blob: 1a36e0f10e6208f8585eaa1d57cd9d47ab93f78c [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// XGL tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Basic rendering tests
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <iostream>
#include <fstream>
using namespace std;
#include <xgl.h>
#include "gtest-1.7.0/include/gtest/gtest.h"
#include "xgldevice.h"
#include "xglimage.h"
#include "icd-bil.h"
#define GLM_FORCE_RADIANS
#include "glm/glm.hpp"
#include <glm/gtc/matrix_transform.hpp>
#include "xglrenderframework.h"
#undef ASSERT_NO_FATAL_FAILURE
#define ASSERT_NO_FATAL_FAILURE(x) x
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
struct Vertex
{
XGL_FLOAT posX, posY, posZ, posW; // Position data
XGL_FLOAT r, g, b, a; // Color
};
#define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f
static const Vertex g_vbData[] =
{
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
};
// These values are used in a few places
static const int g_UniformBufferCount = 16;
static const int g_SamplerCount = 3;
static const int g_TextureCount = 3;
class XglRenderTest : public XglRenderFramework
{
public:
void InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride, const void* vertices );
void InitTexture(int textureSlot = 0, int* color = 0);
void InitMultipleTextures(int textureCount, int* colors);
void InitSampler(int samplerSlot = 0);
void InitMultipleSamplers(int samplerCount);
void InitUniformBuffer(int constantCount, int constantSize, int constantIndex, const void* data);
void DrawTriangleTest(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleWithVertexFetch(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleFSUniformBlockBinding(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleVSUniformBlock(const char *vertShaderText, const char *fragShaderText);
void DrawTexturedTriangle(const char *vertShaderText, const char *fragShaderText);
void DrawVSTexture(const char *vertShaderText, const char *fragShaderText);
void DrawSamplerBindingsTriangle(const char *vertShaderText, const char *fragShaderText, int textureCount, int samplerCount);
void CreatePipelineWithVertexFetch(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void CreatePipelineFSUniformBlockBinding(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps, int bufferCount);
void CreatePipelineVSUniform(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void CreatePipelineSingleTextureAndSampler(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void CreatePipelineMultipleTexturesAndSamplers(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps, int textureCount, int samplerCount);
protected:
XGL_IMAGE m_texture[g_TextureCount];
XGL_IMAGE_VIEW m_textureView[g_TextureCount];
XGL_IMAGE_VIEW_ATTACH_INFO m_textureViewInfo[g_TextureCount];
XGL_GPU_MEMORY m_textureMem[g_TextureCount];
XGL_SAMPLER m_sampler[g_SamplerCount];
XGL_GPU_MEMORY m_uniformBufferMem[g_UniformBufferCount];
XGL_MEMORY_VIEW_ATTACH_INFO m_uniformBufferView[g_UniformBufferCount];
// XGL_APPLICATION_INFO app_info;
// XGL_PHYSICAL_GPU objs[MAX_GPUS];
// XGL_UINT gpu_count;
// XGL_GPU_MEMORY m_descriptor_set_mem;
// XGL_GPU_MEMORY m_pipe_mem;
// XglDevice *m_device;
// XGL_CMD_BUFFER m_cmdBuffer;
// XGL_UINT32 m_numVertices;
// XGL_MEMORY_VIEW_ATTACH_INFO m_vtxBufferView;
// XGL_MEMORY_VIEW_ATTACH_INFO m_constantBufferView;
// XGL_GPU_MEMORY m_vtxBufferMem;
// XGL_GPU_MEMORY m_constantBufferMem;
// XGL_UINT32 m_numMemRefs;
// XGL_MEMORY_REF m_memRefs[5];
// XGL_RASTER_STATE_OBJECT m_stateRaster;
// XGL_COLOR_BLEND_STATE_OBJECT m_colorBlend;
// XGL_VIEWPORT_STATE_OBJECT m_stateViewport;
// XGL_DEPTH_STENCIL_STATE_OBJECT m_stateDepthStencil;
// XGL_MSAA_STATE_OBJECT m_stateMsaa;
// XGL_DESCRIPTOR_SET m_rsrcDescSet;
virtual void SetUp() {
this->app_info.sType = XGL_STRUCTURE_TYPE_APPLICATION_INFO;
this->app_info.pNext = NULL;
this->app_info.pAppName = (const XGL_CHAR *) "compiler render_tests";
this->app_info.appVersion = 1;
this->app_info.pEngineName = (const XGL_CHAR *) "unittest";
this->app_info.engineVersion = 1;
this->app_info.apiVersion = XGL_MAKE_VERSION(0, 22, 0);
for (int i = 0; i < g_TextureCount; ++i) {
m_textureViewInfo[i].sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
}
InitFramework();
}
virtual void TearDown() {
// Clean up resources before we reset
ShutdownFramework();
}
};
// this function will create the vertex buffer and fill it with the mesh data
void XglRenderTest::InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride,
const void* vertices )
{
XGL_RESULT err = XGL_SUCCESS;
assert( numVertices * vbStride > 0 );
m_numVertices = numVertices;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
XGL_UINT8 *pData;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = numVertices * vbStride;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(device(), &alloc_info, &m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
err = xglMapMemory(m_vtxBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, vertices, alloc_info.allocationSize);
err = xglUnmapMemory(m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
// set up the memory view for the vertex buffer
this->m_vtxBufferView.stride = vbStride;
this->m_vtxBufferView.range = numVertices * vbStride;
this->m_vtxBufferView.offset = 0;
this->m_vtxBufferView.mem = m_vtxBufferMem;
this->m_vtxBufferView.format.channelFormat = XGL_CH_FMT_UNDEFINED;
this->m_vtxBufferView.format.numericFormat = XGL_NUM_FMT_UNDEFINED;
}
void XglRenderTest::InitTexture(int textureSlot, int* color)
{
#define DEMO_TEXTURE_COUNT 1
const XGL_FORMAT tex_format = { XGL_CH_FMT_R8G8B8A8, XGL_NUM_FMT_UNORM };
const XGL_INT tex_width = 16;
const XGL_INT tex_height = 16;
uint32_t tex_colors[DEMO_TEXTURE_COUNT][2];
// assign the texture color with parameter
assert(1 == DEMO_TEXTURE_COUNT);
if (color != NULL) {
tex_colors[0][0] = *color;
tex_colors[0][1] = *color;
} else {
tex_colors[0][0] = 0xff0000ff;
tex_colors[0][1] = 0xff00ff00;
}
XGL_RESULT err;
XGL_UINT i;
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
const XGL_IMAGE_CREATE_INFO image = {
.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = XGL_IMAGE_2D,
.format = tex_format,
.extent = { tex_width, tex_height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = XGL_LINEAR_TILING,
.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_READ_BIT,
.flags = 0,
};
XGL_MEMORY_ALLOC_INFO mem_alloc;
mem_alloc.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.alignment = 0;
mem_alloc.flags = 0;
mem_alloc.heapCount = 0;
mem_alloc.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
XGL_IMAGE_VIEW_CREATE_INFO view;
view.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = XGL_NULL_HANDLE;
view.viewType = XGL_IMAGE_VIEW_2D;
view.format = image.format;
view.channels.r = XGL_CHANNEL_SWIZZLE_R;
view.channels.g = XGL_CHANNEL_SWIZZLE_G;
view.channels.b = XGL_CHANNEL_SWIZZLE_B;
view.channels.a = XGL_CHANNEL_SWIZZLE_A;
view.subresourceRange.aspect = XGL_IMAGE_ASPECT_COLOR;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.mipLevels = 1;
view.subresourceRange.baseArraySlice = 0;
view.subresourceRange.arraySize = 1;
view.minLod = 0.0f;
XGL_MEMORY_REQUIREMENTS mem_reqs;
XGL_SIZE mem_reqs_size= sizeof(XGL_MEMORY_REQUIREMENTS);
/* create image */
err = xglCreateImage(device(), &image, &m_texture[textureSlot]);
assert(!err);
err = xglGetObjectInfo(m_texture[textureSlot],
XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, &mem_reqs);
assert(!err && mem_reqs_size == sizeof(mem_reqs));
mem_alloc.allocationSize = mem_reqs.size;
mem_alloc.alignment = mem_reqs.alignment;
mem_alloc.heapCount = mem_reqs.heapCount;
memcpy(mem_alloc.heaps, mem_reqs.heaps,
sizeof(mem_reqs.heaps[0]) * mem_reqs.heapCount);
/* allocate memory */
err = xglAllocMemory(device(), &mem_alloc, &m_textureMem[textureSlot]);
assert(!err);
/* bind memory */
err = xglBindObjectMemory(m_texture[textureSlot], m_textureMem[textureSlot], 0);
assert(!err);
/* create image view */
view.image = m_texture[textureSlot];
err = xglCreateImageView(device(), &view, &m_textureView[textureSlot]);
assert(!err);
}
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
const XGL_IMAGE_SUBRESOURCE subres = {
.aspect = XGL_IMAGE_ASPECT_COLOR,
.mipLevel = 0,
.arraySlice = 0,
};
XGL_SUBRESOURCE_LAYOUT layout;
XGL_SIZE layout_size = sizeof(layout);
XGL_VOID *data;
XGL_INT x, y;
err = xglGetImageSubresourceInfo(m_texture[textureSlot], &subres,
XGL_INFO_TYPE_SUBRESOURCE_LAYOUT, &layout_size, &layout);
assert(!err && layout_size == sizeof(layout));
err = xglMapMemory(m_textureMem[textureSlot], 0, &data);
assert(!err);
for (y = 0; y < tex_height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + layout.rowPitch * y);
for (x = 0; x < tex_width; x++)
row[x] = tex_colors[i][(x & 1) ^ (y & 1)];
}
err = xglUnmapMemory(m_textureMem[textureSlot]);
assert(!err);
}
m_textureViewInfo[textureSlot].view = m_textureView[textureSlot];
}
void XglRenderTest::InitMultipleTextures(int textureCount, int* colors)
{
for (int i = 0; i < textureCount; ++i)
InitTexture(i, &colors[i]);
}
void XglRenderTest::InitMultipleSamplers(const int samplerCount)
{
XGL_RESULT err;
for (int i = 0; i < samplerCount; ++i) {
XGL_SAMPLER_CREATE_INFO samplerCreateInfo = {};
samplerCreateInfo.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.minFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.mipMode = XGL_TEX_MIPMAP_BASE;
samplerCreateInfo.addressU = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressV = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressW = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.maxAnisotropy = 0.0;
samplerCreateInfo.compareFunc = XGL_COMPARE_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE;
err = xglCreateSampler(device(),&samplerCreateInfo, &m_sampler[i]);
ASSERT_XGL_SUCCESS(err);
}
}
void XglRenderTest::InitSampler(int samplerSlot)
{
XGL_RESULT err;
XGL_SAMPLER_CREATE_INFO samplerCreateInfo = {};
samplerCreateInfo.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.minFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.mipMode = XGL_TEX_MIPMAP_BASE;
samplerCreateInfo.addressU = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressV = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressW = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.maxAnisotropy = 0.0;
samplerCreateInfo.compareFunc = XGL_COMPARE_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE;
err = xglCreateSampler(device(),&samplerCreateInfo, &m_sampler[samplerSlot]);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::InitUniformBuffer(int constantCount, int constantSize,
int constantIndex, const void* data)
{
// based on XglRenderFramework::InitConstantBuffer
// mainly add an index when selecting which buffer you are creating
XGL_RESULT err = XGL_SUCCESS;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
XGL_UINT8 *pData;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = constantCount * constantSize;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(device(), &alloc_info, &m_uniformBufferMem[constantIndex]);
ASSERT_XGL_SUCCESS(err);
err = xglMapMemory(m_uniformBufferMem[constantIndex], 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, data, alloc_info.allocationSize);
err = xglUnmapMemory(m_uniformBufferMem[constantIndex]);
ASSERT_XGL_SUCCESS(err);
// set up the memory view for the constant buffer
this->m_uniformBufferView[constantIndex].stride = 16;
this->m_uniformBufferView[constantIndex].range = alloc_info.allocationSize;
this->m_uniformBufferView[constantIndex].offset = 0;
this->m_uniformBufferView[constantIndex].mem = m_uniformBufferMem[constantIndex];
this->m_uniformBufferView[constantIndex].format.channelFormat = XGL_CH_FMT_R32G32B32A32;
this->m_uniformBufferView[constantIndex].format.numericFormat = XGL_NUM_FMT_FLOAT;
}
void XglRenderTest::DrawTriangleTest(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreateDefaultPipeline(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const int constantCount = 4;
const float constants[constantCount] = { 0.5, 0.5, 0.5, 1.0 };
InitConstantBuffer(constantCount, sizeof(constants[0]), (const void*) constants);
// Create descriptor set for a uniform resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTexturedTriangle(const char *vertShaderText, const char *fragShaderText)
{
// based on DrawTriangleTwoUniformsFS
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineSingleTextureAndSampler(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Enable our single sampler
ASSERT_NO_FATAL_FAILURE(InitSampler());
// Enable our single texture
ASSERT_NO_FATAL_FAILURE(InitTexture());
// Create descriptor set for a texture and sampler resources
const int slotCount = 2;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the sampler and image views to the descriptor set
// ensure this matches order set in CreatePipelineSingleTextureAndSampler
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachImageViewDescriptors( m_rsrcDescSet, 0, 1, &m_textureViewInfo[0] );
xglAttachSamplerDescriptors(m_rsrcDescSet, 1, 1, &m_sampler[0]);
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTriangleVSUniformBlock(const char *vertShaderText, const char *fragShaderText)
{
// sourced from DrawTriangleVSUniform
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineVSUniform(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Let's populate our buffer with the following:
// vec4 red;
// vec4 green;
// vec4 blue;
// vec4 white;
const int valCount = 4 * 4;
const float bufferVals[valCount] = { 1.0, 0.0, 0.0, 1.0,
0.0, 1.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0 };
InitConstantBuffer(valCount, sizeof(bufferVals[0]), (const void*) bufferVals);
// Create descriptor set for a uniform resource
const int slotCount = 1;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::CreatePipelineWithVertexFetch(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1; // Vertex buffer only
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_VERTEX_INPUT_BINDING_DESCRIPTION vi_binding = {
sizeof(g_vbData[0]), // strideInBytes; Distance between vertices in bytes (0 = no advancement)
XGL_VERTEX_INPUT_STEP_RATE_VERTEX // stepRate; // Rate at which binding is incremented
};
// this is the current description of g_vbData
XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION vi_attribs[2];
vi_attribs[0].binding = 0; // index into vertexBindingDescriptions
vi_attribs[0].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[0].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[0].offsetInBytes = 0; // Offset of first element in bytes from base of vertex
vi_attribs[1].binding = 0; // index into vertexBindingDescriptions
vi_attribs[1].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[1].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[1].offsetInBytes = 16; // Offset of first element in bytes from base of vertex
XGL_PIPELINE_VERTEX_INPUT_CREATE_INFO vi_state = {
XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType;
&ps_stage, // pNext;
1, // bindingCount
&vi_binding, // pVertexBindingDescriptions;
2, // attributeCount; // number of attributes
vi_attribs // pVertexAttributeDescriptions;
};
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&vi_state, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::CreatePipelineVSUniform(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
const int vsSlots = 1; // Uniform buffer only
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = vsSlots;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( vsSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
slotInfo[0].shaderEntityIndex = 0;
slotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = vsSlots;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::CreatePipelineFSUniformBlockBinding(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps, const int bufferCount)
{
// based on CreateDefaultPipeline
// only difference is number of constant buffers
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
// const int slots = 4;
// assert (slots == bufferCount); // update as needed
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( bufferCount * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
for (int i = 0; i < bufferCount - 1; ++i) {
// Note: These are all constant buffers
slotInfo[i].shaderEntityIndex = i;
slotInfo[i].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
}
slotInfo[bufferCount - 1].shaderEntityIndex = 18;
slotInfo[bufferCount - 1].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
ps_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = bufferCount;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::CreatePipelineSingleTextureAndSampler(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
// based on CreatePipelineVSUniform
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
const int vsSlots = 2; // One texture, one sampler
// Create descriptor set for single texture and sampler
XGL_DESCRIPTOR_SET_CREATE_INFO vsDescriptorInfo = {};
vsDescriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
vsDescriptorInfo.slots = vsSlots;
err = xglCreateDescriptorSet( device(), &vsDescriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// Assign the slots, note that only t0 and s0 will work as of writing this test
XGL_DESCRIPTOR_SLOT_INFO *vsSlotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( vsSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
vsSlotInfo[0].shaderEntityIndex = 0;
vsSlotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
vsSlotInfo[1].shaderEntityIndex = 0;
vsSlotInfo[1].slotObjectType = XGL_SLOT_SHADER_SAMPLER;
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) vsSlotInfo;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = vsSlots;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
const int psSlots = 2; // One texture, one sampler
// Create descriptor set for single texture and sampler
XGL_DESCRIPTOR_SET_CREATE_INFO psDescriptorInfo = {};
psDescriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
psDescriptorInfo.slots = psSlots;
err = xglCreateDescriptorSet( device(), &psDescriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// Assign the slots, note that only t0 and s0 will work as of writing this test
XGL_DESCRIPTOR_SLOT_INFO *psSlotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( psSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
psSlotInfo[0].shaderEntityIndex = 0;
psSlotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
psSlotInfo[1].shaderEntityIndex = 0;
psSlotInfo[1].slotObjectType = XGL_SLOT_SHADER_SAMPLER;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) psSlotInfo;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = psSlots;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::CreatePipelineMultipleTexturesAndSamplers(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps,
int textureCount, int samplerCount)
{
// based on CreatePipelineSingleTextureAndSampler
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
const int psSlots = textureCount + samplerCount;
// Create descriptor set for single texture and sampler
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = psSlots;
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// Assign the slots, note that only t0 and s0 will work as of writing this test
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( psSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
int slotIndex = 0;
for (int i = 0; i < textureCount - 1; ++i) {
slotInfo[slotIndex].shaderEntityIndex = i;
slotInfo[slotIndex++].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
}
slotInfo[slotIndex].shaderEntityIndex = 12;
slotInfo[slotIndex++].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
for (int i = 0; i < samplerCount - 1; ++i) {
slotInfo[slotIndex].shaderEntityIndex = i;
slotInfo[slotIndex++].slotObjectType = XGL_SLOT_SHADER_SAMPLER;
}
slotInfo[slotIndex].shaderEntityIndex = 12;
slotInfo[slotIndex++].slotObjectType = XGL_SLOT_SHADER_SAMPLER;
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = psSlots;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::DrawTriangleWithVertexFetch(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitMesh(sizeof(g_vbData)/sizeof(g_vbData[0]), sizeof(g_vbData[0]), g_vbData));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineWithVertexFetch(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 6, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTriangleFSUniformBlockBinding(const char *vertShaderText, const char *fragShaderText)
{
// sourced from DrawTriangleFSUniformBlock
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
const int bufferCount = 4;
ASSERT_NO_FATAL_FAILURE(CreatePipelineFSUniformBlockBinding(&pipeline, vs, ps, bufferCount));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// We're going to create a number of uniform buffers, and then allow
// the shader to select which it wants to read from with a binding
// Let's populate the buffers with a single color each:
// layout (std140, binding = 0) uniform bufferVals { vec4 red; } myRedVal;
// layout (std140, binding = 1) uniform bufferVals { vec4 green; } myGreenVal;
// layout (std140, binding = 2) uniform bufferVals { vec4 blue; } myBlueVal;
// layout (std140, binding = 3) uniform bufferVals { vec4 white; } myWhiteVal;
assert(4 == bufferCount); // update the following code if you want more than 4
const float redVals[4] = { 1.0, 0.0, 0.0, 1.0 };
const float greenVals[4] = { 0.0, 1.0, 0.0, 1.0 };
const float blueVals[4] = { 0.0, 0.0, 1.0, 1.0 };
const float whiteVals[4] = { 1.0, 1.0, 1.0, 1.0 };
const int redCount = sizeof(redVals) / sizeof(float);
const int greenCount = sizeof(greenVals) / sizeof(float);
const int blueCount = sizeof(blueVals) / sizeof(float);
const int whiteCount = sizeof(whiteVals) / sizeof(float);
int index = 0;
InitUniformBuffer(redCount, sizeof(redVals[0]), index++, (const void *) redVals);
InitUniformBuffer(greenCount, sizeof(greenVals[0]), index++, (const void *) greenVals);
InitUniformBuffer(blueCount, sizeof(blueVals[0]), index++, (const void *) blueVals);
InitUniformBuffer(whiteCount, sizeof(whiteVals[0]), index++, (const void *) whiteVals);
// Create descriptor set for a uniform resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = bufferCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
for(int i = 0; i < bufferCount; ++i)
xglAttachMemoryViewDescriptors( m_rsrcDescSet, i, 1, &m_uniformBufferView[i] );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawSamplerBindingsTriangle(const char *vertShaderText, const char *fragShaderText,
int textureCount, int samplerCount)
{
// based on DrawTexturedTriangle
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineMultipleTexturesAndSamplers(&pipeline, vs, ps, textureCount, samplerCount));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create a few texture/sampler pairs
int textureColors[16];
assert(textureCount < 16);
textureColors[0] = 0xFF0000FF; //red
textureColors[1] = 0xFF00FF00; //green
textureColors[2] = 0xFFFF0000; //blue
ASSERT_NO_FATAL_FAILURE(InitMultipleSamplers(samplerCount));
ASSERT_NO_FATAL_FAILURE(InitMultipleTextures(textureCount, textureColors));
// Create descriptor set for a texture and sampler resources
const int slotCount = textureCount + samplerCount;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the sampler and image views to the descriptor set
// ensure this matches order set in CreatePipelineSingleTextureAndSampler
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
int descSlot = 0;
for (int i = 0; i < textureCount; ++i)
xglAttachImageViewDescriptors( m_rsrcDescSet, descSlot++, 1, &m_textureViewInfo[i]);
for (int i = 0; i < samplerCount; ++i)
xglAttachSamplerDescriptors(m_rsrcDescSet, descSlot++, 1, &m_sampler[i]);
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
TEST_F(XglRenderTest, GreenTriangle)
{
static const char *vertShaderText =
"#version 130\n"
"vec2 vertices[3];\n"
"void main() {\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(0,1,0,1);\n"
"}\n";
DrawTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, MixTriangle)
{
// This tests location applied to varyings. Notice that we have switched foo
// and bar in the FS. The triangle should be blended with red, green and blue
// corners.
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location=0) out vec4 bar;\n"
"layout (location=1) out vec4 foo;\n"
"layout (location=2) out float scale;\n"
"vec2 vertices[3];\n"
"void main() {\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
"vec4 colors[3];\n"
" colors[0] = vec4(1.0, 0.0, 0.0, 1.0);\n"
" colors[1] = vec4(0.0, 1.0, 0.0, 1.0);\n"
" colors[2] = vec4(0.0, 0.0, 1.0, 1.0);\n"
" foo = colors[gl_VertexID % 3];\n"
" bar = vec4(1.0, 1.0, 1.0, 1.0);\n"
" scale = 1.0;\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 1) in vec4 bar;\n"
"layout (location = 0) in vec4 foo;\n"
"layout (location = 2) in float scale;\n"
"void main() {\n"
" gl_FragColor = bar * scale + foo * (1.0-scale);\n"
"}\n";
DrawTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleWithVertexFetch)
{
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
//XYZ1( 0.f, 0.f, 0.f )
"layout (location = 1) in vec4 inColor;\n"
//XYZ1( -1, -1, -1 )
"layout (location = 0) in vec4 pos;\n"
"layout (location = 0) out vec4 outColor;\n"
"void main() {\n"
" outColor = inColor;\n"
" gl_Position = pos;\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec4 color;\n"
"void main() {\n"
" gl_FragColor = color;\n"
"}\n";
DrawTriangleWithVertexFetch(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriVertFetchAndVertID)
{
// This tests that attributes work in the presence of gl_VertexID
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
//XYZ1( -1, -1, -1 )
"layout (location = 0) in vec4 pos;\n"
//XYZ1( 0.f, 0.f, 0.f )
"layout (location = 1) in vec4 inColor;\n"
"layout (location = 0) out vec4 outColor;\n"
"void main() {\n"
" outColor = inColor;\n"
" vec4 vertices[3];"
" vertices[gl_VertexID % 3] = pos;\n"
" gl_Position = vertices[(gl_VertexID + 3) % 3];\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec4 color;\n"
"void main() {\n"
" gl_FragColor = color;\n"
"}\n";
DrawTriangleWithVertexFetch(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriVertFetchDeadAttr)
{
// This tests that attributes work in the presence of gl_VertexID
// and a dead attribute in position 0. Draws a triangle with yellow,
// red and green corners, starting at top and going clockwise.
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
//XYZ1( -1, -1, -1 )
"layout (location = 0) in vec4 pos;\n"
//XYZ1( 0.f, 0.f, 0.f )
"layout (location = 1) in vec4 inColor;\n"
"layout (location = 0) out vec4 outColor;\n"
"void main() {\n"
" outColor = inColor;\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec4 color;\n"
"void main() {\n"
" gl_FragColor = color;\n"
"}\n";
DrawTriangleWithVertexFetch(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TexturedTriangle)
{
// The expected result from this test is a red and green checkered triangle
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) out vec2 samplePos;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" vec2 positions[3];"
" positions[0] = vec2( 0.0, 0.0);\n"
" positions[1] = vec2( 1.0, 0.0);\n"
" positions[2] = vec2( 1.0, 1.0);\n"
" samplePos = positions[gl_VertexID % 3];\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec2 samplePos;\n"
"layout (binding = 0) uniform sampler2D surface;\n"
"layout (location=0) out vec4 outColor;\n"
"void main() {\n"
" vec4 texColor = textureLod(surface, samplePos, 0.0);\n"
" outColor = texColor;\n"
"}\n";
DrawTexturedTriangle(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TexturedTriangleClip)
{
// The expected result from this test is a red and green checkered triangle
static const char *vertShaderText =
"#version 330\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) out vec2 samplePos;\n"
"out gl_PerVertex {\n"
" vec4 gl_Position;\n"
" float gl_ClipDistance[1];\n"
"};\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" vec2 positions[3];"
" positions[0] = vec2( 0.0, 0.0);\n"
" positions[1] = vec2( 1.0, 0.0);\n"
" positions[2] = vec2( 1.0, 1.0);\n"
" float dists[3];\n"
" dists[0] = 1.0;\n"
" dists[1] = 1.0;\n"
" dists[2] = -1.0;\n"
" gl_ClipDistance[0] = dists[gl_VertexID % 3];\n"
" samplePos = positions[gl_VertexID % 3];\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec2 samplePos;\n"
"layout (binding = 0) uniform sampler2D surface;\n"
"layout (location=0) out vec4 outColor;\n"
"void main() {\n"
//" vec4 texColor = textureLod(surface, samplePos, 0.0 + gl_ClipDistance[0]);\n"
" vec4 texColor = textureLod(surface, samplePos, 0.0);\n"
" outColor = texColor;\n"
"}\n";
bool backupBIL = XglTestFramework::m_use_bil;
if (XglTestFramework::m_use_bil) {
XglTestFramework::m_use_bil = false;
printf("Forcing GLSL for TexturedTriangleClip\n");
}
DrawTexturedTriangle(vertShaderText, fragShaderText);
XglTestFramework::m_use_bil = backupBIL;
}
TEST_F(XglRenderTest, VSTexture)
{
// The expected result from this test is a green and red triangle;
// one red vertex on the left, two green vertices on the right.
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) out vec4 texColor;\n"
"layout (binding = 0) uniform sampler2D surface;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" vec2 positions[3];"
" positions[0] = vec2( 0.0, 0.0);\n"
" positions[1] = vec2( 0.25, 0.1);\n"
" positions[2] = vec2( 0.1, 0.25);\n"
" vec2 samplePos = positions[gl_VertexID % 3];\n"
" texColor = textureLod(surface, samplePos, 0.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec4 texColor;\n"
"void main() {\n"
" gl_FragColor = texColor;\n"
"}\n";
DrawTexturedTriangle(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, SamplerBindingsTriangle)
{
// This test sets bindings on the samplers
// For now we are asserting that sampler and texture pairs
// march in lock step, and are set via GLSL binding. This can
// and will probably change.
// The sampler bindings should match the sampler and texture slot
// number set up by the application.
// This test will result in a blue triangle
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) out vec4 samplePos;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" vec2 positions[3];"
" positions[0] = vec2( 0.0, 0.0);\n"
" positions[1] = vec2( 1.0, 0.0);\n"
" positions[2] = vec2( 1.0, 1.0);\n"
" samplePos = vec4(positions[gl_VertexID % 3], 0.0, 0.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec4 samplePos;\n"
"layout (binding = 0) uniform sampler2D surface0;\n"
"layout (binding = 1) uniform sampler2D surface1;\n"
"layout (binding = 12) uniform sampler2D surface2;\n"
"void main() {\n"
" gl_FragColor = textureLod(surface2, samplePos.xy, 0.0);\n"
"}\n";
int textureCount = g_TextureCount;
int samplerCount = g_SamplerCount;
DrawSamplerBindingsTriangle(vertShaderText, fragShaderText, textureCount, samplerCount);
}
TEST_F(XglRenderTest, TriangleVSUniformBlock)
{
// The expected result from this test is a blue triangle
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) out vec4 outColor;\n"
"layout (std140, binding = 0) uniform bufferVals {\n"
" vec4 red;\n"
" vec4 green;\n"
" vec4 blue;\n"
" vec4 white;\n"
"} myBufferVals;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" outColor = myBufferVals.blue;\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) in vec4 inColor;\n"
"void main() {\n"
" gl_FragColor = inColor;\n"
"}\n";
DrawTriangleVSUniformBlock(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleFSUniformBlockBinding)
{
// This test allows the shader to select which buffer it is
// pulling from using layout binding qualifier.
// There are corresponding changes in the compiler stack that
// will select the buffer using binding directly.
// The binding number should match the slot number set up by
// the application.
// The expected result from this test is a purple triangle
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (std140, binding = 0) uniform redVal { vec4 color; } myRedVal\n;"
"layout (std140, binding = 1) uniform greenVal { vec4 color; } myGreenVal\n;"
"layout (std140, binding = 2) uniform blueVal { vec4 color; } myBlueVal\n;"
"layout (std140, binding = 18) uniform whiteVal { vec4 color; } myWhiteVal\n;"
"void main() {\n"
" gl_FragColor = myBlueVal.color;\n"
" gl_FragColor += myRedVal.color;\n"
"}\n";
DrawTriangleFSUniformBlockBinding(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleFSAnonymousUniformBlockBinding)
{
// This test is the same as TriangleFSUniformBlockBinding, but
// it does not provide an instance name.
// The expected result from this test is a purple triangle
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 430\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (location = 0) uniform vec4 foo;\n"
"layout (location = 1) uniform vec4 bar;\n"
"layout (std140, binding = 0) uniform redVal { vec4 red; };"
"layout (std140, binding = 1) uniform greenVal { vec4 green; };"
"layout (std140, binding = 2) uniform blueVal { vec4 blue; };"
"layout (std140, binding = 18) uniform whiteVal { vec4 white; };"
"void main() {\n"
" gl_FragColor = blue;\n"
" gl_FragColor += red;\n"
"}\n";
DrawTriangleFSUniformBlockBinding(vertShaderText, fragShaderText);
}
int main(int argc, char **argv) {
int result;
::testing::InitGoogleTest(&argc, argv);
XglTestFramework::InitArgs(&argc, argv);
::testing::Environment* const xgl_test_env = ::testing::AddGlobalTestEnvironment(new TestEnvironment);
result = RUN_ALL_TESTS();
XglTestFramework::Finish();
return result;
}