blob: c11d350c12cd84a0edb56a2f64c177e5f5dd6d3b [file] [log] [blame]
/*
* XGL Tests
*
* Copyright (C) 2014 LunarG, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Courtney Goeltzenleuchter <courtney@lunarg.com>
*/
#include "xglrenderframework.h"
XglRenderFramework::XglRenderFramework() :
m_cmdBuffer( XGL_NULL_HANDLE ),
m_stateRaster( XGL_NULL_HANDLE ),
m_colorBlend( XGL_NULL_HANDLE ),
m_stateViewport( XGL_NULL_HANDLE ),
m_stateDepthStencil( XGL_NULL_HANDLE ),
m_width( 256.0 ), // default window width
m_height( 256.0 ) // default window height
{
m_renderTargetCount = 1;
m_render_target_fmt = XGL_FMT_R8G8B8A8_UNORM;
m_depthStencilBinding.view = XGL_NULL_HANDLE;
}
XglRenderFramework::~XglRenderFramework()
{
}
void XglRenderFramework::InitFramework()
{
XGL_RESULT err;
err = xglCreateInstance(&app_info, NULL, &this->inst);
ASSERT_XGL_SUCCESS(err);
err = xglEnumerateGpus(inst, XGL_MAX_PHYSICAL_GPUS, &this->gpu_count,
objs);
ASSERT_XGL_SUCCESS(err);
ASSERT_GE(this->gpu_count, 1) << "No GPU available";
m_device = new XglDevice(0, objs[0]);
m_device->get_device_queue();
}
void XglRenderFramework::ShutdownFramework()
{
if (m_colorBlend) xglDestroyObject(m_colorBlend);
if (m_stateDepthStencil) xglDestroyObject(m_stateDepthStencil);
if (m_stateRaster) xglDestroyObject(m_stateRaster);
if (m_cmdBuffer) xglDestroyObject(m_cmdBuffer);
if (m_stateViewport) {
xglDestroyObject(m_stateViewport);
}
// reset the driver
delete m_device;
xglDestroyInstance(this->inst);
}
void XglRenderFramework::InitState()
{
XGL_RESULT err;
m_render_target_fmt = XGL_FMT_R8G8B8A8_UNORM;
// create a raster state (solid, back-face culling)
XGL_DYNAMIC_RS_STATE_CREATE_INFO raster = {};
raster.sType = XGL_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO;
raster.pointSize = 1.0;
err = xglCreateDynamicRasterState( device(), &raster, &m_stateRaster );
ASSERT_XGL_SUCCESS(err);
XGL_DYNAMIC_CB_STATE_CREATE_INFO blend = {};
blend.sType = XGL_STRUCTURE_TYPE_DYNAMIC_CB_STATE_CREATE_INFO;
err = xglCreateDynamicColorBlendState(device(), &blend, &m_colorBlend);
ASSERT_XGL_SUCCESS( err );
XGL_DYNAMIC_DS_STATE_CREATE_INFO depthStencil = {};
depthStencil.sType = XGL_STRUCTURE_TYPE_DYNAMIC_DS_STATE_CREATE_INFO;
depthStencil.minDepth = 0.f;
depthStencil.maxDepth = 1.f;
depthStencil.stencilFrontRef = 0;
depthStencil.stencilBackRef = 0;
err = xglCreateDynamicDepthStencilState( device(), &depthStencil, &m_stateDepthStencil );
ASSERT_XGL_SUCCESS( err );
XGL_CMD_BUFFER_CREATE_INFO cmdInfo = {};
cmdInfo.sType = XGL_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO;
cmdInfo.queueType = XGL_QUEUE_TYPE_GRAPHICS;
err = xglCreateCommandBuffer(device(), &cmdInfo, &m_cmdBuffer);
ASSERT_XGL_SUCCESS(err) << "xglCreateCommandBuffer failed";
}
void XglRenderFramework::InitViewport(float width, float height)
{
XGL_RESULT err;
XGL_VIEWPORT viewport;
XGL_DYNAMIC_VP_STATE_CREATE_INFO viewportCreate = {};
viewportCreate.sType = XGL_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO;
viewportCreate.viewportCount = 1;
viewportCreate.scissorCount = 0;
viewport.originX = 0;
viewport.originY = 0;
viewport.width = 1.f * width;
viewport.height = 1.f * height;
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
viewportCreate.pViewports = &viewport;
err = xglCreateDynamicViewportState( device(), &viewportCreate, &m_stateViewport );
ASSERT_XGL_SUCCESS( err );
m_width = width;
m_height = height;
}
void XglRenderFramework::InitViewport()
{
InitViewport(m_width, m_height);
}
void XglRenderFramework::InitRenderTarget()
{
uint32_t i;
for (i = 0; i < m_renderTargetCount; i++) {
XglImage *img = new XglImage(m_device);
img->init(m_width, m_height, m_render_target_fmt,
XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT |
XGL_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
m_colorBindings[i].view = img->targetView();
m_colorBindings[i].layout = XGL_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_renderTargets.push_back(img);
}
// Create Framebuffer and RenderPass with color attachments and any depth/stencil attachment
XGL_ATTACHMENT_LOAD_OP load_op = XGL_ATTACHMENT_LOAD_OP_LOAD;
XGL_ATTACHMENT_STORE_OP store_op = XGL_ATTACHMENT_STORE_OP_STORE;
XGL_DEPTH_STENCIL_BIND_INFO *dsBinding;
if (m_depthStencilBinding.view)
dsBinding = &m_depthStencilBinding;
else
dsBinding = NULL;
const XGL_FRAMEBUFFER_CREATE_INFO fb_info = {
.sType = XGL_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = NULL,
.colorAttachmentCount = m_renderTargetCount,
.pColorAttachments = m_colorBindings,
.pDepthStencilAttachment = dsBinding,
.sampleCount = 1,
.width = (uint32_t)m_width,
.height = (uint32_t)m_height,
.layers = 1,
};
XGL_RENDER_PASS_CREATE_INFO rp_info;
memset(&rp_info, 0 , sizeof(rp_info));
xglCreateFramebuffer(device(), &fb_info, &(rp_info.framebuffer));
rp_info.sType = XGL_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rp_info.renderArea.extent.width = m_width;
rp_info.renderArea.extent.height = m_height;
rp_info.pColorLoadOps = &load_op;
rp_info.pColorStoreOps = &store_op;
rp_info.depthLoadOp = XGL_ATTACHMENT_LOAD_OP_LOAD;
rp_info.depthStoreOp = XGL_ATTACHMENT_STORE_OP_STORE;
rp_info.stencilLoadOp = XGL_ATTACHMENT_LOAD_OP_LOAD;
rp_info.stencilStoreOp = XGL_ATTACHMENT_STORE_OP_STORE;
xglCreateRenderPass(device(), &rp_info, &m_renderPass);
}
XglDevice::XglDevice(uint32_t id, XGL_PHYSICAL_GPU obj) :
xgl_testing::Device(obj), id(id)
{
init();
props = gpu().properties();
queue_props = &gpu().queue_properties()[0];
}
void XglDevice::get_device_queue()
{
ASSERT_NE(true, graphics_queues().empty());
m_queue = graphics_queues()[0]->obj();
}
XglDescriptorSetObj::XglDescriptorSetObj(XglDevice *device)
{
m_device = device;
m_nextSlot = 0;
}
XglDescriptorSetObj::~XglDescriptorSetObj()
{
delete m_set;
}
int XglDescriptorSetObj::AppendDummy()
{
/* request a descriptor but do not update it */
XGL_DESCRIPTOR_TYPE_COUNT tc = {};
tc.type = XGL_DESCRIPTOR_TYPE_RAW_BUFFER;
tc.count = 1;
m_type_counts.push_back(tc);
return m_nextSlot++;
}
int XglDescriptorSetObj::AppendBuffer(XGL_DESCRIPTOR_TYPE type, XglConstantBufferObj *constantBuffer)
{
XGL_DESCRIPTOR_TYPE_COUNT tc = {};
tc.type = type;
tc.count = 1;
m_type_counts.push_back(tc);
m_bufferInfo.push_back(&constantBuffer->m_bufferViewInfo);
m_updateBuffers.push_back(xgl_testing::DescriptorSet::update(type, m_nextSlot, 1,
(const XGL_BUFFER_VIEW_ATTACH_INFO **) NULL));
return m_nextSlot++;
}
int XglDescriptorSetObj::AppendSamplerTexture( XglSamplerObj* sampler, XglTextureObj* texture)
{
XGL_DESCRIPTOR_TYPE_COUNT tc = {};
tc.type = XGL_DESCRIPTOR_TYPE_SAMPLER_TEXTURE;
tc.count = 1;
m_type_counts.push_back(tc);
XGL_SAMPLER_IMAGE_VIEW_INFO tmp = {};
tmp.pSampler = sampler->obj();
tmp.pImageView = &texture->m_textureViewInfo;
m_samplerTextureInfo.push_back(tmp);
m_updateSamplerTextures.push_back(xgl_testing::DescriptorSet::update(m_nextSlot, 1,
(const XGL_SAMPLER_IMAGE_VIEW_INFO *) NULL));
return m_nextSlot++;
}
XGL_DESCRIPTOR_SET_LAYOUT XglDescriptorSetObj::GetLayout()
{
return m_layout.obj();
}
XGL_DESCRIPTOR_SET XglDescriptorSetObj::GetDescriptorSetHandle()
{
return m_set->obj();
}
void XglDescriptorSetObj::CreateXGLDescriptorSet(XglCommandBufferObj *cmdBuffer)
{
// create XGL_DESCRIPTOR_REGION
XGL_DESCRIPTOR_REGION_CREATE_INFO region = {};
region.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_REGION_CREATE_INFO;
region.count = m_type_counts.size();
region.pTypeCount = &m_type_counts[0];
init(*m_device, XGL_DESCRIPTOR_REGION_USAGE_ONE_SHOT, 1, region);
// create XGL_DESCRIPTOR_SET_LAYOUT
vector<XGL_DESCRIPTOR_SET_LAYOUT_CREATE_INFO> layout;
layout.resize(m_type_counts.size());
for (int i = 0; i < m_type_counts.size(); i++) {
layout[i].sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layout[i].descriptorType = m_type_counts[i].type;
layout[i].count = m_type_counts[i].count;
layout[i].stageFlags = XGL_SHADER_STAGE_FLAGS_ALL;
layout[i].immutableSampler = XGL_NULL_HANDLE;
if (i < m_type_counts.size() - 1)
layout[i].pNext = &layout[i + 1];
else
layout[i].pNext = NULL;
}
m_layout.init(*m_device, 0, layout[0]);
// create XGL_DESCRIPTOR_SET
m_set = alloc_sets(XGL_DESCRIPTOR_SET_USAGE_STATIC, m_layout);
// build the update chain
for (int i = 0; i < m_updateBuffers.size(); i++) {
m_updateBuffers[i].pBufferViews = &m_bufferInfo[i];
if (i < m_updateBuffers.size() - 1)
m_updateBuffers[i].pNext = &m_updateBuffers[i + 1];
else if (m_updateSamplerTextures.empty())
m_updateBuffers[i].pNext = NULL;
else
m_updateBuffers[i].pNext = &m_updateSamplerTextures[0];
}
for (int i = 0; i < m_updateSamplerTextures.size(); i++) {
m_updateSamplerTextures[i].pSamplerImageViews = &m_samplerTextureInfo[i];
if (i < m_updateSamplerTextures.size() - 1)
m_updateSamplerTextures[i].pNext = &m_updateSamplerTextures[i + 1];
else
m_updateSamplerTextures[i].pNext = NULL;
}
const void *chain = (!m_updateBuffers.empty()) ? (const void *) &m_updateBuffers[0] :
(!m_updateSamplerTextures.empty()) ? (const void *) &m_updateSamplerTextures[0] :
NULL;
// do the updates
m_device->begin_descriptor_region_update(XGL_DESCRIPTOR_UPDATE_MODE_FASTEST);
clear_sets(*m_set);
m_set->update(chain);
m_device->end_descriptor_region_update(*cmdBuffer);
}
XglImage::XglImage(XglDevice *dev)
{
m_device = dev;
m_imageInfo.view = XGL_NULL_HANDLE;
m_imageInfo.layout = XGL_IMAGE_LAYOUT_GENERAL;
}
void XglImage::init(uint32_t w, uint32_t h,
XGL_FORMAT fmt, XGL_FLAGS usage,
XGL_IMAGE_TILING tiling)
{
uint32_t mipCount;
mipCount = 0;
uint32_t _w = w;
uint32_t _h = h;
while( ( _w > 0 ) || ( _h > 0 ) )
{
_w >>= 1;
_h >>= 1;
mipCount++;
}
XGL_IMAGE_CREATE_INFO imageCreateInfo = xgl_testing::Image::create_info();
imageCreateInfo.imageType = XGL_IMAGE_2D;
imageCreateInfo.format = fmt;
imageCreateInfo.extent.width = w;
imageCreateInfo.extent.height = h;
imageCreateInfo.mipLevels = mipCount;
imageCreateInfo.tiling = tiling;
imageCreateInfo.usage = usage;
xgl_testing::Image::init(*m_device, imageCreateInfo);
m_imageInfo.layout = XGL_IMAGE_LAYOUT_GENERAL;
XGL_COLOR_ATTACHMENT_VIEW_CREATE_INFO createView = {
XGL_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO,
XGL_NULL_HANDLE,
obj(),
XGL_FMT_R8G8B8A8_UNORM,
0,
0,
1
};
m_targetView.init(*m_device, createView);
}
XGL_RESULT XglImage::MapMemory(void** ptr)
{
*ptr = map();
return (*ptr) ? XGL_SUCCESS : XGL_ERROR_UNKNOWN;
}
XGL_RESULT XglImage::UnmapMemory()
{
unmap();
return XGL_SUCCESS;
}
XglTextureObj::XglTextureObj(XglDevice *device)
{
m_device = device;
const XGL_FORMAT tex_format = XGL_FMT_B8G8R8A8_UNORM;
const uint32_t tex_colors[2] = { 0xffff0000, 0xff00ff00 };
memset(&m_textureViewInfo,0,sizeof(m_textureViewInfo));
m_textureViewInfo.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
const XGL_IMAGE_CREATE_INFO image = {
.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = XGL_IMAGE_2D,
.format = tex_format,
.extent = { 16, 16, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = XGL_LINEAR_TILING,
.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_READ_BIT,
.flags = 0,
};
XGL_IMAGE_VIEW_CREATE_INFO view;
view.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = XGL_NULL_HANDLE;
view.viewType = XGL_IMAGE_VIEW_2D;
view.format = image.format;
view.channels.r = XGL_CHANNEL_SWIZZLE_R;
view.channels.g = XGL_CHANNEL_SWIZZLE_G;
view.channels.b = XGL_CHANNEL_SWIZZLE_B;
view.channels.a = XGL_CHANNEL_SWIZZLE_A;
view.subresourceRange.aspect = XGL_IMAGE_ASPECT_COLOR;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.mipLevels = 1;
view.subresourceRange.baseArraySlice = 0;
view.subresourceRange.arraySize = 1;
view.minLod = 0.0f;
/* create image */
init(*m_device, image);
/* create image view */
view.image = obj();
m_textureView.init(*m_device, view);
XGL_SUBRESOURCE_LAYOUT layout =
subresource_layout(subresource(XGL_IMAGE_ASPECT_COLOR, 0, 0));
m_rowPitch = layout.rowPitch;
void *data;
int32_t x, y;
data = map();
for (y = 0; y < extent().height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + layout.rowPitch * y);
for (x = 0; x < extent().width; x++)
row[x] = tex_colors[(x & 1) ^ (y & 1)];
}
unmap();
m_textureViewInfo.view = m_textureView.obj();
}
void XglTextureObj::ChangeColors(uint32_t color1, uint32_t color2)
{
const uint32_t tex_colors[2] = { color1, color2 };
void *data;
data = map();
for (int y = 0; y < extent().height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + m_rowPitch * y);
for (int x = 0; x < extent().width; x++)
row[x] = tex_colors[(x & 1) ^ (y & 1)];
}
unmap();
}
XglSamplerObj::XglSamplerObj(XglDevice *device)
{
m_device = device;
XGL_SAMPLER_CREATE_INFO samplerCreateInfo;
memset(&samplerCreateInfo,0,sizeof(samplerCreateInfo));
samplerCreateInfo.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.minFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.mipMode = XGL_TEX_MIPMAP_BASE;
samplerCreateInfo.addressU = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressV = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressW = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.maxAnisotropy = 0.0;
samplerCreateInfo.compareFunc = XGL_COMPARE_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE;
init(*m_device, samplerCreateInfo);
}
/*
* Basic ConstantBuffer constructor. Then use create methods to fill in the details.
*/
XglConstantBufferObj::XglConstantBufferObj(XglDevice *device)
{
m_device = device;
m_commandBuffer = 0;
memset(&m_bufferViewInfo,0,sizeof(m_bufferViewInfo));
}
XglConstantBufferObj::XglConstantBufferObj(XglDevice *device, int constantCount, int constantSize, const void* data)
{
m_device = device;
m_commandBuffer = 0;
memset(&m_bufferViewInfo,0,sizeof(m_bufferViewInfo));
m_numVertices = constantCount;
m_stride = constantSize;
const size_t allocationSize = constantCount * constantSize;
init(*m_device, allocationSize);
void *pData = map();
memcpy(pData, data, allocationSize);
unmap();
// set up the buffer view for the constant buffer
XGL_BUFFER_VIEW_CREATE_INFO view_info = {};
view_info.sType = XGL_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
view_info.buffer = obj();
view_info.viewType = XGL_BUFFER_VIEW_RAW;
view_info.offset = 0;
view_info.range = allocationSize;
m_bufferView.init(*m_device, view_info);
this->m_bufferViewInfo.sType = XGL_STRUCTURE_TYPE_BUFFER_VIEW_ATTACH_INFO;
this->m_bufferViewInfo.view = m_bufferView.obj();
}
void XglConstantBufferObj::Bind(XGL_CMD_BUFFER cmdBuffer, XGL_GPU_SIZE offset, uint32_t binding)
{
xglCmdBindVertexBuffer(cmdBuffer, obj(), offset, binding);
}
void XglConstantBufferObj::BufferMemoryBarrier(
XGL_FLAGS outputMask /*=
XGL_MEMORY_OUTPUT_CPU_WRITE_BIT |
XGL_MEMORY_OUTPUT_SHADER_WRITE_BIT |
XGL_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
XGL_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
XGL_MEMORY_OUTPUT_COPY_BIT*/,
XGL_FLAGS inputMask /*=
XGL_MEMORY_INPUT_CPU_READ_BIT |
XGL_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
XGL_MEMORY_INPUT_INDEX_FETCH_BIT |
XGL_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
XGL_MEMORY_INPUT_UNIFORM_READ_BIT |
XGL_MEMORY_INPUT_SHADER_READ_BIT |
XGL_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
XGL_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
XGL_MEMORY_INPUT_COPY_BIT*/)
{
XGL_RESULT err = XGL_SUCCESS;
if (!m_commandBuffer)
{
m_fence.init(*m_device, xgl_testing::Fence::create_info(0));
m_commandBuffer = new XglCommandBufferObj(m_device);
}
else
{
m_device->wait(m_fence);
}
// open the command buffer
XGL_CMD_BUFFER_BEGIN_INFO cmd_buf_info = {
.sType = XGL_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = 0,
};
err = m_commandBuffer->BeginCommandBuffer(&cmd_buf_info);
ASSERT_XGL_SUCCESS(err);
XGL_BUFFER_MEMORY_BARRIER memory_barrier =
buffer_memory_barrier(outputMask, inputMask, 0, m_numVertices * m_stride);
XGL_BUFFER_MEMORY_BARRIER *pmemory_barrier = &memory_barrier;
XGL_SET_EVENT set_events[] = { XGL_SET_EVENT_GPU_COMMANDS_COMPLETE };
XGL_PIPELINE_BARRIER pipeline_barrier = {};
pipeline_barrier.sType = XGL_STRUCTURE_TYPE_PIPELINE_BARRIER;
pipeline_barrier.eventCount = 1;
pipeline_barrier.pEvents = set_events;
pipeline_barrier.waitEvent = XGL_WAIT_EVENT_TOP_OF_PIPE;
pipeline_barrier.memBarrierCount = 1;
pipeline_barrier.pMemBarriers = (const void **)&pmemory_barrier;
// write barrier to the command buffer
m_commandBuffer->PipelineBarrier(&pipeline_barrier);
// finish recording the command buffer
err = m_commandBuffer->EndCommandBuffer();
ASSERT_XGL_SUCCESS(err);
uint32_t numMemRefs=1;
XGL_MEMORY_REF memRefs;
// this command buffer only uses the vertex buffer memory
memRefs.flags = 0;
memRefs.mem = memories()[0];
// submit the command buffer to the universal queue
XGL_CMD_BUFFER bufferArray[1];
bufferArray[0] = m_commandBuffer->GetBufferHandle();
err = xglQueueSubmit( m_device->m_queue, 1, bufferArray, numMemRefs, &memRefs, m_fence.obj() );
ASSERT_XGL_SUCCESS(err);
}
XglIndexBufferObj::XglIndexBufferObj(XglDevice *device)
: XglConstantBufferObj(device)
{
}
void XglIndexBufferObj::CreateAndInitBuffer(int numIndexes, XGL_INDEX_TYPE indexType, const void* data)
{
XGL_FORMAT viewFormat;
m_numVertices = numIndexes;
m_indexType = indexType;
switch (indexType) {
case XGL_INDEX_8:
m_stride = 1;
viewFormat = XGL_FMT_R8_UINT;
break;
case XGL_INDEX_16:
m_stride = 2;
viewFormat = XGL_FMT_R16_UINT;
break;
case XGL_INDEX_32:
m_stride = 4;
viewFormat = XGL_FMT_R32_UINT;
break;
default:
assert(!"unknown index type");
break;
}
const size_t allocationSize = numIndexes * m_stride;
init(*m_device, allocationSize);
void *pData = map();
memcpy(pData, data, allocationSize);
unmap();
// set up the buffer view for the constant buffer
XGL_BUFFER_VIEW_CREATE_INFO view_info = {};
view_info.sType = XGL_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
view_info.buffer = obj();
view_info.viewType = XGL_BUFFER_VIEW_TYPED;
view_info.stride = m_stride;
view_info.format = viewFormat;
view_info.channels.r = XGL_CHANNEL_SWIZZLE_R;
view_info.channels.g = XGL_CHANNEL_SWIZZLE_G;
view_info.channels.b = XGL_CHANNEL_SWIZZLE_B;
view_info.channels.a = XGL_CHANNEL_SWIZZLE_A;
view_info.offset = 0;
view_info.range = allocationSize;
m_bufferView.init(*m_device, view_info);
this->m_bufferViewInfo.sType = XGL_STRUCTURE_TYPE_BUFFER_VIEW_ATTACH_INFO;
this->m_bufferViewInfo.view = m_bufferView.obj();
}
void XglIndexBufferObj::Bind(XGL_CMD_BUFFER cmdBuffer, XGL_GPU_SIZE offset)
{
xglCmdBindIndexBuffer(cmdBuffer, obj(), offset, m_indexType);
}
XGL_INDEX_TYPE XglIndexBufferObj::GetIndexType()
{
return m_indexType;
}
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO* XglShaderObj::GetStageCreateInfo()
{
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO *stageInfo = (XGL_PIPELINE_SHADER_STAGE_CREATE_INFO*) calloc( 1,sizeof(XGL_PIPELINE_SHADER_STAGE_CREATE_INFO) );
stageInfo->sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stageInfo->shader.stage = m_stage;
stageInfo->shader.shader = obj();
stageInfo->shader.linkConstBufferCount = 0;
stageInfo->shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
return stageInfo;
}
XglShaderObj::XglShaderObj(XglDevice *device, const char * shader_code, XGL_PIPELINE_SHADER_STAGE stage, XglRenderFramework *framework)
{
XGL_RESULT err = XGL_SUCCESS;
std::vector<unsigned int> bil;
XGL_SHADER_CREATE_INFO createInfo;
size_t shader_len;
m_stage = stage;
m_device = device;
createInfo.sType = XGL_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
if (!framework->m_use_bil) {
shader_len = strlen(shader_code);
createInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1;
createInfo.pCode = malloc(createInfo.codeSize);
createInfo.flags = 0;
/* try version 0 first: XGL_PIPELINE_SHADER_STAGE followed by GLSL */
((uint32_t *) createInfo.pCode)[0] = ICD_BIL_MAGIC;
((uint32_t *) createInfo.pCode)[1] = 0;
((uint32_t *) createInfo.pCode)[2] = stage;
memcpy(((uint32_t *) createInfo.pCode + 3), shader_code, shader_len + 1);
err = init_try(*m_device, createInfo);
}
if (framework->m_use_bil || err) {
std::vector<unsigned int> bil;
err = XGL_SUCCESS;
// Use Reference GLSL to BIL compiler
framework->GLSLtoBIL(stage, shader_code, bil);
createInfo.pCode = bil.data();
createInfo.codeSize = bil.size() * sizeof(unsigned int);
createInfo.flags = 0;
init(*m_device, createInfo);
}
}
XglPipelineObj::XglPipelineObj(XglDevice *device)
{
m_device = device;
m_vi_state.attributeCount = m_vi_state.bindingCount = 0;
m_vertexBufferCount = 0;
m_ia_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO;
m_ia_state.pNext = XGL_NULL_HANDLE;
m_ia_state.topology = XGL_TOPOLOGY_TRIANGLE_LIST;
m_ia_state.disableVertexReuse = XGL_FALSE;
m_ia_state.primitiveRestartEnable = XGL_FALSE;
m_ia_state.primitiveRestartIndex = 0;
m_rs_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO;
m_rs_state.pNext = &m_ia_state;
m_rs_state.depthClipEnable = XGL_FALSE;
m_rs_state.rasterizerDiscardEnable = XGL_FALSE;
m_rs_state.provokingVertex = XGL_PROVOKING_VERTEX_LAST;
m_rs_state.fillMode = XGL_FILL_SOLID;
m_rs_state.cullMode = XGL_CULL_NONE;
m_rs_state.frontFace = XGL_FRONT_FACE_CCW;
memset(&m_cb_state,0,sizeof(m_cb_state));
m_cb_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO;
m_cb_state.pNext = &m_rs_state;
m_cb_state.alphaToCoverageEnable = XGL_FALSE;
m_cb_state.dualSourceBlendEnable = XGL_FALSE;
m_cb_state.logicOp = XGL_LOGIC_OP_COPY;
m_ms_state.pNext = &m_cb_state;
m_ms_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_MS_STATE_CREATE_INFO;
m_ms_state.multisampleEnable = XGL_FALSE;
m_ms_state.sampleMask = 1; // Do we have to specify MSAA even just to disable it?
m_ms_state.samples = 1;
m_ms_state.minSampleShading = 0;
m_ms_state.sampleShadingEnable = 0;
m_ds_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_DS_STATE_CREATE_INFO;
m_ds_state.pNext = &m_ms_state,
m_ds_state.format = XGL_FMT_D32_SFLOAT;
m_ds_state.depthTestEnable = XGL_FALSE;
m_ds_state.depthWriteEnable = XGL_FALSE;
m_ds_state.depthBoundsEnable = XGL_FALSE;
m_ds_state.depthFunc = XGL_COMPARE_LESS_EQUAL;
m_ds_state.back.stencilDepthFailOp = XGL_STENCIL_OP_KEEP;
m_ds_state.back.stencilFailOp = XGL_STENCIL_OP_KEEP;
m_ds_state.back.stencilPassOp = XGL_STENCIL_OP_KEEP;
m_ds_state.back.stencilFunc = XGL_COMPARE_ALWAYS;
m_ds_state.stencilTestEnable = XGL_FALSE;
m_ds_state.front = m_ds_state.back;
XGL_PIPELINE_CB_ATTACHMENT_STATE att = {};
att.blendEnable = XGL_FALSE;
att.format = XGL_FMT_R8G8B8A8_UNORM;
att.channelWriteMask = 0xf;
AddColorAttachment(0, &att);
};
void XglPipelineObj::AddShader(XglShaderObj* shader)
{
m_shaderObjs.push_back(shader);
}
void XglPipelineObj::AddVertexInputAttribs(XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION* vi_attrib, int count)
{
m_vi_state.pVertexAttributeDescriptions = vi_attrib;
m_vi_state.attributeCount = count;
}
void XglPipelineObj::AddVertexInputBindings(XGL_VERTEX_INPUT_BINDING_DESCRIPTION* vi_binding, int count)
{
m_vi_state.pVertexBindingDescriptions = vi_binding;
m_vi_state.bindingCount = count;
}
void XglPipelineObj::AddVertexDataBuffer(XglConstantBufferObj* vertexDataBuffer, int binding)
{
m_vertexBufferObjs.push_back(vertexDataBuffer);
m_vertexBufferBindings.push_back(binding);
m_vertexBufferCount++;
}
void XglPipelineObj::AddColorAttachment(uint32_t binding, const XGL_PIPELINE_CB_ATTACHMENT_STATE *att)
{
if (binding+1 > m_colorAttachments.size())
{
m_colorAttachments.resize(binding+1);
}
m_colorAttachments[binding] = *att;
}
void XglPipelineObj::SetDepthStencil(XGL_PIPELINE_DS_STATE_CREATE_INFO *ds_state)
{
m_ds_state.format = ds_state->format;
m_ds_state.depthTestEnable = ds_state->depthTestEnable;
m_ds_state.depthWriteEnable = ds_state->depthWriteEnable;
m_ds_state.depthBoundsEnable = ds_state->depthBoundsEnable;
m_ds_state.depthFunc = ds_state->depthFunc;
m_ds_state.stencilTestEnable = ds_state->stencilTestEnable;
m_ds_state.back = ds_state->back;
m_ds_state.front = ds_state->front;
}
void XglPipelineObj::CreateXGLPipeline(XglDescriptorSetObj *descriptorSet)
{
void* head_ptr = &m_ds_state;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO* shaderCreateInfo;
for (int i=0; i<m_shaderObjs.size(); i++)
{
shaderCreateInfo = m_shaderObjs[i]->GetStageCreateInfo();
shaderCreateInfo->pNext = head_ptr;
head_ptr = shaderCreateInfo;
}
if (m_vi_state.attributeCount && m_vi_state.bindingCount)
{
m_vi_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO;
m_vi_state.pNext = head_ptr;
head_ptr = &m_vi_state;
}
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = head_ptr;
info.flags = 0;
info.lastSetLayout = descriptorSet->GetLayout();
m_cb_state.attachmentCount = m_colorAttachments.size();
m_cb_state.pAttachments = &m_colorAttachments[0];
init(*m_device, info);
}
XGL_PIPELINE XglPipelineObj::GetPipelineHandle()
{
return obj();
}
void XglPipelineObj::BindPipelineCommandBuffer(XGL_CMD_BUFFER m_cmdBuffer, XglDescriptorSetObj *descriptorSet)
{
void* head_ptr = &m_ds_state;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO* shaderCreateInfo;
for (int i=0; i<m_shaderObjs.size(); i++)
{
shaderCreateInfo = m_shaderObjs[i]->GetStageCreateInfo();
shaderCreateInfo->pNext = head_ptr;
head_ptr = shaderCreateInfo;
}
if (m_vi_state.attributeCount && m_vi_state.bindingCount)
{
m_vi_state.sType = XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO;
m_vi_state.pNext = head_ptr;
head_ptr = &m_vi_state;
}
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = head_ptr;
info.flags = 0;
info.lastSetLayout = descriptorSet->GetLayout();
init(*m_device, info);
xglCmdBindPipeline( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, obj() );
for (int i=0; i < m_vertexBufferCount; i++)
{
m_vertexBufferObjs[i]->Bind(m_cmdBuffer, 0, m_vertexBufferBindings[i]);
}
}
XglMemoryRefManager::XglMemoryRefManager() {
}
void XglMemoryRefManager::AddMemoryRef(XglConstantBufferObj *constantBuffer) {
const std::vector<XGL_GPU_MEMORY> mems = constantBuffer->memories();
if (!mems.empty())
m_bufferObjs.push_back(mems[0]);
}
void XglMemoryRefManager::AddMemoryRef(XglTextureObj *texture) {
const std::vector<XGL_GPU_MEMORY> mems = texture->memories();
if (!mems.empty())
m_bufferObjs.push_back(mems[0]);
}
XGL_MEMORY_REF* XglMemoryRefManager::GetMemoryRefList() {
XGL_MEMORY_REF *localRefs;
uint32_t numRefs=m_bufferObjs.size();
if (numRefs <= 0)
return NULL;
localRefs = (XGL_MEMORY_REF*) malloc( numRefs * sizeof(XGL_MEMORY_REF) );
for (int i=0; i<numRefs; i++)
{
localRefs[i].flags = 0;
localRefs[i].mem = m_bufferObjs[i];
}
return localRefs;
}
int XglMemoryRefManager::GetNumRefs() {
return m_bufferObjs.size();
}
XglCommandBufferObj::XglCommandBufferObj(XglDevice *device)
: xgl_testing::CmdBuffer(*device, xgl_testing::CmdBuffer::create_info(XGL_QUEUE_TYPE_GRAPHICS))
{
m_device = device;
m_renderTargetCount = 0;
}
XGL_CMD_BUFFER XglCommandBufferObj::GetBufferHandle()
{
return obj();
}
XGL_RESULT XglCommandBufferObj::BeginCommandBuffer(XGL_CMD_BUFFER_BEGIN_INFO *pInfo)
{
begin(pInfo);
return XGL_SUCCESS;
}
XGL_RESULT XglCommandBufferObj::BeginCommandBuffer(XGL_RENDER_PASS renderpass_obj)
{
begin(renderpass_obj);
return XGL_SUCCESS;
}
XGL_RESULT XglCommandBufferObj::BeginCommandBuffer()
{
begin();
return XGL_SUCCESS;
}
XGL_RESULT XglCommandBufferObj::EndCommandBuffer()
{
end();
return XGL_SUCCESS;
}
void XglCommandBufferObj::PipelineBarrier(XGL_PIPELINE_BARRIER *barrierPtr)
{
xglCmdPipelineBarrier(obj(), barrierPtr);
}
void XglCommandBufferObj::ClearAllBuffers(XGL_DEPTH_STENCIL_BIND_INFO *depthStencilBinding, XGL_IMAGE depthStencilImage)
{
uint32_t i;
const XGL_FLAGS output_mask =
XGL_MEMORY_OUTPUT_CPU_WRITE_BIT |
XGL_MEMORY_OUTPUT_SHADER_WRITE_BIT |
XGL_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
XGL_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
XGL_MEMORY_OUTPUT_COPY_BIT;
const XGL_FLAGS input_mask = 0;
// whatever we want to do, we do it to the whole buffer
XGL_IMAGE_SUBRESOURCE_RANGE srRange = {};
srRange.aspect = XGL_IMAGE_ASPECT_COLOR;
srRange.baseMipLevel = 0;
srRange.mipLevels = XGL_LAST_MIP_OR_SLICE;
srRange.baseArraySlice = 0;
srRange.arraySize = XGL_LAST_MIP_OR_SLICE;
XGL_IMAGE_MEMORY_BARRIER memory_barrier = {};
memory_barrier.sType = XGL_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
memory_barrier.outputMask = output_mask;
memory_barrier.inputMask = input_mask;
memory_barrier.newLayout = XGL_IMAGE_LAYOUT_CLEAR_OPTIMAL;
memory_barrier.subresourceRange = srRange;
XGL_IMAGE_MEMORY_BARRIER *pmemory_barrier = &memory_barrier;
XGL_SET_EVENT set_events[] = { XGL_SET_EVENT_GPU_COMMANDS_COMPLETE };
XGL_PIPELINE_BARRIER pipeline_barrier = {};
pipeline_barrier.sType = XGL_STRUCTURE_TYPE_PIPELINE_BARRIER;
pipeline_barrier.eventCount = 1;
pipeline_barrier.pEvents = set_events;
pipeline_barrier.waitEvent = XGL_WAIT_EVENT_TOP_OF_PIPE;
pipeline_barrier.memBarrierCount = 1;
pipeline_barrier.pMemBarriers = (const void **)&pmemory_barrier;
// clear the back buffer to dark grey
uint32_t clearColor[4] = {64, 64, 64, 0};
for (i = 0; i < m_renderTargetCount; i++) {
memory_barrier.image = m_renderTargets[i]->image();
memory_barrier.oldLayout = m_renderTargets[i]->layout();
xglCmdPipelineBarrier( obj(), &pipeline_barrier);
m_renderTargets[i]->layout(memory_barrier.newLayout);
xglCmdClearColorImageRaw( obj(), m_renderTargets[i]->image(), clearColor, 1, &srRange );
}
if (depthStencilImage)
{
XGL_IMAGE_SUBRESOURCE_RANGE dsRange = {};
dsRange.aspect = XGL_IMAGE_ASPECT_DEPTH;
dsRange.baseMipLevel = 0;
dsRange.mipLevels = XGL_LAST_MIP_OR_SLICE;
dsRange.baseArraySlice = 0;
dsRange.arraySize = XGL_LAST_MIP_OR_SLICE;
// prepare the depth buffer for clear
memory_barrier.oldLayout = depthStencilBinding->layout;
memory_barrier.newLayout = XGL_IMAGE_LAYOUT_CLEAR_OPTIMAL;
memory_barrier.image = depthStencilImage;
memory_barrier.subresourceRange = dsRange;
xglCmdPipelineBarrier( obj(), &pipeline_barrier);
depthStencilBinding->layout = memory_barrier.newLayout;
xglCmdClearDepthStencil(obj(), depthStencilImage, 1.0f, 0, 1, &dsRange);
// prepare depth buffer for rendering
memory_barrier.image = depthStencilImage;
memory_barrier.oldLayout = XGL_IMAGE_LAYOUT_CLEAR_OPTIMAL;
memory_barrier.newLayout = depthStencilBinding->layout;
memory_barrier.subresourceRange = dsRange;
xglCmdPipelineBarrier( obj(), &pipeline_barrier);
depthStencilBinding->layout = memory_barrier.newLayout;
}
}
void XglCommandBufferObj::PrepareAttachments()
{
uint32_t i;
const XGL_FLAGS output_mask =
XGL_MEMORY_OUTPUT_CPU_WRITE_BIT |
XGL_MEMORY_OUTPUT_SHADER_WRITE_BIT |
XGL_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
XGL_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
XGL_MEMORY_OUTPUT_COPY_BIT;
const XGL_FLAGS input_mask =
XGL_MEMORY_INPUT_CPU_READ_BIT |
XGL_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
XGL_MEMORY_INPUT_INDEX_FETCH_BIT |
XGL_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
XGL_MEMORY_INPUT_UNIFORM_READ_BIT |
XGL_MEMORY_INPUT_SHADER_READ_BIT |
XGL_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
XGL_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
XGL_MEMORY_INPUT_COPY_BIT;
XGL_IMAGE_SUBRESOURCE_RANGE srRange = {};
srRange.aspect = XGL_IMAGE_ASPECT_COLOR;
srRange.baseMipLevel = 0;
srRange.mipLevels = XGL_LAST_MIP_OR_SLICE;
srRange.baseArraySlice = 0;
srRange.arraySize = XGL_LAST_MIP_OR_SLICE;
XGL_IMAGE_MEMORY_BARRIER memory_barrier = {};
memory_barrier.sType = XGL_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
memory_barrier.outputMask = output_mask;
memory_barrier.inputMask = input_mask;
memory_barrier.newLayout = XGL_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
memory_barrier.subresourceRange = srRange;
XGL_IMAGE_MEMORY_BARRIER *pmemory_barrier = &memory_barrier;
XGL_SET_EVENT set_events[] = { XGL_SET_EVENT_GPU_COMMANDS_COMPLETE };
XGL_PIPELINE_BARRIER pipeline_barrier = {};
pipeline_barrier.sType = XGL_STRUCTURE_TYPE_PIPELINE_BARRIER;
pipeline_barrier.eventCount = 1;
pipeline_barrier.pEvents = set_events;
pipeline_barrier.waitEvent = XGL_WAIT_EVENT_TOP_OF_PIPE;
pipeline_barrier.memBarrierCount = 1;
pipeline_barrier.pMemBarriers = (const void **)&pmemory_barrier;
for(i=0; i<m_renderTargetCount; i++)
{
memory_barrier.image = m_renderTargets[i]->image();
memory_barrier.oldLayout = m_renderTargets[i]->layout();
xglCmdPipelineBarrier( obj(), &pipeline_barrier);
m_renderTargets[i]->layout(memory_barrier.newLayout);
}
}
void XglCommandBufferObj::BindStateObject(XGL_STATE_BIND_POINT stateBindPoint, XGL_DYNAMIC_STATE_OBJECT stateObject)
{
xglCmdBindDynamicStateObject( obj(), stateBindPoint, stateObject);
}
void XglCommandBufferObj::AddRenderTarget(XglImage *renderTarget)
{
m_renderTargets.push_back(renderTarget);
m_renderTargetCount++;
}
void XglCommandBufferObj::DrawIndexed(uint32_t firstIndex, uint32_t indexCount, int32_t vertexOffset, uint32_t firstInstance, uint32_t instanceCount)
{
xglCmdDrawIndexed(obj(), firstIndex, indexCount, vertexOffset, firstInstance, instanceCount);
}
void XglCommandBufferObj::Draw(uint32_t firstVertex, uint32_t vertexCount, uint32_t firstInstance, uint32_t instanceCount)
{
xglCmdDraw(obj(), firstVertex, vertexCount, firstInstance, instanceCount);
}
void XglCommandBufferObj::QueueCommandBuffer(XGL_MEMORY_REF *memRefs, uint32_t numMemRefs)
{
XGL_RESULT err = XGL_SUCCESS;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &obj(), numMemRefs, memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
}
void XglCommandBufferObj::BindPipeline(XGL_PIPELINE pipeline)
{
xglCmdBindPipeline( obj(), XGL_PIPELINE_BIND_POINT_GRAPHICS, pipeline );
}
void XglCommandBufferObj::BindDescriptorSet(XGL_DESCRIPTOR_SET descriptorSet)
{
// bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer view)
xglCmdBindDescriptorSet(obj(), XGL_PIPELINE_BIND_POINT_GRAPHICS, descriptorSet, NULL );
}
void XglCommandBufferObj::BindIndexBuffer(XglIndexBufferObj *indexBuffer, uint32_t offset)
{
xglCmdBindIndexBuffer(obj(), indexBuffer->obj(), offset, indexBuffer->GetIndexType());
}
void XglCommandBufferObj::BindVertexBuffer(XglConstantBufferObj *vertexBuffer, uint32_t offset, uint32_t binding)
{
xglCmdBindVertexBuffer(obj(), vertexBuffer->obj(), offset, binding);
}