executable(prog, sh);
+            break;
+         case MESA_SHADER_FRAGMENT:
+            validate_fragment_shader_executable(prog, sh);
+            break;
+         }
+         if (!prog->LinkStatus)
+            goto done;
+
+         _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
+      }
+   }
+
+   if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
+      prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
+   else if (num_shaders[MESA_SHADER_VERTEX] > 0)
+      prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
+   else
+      prog->LastClipDistanceArraySize = 0; /* Not used */
+
+   /* Here begins the inter-stage linking phase.  Some initial validation is
+    * performed, then locations are assigned for uniforms, attributes, and
+    * varyings.
+    */
+   cross_validate_uniforms(prog);
+   if (!prog->LinkStatus)
+      goto done;
+
+   unsigned prev;
+
+   for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
+      if (prog->_LinkedShaders[prev] != NULL)
+         break;
+   }
+
+   /* Validate the inputs of each stage with the output of the preceding
+    * stage.
+    */
+   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
+      if (prog->_LinkedShaders[i] == NULL)
+         continue;
+
+      validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
+                                       prog->_LinkedShaders[i]);
+      if (!prog->LinkStatus)
+         goto done;
+
+      cross_validate_outputs_to_inputs(prog,
+                                       prog->_LinkedShaders[prev],
+                                       prog->_LinkedShaders[i]);
+      if (!prog->LinkStatus)
+         goto done;
+
+      prev = i;
+   }
+
+   /* Cross-validate uniform blocks between shader stages */
+   validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
+                                      MESA_SHADER_STAGES);
+   if (!prog->LinkStatus)
+      goto done;
+
+   for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
+      if (prog->_LinkedShaders[i] != NULL)
+         lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
+   }
+
+   /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
+    * it before optimization because we want most of the checks to get
+    * dropped thanks to constant propagation.
+    *
+    * This rule also applies to GLSL ES 3.00.
+    */
+   if (max_version >= (is_es_prog ? 300 : 130)) {
+      struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
+      if (sh) {
+	 lower_discard_flow(sh->ir);
+      }
+   }
+
+   if (!interstage_cross_validate_uniform_blocks(prog))
+      goto done;
+
+   /* Do common optimization before assigning storage for attributes,
+    * uniforms, and varyings.  Later optimization could possibly make
+    * some of that unused.
+    */
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+      if (prog->_LinkedShaders[i] == NULL)
+	 continue;
+
+      detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
+      if (!prog->LinkStatus)
+	 goto done;
+
+      if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
+         lower_clip_distance(prog->_LinkedShaders[i]);
+      }
+
+      while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
+                                    &ctx->ShaderCompilerOptions[i],
+                                    ctx->Const.NativeIntegers))
+	 ;
+   }
+
+   /* Mark all generic shader inputs and outputs as unpaired. */
+   for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
+      if (prog->_LinkedShaders[i] != NULL) {
+         link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
+      }
+   }
+
+   /* FINISHME: The value of the max_attribute_index parameter is
+    * FINISHME: implementation dependent based on the value of
+    * FINISHME: GL_MAX_VERTEX_ATTRIBS.  GL_MAX_VERTEX_ATTRIBS must be
+    * FINISHME: at least 16, so hardcode 16 for now.
+    */
+   if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
+      goto done;
+   }
+
+   if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
+      goto done;
+   }
+
+   unsigned first;
+   for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
+      if (prog->_LinkedShaders[first] != NULL)
+	 break;
+   }
+
+   if (num_tfeedback_decls != 0) {
+      /* From GL_EXT_transform_feedback:
+       *   A program will fail to link if:
+       *
+       *   * the <count> specified by TransformFeedbackVaryingsEXT is
+       *     non-zero, but the program object has no vertex or geometry
+       *     shader;
+       */
+      if (first == MESA_SHADER_FRAGMENT) {
+         linker_error(prog, "Transform feedback varyings specified, but "
+                      "no vertex or geometry shader is present.");
+         goto done;
+      }
+
+      tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
+                                     prog->TransformFeedback.NumVarying);
+      if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
+                                 prog->TransformFeedback.VaryingNames,
+                                 tfeedback_decls))
+         goto done;
+   }
+
+   /* Linking the stages in the opposite order (from fragment to vertex)
+    * ensures that inter-shader outputs written to in an earlier stage are
+    * eliminated if they are (transitively) not used in a later stage.
+    */
+   int last, next;
+   for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
+      if (prog->_LinkedShaders[last] != NULL)
+         break;
+   }
+
+   if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
+      gl_shader *const sh = prog->_LinkedShaders[last];
+
+      if (num_tfeedback_decls != 0 || prog->SeparateShader) {
+         /* There was no fragment shader, but we still have to assign varying
+          * locations for use by transform feedback.
+          */
+         if (!assign_varying_locations(ctx, mem_ctx, prog,
+                                       sh, NULL,
+                                       num_tfeedback_decls, tfeedback_decls,
+                                       0))
+            goto done;
+      }
+
+      do_dead_builtin_varyings(ctx, sh, NULL,
+                               num_tfeedback_decls, tfeedback_decls);
+
+      if (!prog->SeparateShader)
+         demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
+
+      /* Eliminate code that is now dead due to unused outputs being demoted.
+       */
+      while (do_dead_code(sh->ir, false))
+         ;
+   }
+   else if (first == MESA_SHADER_FRAGMENT) {
+      /* If the program only contains a fragment shader...
+       */
+      gl_shader *const sh = prog->_LinkedShaders[first];
+
+      do_dead_builtin_varyings(ctx, NULL, sh,
+                               num_tfeedback_decls, tfeedback_decls);
+
+      if (prog->SeparateShader) {
+         if (!assign_varying_locations(ctx, mem_ctx, prog,
+                                       NULL /* producer */,
+                                       sh /* consumer */,
+                                       0 /* num_tfeedback_decls */,
+                                       NULL /* tfeedback_decls */,
+                                       0 /* gs_input_vertices */))
+            goto done;
+      } else
+         demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
+
+      while (do_dead_code(sh->ir, false))
+         ;
+   }
+
+   next = last;
+   for (int i = next - 1; i >= 0; i--) {
+      if (prog->_LinkedShaders[i] == NULL)
+         continue;
+
+      gl_shader *const sh_i = prog->_LinkedShaders[i];
+      gl_shader *const sh_next = prog->_LinkedShaders[next];
+      unsigned gs_input_vertices =
+         next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
+
+      if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
+                next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
+                tfeedback_decls, gs_input_vertices))
+         goto done;
+
+      do_dead_builtin_varyings(ctx, sh_i, sh_next,
+                next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
+                tfeedback_decls);
+
+      demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
+      demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
+
+      /* Eliminate code that is now dead due to unused outputs being demoted.
+       */
+      while (do_dead_code(sh_i->ir, false))
+         ;
+      while (do_dead_code(sh_next->ir, false))
+         ;
+
+      /* This must be done after all dead varyings are eliminated. */
+      if (!check_against_output_limit(ctx, prog, sh_i))
+         goto done;
+      if (!check_against_input_limit(ctx, prog, sh_next))
+         goto done;
+
+      next = i;
+   }
+
+   if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
+      goto done;
+
+   update_array_sizes(prog);
+   link_assign_uniform_locations(prog);
+   link_assign_atomic_counter_resources(ctx, prog);
+   store_fragdepth_layout(prog);
+
+   check_resources(ctx, prog);
+   check_image_resources(ctx, prog);
+   link_check_atomic_counter_resources(ctx, prog);
+
+   if (!prog->LinkStatus)
+      goto done;
+
+   /* OpenGL ES requires that a vertex shader and a fragment shader both be
+    * present in a linked program. GL_ARB_ES2_compatibility doesn't say
+    * anything about shader linking when one of the shaders (vertex or
+    * fragment shader) is absent. So, the extension shouldn't change the
+    * behavior specified in GLSL specification.
+    */
+   if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
+      if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
+	 linker_error(prog, "program lacks a vertex shader\n");
+      } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
+	 linker_error(prog, "program lacks a fragment shader\n");
+      }
+   }
+
+   /* FINISHME: Assign fragment shader output locations. */
+
+done:
+   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+      free(shader_list[i]);
+      if (prog->_LinkedShaders[i] == NULL)
+	 continue;
+
+      /* Do a final validation step to make sure that the IR wasn't
+       * invalidated by any modifications performed after intrastage linking.
+       */
+      validate_ir_tree(prog->_LinkedShaders[i]->ir);
+
+      /* Retain any live IR, but trash the rest. */
+      reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
+
+      /* The symbol table in the linked shaders may contain references to
+       * variables that were removed (e.g., unused uniforms).  Since it may
+       * contain junk, there is no possible valid use.  Delete it and set the
+       * pointer to NULL.
+       */
+      delete prog->_LinkedShaders[i]->symbols;
+      prog->_LinkedShaders[i]->symbols = NULL;
+   }
+
+   ralloc_free(mem_ctx);
+}